2016年湖南省衡阳市中考数学试卷(含解析版)

合集下载

【初中数学】2016年湖南省衡阳市中考数学试卷(解析版) 人教版

【初中数学】2016年湖南省衡阳市中考数学试卷(解析版) 人教版

2016年湖南省衡阳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.﹣4的相反数是()A.﹣B.C.﹣4 D.42.如果分式有意义,则x的取值范围是()A.全体实数B.x≠1 C.x=1 D.x>13.如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70° B.80° C.90° D.100°4.下列几何体中,哪一个几何体的三视图完全相同()A.球体B.圆柱体C.四棱锥D.圆锥5.下列各式中,计算正确的是()A.3x+5y=8xy B.x3•x5=x8C.x6÷x3=x2D.(﹣x3)3=x66.为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000套,把3600000用科学记数法表示应是()A.0.36×107B.3.6×106C.3.6×107D.36×1057.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.平均数B.中位数C.众数D.方差8.正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.139.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.910.关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥411.下列命题是假命题的是()A.经过两点有且只有一条直线B.三角形的中位线平行且等于第三边的一半C.平行四边形的对角线相等D.圆的切线垂直于经过切点的半径12.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.因式分解:a2+ab=.14.计算:﹣=.15.点P(x﹣2,x+3)在第一象限,则x的取值范围是.16.若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.17.若圆锥底面圆的周长为8π,侧面展开图的圆心角为90°,则该圆锥的母线长为.18.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.三、解答题(共8小题,满分66分)19.先化简,再求值:(a+b)(a﹣b)+(a+b)2,其中a=﹣1,b=.20.为庆祝建党95周年,某校团委计划在“七一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A,B,C,D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为;(2)请将图②补充完整;(3)若该校共有1530名学生,根据抽样调查的结果估计全校共有多少学生选择此必唱歌曲?(要有解答过程)21.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.22.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.23.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70到港口的费用(元/吨)如表所示:物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.24.在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r 至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A 离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?25.在平面直角坐标中,△ABC三个顶点坐标为A(﹣,0)、B(,0)、C(0,3).(1)求△ABC内切圆⊙D的半径.(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.26.如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.2016年湖南省衡阳市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.﹣4的相反数是()A.﹣B.C.﹣4 D.4【考点】相反数.【分析】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:﹣4的相反数是:4.故选:D.2.如果分式有意义,则x的取值范围是()A.全体实数B.x≠1 C.x=1 D.x>1【考点】分式有意义的条件.【分析】直接利用分式有意义的条件得出x的值.【解答】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.故选:B.3.如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70° B.80° C.90° D.100°【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠B=50°,∵∠C=40°,∴∠E=180°﹣∠B﹣∠1=90°,故选C.4.下列几何体中,哪一个几何体的三视图完全相同()A.球体B.圆柱体C.四棱锥D.圆锥【考点】简单几何体的三视图.【分析】根据各个几何体的三视图的图形易求解.【解答】解:A、球体的三视图都是圆,故此选项正确;B、圆柱的主视图和俯视图都是矩形,但左视图是一个圆形,故此选项错误;C、四棱柱的主视图和左视图是一个三角形,俯视图是一个四边形,故此选项错误;D、圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形,故此选项错误.故选:A.5.下列各式中,计算正确的是()A.3x+5y=8xy B.x3•x5=x8C.x6÷x3=x2D.(﹣x3)3=x6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘除法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、3x+5y,无法计算,故此选项错误;B、x3•x5=x8,故此选项正确;C、x6÷x3=x3,故此选项错误;D、(﹣x3)3=﹣x9,故此选项错误;故选:B.6.为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000套,把3600000用科学记数法表示应是()A.0.36×107B.3.6×106C.3.6×107D.36×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3600000=3.6×106,故选:B.7.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】根据方差的意义:方差是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.标准差是方差的平方根,也能反映数据的波动性;故要判断他的数学成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的方差.【解答】解:方差是衡量波动大小的量,方差越小则波动越小,稳定性也越好.故选:D8.正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.13【考点】多边形内角与外角.【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.9.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9【考点】由实际问题抽象出一元二次方程.【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.【解答】解:设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.10.关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥4【考点】根的判别式.【分析】根据判别式的意义得到△=42﹣4k=0,然后解一次方程即可.【解答】解:∵一元二次方程x2+4x+k=0有两个相等的实根,∴△=42﹣4k=0,解得:k=4,故选:B.11.下列命题是假命题的是()A.经过两点有且只有一条直线B.三角形的中位线平行且等于第三边的一半C.平行四边形的对角线相等D.圆的切线垂直于经过切点的半径【考点】命题与定理.【分析】根据直线公理、三角形中位线定理、切线性质定理即可判断A、B、D正确.【解答】解:A、经过两点有且只有一条直线,正确.B、三角形的中位线平行且等于第三边的一半,正确.C、平行四边形的对角线相等,错误.矩形的对角线相等,平行四边形的对角线不一定相等.D、圆的切线垂直于经过切点的半径,正确.故选C.12.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.二、填空题(共6小题,每小题3分,满分18分)13.因式分解:a2+ab=a(a+b).【考点】因式分解-提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2+ab=a(a+b).故答案为:a(a+b).14.计算:﹣=1.【考点】分式的加减法.【分析】由于两分式的分母相同,分子不同,故根据同分母的分式相加减的法则进行计算即可.【解答】解:原式==1.故答案为:1.15.点P(x﹣2,x+3)在第一象限,则x的取值范围是x>2.【考点】点的坐标.【分析】直接利用第一象限点的坐标特征得出x的取值范围即可.【解答】解:∵点P(x﹣2,x+3)在第一象限,∴,解得:x>2.故答案为:x>2.16.若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为5:4.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方求出相似比,再根据相似三角形周长的比等于相似比求解.【解答】解:∵△ABC与△DEF相似且面积之比为25:16,∴△ABC与△DEF的相似比为5:4;∴△ABC与△DEF的周长之比为5:4.