最新初中数学课件:圆的对称性
合集下载
《圆的对称性》圆PPT课件4 (共20张PPT)
2
圆的对称性
第2课时
圆是轴对称图形
O
对称轴是任意一条过圆心的直
圆是中心对称图形
对称中心为圆心
我们已经学过的图形中,有哪些既是 轴对称图形,又是中心对称图形?
O
同圆 能够重合的两个圆 等圆 半径相等的两个圆 同圆或等圆的半径相等
O'
O
圆心角
B A
顶点在圆心的角叫圆心角 ∠AOB ∠AOC ∠COD ∠BOD ∠BOC
问题.
1.我们这节主要研究的是圆的旋转不变性,即同圆或等 圆中圆心角、弦、弧之间的关系. 2.我们使用了折叠、旋转、证明等方法 .
忍耐和时间往往比力量和愤怒更有效。 ——拉封丹
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
相等!
A
C
如果∠AOB =∠COD 如果OE = OF
E O
F
⌒ ⌒ AC = BD
D B
B
C
如果AB=CD,则图中有哪些弧相等? ⌒ ⌒ AB = CD
O A
D ⌒ ⌒ ⌒ ⌒ AB + BC = CD + BC ⌒ ⌒ AC = BD
AC = BD ?
⌒ ⌒ AC = BD?
1.(2011·舟山中考)如图,AB是半圆直径,半径OC⊥AB于
点O,AD平分∠CAB交弧BC于点D,连结CD、OD,给出以下四
个结论:①AC∥OD;②CE=OE;③△ODE∽△ADO;④CD2=
CE·AB.其中正确结论的序号是 .
【解析】因为OA=OD,所以由AD平分∠CAB得∠OAD=∠DAC所 以∠CAD=∠OAD.所以AC∥OD;由AD平分∠CAB得 ∴∠AOD=∠DOC,又∠CAD =∠OAD,∠ADC=45°, ∴∠COD=45°,∠CDE=∠COD=45°, ∠DCE=∠OCD,∴△DCE∽△OCD,∴2CD2=CE· AB 答案:①④
圆的对称性
第2课时
圆是轴对称图形
O
对称轴是任意一条过圆心的直
圆是中心对称图形
对称中心为圆心
我们已经学过的图形中,有哪些既是 轴对称图形,又是中心对称图形?
O
同圆 能够重合的两个圆 等圆 半径相等的两个圆 同圆或等圆的半径相等
O'
O
圆心角
B A
顶点在圆心的角叫圆心角 ∠AOB ∠AOC ∠COD ∠BOD ∠BOC
问题.
1.我们这节主要研究的是圆的旋转不变性,即同圆或等 圆中圆心角、弦、弧之间的关系. 2.我们使用了折叠、旋转、证明等方法 .
忍耐和时间往往比力量和愤怒更有效。 ——拉封丹
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
相等!
A
C
如果∠AOB =∠COD 如果OE = OF
E O
F
⌒ ⌒ AC = BD
D B
B
C
如果AB=CD,则图中有哪些弧相等? ⌒ ⌒ AB = CD
O A
D ⌒ ⌒ ⌒ ⌒ AB + BC = CD + BC ⌒ ⌒ AC = BD
AC = BD ?
⌒ ⌒ AC = BD?
1.(2011·舟山中考)如图,AB是半圆直径,半径OC⊥AB于
点O,AD平分∠CAB交弧BC于点D,连结CD、OD,给出以下四
个结论:①AC∥OD;②CE=OE;③△ODE∽△ADO;④CD2=
CE·AB.其中正确结论的序号是 .
【解析】因为OA=OD,所以由AD平分∠CAB得∠OAD=∠DAC所 以∠CAD=∠OAD.所以AC∥OD;由AD平分∠CAB得 ∴∠AOD=∠DOC,又∠CAD =∠OAD,∠ADC=45°, ∴∠COD=45°,∠CDE=∠COD=45°, ∠DCE=∠OCD,∴△DCE∽△OCD,∴2CD2=CE· AB 答案:①④
27.圆的对称性PPT课件(华师大版)
(3)如果∠AOB=∠COD,那么____________A_,B=_C__D______. AB=CD
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?
