吉大大物第7章 静电场作业答案
大学物理第7章静电场中的导体和电介质课后习题及答案
1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr =21s s。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。
上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
吉林大学大学物理静电场作业答案
点电荷所在处为球心,以a为半径作一球形高斯
面, 在球面上取两块相等的小面积S1和S2, 其位
置如图所示。设通过S1 和 S2的电场强度通量分
别为Φ1 和 Φ2 ,通过整个球面电场强度通量为 ΦS
则
A. Φ1 Φ2 , ΦS q / 0
S2
q S1 q
O a 2a X
B. Φ1 Φ2, ΦS 2q / 0
A.不变
B.原来的 1/2
C.原来的2倍 D.零
7.静电场中a、b两点的电势差 Ua Ub 取决于
A. 零电势位置选取 B. 检验电荷由a到b路径
C. a、b点场强的值
b
D.a
E
dl
(任意路径)
8. 半径为 r 均匀带电球面1,带电量为q;其外有
一同心半径为R的均匀带电球面2,带电量为Q,
路径到B点的场强线积分 AB E dl = Ed.
8.半径为R的不均匀带电球体,电荷体密度分 布为ρ=Ar,式中 r 为离球心的距离,(r≤R)、A
为一常数,则球体上的总电量Q= A R4。
Q dV R Ar 4 r 2dr 0
9. 把一个均匀带电量+Q的球形肥皂泡由半径 r1吹胀到r2,则半径为R( r1< R < r2)的高斯
(侧视图)
2Ds s2 x
D内
x, E内
x
5. 图示一球形电容器,在外球壳的内半径b和内外导体 间的电压U维持恒定的条件下,内球半径a为多大时, 才能使内球面上的电场强度最小?这个最小的电场强 度和相应的电场能量各是多少?
解:E内
q
4 a2
CU
第七章静止电荷的电场作业题目及解答
(3)金属球的电势
R Q Q Q 1 1 r U E d l dr dr ( ) 2 2 r R R 4 r 4 r 4 R R 0 r 0 0 r
e e e ee e
C F 7-64 电容 的电容器在800V的电 1 4 差下充电,然后切断电源,并将此电容器 的两个极板分别和原来不带电、电容为 的C 6 F 电容器两极板相连,求: 2 (1)每个电容器极板所带电荷量; (2)连接前后的静电场能
0
ε
q´
0
0
题号 结束
7-20 在半径为R,电荷体密度为ρ 的均 匀带电球内,挖去一个半径为 r 的小球,如 图所示。试求:O、O′、P、 P′各点的场 强。 O、O′、P、 P′在一条直线上。
P′.
P O . O . .′ r R
题号 结束
解:
E1 E2
带电荷-ρ 的小球的场强 带电荷ρ 的大球的场强
0 0
r1 . P
O O′ . . r R
0
ρ r2 E2 =
3 ε E1
0
EP = E2 =
r2 P.
3 ε
ρ
r2
0
r3 r12
O O′ . . r R
题号 结束
(4)P ´点的场强: 3 4 r 1 2 π r 1 r E1 4 π 1 = ρ ε 3 r 2 O O ′ P ′ 3 . . ρ . r E1 = r 2 r R 3 ε 1
UP =
4 π ε r> > re a = re cosq
0
1
q (r 1
Байду номын сангаас
2q + q ) r r2 r1 r a
大学物理第7章电场题库答案(含计算题答案)
大学物理第7章电场题库答案(含计算题答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN9题图 第七章 电场填空题 (简单)1、两无限大平行平面的电荷面密度分别为σ+和σ+,则两无限大带电平面外的电场强度大小为σε ,方向为 垂直于两带电平面并背离它们 。
2、在静电场中,电场强度E 沿任意闭合路径的线积分为 0 ,这叫做静电场的 环路定理 。
3、静电场的环路定理的数学表达式为 0l E dl =⎰ ,该式可表述为 在静电场中,电场强度的环流恒等于零 。
4、只要有运动电荷,其周围就有 磁场 产生;5、一平行板电容器,若增大两极板的带电量,则其电容值会 不变 ;若在两极板间充入均匀电介质,会使其两极板间的电势差 减少 。