故答案为:5:4.17.若圆锥底面圆的周长为8π,侧面展开图的圆心角为90°,则该圆锥的母线长为16.【考点】圆锥的计算.【分析】设该圆锥的母线长为l,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到8π=,然后解方程即可.【解答】解:设该圆锥的母线长为l,根据题意得8π=,解得l=16,即该圆锥的母线长为16.故答案为16.18.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为10.【考点】点、线、面、体.【分析】n条直线最多可将平面分成S=1+1+2+3…+n=n(n+1)+1,依此可得等量关系:n条直线最多可将平面分成56个部分,列出方程求解即可.【解答】解:依题意有n(n+1)+1=56,解得x1=﹣11(不合题意舍去),x2=10.答:n的值为10.故答案为:10.三、解答题(共8小题,满分66分)19.先化简,再求值:(a+b)(a﹣b)+(a+b)2,其中a=﹣1,b=.【考点】整式的混合运算—化简求值.【分析】原式利用平方差公式、完全平方公式展开后再合并同类项即可化简,将a、b的值代入求值即可.【解答】解:原式=a2﹣b2+a2+2ab+b2=2a2+2ab,当a=﹣1,b=时,原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.20.为庆祝建党95周年,某校团委计划在“七一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A,B,C,D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为20%;(2)请将图②补充完整;(3)若该校共有1530名学生,根据抽样调查的结果估计全校共有多少学生选择此必唱歌曲?(要有解答过程)【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图和扇形统计图可以求得选择曲目代号为A的学生占抽样总数的百分比;(2)根据条形统计图和扇形统计图可以求得选择C的人数,从而可以将图②补充完整;(3)根据条形统计图和扇形统计图可以估计全校选择此必唱歌曲的人数.【解答】解:(1)由题意可得,本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为:×100%=20%.故答案为:20%;(2)由题意可得,选择C的人数有:30÷﹣36﹣30﹣44=70(人),故补全的图②如下图所示,(3)由题意可得,全校选择此必唱歌曲共有:1530×=595(人),即全校共有595名学生选择此必唱歌曲.21.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【考点】全等三角形的判定与性质.【分析】求出AD=BC,根据ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.22.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.【解答】解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:=.23.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70到港口的费用(元/吨)如表所示:物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.【考点】一次函数的应用.【分析】(1)根据题意表示出甲仓库和乙仓库分别运往A、B两港口的物资数,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简;最后根据不等式组得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=80时,y最小,并求出最小值,写出运输方案.【解答】解(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.24.在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r 至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A 离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?【考点】解直角三角形的应用-方向角问题.【分析】(1)求出OC,由题意r≥OC,由此即可解决问题.(2)作AM⊥BC于M,求出AM即可解决问题.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,先列出方程求出x,再求出BN、AN利用不等式解决问题.【解答】解:(1)在RT△OBC中,∵BO=80,BC=60,∠OBC=90°,∴OC===100,∵OC=×100=50∴雷达的有效探测半径r至少为50海里.(2)作AM⊥BC于M,∵∠ACB=30°,∠CBA=60°,∴∠CAB=90°,∴AB=BC=30,在RT△ABM中,∵∠AMB=90°,AB=30,∠BAM=30°,∴BM=AB=15,AM=BM=15,∴此时敌舰A离△OBC海域的最短距离为15海里.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,∵∠HBN=∠HNB=15°,∴∠MHN=∠HBN+∠HNB=30°,∴HN=HB=2x,MH=x,∵BM=15,∴15=x+2x,x=30﹣15,∴AN=30﹣30,BN==15(﹣),设B军舰速度为a海里/小时,由题意≤,∴a≥20.∴B军舰速度至少为20海里/小时.25.在平面直角坐标中,△ABC三个顶点坐标为A(﹣,0)、B(,0)、C(0,3).(1)求△ABC内切圆⊙D的半径.(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.【考点】圆的综合题.【分析】(1)由A、B、C三点坐标可知∠CBO=60°,又因为点D是△ABC的内心,所以BD平分∠CBO,然后利用锐角三角函数即可求出OD的长度;(2)根据题意可知,DF为半径,且∠DFE=90°,过点F作FG⊥y轴于点G,求得FG和OG的长度,即可求出点F的坐标,然后将E和F的坐标代入一次函数解析式中,即可求出直线EF的解析式;(3)⊙P上存在一点到△ABC三个顶点的距离相等,该点是△ABC的外接圆圆心,即为点D,所以DP=2,又因为点P在直线EF上,所以这样的点P共有2个,且由勾股定理可知PF=3.【解答】解:(1)连接BD,∵B(,0),C(0,3),∴OB=,OC=3,∴tan∠CBO==,∴∠CBO=60°∵点D是△ABC的内心,∴BD平分∠CBO,∴∠DBO=30°,∴tan∠DBO=,∴OD=1,∴△ABC内切圆⊙D的半径为1;(2)连接DF,过点F作FG⊥y轴于点G,∵E(0,﹣1)∴OE=1,DE=2,∵直线EF与⊙D相切,∴∠DFE=90°,DF=1,∴sin∠DEF=,∴∠DEF=30°,∴∠GDF=60°,∴在Rt△DGF中,∠DFG=30°,∴DG=,由勾股定理可求得:GF=,∴F(,),设直线EF的解析式为:y=kx+b,∴,∴直线EF的解析式为:y=x﹣1;(3)∵⊙P上存在一点到△ABC三个顶点的距离相等,∴该点必为△ABC外接圆的圆心,由(1)可知:△ABC是等边三角形,∴△ABC外接圆的圆心为点D∴DP=2,设直线EF与x轴交于点H,∴令y=0代入y=x﹣1,∴x=,∴H(,0),∴FH=,当P在x轴上方时,过点P1作P1M⊥x轴于M,由勾股定理可求得:P1F=3,∴P1H=P1F+FH=,∵∠DEF=∠HP1M=30°,∴HM=P1H=,P1M=5,∴OM=2,∴P1(2,5),当P在x轴下方时,过点P2作P2N⊥x轴于点N,由勾股定理可求得:P2F=3,∴P2H=P2F﹣FH=,∴∠DEF=30°∴∠OHE=60°∴sin∠OHE=,∴P2N=4,令y=﹣4代入y=x﹣1,∴x=﹣,∴P2(﹣,﹣4),综上所述,若⊙P上存在一点到△ABC三个顶点的距离相等,此时圆心P的坐标为(2,5)或(﹣,﹣4).26.如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.【考点】二次函数综合题.【分析】(1)易得抛物线的顶点为(0,),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;(2)①当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式,设正方形OEFG的边长为p,则F(p,p),代入直线AC的解析式,就可求出点F的坐标;②当点F在第二象限时,同理可求出点F的坐标,此时点F不在线段AC上,故舍去;(3)过点M作MH⊥DN于H,如图2,由题可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三种情况(①DN=DM,②ND=NM,③MN=MD)讨论就可解决问题.【解答】解:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.设正方形OEFG的边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p ,解得p=1,∴点F 的坐标为(1,1).②当点F 在第二象限时,同理可得:点F 的坐标为(﹣3,3), 此时点F 不在线段AC 上,故舍去. 综上所述:点F 的坐标为(1,1);(3)过点M 作MH ⊥DN 于H ,如图2, 则OD=t ,OE=t+1.∵点E 和点C 重合时停止运动,∴0≤t≤2.当x=t 时,y=﹣t+,则N (t ,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M (t+1,﹣t+1),ME=﹣t+1.在Rt △DEM 中,DM 2=12+(﹣t+1)2=t 2﹣t+2.在Rt △NHM 中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN 2=12+()2=. ①当DN=DM 时,(﹣t+)2=t 2﹣t+2,解得t=; ②当ND=NM 时,﹣t+==,解得t=3﹣;③当MN=MD 时,=t 2﹣t+2,解得t 1=1,t 2=3.∵0≤t≤2,∴t=1.综上所述:当△DMN 是等腰三角形时,t 的值为,3﹣或1.2016年6月30日。