解:OE=OF.
理由如下:
OE AB, OF CD,
AE 1 AB, CF 1 CD.
2
2
又 AB=CD , AE=CF.
又 OA=OC, RtAOE≌RtCOF.
OE OF.
A C
E O·
F
B D
当堂练习
1.如果两个圆心角相等,那么
()
D
A.这两个圆心角所对的弦相等
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等
D.以上说法都不对 2.弦长等于半径的弦所对的圆心角等于
.
60 °
3.在同圆中,圆心角∠AOB=2∠COD,则AB与CD的关系⌒是(⌒ )
C
BOC COD DOE=35 ,
A
· O
B
75 .
例2 如图,在⊙O中, AB=AC ,∠⌒AC⌒B=60°,
求证:∠AOB=∠BOC=∠AOC.
A
证明: ∵A⌒B=C⌒D,
∴ AB=AC.△ABC是等腰三角形. 又∠ACB=60°, ∴ △ABC是等边三角形 , AB=BC=CA.
∴ ∠AOB=∠BOC=∠AOC.
·O
B
C
温馨提示:本题告知我们,弧、圆心角、弦灵活转化是解题的关键.
填一填: 如图,AB、CD是⊙O的两条弦.
( ( ( (
( (
(1)如果AB=CD,那么__________A_B,=_C_D_________∠_.AOB= ∠COD
圆的对称性(课件ppt)
∴∠COE=2∠DOC=30°,OE⊥DC.在 Rt△OEC 中,cos30° =OOEC.∵OC=12AD=12×6=3,∴OE=32 3.
3.2 圆的对称性
数学北师大版 九年级下
新知导入
问题一: 前面我们已经认识了圆,你还记得确定 圆的两个元素吗?
答:圆心和半径
新知导入
问题二:你还记得学习圆中的哪些概念吗? 1.圆:平面上到____定__点______等于__定__长__的所有点组成的图形叫
做圆,其中__定__点__为圆心,定长为___半__径___. 2.弧:圆上_任__意__两点间的部分叫做圆弧,简称弧,圆的任意一条__ 直_径_ 的两个端点分圆成两条弧,每一条弧都叫做圆的半径. _大__于__半__圆__的_弧 称为优弧,_小__于__半__圆__的__弧__称为劣弧. 3.能__够__重__合__的__两个圆_叫做等圆,__能__够__互__相重合的弧_叫做等弧. 4.圆心角:顶点在_圆__心__的角叫做圆心角.
结论: ①圆是中心对称图形; ②圆心是它的对称中心; ③用旋转的方法解决这个问题.
新知讲解
思考:圆的中心对称性
一个圆绕着它的圆心旋转任意一个角度, 还能与原来的图形重合吗?
结论:
一个圆绕着它的圆心旋转任意一个角度,都能 与原来的图形重合,我们把圆的这个特性称之 为圆的旋转不变性.
B
·O
A
新知讲解
新知导入
前面我们已探讨过轴对称图形, 哪位同学能叙述一下轴对称图形的定义?
如果一个图形沿着某一条直线折叠后。直线两 旁的部分能够互相重合,那么这个图形叫轴对 称图形,这条直线叫对称轴
新知讲解
圆是轴对称图形吗?如果是,它的对
称轴是什么?你能找到多少条对称轴?
3.2 圆的对称性
数学北师大版 九年级下
新知导入
问题一: 前面我们已经认识了圆,你还记得确定 圆的两个元素吗?
答:圆心和半径
新知导入
问题二:你还记得学习圆中的哪些概念吗? 1.圆:平面上到____定__点______等于__定__长__的所有点组成的图形叫
做圆,其中__定__点__为圆心,定长为___半__径___. 2.弧:圆上_任__意__两点间的部分叫做圆弧,简称弧,圆的任意一条__ 直_径_ 的两个端点分圆成两条弧,每一条弧都叫做圆的半径. _大__于__半__圆__的_弧 称为优弧,_小__于__半__圆__的__弧__称为劣弧. 3.能__够__重__合__的__两个圆_叫做等圆,__能__够__互__相重合的弧_叫做等弧. 4.圆心角:顶点在_圆__心__的角叫做圆心角.