(填“增大”,“减小”或“不变”)6、在静电场中,若将电量为q=2×108库仑的点电荷从电势V A =10伏的A 点移到电势V B = -2伏特的B 点,电场力对电荷所作的功A ab = 92.410⨯ 焦耳。
(一般)7、当导体处于静电平衡时,导体内部任一点的场强 为零 。
8、电荷在磁场中 不一定 (填一定或不一定)受磁场力的作用。
9、如图所示,在电场强度为E 的均匀磁场中,有一半径为R 的半球面,E 与半球面轴线的夹角为α。
则通过该半球面的电通量为 2cos B R πα-⋅ 。
10、真空中两带等量同号电荷的无限大平行平面的电荷面密度分别为σ+和σ+,则两无限大带电平面之间的电场强度大小为 0 ,两无限大带电平面外的电场强度大小为σε 。
11、在静电场中,电场力所做的功与 路径 无关,只与 起点 和 终点位置 有关。
12、由高斯定理可以证明,处于静电平衡态的导体其内部各处无 净电荷 ,电荷只能分布于导体 外表面 。
因此,如果把任一物体放入空心导体的空腔内,该物体就不受任何外 电场的影响,这就是 静电屏蔽 的原理。
(一般)13、静电场的高斯定理表明静电场是 有源 场, (一般)14、带均匀正电荷的无限长直导线,电荷线密度为λ。
吉大大物第7章 静电场作业答案
6.如图所示,半径为R的导体球原来带电为Q,现将一点电荷q 放在球外离球心距离为x (>R)处,导体球上的电荷在P 点(OP = R/2)产生的场强和电势.
+
解:由于静电感应,使电荷重新 + 分布,球内处处场强为零.因此P 点+ + 总的电场强度也为零.
+
-
R
.R/2 . O
P
- - -
+q
.
+ +
5.高斯定理
S
D ds dV
V
7.静电场中a、b两点的电势差 Ua Ub 取决于 A. 零电势位置选取 C. a、b点场强的值 B. 检验电荷由a到b路径 D. a E dl (任意路径)
b
A.适用于任何静电场 B.只适用于真空中的静电场 C.只适用于具有球对称性、轴对称性和平面 对称性的静电场 D.只适用于虽然不具有(C)中所述的对称性、但可 以找到合适的高斯面的静电场 6.两无限大均匀带电平行平面A和B,电荷面密度分别 为+σ和-σ,在两平面中间插入另一电荷面密度为+ σ平行平面C后,P点场强大小
D左r 2 D右r 2 Dr 2r 2d 0
r
d
8.半径分别为R1和R2的两个导体球A、B,相距 很远且离地面亦很远(可视为两孤立导体球), A球原来带电Q,B球不带电。现用一要导线将 两球连接,静电平衡后忽略导线带电,问: (1) (1) A 、B各带多少是电量?(2) 在电荷移动过程中放出 多少热能? 解 (1)
8. 半径为 r 均匀带电球面1,带电量为q;其外有 一同心半径为R的均匀带电球面2,带电量为Q, 则此两球面之间的电势差U1-U2为:
大学物理第07章习题分析与解答
r R r REOr(D)E ∝1/r 222第七章 静电场7-1 关于电场强度与电势的关系,描述正确的是[ ]。
(A) 电场强度大的地方电势一定高; (B) 沿着电场线的方向电势一定降低; (C) 均匀电场中电势处处相等; (D) 电场强度为零的地方电势也为零。
分析与解 电场强度与电势是描述静电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零;电场强度等于负电势梯度;静电场是保守场,电场线的方向就是电势降低的方向。
正确答案为(B )。
7-2 半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为[ ]。
7-3、下分析与解 根据静电场的高斯定理可以求得均匀带电球面的电场强度分布为⎪⎩⎪⎨⎧>πε<=R r rQRr E 2040。
正确答案为(B )。
7-3 下列说法正确的是[ ]。
(A )带正电的物体电势一定是正的 (B)电场强度为零的地方电势一定为零 (C )等势面与电场线处处正交 (D)等势面上的电场强度处处相等分析与解 正电荷在电场中所受的电场力的方向与电场线的切线方向相同,电荷在等势面上移动电荷时,电场力不做功,说明电场力与位移方向垂直。
正确答案为(C )。
7-4 真空中一均匀带电量为Q 的球壳,将试验正电荷q 从球壳外的R 处移至无限远处时,电场力的功为[ ]。