衡阳市2016年初中毕业学业考试试卷·数学

衡阳市2016年初中毕业学业考试试卷·数学

衡阳市2016年初中毕业学业考试试卷·数学总分数 120分时长:120分钟一、选择题(共12题 ,总计36分)1.(3分)-4的相反数是()A.B.C. -4D. 42.(3分)如果分式有意义,则x的取值范围是()A. 全体实数B. x≠1C. x=1D. x>13.(3分)如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A. 70°C. 90°D. 100°4.(3分)下列几何体中,哪一个几何体的三视图完全相同()A.B.C.D.5.(3分)下列各式中,计算正确的是()A. 3x+5y=8xyC. x6÷x3=x2D. (-x3)3=x66.(3分)为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000套,把3600000用科学记数法表示应是()A. 0.36×107B. 3.6×106C. 3.6×107D. 36×1057.(3分)要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A. 平均数B. 中位数C. 众数D. 方差8.(3分)正多边形的一个内角是150°,则这个正多边形的边数为()A. 10B. 11C. 12D. 139.(3分)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭.抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x.根据题意列方程得()A. 10(1+x)2=16.9B. 10(1+2x)=16.9C. 10(1-x)2=16.9D. 10(1-2x)=16.910.(3分)关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A. k=-4B. k=4C. k≥-4D. k≥411.(3分)下列命题是假命题的是()A. 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径12.(3分)如图,已知A,B是反比例函数(k>0,x>0)图象上的两点,BC∥x 轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M,设的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A.B.C.D.二、填空题(共6题 ,总计18分)13.(3分)因式分解:a2+ab=____1____.14.(3分)计算:____1____.15.(3分)点P(x-2,x+3)在第一象限,则x的取值范围是____1____.16.(3分)若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为____1____.17.(3分)若圆锥底面圆的周长为8π,侧面展开图的圆心角为90°,则该圆锥的母线长为____1____.18.(3分)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为____1____.三、解答题(共8题 ,总计66分)19.(6分)先化简,再求值:(a+b)(a-b)+(a+b)2,其中a=-1,b=.20.(6分)为庆祝建党95周年,某校团委计划在“七一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A,B,C,D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)(2分)本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为____1____;(2)(2分)请将图②补充完整;(3)(2分)若该校共有1530名学生,根据抽样调查的结果估计全校共有多少学生选择此必唱歌曲?(要有解答过程)21.(6分)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.22.(8分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)(4分)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)(4分)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.23.(8分)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示.(1)(4分)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)(4分)求出最低费用,并说明费用最低时的调配方案.24.(10分)在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)(3分)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)(3分)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC 海域的最短距离为多少海里?(3)(4分)若敌舰A沿最短距离的路线以海里/小时的速度靠近△OBC海域,我军军舰B立刻沿北偏东的方向进行拦截,问军舰B速度至少为多少才能在此方向上拦截到敌舰A?25.(10分)在平面直角坐标中,△ABC三个顶点坐标为.(1)(3分)求△ABC内切圆⊙D的半径.(2)(3分)过点E(0,-1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)(4分)以(2)为条件,P为直线EF上一点,以P为圆心,以为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.26.(12分)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于.点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)(3分)求该抛物线的函数关系表达式.(2)(4分)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)(5分)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.衡阳市2016年初中毕业学业考试试卷·数学参考答案与试题解析一、选择题(共12题 ,总计36分)1.(3分)-4的相反数是()A.B.C. -4D. 4【解析】解:-4的相反数是:4.故选:D.【答案】D2.(3分)如果分式有意义,则x的取值范围是()A. 全体实数B. x≠1C. x=1D. x>1【解析】解:∵分式有意义,∴x-1≠0,解得:x≠1.故选:B.【答案】B3.(3分)如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A. 70°B. 80°C. 90°D. 100°【解析】解:∵AB∥CD,∴∠1=∠B=50°,∵∠C=40°,∴∠E=180°﹣∠B-∠1=90°,故选C.【答案】C4.(3分)下列几何体中,哪一个几何体的三视图完全相同()A.B.C.D.【解析】解:A、球体的三视图都是圆,故此选项正确;B、圆柱的主视图和俯视图都是矩形,但左视图是一个圆形,故此选项错误;C、四棱柱的主视图和左视图是一个三角形,俯视图是一个四边形,故此选项错误;D、圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形,故此选项错误.故选:A.【答案】A5.(3分)下列各式中,计算正确的是()A. 3x+5y=8xyB. x3•x5=x8C. x6÷x3=x2D. (-x3)3=x6【解析】解:A、3x+5y,无法计算,故此选项错误;B、x3•x5=x8,故此选项正确;C、x6÷x3=x3,故此选项错误;D、(-x3)3=-x9,故此选项错误;故选:B.【答案】B6.(3分)为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000套,把3600000用科学记数法表示应是()A. 0.36×107B. 3.6×106C. 3.6×107D. 36×105【解析】解:3600000=3.6×106,故选:B.【答案】B7.(3分)要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A. 平均数B. 中位数C. 众数D. 方差【解析】解:方差是衡量波动大小的量,方差越小则波动越小,稳定性也越好.故选:D.【答案】D8.(3分)正多边形的一个内角是150°,则这个正多边形的边数为()A. 10B. 11C. 12D. 13【解析】解:外角是:180°-150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.【答案】C9.(3分)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭.抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x.根据题意列方程得()A. 10(1+x)2=16.9B. 10(1+2x)=16.9C. 10(1-x)2=16.9D. 10(1-2x)=16.9【解析】解:设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.【答案】A10.(3分)关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A. k=-4B. k=4C. k≥-4D. k≥4【解析】解:∵一元二次方程x2+4x+k=0有两个相等的实根,∴△=42-4k=0,解得:k=4,故选:B.【答案】B11.(3分)下列命题是假命题的是()A. 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径【解析】解:A、经过两点有且只有一条直线,正确.B、三角形的中位线平行且等于第三边的一半,正确.C、平行四边形的对角线相等,错误.