结论: ①圆是中心对称图形; ②圆心是它的对称中心; ③用旋转的方法解决这个问题.
新知讲解
思考:圆的中心对称性
一个圆绕着它的圆心旋转任意一个角度, 还能与原来的图形重合吗?
结论:
一个圆绕着它的圆心旋转任意一个角度,都能 与原来的图形重合,我们把圆的这个特性称之 为圆的旋转不变性.
B
·O
A
新知讲解
新知导入
前面我们已探讨过轴对称图形, 哪位同学能叙述一下轴对称图形的定义?
如果一个图形沿着某一条直线折叠后。直线两 旁的部分能够互相重合,那么这个图形叫轴对 称图形,这条直线叫对称轴
新知讲解
圆是轴对称图形吗?如果是,它的对
称轴是什么?你能找到多少条对称轴?
圆的对称性课件
2.2 圆的对称性
情境引入
你知道车轮为什么设计成圆形吗?
设计成三角形、四边形又会怎样?
从中你发现了什么?
新课讲授
·
α
O
A
圆绕着圆心旋转
任何角度后,都
能与自身重合.
圆是中心对称图形,圆心是它的对称中心.
180
°
操作与思考
(1)在两张透明纸片上,分别作半径相等的⊙O 和⊙O′.
(2)在⊙O 和⊙O′中,分别作相等的圆心角∠AOB ,∠A′OB′,
例1
如图, AB、AC、BC都是⊙O 的弦,∠AOC=∠BOC.
∠ABC与∠BAC相等吗?为什么?
解:∠ABC与∠BAC相等.
在⊙O中,∵∠AOC=∠BOC,
∴AC=BC
∴∠ABC=∠BAC
O
B
A
C
若∠ABC与∠BAC,
则∠AOC=∠BOC吗?
例2:已知:如图,AB是⊙O的直径,点C、D在⊙O上,
AB=CD.
A
D
拓展延伸
如图,在☉O中,2∠AOB=∠COD,那么CD=2AB成立吗?
⌒ ⌒
CD=2AB也成立吗?请说明理由;如不是,那它们之间的
关系又是什么?
⌒
⌒
答:CD=2AB成立,CD=2AB不成立.
取 CD 的中点E,连接OE.那么
∠AOB=∠COE=∠DOE,所以 AB = CE
= DE . CD =2 AB,弦AB=CE=DE,
你能证明上面的结论吗?
根据旋转的性质,将圆心角∠AOB连同AB绕圆
心O旋转,射线 OA与OA′重合.
∵ ∠AOB=∠A′OB′,
A′
B
B′
∴OB与OB′重合.
情境引入
你知道车轮为什么设计成圆形吗?
设计成三角形、四边形又会怎样?
从中你发现了什么?
新课讲授
·
α
O
A
圆绕着圆心旋转
任何角度后,都
能与自身重合.
圆是中心对称图形,圆心是它的对称中心.
180
°
操作与思考
(1)在两张透明纸片上,分别作半径相等的⊙O 和⊙O′.
(2)在⊙O 和⊙O′中,分别作相等的圆心角∠AOB ,∠A′OB′,
例1
如图, AB、AC、BC都是⊙O 的弦,∠AOC=∠BOC.
∠ABC与∠BAC相等吗?为什么?
解:∠ABC与∠BAC相等.
在⊙O中,∵∠AOC=∠BOC,
∴AC=BC
∴∠ABC=∠BAC
O
B
A
C
若∠ABC与∠BAC,
则∠AOC=∠BOC吗?
例2:已知:如图,AB是⊙O的直径,点C、D在⊙O上,
AB=CD.
A
D
拓展延伸
如图,在☉O中,2∠AOB=∠COD,那么CD=2AB成立吗?