(A )24R qQ o πε (B )R Q o πε4 (C ) R q o πε4 (D )R qQ o πε4分析与解 静电场力是保守力,电场力做的功等电势能增量的负值,也可以表示成这一过程的电势差与移动电量的乘积,由习题7-2可知电场强度分布,由电势定义式⎰∞⋅=R rE d V 可得球壳与无限远处的电势差。
正确答案为(D )。
7-5 关于静电场的高斯定理有下面几种说法,其中正确的是[ ]。
大学物理第7章真空中的静电场答案解析
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。
θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
对称分析E y =0。
θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。
吉大物理上 第7章 静电场 答案
B. Φ1 < Φ2 , ΦS = 2q / ε0
q O
q
a 2a
X
C. Φ1 = Φ2 , ΦS = q / ε0
D. Φ1 < Φ2 , ΦS = q / ε0
10.一均匀带电球面,若球内电场强度处处为 .一均匀带电球面, 则球面上的带电量σdS 面元在球面内产生 零,则球面上的带电量 的电场强度是 A.处处为零 B.不一定为零 . . C.一定不为零 . D.是常数 . 11. 如图,沿x轴放置“无限长”分段均匀带电 如图, 轴放置“ 轴放置 无限长” 直线,电荷线密度分别为+ 和 , 直线,电荷线密度分别为 λ和- λ,点(0,a) , ) 处的电场强度 λ B. i A.0 . 2πε0a λ λ C. i D. (i + j ) 4πε0a 4πε0a
分布和电势分布。 分布和电势分布。
R
r
4
解 :
∫S D⋅ dS = ∑qi
2 r
D ⋅ 4π r = ∫0 ρ4π r dr = πAr 内
Ar2 Ar2 D = ; E= 内 内 4 4ε
2 R 2
S内 2
U内 = ∫r E内dr+R E外dr ∫
A(R3 − r3 ) AR3 = + 12ε 4ε0 4
二、填空题 1. 真空中有一半径为 均匀带正电的细圆环,其 真空中有一半径为R均匀带正电的细圆环 均匀带正电的细圆环, 电荷线密度为λ, 电荷线密度为 ,则电荷在圆心处产生的电场强 度 E 的大小为 0 。 2. 真空中一半径为 的均匀带电球面,总电量为 真空中一半径为R的均匀带电球面 的均匀带电球面, Q(Q > 0)。在球面上挖去非常小块的面积 (连 。在球面上挖去非常小块的面积∆S 连 同电荷),且假设不影响原来的电荷分布, 同电荷 ,且假设不影响原来的电荷分布,则挖
【大学】习题解答大学物理第7章习题
【关键字】大学专业班级_____ 姓名________学号________第七章静电场中的导体和电介质一、选择题:1,在带电体A旁有一不带电的导体壳B,C为导体壳空腔内的一点,如下图所示。
则由静电屏蔽可知:[ B ](A)带电体A在C点产生的电场强度为零;(B)带电体A与导体壳B的外表面的感应电荷在C点所产生的合电场强度为零;(C)带电体A与导体壳B的内表面的感应电荷在C点所产生的合电场强度为零;(D)导体壳B的内、外表面的感应电荷在C点产生的合电场强度为零。
解答单一就带电体A来说,它在C点产生的电场强度是不为零的。
对于不带电的导体壳B,由于它在带电体A这次,所以有感应电荷且只分布在外表面上(因其内部没有带电体)此感应电荷也是要在C点产生电场强度的。
由导体的静电屏蔽现象,导体壳空腔内C 点的合电场强度为零,故选(B)。
2,在一孤立导体球壳内,如果在偏离球心处放一点电荷+q,则在球壳内、外表面上将出现感应电荷,其分布情况为[ B ](A)球壳内表面分布均匀,外表面也均匀;(B)球壳内表面分布不均匀,外表面均匀;(C)球壳内表面分布均匀,外表面不均匀;(D)球壳的内、外表面分布都不均匀。
解答由于静电感应,球壳内表面感应-q,而外表面感应+q,由于静电屏蔽,球壳内部的点电荷+q和内表面的感应电荷不影响球壳外的电场,外表面的是球面,因此外表面的感应电荷均匀分布,如图11-7所示。
故选(B)。