矩形的对角线相等,平行四边形的对角线不一定相等.D、圆的切线垂直于经过切点的半径,正确.故选C.【答案】C12.(3分)如图,已知A,B是反比例函数(k>0,x>0)图象上的两点,BC∥x 轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M,设的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A.B.C.D.【解析】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.【答案】A二、填空题(共6题 ,总计18分)13.(3分)因式分解:a2+ab=____1____.【解析】解:a2+ab=a(a+b).故答案为:a(a+b).【答案】a(a+b)14.(3分)计算:____1____.【解析】略【答案】解:原式故答案为:1.15.(3分)点P(x-2,x+3)在第一象限,则x的取值范围是____1____.【解析】解:∵点P(x-2,x+3)在第一象限,∴,解得:x>2.故答案为:x>2.【答案】x>216.(3分)若△ABC与△DE F相似且面积之比为25:16,则△ABC与△DEF的周长之比为____1____.【解析】解:∵△ABC与△DEF相似且面积之比为25:16,∴△ABC与△DEF的相似比为5:4;∴△ABC与△DEF的周长之比为5:4.故答案为:5:4.【答案】5:417.(3分)若圆锥底面圆的周长为8π,侧面展开图的圆心角为90°,则该圆锥的母线长为____1____.【解析】解:设该圆锥的母线长为,根据题意得,解得,即该圆锥的母线长为16.故答案为16.【答案】1618.(3分)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为____1____.【解析】解:依题意有n(n+1)+1=56,解得n1=-11(不合题意舍去),n2=10.答:n的值为10.故答案为:10.【答案】10三、解答题(共8题 ,总计66分)19.(6分)先化简,再求值:(a+b)(a-b)+(a+b)2,其中a=-1,b=.【解析】略【答案】解:原式=a2-b2+a2+2ab+b2=2a2+2ab,当a=-1,b=时,原式=2×(-1)2+2×(-1)×=2-1=1.20.(6分)为庆祝建党95周年,某校团委计划在“七一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A,B,C,D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)(2分)本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为____1____;(2)(2分)请将图②补充完整;(3)(2分)若该校共有1530名学生,根据抽样调查的结果估计全校共有多少学生选择此必唱歌曲?(要有解答过程)【解析】(1)由题意可得,本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为:.故答案为:20%;(2)略(3)略【答案】(1)20%(2)解:由题意可得,选择C的人数有:(人),故补全的图如下图所示,(3)解:由题意可得,全校选择此必唱歌曲共有:(人),即全校共有595名学生选择此必唱歌曲.21.(6分)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【解析】略【答案】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.22.(8分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)(4分)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)(4分)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.【解析】(1)略(2)略【答案】(1)解:画树状图得:则共有16种可能的结果;(2)解:∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:.23.(8分)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示.(1)(4分)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)(4分)求出最低费用,并说明费用最低时的调配方案.【解析】(1)略(2)略【答案】(1)解:设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80-x)吨,从乙仓库运往A港口的有(100-x)吨,运往B港口的有50-(80-x)=(x-30)吨,所以y=14x+20+10(80-x)+8(x-30)=-8x+2560,x的取值范围是30≤x≤80.(2)解:由(1)得y=-8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=-8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.24.(10分)在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)(3分)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)(3分)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC 海域的最短距离为多少海里?(3)(4分)若敌舰A沿最短距离的路线以海里/小时的速度靠近△OBC海域,我军军舰B立刻沿北偏东的方向进行拦截,问军舰B速度至少为多少才能在此方向上拦截到敌舰A?【解析】(1)略(2)略(3)略【答案】(1)解:在Rt△OBC中,∵BO=80,BC=60,∠OBC=90°,∴∵,∴雷达的有效探测半径r至少为50海里.(2)解:作AM⊥BC于M,∵∠ACB=30°,∠CBA=60°,∴∠CAB=90°,∴AB=BC=30,在RT△ABM中,∵∠AMB=90°,AB=30,∠BAM=30°,∴,∴此时敌舰A离△OBC海域的最短距离为海里.(3)解:假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,∵∠HBN=∠HNB=15°,∴∠MHN=∠HBN+∠HNB=30°,∴HN=HB=2x,MH=x,∵BM=15,∴,,∴,,设B军舰速度为a海里/小时,由题意,∴a≥20.∴B军舰速度至少为20海里/小时.25.(10分)在平面直角坐标中,△ABC三个顶点坐标为.(1)(3分)求△ABC内切圆⊙D的半径.(2)(3分)过点E(0,-1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)(4分)以(2)为条件,P为直线EF上一点,以P为圆心,以为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.【解析】(1)略(2)略(3)略【答案】(1)解:连接BD,∵,C(0,3),∴,OC=3,∴,∴∠CBO=60°∵点D是△ABC的内心,∴BD平分∠CBO,∴∠DBO=30°,∴,∴OD=1,∴△ABC内切圆⊙D的半径为1;(2)解:连接DF,过点F作FG⊥y轴于点G,∵E(0,-1)∴OE=1,DE=2,∵直线EF与⊙D相切,∴∠DFE=90°,DF=1,∴,∴∠DEF=30°,∴∠GDF=60°,∴在Rt△DGF中,∠DFG=30°,∴,由勾股定理可求得:,∴,设直线EF的解析式为:y=kx+b,∴,∴直线EF的解析式为:;(3)解:∵⊙P上存在一点到△ABC三个顶点的距离相等,∴该点必为△ABC外接圆的圆心,由(1)可知:△ABC是等边三角形,∴△ABC外接圆的圆心为点D∴,设直线EF与x轴交于点H,∴令y=0代入,∴,∴,∴,当P在x轴上方时,过点P1作P1M⊥x轴于M,由勾股定理可求得:,∴,∵∠DEF=∠HP1M=30°,∴,P1M=5,∴,∴,当P在x轴下方时,过点P2作P2N⊥x轴于点N,由勾股定理可求得:,∴,∴∠DEF=30°∴∠OHE=60°∴,∴P2N=4,令y=-4代入,∴,∴,综上所述,若⊙P上存在一点到△ABC三个顶点的距离相等,此时圆心P的坐标为.26.(12分)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于.点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)(3分)求该抛物线的函数关系表达式.(2)(4分)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)(5分)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.【解析】(1)略(2)略(3)略【答案】(1)解:∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为,故抛物线的解析式可设为.∵A(-1,2)在抛物线上,∴,解得,∴抛物线的函数关系表达式为;(2)解:①当点F在第一象限时,如图1,令y=0得,,解得:x1=3,x2=-3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为.设正方形OEFG的边长为p,则F(p,p).∵点F(p,p)在直线上,∴﹣,解得p=1,∴点F的坐标为(1,1).②当点F在第二象限时,同理可得:点F的坐标为(-3,3),此时点F不在线段AC上,故舍去.综上所述:点F的坐标为(1,1);(3)解:过点M作MH⊥DN于H,如图,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,,则,.当x=t+1时,,则,.在Rt△DEM中,.在Rt△NHM中,MH=1,,∴.①当DN=DM时,,解得;②当ND=NM时,,解得;③当MN=MD时,,解得t1=1,t2=3.∵0≤t≤2,∴t=1.综上所述:当△DMN是等腰三角形时,t的值为.。