⌒ ⌒
CD=2AB也成立吗?请说明理由;如不是,那它们之间的
关系又是什么?
⌒
⌒
答:CD=2AB成立,CD=2AB不成立.
取 CD 的中点E,连接OE.那么
∠AOB=∠COE=∠DOE,所以 AB = CE
= DE . CD =2 AB,弦AB=CE=DE,
你能证明上面的结论吗?
根据旋转的性质,将圆心角∠AOB连同AB绕圆
心O旋转,射线 OA与OA′重合.
∵ ∠AOB=∠A′OB′,
A′
B
B′
∴OB与OB′重合.
《圆的对称性》课件
总结词
阐述圆的基本属性
详细描述
圆具有许多基本的性质,包括其对称性、弧长与角度的关系、圆周角定理等。这 些性质是理解圆更深层次特性的基础。
圆的应用
总结词
列举圆在日常生活中的实际应用
详细描述
圆在日常生活和科学中有着广泛的应用,包括几何学、物理学、工程学和天文学等领域。例如,轮胎的设计、管 道的铺设、天文望远镜的制造等都涉及到圆的知识。
详细描述
自然界中的圆对称性,如花朵、树叶、果实 等,这些自然形态的圆对称性不仅美化了我 们的生活,还揭示了生命的奥秘和自然法则 。这种圆对称性的存在,使得生物能够更好 地适应环境,提高生存和繁衍的机会。
艺术创作中的圆对称性
要点一
总结词
艺术创作中的圆对称性,能够创造出和谐、平衡和完美的 艺术效果,是艺术家们常用的表现手法之一。
旋转变换
旋转变换定义
在平面内,将图形绕某一 定点旋转一定的角度,但 不改变图形的大小和形状 。
旋转变换性质
图形在旋转过程中,其内 部任意两点之间的距离保 持不变,且与旋转的角度 和中心点位置无关。
旋转变换的应用
在几何、解析几何等领域 中都有广泛的应用,如三 角形的旋转、极坐标系中 的角度变化等。
轴对称变换
平移变换
01Leabharlann 0203平移变换定义
在平面内,将图形沿某一 方向平行移动一定的距离 ,但不改变图形的大小和 形状。
平移变换性质
图形在平移过程中,其内 部任意两点之间的距离保 持不变,且与平移的方向 和距离无关。
平移变换的应用
在几何、代数、解析几何 等领域中都有广泛的应用 ,如平行线、平行四边形 、函数图像等。
02
圆的对称性
3.2圆的对称性-课件
∵ ∠AOB=∠A´OB´ ∴AB=A´B´ ,⌒AB⌒=A´B´ .
α
Oα
A´
A B´
问题探究
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧 相等,所对的弦也相等.
在同圆或等圆中,相等的弧所对的圆心角 _相__等__, 所对的弦___相__等___;
在同圆或等圆中,相等的弦所对的圆心角 __相__等__,所对的弧____相__等___.
∵半径OA与半径OA′重合,∠AOB=∠A′OB′,
B
∴半径OB与半径OB′重合.
B′
∵点A与点A′重合,点B与点B′重合,
·
∴⌒AB与⌒A′B′重合,弦AB与弦A′B′重合.
O(O')
A
∴⌒AB=A′⌒B′,AB=A′B′.
归纳
圆心角定理
在同圆或等圆中,相等的圆心角所对的弧相
等,所对的弦相等.
B
③
④
问题探究
如图,在等圆☉O和☉O'中,分别作相等的圆 心角∠AOB和圆心角∠A'O'B'.将两圆重叠,并固 定圆心,然后把其中的一个圆旋转一个角度,使 得OA和O'A'重合.
你能发现哪些等量关系?为什么?
A′
B B′
·
O
A
·
O'
问题探究
发现:⌒AB=A⌒′B′,AB=A′B′等.