3. 当一个带电导体达到静电平衡时:[ D ](A) 表面上电荷密度较大处电势较高(B) 表面曲率较大处电势较高。
(C)导体内部的电势比导体表面的电势高。
(D)导体内任一点与其表面上任一点的电势差等于零。
4. 如图示为一均匀带电球体,总电量为+Q,其外部同心地罩一内、外半径分别为r1、r2的金属球壳、设无穷远处为电势零点,则在球壳内半径为r的P点处的场强和电势为:[ D ](A)E= (B)E=0,(C)E=0,(D)E=0,5. 关于高斯定理,下列说法中哪一个是正确的?[ C ](A)高斯面内不包围自由电荷,则面上各点电位移矢量为零。
(完整版)大学物理静电场练习题及答案
练习题7-1 两个点电荷所带电荷之和为 Q,它们各带电荷为多少时,互相间的作用力最大 ?解 : 这是一个条件极值问题。
设此中一个点电荷带电 q,则另一个点电荷带电Q q ,两点电荷之间的库仑力为1Q q qFr 24 0由极值条件 dF dq0 ,得q 1 Q 2又因为d2 F1dq2 2 0 r 2<0这表示两电荷均分电荷Q 时,它们之间的互相作用力最大。
7-2 两个相同的小球,质量都是 m,带等值同号的电荷 q,各用长为 l 的细线挂在同一点,如图7-43 所示。
设均衡时两线间夹角 2很小。
( 1)试证均衡时有以下的近似等式成立:123q lx0 mg2式中 x 为两球均衡时的距离。
(2)假如 l= 1.20 m, m=10 g,x=5.0 cm,则每个小球上的电荷量 q 是多少 ?(3)假如每个球以10 9 C s-1的变化率失掉电图 7-43 练习题 7-2 图荷,求两球相互趋近的刹时相对速率dx/dt 是多少 ?解:(1)带电小球受力解析如图解所示。
小球平衡时,有FTsinTcos mg由此二式可得tanFmg因为 很小,可有 tanx 2l ,再考虑到Fq20 x 24可解得21xq l 32 0mg(2)由上式解出3120 mgx22.38 108 Cql(3) 因为1 1dx l3 2 dq 2x dq3dt2 0 mgqdt3q dt3带入数据解得1.4010 3 m s-1合力的大小为F F x 2F 1cos212e 2x224d0 x2x 2d22132e 2 x44 x2d 2 3 2令 dF dx0 ,即有8e 2138x 24x2d23 22 4x 2d25 2由此解得 粒子受力最大的地点为xd2 2第七章静电场7-4 由相距较近的等量异号电荷构成的系统称电偶极子,生物细胞膜及土壤颗粒表面的双电层可视为好多电偶极子的会集。
所以,电偶极子是一个十分重要的物理模型。
第7章+静电场+习题和思考题学习资料
2Q
为从 A 点指向 x 轴负向;
A
x
Oa
a
(2) 由高斯定理得带电球壳在
A 点处产生的电场强度
1 2Q Q
E 140a2i20a 2i
(3)无限大带电平面在 A 点处产生的 电场强度
习题图7-5
E2 20 i
第七第章七章习题习解题答解答
(4) A 点处总的电场强度 。
EE 1 Q E 2 20a2i(20i) Q (20a2 20)i
答:错误 。
根据静电感应,当导体达到静电平 衡时,导体内部电场强度处处为 0, 根据高斯定理,导体内表面所带电 荷与空腔导体包围的电荷代数和为 0,所以内表面带-Q 的电量 。
A Q
B
习题图7-3
第七第章七章习题习解题答解答
三、综合题
1.如习题图 7-4,三个点电荷分别分布 在 x , y轴上。 (1) 分析各点电荷在 O 点产生电场强度的方向; (2) 写出各点 电荷在 O 点产生的电场强度的大小; (3) 计算 O 点的电场 强度大小; (4)计算 O 点电势的大小 。
答:错误. 点电荷在空间产生的电场 成球对称分布,A、B、C三点离点 电荷的距离相等,所以试探电荷在 三点的电势相等,从而将一试验电 荷从 A 点分别移动到 B 和 C 点,电 场力做功都为 0 。
q
A
O
B
C 习题图7-2
第七第章七章习题习解题答解答
5.如习题图 7-3 所示,在一个原来不带电的外表面为球形 的空腔导体 B 内,放置一带有 +Q 电荷的导体 A,则空 腔导体 B 的内表面不带电 。 请分析是否正确 。
第七章 习题解答
第七章 静电场
• 习题和思考题
基础物理学第七章(静电场)课后习题答案
解:两根长直导线在它们之间所产生的磁场沿 y 轴正方向,该磁场的大小为 .