湖南省衡阳市2016年中考数学试题

湖南省衡阳市2016年中考数学试题

参考答案一、选择题二、填空题13:)(b a a + 14:1 15:2>x 16:5:4 17:16 18:10三、解答题19:解ab a b ab a b a b a b a b a 222)())((222222+=+++-=++-+当21,1=-=b a ,原式=1212)1(2-=⨯+-⨯20:解20)1(%, (2)(3)设抽出样本为x 个则3036060=x ,得180=x 由图可知C 为必唱曲目,C 占18070,所以必唱曲目的人数为595180701530=⨯(人) 21、证明BC AD BD AC =∴=又BCF ADE B A ∠=∠∠=∠,ADE ∆∴22、解(1)(2)既是中心对称又是轴对称图形的只有B 、C 所以416==P 23、解(1)设从甲仓库运x 吨往A 港口,则从甲仓库运往B 港口的有)80(x -吨,从乙仓库运往A 港口的有)100(x -吨,运往B 港口的有)30()80(50-=--x x 吨所以x x x x x y 82760)30(8)80(10)100(2014-=-+-+-+=x 的取值范围是8030≤≤x 。

(2)由(1)得x y 82760-=随x 增大而减少,所以当80=x 时总运费最小,此时方案为:把甲仓库的全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库的余下的全部运往B 港口。

沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。

望长城内外,惟余莽莽;大河上下,顿失滔滔。

山舞银蛇,原驰蜡象,欲与天公试比高。

须晴日,看红装素裹,分外妖娆。

江山如此多娇,引无数英雄竞折腰。

惜秦皇汉武,略输文采;唐宗宋祖,稍逊风骚。

一代天骄,成吉思汗,只识弯弓射大雕。

俱往矣,数风流人物,还看今朝。

薄雾浓云愁永昼,瑞脑消金兽。

佳节又重阳,玉枕纱厨,半夜凉初透。

东篱把酒黄昏后,有暗香盈袖。

莫道不消魂,帘卷西风,人比黄花瘦。

2016年湖南省衡阳市衡阳县中考数学一模试卷(解析版)

2016年湖南省衡阳市衡阳县中考数学一模试卷(解析版)