理由是: A′
问题探究 等对等定理
在同圆或等圆中,如 果两个圆心角、两条弧、 两条弦中有一组量相等, 那么它们所对应的其余各 组量都分别相等。
B
α
A
Oα
A1
B1
符号表示:
《圆的对称性》PPT精选教学课件
题设
结论
} (1)直径
(2)垂直于弦
{(3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧
垂径定理三种语言
• 定理: 垂直于弦的直径平分弦, 并且平分弦所对的两条弧.
C
如图∵ CD是直径, CD⊥AB,
• 老师提示: • 垂径定理是
A M└
B
●O
∴AM=BM,
A⌒C =B⌒C, A⌒D=B⌒D.
这两天酒喝得真是不少,身体实在受不 了,呵 呵…… 懒得起 来上班 ,晚去 一会, 写点东 西与朋 友们一 起分享 我的快 乐,今 天我的 小店一 岁了, 在这里 我很感 激我的 媳妇的 努力, 所有的 功劳都 归于她 !也感 谢所有 心中还 记得我 的朋友 们,尽 管我们 现在来 往的少 了,联 系的少 了但是 我的心 里永远 记得你 们! 祝我的店生意越来越好,我的媳妇越来 越漂亮 ,将来 结婚生 一个大 胖小子 ,也祝 我的朋 友们天 天开心 ,工作 顺利, 感情美 满,生 活幸福 !当然 前提是 身体健 健康一 个关于 人生的 残忍故 事。 看完可能会不太开心,如果不喜欢压抑 的话题 ,可以 直接退 出了。 跟许多女生一样,18岁的M想要一个大 大的衣 帽间, 里面塞 满了漂 亮的衣 裙和昂 贵的名 牌包包 。 最好能拥有一只爱马仕,最好在30岁之 前就拥 有。 年轻的女孩聊起人生,是不考虑房价和 收入等 现实问 题的。 那一年,梦想遥远而崭新,闪耀着迷人 的金光 。 M不是空想,她为此奋斗过。 从小镇上的普通家庭,一路过关斩将, 考上了 重点大 学,又 考上了 研究生 。 这就意味着,从小到大,她都是班上的 佼佼者 。至少 在整个 义务教 育阶段 ,她始 终保持 着第一 的姿态 。天之 骄子。 后来呢? 研究生毕业,她找了一份收入还可以的 工作, 虽然买 不起带 衣帽间 的大房 子,也 买不起 爱马仕 ,但坚 持几年 ,攒套 小公寓 的首付 是没问 题。 可是M结婚了。 丈夫跟她一样,是个普通的上班族。 两人在家里的支持下,买了一套小房子 ,以及 一辆十 万以下 的代步 车。 这样的经济条件,在年轻人里倒不差。 只是可惜,丈夫的母亲几年前去世了, 父亲身 体又不 好。这 就意味 着,在 生儿育 女这件 事上, 没有长 辈可以 帮忙搭 把手。 那怎么办呢,总不能不生吧? M和丈夫考虑再三,终于在30岁这年, 要了一 个孩子 。 夫家没有人帮忙带,娘家又正在带哥嫂 的孩子 ,网上 又频繁 传出保 姆打孩 子的视 频,M 实在不 放心请 人,没 法子, 只能从 公司辞 职了。 把孩子带到幼儿园,至少需要3年时间。 对于技术创新要求很强的理工科而言, 如果没 有奇迹 ,三年 以后, 年近35岁的她 ,将丧 失大半 的职场 竞争力 ,薪资 和晋升 前景都 大大缩 水。 当然,这只是后话。 摆在她跟前的,是更现实的问题——夫 妻感情 出现了 裂痕。 当过全职太太的朋友都知道,这是一份 全世界 最憋屈 的工作 。 累得要死,一天下来腰酸背痛,连喘气 的力气 都没有 ,还要 丧失所 有的人 身自由 ,连上 厕所腿 上都趴 着一个 孩子。 但辛苦没用,对于旁人而言,你不挣钱 ,就是 废人。 丈夫很快就忘了,当初是怎么恳求她辞 职的。 他开始不断跟她抱怨,独自养家有多辛 苦。 