忽略导线内部磁通量,一对导线长为 l 的一段的自感为 . 7-14 一螺线管的自感系数为 0.010H,通过它的电流为 4A,试求它贮藏的磁场能量。 解:
7-15 一无限长直导线,截面各处的电流密度相等,总电流为 I,试证:每单位长度导线内 所贮藏的磁能为 ?????????。 解: 载流长直导线内磁场线是以对称轴为圆心的一系列同心圆,取半径为的圆为安培环路 L,有 在长直导线内取半径为,厚度为,高为单位长的薄壁圆筒体积元,如图所示,体积元内磁能 密度为 直导线内总磁能为
(1) 又因为 (2) (1)、(2)两式右边相同, 故
7-12 一螺绕环,横截面的半径为 a ,中心线的半径为 R,R " a ,其上由表面绝缘的导线 均匀地密绕两个线圈,一个 N1 匝,另一个 N2 匝。试求: (1)两线圈的自感 L1 和 L2; (2)两线圈的互感 M; (3)M 与 L1 和 L2 的关系。 解:(1)设线圈 1 中通有电流,因为 R " a,故螺线管内的磁场近似为匀强磁场,磁感应强 度为,通过某个横截面的磁通量为
因,则通过圆平面的位移电流为 (*)
(2)分析表明,运动电荷的磁场具有对称性,磁场线是垂直于轴线圆心在轴上的一系列同心 圆。设圆边缘某点 P 的磁感应强度为 B,磁场强度为 H,以给定圆为积分回路 L,应用全电流 定理和(*)式,得
第7章+静电场+习题和思考题
A
O
a
习题图7-5
a
x
( )i 2 20a 2 0
Q
A 点总电场强度方向为从 A 点指向 x 轴负向。
第七章 习题解答 第七章 习题解答
3.如习题图 7-6 所示,半径为 R 的均匀带电球体。电荷量为 Q ,电荷体密度为ρ 。 (1)分析电荷对称性和电场分布情况, 并画出电场线; (2) 利用高斯定理计算球内外电场强度大 小; (3)试求球心处电势 。 解:(1)对称性分析: P点E 的方向特点:
1 1 0 0
0
负电荷在两个平面之间产生向右的电场强度 E2 2 0 两平面之间的电场强度大小为: E E 1 E2 2 0 2 0 0 方向水平向右 。
E2
E2 2 0 2 0
习题图7-7
第七章 习题解答 第七章 习题解答
7. 如习题图 7-8 所示,一圆柱形电容器两极板分别为同心的 圆柱体和圆筒,圆柱体半径为 R1 ,圆筒半径 R2 ( R1 R2 ), 电容器长为h , 两极板间为真空。 设圆柱体和圆筒分别有 带 +Q 、-Q 的电量, 请计算: (1) 电容器两极板间的电 场强度; (2)该电容器的电容。 R2 R1 解:(1)在两极板间作一个半径为 r 、长 O 为 h 的圆柱形高斯面S Q 根据静电场的高斯定理 Q q i S i E d S S 0 Q 2rhE 习题图 7-8 0 电容器两极板间的电场强度为
q A
O C
B
习题图7-2
第七章 习题解答 第七章 习题解答
5.如习题图 7-3 所示,在一个原来不带电的外表面为球形 的空腔导体 B 内,放置一带有 +Q 电荷的导体 A,则空 腔导体 B 的内表面不带电 。 请分析是否正确 。 答:错误 。 根据静电感应,当导体达到静电平 衡时,导体内部电场强度处处为 0, 根据高斯定理,导体内表面所带电 荷与空腔导体包围的电荷代数和为 0,所以内表面带-Q 的电量 。
吉林大学大学物理练习册静电场作业答案.PPT共22页
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫பைடு நூலகம்修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
吉林大学大学物理练习册静电场作业 答案.