2016年湖南省衡阳市衡阳县中考数学一模试卷一、选择题:本大题12小题,每小题3分,共36分.1.下列四个数中,比﹣2小的数是()A.﹣1B.0C.﹣3D.﹣2.下列运算正确的是()A.2a﹣a=2B.(﹣a2)3=﹣a6C.x6÷x3=x2D.(x+y)2=x2+y23.如图,CD∥AB,∠1=120°,∠2=80°,则∠E的度数是()A.40°B.60°C.80°D.120°4.下列图形是中心对称图形而不是轴对称图形的是()A.B.C.D.5.今年衡阳市约有108000名初中毕业生参加中考,108000用科学记数法表示为()A.10.8×104B.1.08×105C.0.108×106D.1.1×1056.在同一直角坐标系中,函数y=kx+1和函数y=(k是常数且k≠0)的图象只可能是()A.B.C.D.7.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块8.已知方程组,则x﹣y值是()A.5B.﹣1C.0D.19.2011年春我市发生了严重干旱,市政府号召居民节约用水.为了解居民用水情况,在某10)A.众数是6B.极差是2C.平均数是6D.方差是410.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠311.如图,在Rt△ABC中,AB=AC.D,E是斜边BC上两点,且∠DAE=45°,将△ADC 绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中正确的是()A.②④B.①④C.②③D.①③12.为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6nB.8+6nC.4+4nD.8n二、填空题:本大题共6个小题,每小题3分,共18分.把答案填在横线上.13.函数中,自变量x的取值范围是.14.分解因式:a3﹣4a2+4a=.15.分式方程的解为.16.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为cm2.(结果保留π)17.从装有a个球的暗袋中随机的摸出一个球,已知袋中有5个红球,通过大量的实验发现,摸到红球的频率稳定在0.25左右,可以估计a约为.18.函数y=kx﹣1(k≠0)的图象向上平移一个单位后与反比例函数y=的图象的交点为A、B,若A点坐标为(﹣1,﹣4),则B点的坐标为.三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.19.计算:|﹣|﹣(π﹣2016)0+()﹣2﹣2cos45°.20.如图,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且AE=AF.求证:△BCE≌△DCF.21.解不等式组,并把解集用数轴表示出来..22.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人?(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?23.如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中阴影部分的面积.24.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.(1)假定每件商品降价x元,商店每天销售这种小商品的利润是y元,请写出y与x间的函数关系式,并注明x的取值范围.(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入﹣购进成本)25.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).26.如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.2016年湖南省衡阳市衡阳县中考数学一模试卷参考答案与试题解析一、选择题:本大题12小题,每小题3分,共36分.1.下列四个数中,比﹣2小的数是()A.﹣1B.0C.﹣3D.﹣【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出四个数中,比﹣2小的数是哪个数即可.【解答】解:根据有理数比较大小的方法,可得﹣1>﹣2,0>﹣2,﹣3<﹣2,﹣>﹣2,∴四个数中,比﹣2小的数是﹣3.故选:C.2.下列运算正确的是()A.2a﹣a=2B.(﹣a2)3=﹣a6C.x6÷x3=x2D.(x+y)2=x2+y2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据合并同类项法则;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减;完全平方公式;对各选项分析判断后利用排除法求解.【解答】解:A、2a﹣a=a,故A错误;B、(﹣a2)3=﹣a6,故B正确;C、x6÷x3=x3,故C错误;D、(x+y)2=x2+2xy+y2,故D错误.故选:B.3.如图,CD∥AB,∠1=120°,∠2=80°,则∠E的度数是()A.40°B.60°C.80°D.120°【考点】平行线的性质;三角形的外角性质.【分析】首先由平行线的性质得出∠1等于三角形CDE的外角,再由三角形的外角性质求出∠E.【解答】解:∵CD∥AB,∴∠1=∠EDF=120°,∴∠E=∠EDF﹣∠2=120°﹣80°=40°.4.下列图形是中心对称图形而不是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形;故A正确;B、是中心对称图形,也是轴对称图形;故B错误;C、是中心对称图形,也是轴对称图形;故C错误;D、不是中心对称图形,是轴对称图形;故D错误;故选A.5.今年衡阳市约有108000名初中毕业生参加中考,108000用科学记数法表示为()A.10.8×104B.1.08×105C.0.108×106D.1.1×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将108000用科学记数法表示为:1.08×105.故选:B.6.在同一直角坐标系中,函数y=kx+1和函数y=(k是常数且k≠0)的图象只可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】比例系数相等,那么这两个函数图象必有交点,进而根据一次函数与y轴的交点判断正确选项即可.【解答】解:当k>0时,一次函数过一二三象限,反比例函数过一三象限;当k<0时,一次函数过一二四象限,反比例函数过二四象限;7.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块【考点】由三视图判断几何体.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选B.8.已知方程组,则x﹣y值是()A.5B.﹣1C.0D.1【考点】解二元一次方程组.【分析】此题首先解方程组求解,然后代入x、y得出答案.【解答】解:,②×2﹣①得:3y=9,y=3,把y=3代入②得:x=2,∴,则x﹣y=2﹣3=﹣1,故选:B.9.2011年春我市发生了严重干旱,市政府号召居民节约用水.为了解居民用水情况,在某则关于这户家庭的月用水量,下列说法错误的是()A.众数是6B.极差是2C.平均数是6D.方差是4【考点】方差;加权平均数;众数;极差.【分析】众数是一组数据中出现次数最多的数,极差是数据中最大的与最小的数据的差,平均数是所有数据的和除以数据的个数,分别根据以上定义可分别求出众数,极差和平均数,然后根据方差的计算公式进行计算求出方差,即可得到答案.【解答】解:这组数据6出现了6次,最多,所以这组数据的众数为6;这组数据的最大值为7,最小值为5,所以这组数据的极差=7﹣5=2;这组数据的平均数=(5×2+6×6+7×2)=6;这组数据的方差S2=[2•(5﹣6)2+6•(6﹣6)2+2•(7﹣6)2]=0.4;所以四个选项中,A、B、C正确,D错误.故选D.10.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠3【考点】抛物线与x轴的交点;根的判别式;一次函数的性质.【分析】分为两种情况:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,求出△=b2﹣4ac=﹣4k+16≥0的解集即可;②当k﹣3=0时,得到一次函数y=2x+1,与X轴有交点;即可得到答案.【解答】解:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,△=b2﹣4ac=22﹣4(k﹣3)×1=﹣4k+16≥0,k≤4;②当k﹣3=0时,y=2x+1,与X轴有交点.故选B.11.如图,在Rt△ABC中,AB=AC.D,E是斜边BC上两点,且∠DAE=45°,将△ADC 绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中正确的是()A.②④B.①④C.②③D.①③【考点】相似三角形的判定;全等三角形的判定;勾股定理;旋转的性质.【分析】由△ADC绕点A顺时针旋转90°得△AFB,可知△ADC≌△AFB,∠FAD=90°,由∠DAE=45°可判断∠FAE=∠DAE,可证①△AED≌△AEF.由已知条件可证△BEF为直角三角形,则有④BE2+DC2=DE2是正确的.【解答】解:∵△ADC绕点A顺时针旋转90°得△AFB,∴△ADC≌△AFB,∠FAD=90°,∴AD=AF,∵∠DAE=45°,∴∠FAE=90°﹣∠DAE=45°,∴∠DAE=∠FAE,AE为△AED和△AEF的公共边,∴△AED≌△AEF∴ED=FE在Rt△ABC中,∠ABC+∠ACB=90°,又∵∠ACB=∠ABF,∴∠ABC+∠ABF=90°即∠FBE=90°,∴在Rt△FBE中BE2+BF2=FE2,∴BE+DC=DE③显然是不成立的.故正确的有①④,不正确的有③,②不一定正确.故选B12.为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6nB.8+6nC.4+4nD.8n【考点】规律型:图形的变化类.【分析】观察给出的3个例图,注意火柴棒根数的变化是图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6.【解答】解:第n条小鱼需要(2+6n)根,故选A.二、填空题:本大题共6个小题,每小题3分,共18分.