是啊,他的确辛苦,一份工资养三个人 ,房贷 、车贷 、奶粉 、尿布 都要钱 ,不到 一万的 工资, 根本支 撑不起 一个家 的开支 。 他有他的怨气。 可妻子想要的,是一个下了班回家,能 够帮忙 搭把手 ,抱一 抱孩子 的人啊 。 于是家庭的矛盾陷入了死循环中。 “我带孩子那么累,你下班了就不能帮我 搭把手 吗?” “我上班那么累,下班了还不能好好休息 吗?” M很孤独,这地球70亿人口,没有一个 理解她 ,更没 有一个 能帮她 。 丈夫同样孤独,作为整个家的经济支柱 ,他不 明白, 为什么 工作12个小时 ,回家 等待他 的,依 旧是争 吵和诉 苦。 M早在疲惫的家庭生活中,遗忘了曾经 的梦想 。 衣帽间太遥远了,她只想在孩子上学之 前,把 两居室 换成三 居室, 这样就 能腾出 一间杂 物间。 爱马仕 更不用 提了, 如果这 种档次 的包都 能唾手 可得, 奢侈品 还叫什 么奢侈 品? 她成了一个彻头彻尾地,为生活奔波的 中年人 ,偶尔 发发朋 友圈, 也是数 不尽的 牢骚, 再不见 青春期 的明艳 和开朗 。 最近一次跟她聊天,是在微信上,我们 交流了 一些带 宝宝的 心得, 她突然 感慨了 一句:“ 我觉得 自己挺 对不起 爸妈的 ,他们 培养我 花了多 大的力 气啊, 但我… …” 那一瞬间,我都不再忍心看聊天框。 甚至光是想想,都觉得是件很残忍的事 。 一个小镇姑娘,考上985的研究生,她曾 经付出 了多少 努力, 又曾对 未来有 过多少 美好的 期望啊 。那一 年,她 一定以 为只要 努力, 就没有 实现不 了的梦 想。 她也一定有过许多公主般的幻想。 嫁一个什么样的人,办一场什么样的婚 礼,要 住上什 么样的 房子, 开上什 么样的 车,取 得怎样 的职场 成就, 又跟谁 去环游 世界… … 几乎每一个人的青春期,都曾怀有这样 的幻想 啊! 可是,后来呢? 又有多少人能实现这些理想? 抖音上有过一段非常火的视频。 十年前的自己遇见了十年后的自己。十 年前咋 咋呼呼 的少女 ,问十 年后不 太爱笑 的女人 :“10年 后,我 买房了 吗,我 买车了 吗,我 嫁给他 了吗? ” 听到答案后,少女噙着眼泪道:“你走吧 ,我不 喜欢这 样的你 !” 那么你我呢,对得起十年前那个少女吗 ? 早两天跟朋友聊天,她说这两年越来越 没有安 全感, 总觉得 眼前的 一切, 不是自 己想要 的人生 。 我安慰她:“这世上大多数的人,最后都 只能过 平凡的 人生啊 。” 原来辛苦工作,真的可能买不起房。 原来一年两次旅行,竟都是一种奢望。 原来不管怎么保养,鱼尾纹都会爬出来 。 原来人到中年,真的会没来由地发胖啊 ! 这也是近年来,为什么我会越来越讨厌 那种无 限度地 给人打 鸡血, 好像不 住上大 房子、 背不上 名牌包 包,就 连一条 咸鱼都 不如的 励志鸡 汤。 可是大部分的人,真的住不上大房子, 也真的 背不上 名牌包 包啊! 他不够努力吗,好像不是。他不够聪明 吗,好 像也不 是。 就像我们看电视剧一样,原本第一集女 主角就 能嫁给 男主角 的,天 知道是 为什么 ,他们 会阴差 阳错地 经历那 么多磨 难,最 后遗憾 地分开 ? 不要指责M为什么要结婚,也不要指责 M为什 么要生 孩子。 如果人生每一步都能按预想发展,M不 会是M ,你我 也不会 是你我 。 - 甘北原创今日荐读 “丈夫出轨后,她只用了48小时离婚。” 姚晨:凭什么原谅打我的男人? “老子拆迁7套房,女朋友却跟Loser跑了 。”
25.2.1圆的对称性(一)PPT课件
一只羊,请画出
羊的活动区域.