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8. 半径为 r 均匀带电球面1,带电量为q;其外有 一同心半径为R的均匀带电球面2,带电量为Q, 则此两球面之间的电势差U1-U2为:
A.不变 C.原来的2倍
B.原来的 1/2 D.零
9. 两个点电荷电量都是 +q,相距为2a。以左边 点电荷所在处为球心,以a为半径作一球形高斯 面, 在球面上取两块相等的小面积S1和S2, 其位 置如图所示。设通过S1 和 S2的电场强度通量分 别为 Φ1 和 Φ2 ,通过整个球面电场强度通量为 Φ S 则 S1 S2
5.高斯定理
S
D ds dV
V
7.静电场中a、b两点的电势差 Ua Ub 取决于 A. 零电势位置选取 C. a、b点场强的值 B. 检验电荷由a到b路径 D. a E dl (任意路径)
b
A.适用于任何静电场 B.只适用于真空中的静电场 C.只适用于具有球对称性、轴对称性和平面 对称性的静电场 D.只适用于虽然不具有(C)中所述的对称性、但可 以找到合适的高斯面的静电场 6.两无限大均匀带电平行平面A和B,电荷面密度分别 为+σ和-σ,在两平面中间插入另一电荷面密度为+ σ平行平面C后,P点场强大小
O
R
,
S
3. 在相对介电常数为εr的各向同性的电介质中, 电位移矢量与场强之间的关系是 。 4. 两块“无限大”的带电平行电板,其电荷面密度 分别为(>0)及- 2 ,如图所示,试写出各区 域的电场强度 E
Π区 E 大小
І区 E 大小
5. 半径为R1和R2 两个同轴金属圆筒,其间充满 着相对介电常数为εr 均匀介质,设两筒上单位 长度带电量分别为+λ和-λ, 则介质中电位移矢 量大小D= ,电场强度大小E= ; 。 6. 描述静电场性质两个基本物理量是 它们定义式是 和
B
6.如图所示,半径为R的导体球原来带电为Q,现将一点电荷q 放在球外离球心距离为x (>R)处,导体球上的电荷在P 点(OP = R/2)产生的场强和电势.
+
解:由于静电感应,使电荷重新 + 分布,球内处处场强为零.因此P 点+ + 总的电场强度也为零.
+
-
R
.R/2 . O
P
- - -
+q
.
+ +
静电场作业答案
一、选择题 1.真空中A、B两平行金属板,相距d,板面积为 S(S→∞),各带电+q和-q,两板间作用力 大小为 2.在静电场中,作一闭合曲面S,有 则S面内必定 A.既无自由电荷,也无束缚电荷 B.没有自由电荷 C.自由电荷和束缚电荷的代数和为零 D.自由电荷的代数和为零
3. 在真空中的静电场中,作一封闭的曲面,则 下列结论中正确的是 A.通过封闭曲面电通量仅是面内电荷提供 B.封闭曲面上各点的场强是面内电荷激发 C.由高斯定理求得的场强仅由面内电荷所激发 D.由高斯定理求得场强是空间所有电荷激发 4. 关于静电场中的电位移线,下列说法中,哪 一种是正确的? A.起自正电荷,止于负电荷,不形成闭合线,不中断 B.任何两条电位移线互相平行 C.起自正自由电荷,止于负自由电荷,任何两 条电位移线在无自由电荷的空间不相交 D.电位移线只出现在有电介质的空间
a
O
2.一半径为R的带电球体,其电荷体密度分布为 (r R) Ar ,A为一常数,试求球体内外的场强
0 (r R)
分布和电势分布。
l
x
dx
x
AB 2l ,OCD是以B为中心,l为半经 3.如图示, 的半圆,A点有正电荷+q,B点有负电荷-q,求: (1)把单位正电荷从O点沿OCD移到D点,电场 力对它作的功? (2)把单位正电荷从D点沿AB的延长线移到无穷 C 远去,电场力对它作的功?
q O q a 2a
10.一均匀带电球面,若球内电场强度处处为 零,则球面上的带电量σdS 面元在球面内产 生的电场强度是 A.处处为零 B.不一定为零 C.一定不为零 D.是常数 11. 如图,沿x轴放置“无限长”分段均匀带电直 线,电荷线密度分别为+ λ和- λ,点(0,a) 处的电场强度 A. 0
E12 2 0 a
1
dF12 E12 2 dl
1 2 dl 2 0 a
导线单位长度受力
三、计算题
1. 图中所示为一沿 x 轴放置的长度为l的不均匀 带电细棒,其电荷线密度为 = 0(x-a), 0为一 常量。取无穷远处为电势零点,求坐标原点o处 的电势。 解:
,方向 ,方向 ,方向
. . .