把答案填在横线上.13.函数中,自变量x的取值范围是x≥﹣3.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.14.分解因式:a3﹣4a2+4a=a(a﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】观察原式a3﹣4a2+4a,找到公因式a,提出公因式后发现a2﹣4a+4是完全平方公式,利用完全平方公式继续分解可得.【解答】解:a3﹣4a2+4a,=a(a2﹣4a+4),=a(a﹣2)2.故答案为:a(a﹣2)2.15.分式方程的解为x=5.【考点】分式方程的解.【分析】方程两边都乘以(x﹣1)(x+3)化为整式方程,然后求解,再检验即可.【解答】解:方程两边都乘以(x﹣1)(x+3)得,x+3=2(x﹣1),解得x=5,检验:当x=5时,(x﹣1)(x+3)=(5﹣1)×(5+3)=32≠0,所以,x=5是方程的解,所以,原分式方程的解是x=5.故答案为:x=5.16.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为60πcm2.(结果保留π)【考点】圆锥的计算.【分析】先根据圆锥的底面半径和高求出母线长,圆锥的侧面积是展开后扇形的面积,计算可得.【解答】解:圆锥的母线==10cm,圆锥的底面周长2πr=12πcm,圆锥的侧面积=lR=×12π×10=60πcm2.故答案为60π.17.从装有a个球的暗袋中随机的摸出一个球,已知袋中有5个红球,通过大量的实验发现,摸到红球的频率稳定在0.25左右,可以估计a约为20.【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,根据红球的个数除以总数等于频率,求解即可.【解答】解:∵a个球中红球有5个,通过大量重复摸球实验后发现,摸到红球的频率稳定在0.25,∴=0.25,∴a=20.故答案为:2018.函数y=kx﹣1(k≠0)的图象向上平移一个单位后与反比例函数y=的图象的交点为A、B,若A点坐标为(﹣1,﹣4),则B点的坐标为(1,4).【考点】反比例函数与一次函数的交点问题;平移的性质.【分析】根据平移的性质找出平移后的一次函数的解析式,再根据平移后的一次函数与反比例函数图象均关于原点对称,由此即可得出点A、B关于原点对称,根据点A的坐标求出点B的坐标,此题得解.【解答】解:函数y=kx﹣1(k≠0)的图象向上平移一个单位后得到的函数为y=kx﹣1+1=kx (k≠0),∵函数y=kx(k≠0)的图象关于原点对称,反比例函数y=的图象关于原点对称,∴两函数图象的交点A、B关于原点对称,∵点A的坐标为(﹣1,﹣4),∴点B的坐标为(1,4).故答案为:(1,4).三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.19.计算:|﹣|﹣(π﹣2016)0+()﹣2﹣2cos45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣1+4﹣2×=3.20.如图,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且AE=AF.求证:△BCE≌△DCF.【考点】菱形的性质;全等三角形的判定.【分析】直接利用菱形的性质得出BC=DC=AB=AD,∠B=∠D,进而结合全等三角形的判定方法得出答案.【解答】证明:∵四边形ABCD是菱形,∴BC=DC=AB=AD,∠B=∠D,∵AE=AF,∴BE=DF,在△BCE和△DCF中∵,∴△BCE≌△DCF(SAS).21.解不等式组,并把解集用数轴表示出来..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,解不等式①得,x>﹣2,解不等式②得,x≤1,故不等式组的解集为:﹣2<x≤1,在数轴上表示为:22.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人?(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?【考点】扇形统计图;用样本估计总体;条形统计图.【分析】(1)根据替代品戒烟30人占总体的10%,即可求得总人数;(2)根据求得的总人数,结合扇形统计图可以求得药物戒烟的人数,从而求得警示戒烟的人数,再根据各部分的人数除以总人数,即可求得各部分所占的百分比;(3)根据扇形统计图中“强制戒烟”的百分比即可回答其概率,再进一步根据样本估计总体.【解答】解:(1)30÷10%=300(人).∴一共调查了300人.(2)由(1)可知,总人数是300人.药物戒烟:300×15%=45(人);警示戒烟:300﹣120﹣30﹣45=105(人);105÷300=35%;强制戒烟:120÷300=40%.完整的统计图如图所示:(3)设该市发支持“强制戒烟”的概率为P ,由(1)可知,P=120÷300=40%=0.4. 支持“警示戒烟”这种方式的人有10000•35%=3500(人).23.如图,在⊙O 中,弦BC 垂直于半径OA ,垂足为E ,D 是优弧上一点,连接 BD ,AD ,OC ,∠ADB=30°. (1)求∠AOC 的度数;(2)若弦BC=6cm ,求图中阴影部分的面积.【考点】垂径定理;勾股定理;圆周角定理;扇形面积的计算.【分析】(1)先根据垂径定理得出BE=CE , =,再根据圆周角定理即可得出∠AOC 的度数;(2)先根据勾股定理得出OE 的长,再连接OB ,求出∠BOC 的度数,再根据S 阴影=S 扇形OBC ﹣S △OBC 计算即可. 【解答】解:(1)连接OB , ∵BC ⊥OA ,∴BE=CE , =, 又∵∠ADB=30°,∴∠AOC=∠AOB=2∠ADB , ∴∠AOC=60°;(2)∵BC=6,∴CE=BC=3, 在Rt △OCE 中,OC==2,∴OE===,∵=,∴∠BOC=2∠AOC=120°, ∴S 阴影=S 扇形OBC ﹣S △OBC=×π×(2)2﹣×6×=4π﹣3(cm2).24.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.(1)假定每件商品降价x元,商店每天销售这种小商品的利润是y元,请写出y与x间的函数关系式,并注明x的取值范围.(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入﹣购进成本)【考点】二次函数的应用.【分析】(1)根据等量关系“利润=(13.5﹣降价﹣进价)×”列出函数关系式.(2)根据(1)中的函数关系式求得利润最大值.【解答】解:(1)设降价x元时利润最大、依题意:y=(13.5﹣x﹣2.5)整理得:y=﹣100(x﹣3)2+6400(0≤x≤11)(2)由(1)可知,∵a=﹣100<0,∴当x=3时y取最大值,最大值是6400,即降价3元时利润最大,∴销售单价为10.5元时,最大利润6400元.答:销售单价为10.5元时利润最大,最大利润为6400元.25.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).【考点】旋转的性质;全等三角形的判定与性质;直角三角形斜边上的中线;正方形的性质.【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DCF=90°,在Rt△FCD中,∵G为DF的中点,∴CG=FD,同理,在Rt△DEF中,EG=FD,∴CG=EG.(2)解:(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG;∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC,在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=MC,∴EG=CG.(3)解:(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形,∵G为CM中点,∴EG=CG,EG⊥CG.26.如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.【考点】二次函数综合题;相似三角形的判定与性质.【分析】(1)本题需先根据已知条件,过C点,设出该抛物线的解析式为y=ax2+bx﹣2,再根据过A,B两点,即可得出结果.(2)本题首先判断出存在,首先设出横坐标和纵坐标,从而得出PA的解析式,再分三种情况进行讨论,当时和时,当P,C重合时,△APM≌△ACO,分别求出点P的坐标即可.(3)本题需先根据题意设出D点的横坐标和D点的纵坐标,再过D作y轴的平行线交AC 于E,再由题意可求得直线AC的解析式为,即可求出E点的坐标,从而得出结果即可.【解答】解:(1)∵该抛物线过点C(0,﹣2),∴可设该抛物线的解析式为y=ax2+bx﹣2.将A(4,0),B(1,0)代入,得,解得,∴此抛物线的解析式为;(2)存在.如图,设P点的横坐标为m,则P点的纵坐标为,当1<m<4时,AM=4﹣m,.又∵∠COA=∠PMA=90°,∴①当,∵C在抛物线上,∴OC=2,∵OA=4,∴,∴△APM∽△ACO,即.解得m1=2,m2=4(舍去),∴P(2,1).②当时,△APM∽△CAO,即.解得m1=4,m2=5(均不合题意,舍去)∴当1<m<4时,P(2,1),当m>4时,AM=m﹣4,PM=m2﹣m+2,①==或②==2,把P(m,﹣m2+m﹣2)代入得:2(m2﹣m+2)=m﹣4,2(m﹣4)=m2﹣m+2,解得:第一个方程的解是m=﹣2﹣2<4(舍去)m=﹣2+2<4(舍去),第二个方程的解是m=5,m=4(舍去)求出m=5,﹣m2+m﹣2=﹣2,则P(5,﹣2),当m<1时,AM=4﹣m,PM=m2﹣m+2.①==或==2,则:2(m2﹣m+2)=4﹣m,2(4﹣m)=m2﹣m+2,解得:第一个方程的解是m=0(舍去),m=4(舍去),第二个方程的解是m=4(舍去),m=﹣3,m=﹣3时,﹣m2+m﹣2=﹣14,则P(﹣3,﹣14),综上所述,符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14),(3)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为||.过D作y轴的平行线交AC于E.由题意可求得直线AC的解析式为.∴E点的坐标为.∴,∴S△DAC=S△DCE+S△DEA=DE•h+DE•(4﹣h)=DE•4,∴,∴当t=2时,△DAC面积最大,∴D(2,1).2016年7月13日。