2021/3/2
16
5m
× 4m o
5m
× 4m o
5m 1m
2021/3/2
正确答案
17
课时小结
1、圆的定义: 2、点与圆的位置关系: 3、圆的有关概念: 4、圆的性质 :
2021/3/2
18
作业:
❖ 课本第20页习题25.2第1、2题
2021/3/2
19
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
如圆图弧以,A简、称B弧为。端用点符的号弧⌒记表作示A︵B,
·B
O
读作弧AB。
弦:连接圆上任意两点的线段叫做弦。
直径:经过圆心的弦叫做直径。
同圆中如(图1):半OC径、相O等D是⊙O的两CA·· 条半径(,2它)们直之径间等有于怎半样径的的大2倍小
O
·B ·D
关系?它们与直径CD又有怎样的
大注小意关:半系径?、直径都是线段,为了方便,通常
我们把半径、直径的长也称为半径、直径。
2021/3/2
11
半圆:圆的任意一条直径的两
A
B
个端点分圆成两条弧,每一条
C
O D 弧都叫做半圆。小︵于半︵圆的︵弧
叫做劣弧,如: AB、AC、BD
圆的对称性课件
总结
知2-讲
本题考查了对弧、弦、圆心角之间的关系的理解,对于 圆中的一些易混易错结论应结合图形来解答.特别要注 意:看是否有“在同圆或等圆中”这个前提条件.
知2-讲
例3 如图, AB,DE是⊙O的直径,C是⊙O上的一点,且 AD=CE . BE与CE的大小有什么关系?为什么?
解:BE=CE. 理由是 ∵ ∠AOD=∠BOE, ∴ AD=BE . 又∵ AD=CE, ∴ BE=CE . ∴ BE=CE.
图形的个数是( )
A.2个
B.3个
C.4个
D.5个
知1-练
3 下列说法中,不正确的是( ) A.圆既是轴对称图形,又是中心对称图形 B.圆绕着它的圆心旋转任意角度,都能与自身重合 C.圆的对称轴有无数条,对称中心只有一个 D.圆的每一条直径都是它的对称轴
知识点 2 圆心角、弧、弦之间的关系
知2-导
总结
知1-讲
将一个图形绕一个定点旋转时, 具有下列特性:一 是旋转角度、方向相同,二是图形的形状、大小保持 不变,因此本题圆中变换位置前后对应的弧、角、线 段都相等.
知1-练
1 (202X·徐州)下列图案中,是轴对称图X·凉山州)在线段、平行四边形、矩形、等腰三角 形、圆这几个图形中,既是轴对称图形又是中心对称
知2-讲
要点精析:(1)上述三种关系成立的前提条件是“在同圆 或等圆中”,否则不成立.
(2)由于一条弦对着两条弧,“弦相等,所对的弧相等”中 的“弧相等”指的是“劣弧相等”或“优弧相等”.
拓展:(1)弦心距:圆心到圆的一条弦的距离叫做弦心距. 弦与弦心距的关系:在同一个圆中,两条弦相等,则它 们的弦心距相等,反之亦成立;在同一个圆中,弦越长, 则其弦心距越小.
2.1圆的对称性课件(共10张PPT)
谢谢观赏
You made my day!
我们,还在路上……
定长叫作半径.
A
· O
圆也可以看成是一个动点绕一个定点旋转 一周所形成的图形,定点叫作圆心. 定点与动点的连线段叫作半径. 如图,点O是圆心.
线段OA的长度是一条半径.
线段OA的长度也叫作半径.
以点O为圆心的圆叫 作圆O,记作⊙O
连CD是一条弦.
经过圆心的弦叫作直径.
湘教版九年级下册
2 .1 圆的对称性
观察自行车的车轮和转盘以及链条,你能说出车轮、 转盘的特征吗?它们与链条之间有怎样的关系呢?
这就是圆的一种原型. 本章要研究的是圆的性质、直线与圆、圆与圆的位置 关系.