I
2
Ш区 E 大小
II
III
x
7. 在场强为E 均匀电场中,A、B两点间距离为 d,A、B连线方向与E方向一致,从A点经任意 路径到B点的场强线积分
AB
E dl =
.
8.半径为R的不均匀带电球体,电荷体密度分 布为ρ=Ar,式中 r 为离球心的距离,(r≤R)、 A为一常数,则球体上的总电量Q= 。 9. 把一个均匀带电量+Q的球形肥皂泡由半径 r1吹胀到r2,则半径为R( r1< R < r2)的高斯 球面上任一点场强大小E由 电势U由 变为________ . (选无穷远处为电势零点)。 变为 ;
R
又
Qd D左 D右 4 (R 2 d 2 ) 3/2
解得
Dr
Er
Dr
0
Qr Qr 8 0 ( R 2 d 2 )3 / 2 8 0 R 3
Qr 8 ( R 2 d 2 ) 3 / 2
负号说明Er的方向指向圆心
(2) 移动前:
能量:
移动后:
能量:
10. 一质量为m、电量为q小球,在电场力作用下 从电势为U的a点,移动到电势为零的b点,若已 知小球在b点的速率为Vb,则小球在a点的速率 Va= 。
A q(U a U b ) qU 1 1 mVb2 mVa2 2 2
11. 两根互相平行的长直导线,相距为a,其上均 匀带电,电荷线密度分别为λ1和λ2,则导线单 位长度所受电场力的大小为F0= 。
4. 一厚度为d 的无限大平板,平板内均匀带电, 电荷体密度为,求板内、外场强的分布。
解:(1)
A
q
O
2l
q B
D
l
o
x
( 2)
(侧视图)
5. 一个球形导体A内含有两个球形空腔,该导体 本身的总电荷为零,但在两空腔中心分别有一 电荷qB和qC,导体球外距导体球心很远的r处有另 一电荷qD。试求qB 、 qC和qD各自所受的力。 qD 分析:B腔内表面感应电荷- qB, C腔内表面感应电荷- qC A A球外表面感应电荷qB + qC 导体处于静电平衡状态,故腔 q 内电荷被屏蔽,受力均为零 qD电荷远离A球,故二者可视为两 点电荷相互作用,受力为 F (qB qC )q D
D左r 2 D右r 2 Dr 2r 2d 0
r
d
ቤተ መጻሕፍቲ ባይዱ
8.半径分别为R1和R2的两个导体球A、B,相距 很远且离地面亦很远(可视为两孤立导体球), A球原来带电Q,B球不带电。现用一要导线将 两球连接,静电平衡后忽略导线带电,问: (1) (1) A 、B各带多少是电量?(2) 在电荷移动过程中放出 多少热能? 解 (1)
X
12.有两个完全相同的导体球,带等量的正电 荷Q,现使两球相互接近到一定程度时,则 A.二球表面都将有正、负两种电荷分布 B.二球中至少有一种表面上有正、负两种 电荷分布 C.无论接近到什么程度二球表面都不能 有负电荷分布 D.结果不能判断,要视电荷Q的大小而定
二、填空题 1. 真空中有一半径为R均匀带正电的细圆环,其 电荷线密度为λ,则电荷在圆心处产生的电场强 度 E 的大小为 0 。 2. 真空中一半径为R的均匀带电球面,总电量为 Q(Q > 0)。在球面上挖去非常小块的面积ΔS (连 同电荷),且假设不影响原来的电荷分布,则挖 去ΔS后球心处电场强度大小E= 其方向为 。
x
由静电平衡 UP = UO
qC
qD
4 0 r 2
7.设半径为R的圆环均匀带电,总电量为Q.试用 适当的近似方法估算圆环平面上与圆心相距r处 的电场强度Er(径向分量),已知r<<R. 解:如图建立一个高为2d(d很小)、底面半径为 r的柱状高斯面。有高斯定理有 D dS 0 而 D dS D dS D dS Dr dS 0 左底 右底 侧面