如图是国际奥林匹克运动 会旗的标志图案.
圆是到一定点的距离 等于定长的所有点组成 的图形.
这个定点叫作圆心.
这两个圆 重合
能够重合的两个圆叫作相等的圆,或等圆
2、下述命题是否正确?为什么?
圆只有一条对称轴. 错
有无数条对称轴 任意一条直径所在的直线都是它的对称轴.
再见
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四2022/3/32022/3/32022/3/3 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022 •4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
You made my day!
我们,还在路上……
定长叫作半径.
A
· O
圆也可以看成是一个动点绕一个定点旋转 一周所形成的图形,定点叫作圆心. 定点与动点的连线段叫作半径. 如图,点O是圆心.
线段OA的长度是一条半径.
线段OA的长度也叫作半径.
以点O为圆心的圆叫 作圆O,记作⊙O
连CD是一条弦.
经过圆心的弦叫作直径.
湘教版九年级下册
2 .1 圆的对称性
观察自行车的车轮和转盘以及链条,你能说出车轮、 转盘的特征吗?它们与链条之间有怎样的关系呢?
这就是圆的一种原型. 本章要研究的是圆的性质、直线与圆、圆与圆的位置 关系.
如图是国际奥林匹克运动 会旗的标志图案.
圆是到一定点的距离 等于定长的所有点组成 的图形.
这个定点叫作圆心.
这两个圆 重合
能够重合的两个圆叫作相等的圆,或等圆
2、下述命题是否正确?为什么?
圆只有一条对称轴. 错
有无数条对称轴 任意一条直径所在的直线都是它的对称轴.
再见
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四2022/3/32022/3/32022/3/3 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022 •4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦相等,所对的弦的弦心距相等.
A
D
B
●O
●O′
容易由条件: ③AB=A′B′ 可推出
⌒⌒
容易由条件: ②AB=A′B′
可推出
┏
A′ D′ B′
①∠⌒AOB⌒=∠A′O′B′
②AB=A′B′ ④ OD=O′D′ ①∠AOB=∠A′O′B′ ③AB=A′B′ ④ OD=O′D′
你能由条件: ④ OD=O′D′ 可推出
? ①∠⌒AOB⌒=∠A′O′B′
②AB=A′B′ ③AB=A′B′
推论:
在同圆或等圆中,如果①两个圆心角,②两弧, ③两条弦,④两条弦心距中,有一组量相等, 那么它们所对应的其余各组量都分别相等.
随堂练习
3.已知A,B是⊙O上的两点,∠AOB=1200,C是⌒AB的
中点,试确定四边形OACB的形状,并说明理由.
O·
B
弦心距 过圆心作弦的垂线,圆心与垂足之间的距离 (如线段OC).
想一想,在⊙O中,若圆心角∠AOB和∠A′OB′相等,则对 应的弦心距OD与OD′相等吗?
B
A′
D A
D′ ●O
B′
由条件: ①∠AOB=∠A′O′B′
可推出
⌒⌒
②AB=A′B′ ③AB=A′B′
④ OD=OD′
• 在同圆或等圆中,相等的圆心角所对的弧相等所对的
AA′ B′
将其中的一个旋转一个角度,使得OA和O′A′重合.
你能发现那些等量关系?说一说你的理由.
⌒⌒
A′
●O
A B′
由条件: ①∠AOB=∠A′O′B′
可推出
⌒⌒
②AB=A′B′ ③AB=A′B′
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦相等。
弦心距的概念 A C
2. 圆的对称性(3)
圆心角,弧,弦,弦心距之间 的关系
●O
(1)圆是中心对称图形吗? 圆也是中心对称图形.
(2)如果是,它的对称中心是什么? 它的对称中心就是圆心.
圆心角的概念 A
O·
B
圆心角 顶点在圆心的角(如∠AOB).
如图,在⊙O中,分别作相等的圆心角∠AOB和∠A′OB′
BB′
A′
●O
谢谢观看!
THANK YOU FOR WATCHING!