初中毕业升学考试(湖南衡阳卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(湖南衡阳卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(湖南衡阳卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】﹣4的相反数是()A.﹣ B. C.﹣4 D.4【答案】D.【解析】试题分析:只有符号不同的两个数叫做互为相反数,由此可得﹣4的相反数是4.故答案选D.考点:相反数.【题文】如果分式有意义,则x的取值范围是()A.全体实数 B.x≠1 C.x=1 D.x>1【答案】B.【解析】试题分析:根据分式有意义的条件可得x﹣1≠0.故答案选B.考点:分式有意义的条件.【题文】如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70° B.80° C.90° D.100°【答案】C.【解析】试题分析:根据平行线的性质得到∠1=∠B=50°,由三角形的内角和定理可得∠E=180°﹣∠B﹣∠1=90°,故答案选C.考点:平行线的性质.评卷人得分【题文】下列几何体中,哪一个几何体的三视图完全相同()【答案】A.【解析】试题分析:选项A,球体的三视图都是圆,正确;选项B,圆柱的主视图和俯视图都是矩形,但左视图是一个圆形,错误;选项C,四棱柱的主视图和左视图是一个三角形,俯视图是一个四边形,错误;选项D,圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形,错误.故答案选A.考点:简单几何体的三视图.【题文】下列各式中,计算正确的是()A.3x+5y=8xy B.x3•x5=x8 C.x6÷x3=x2 D.(﹣x3)3=x6【lA.0.36×107 B.3.6×106 C.3.6×107 D.36×105【答案】B.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数且为这个数的整数位数减1,,由于3600000有7位,所以可以确定n=7﹣1=6.即3600000=3.6×106.故答案选B.考点:科学记数法.【题文】要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.平均数 B.中位数 C.众数 D.方差【答案】D.【解析】试题分析:方差是衡量波动大小的量,方差越小则波动越小,稳定性也越好.故答案选D.考点:方差.【题文】正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.13【答案】C.【解析】试题分析:根据一个正多边形的每个内角都相等,根据内角与外角互为邻补角可得一个外角的度数是:180°﹣150°=30°,360°÷30°=12.所以这个正多边形是正十二边形.故答案选C.考点:多边形内角与外角.【题文】随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A. 10(1+x)2=16.9B. 10(1+2x)=16.9C. 10(1﹣x)2=16.9D. 10(1﹣2x)=16.9【答案】A【解析】试题分析:设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选A.考点:由实际问题抽象出一元二次方程.【题文】关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥4【答案】B.【解析】试题分析:已知一元二次方程x2+4x+k=0有两个相等的实根,可得△=42﹣4k=0,解得k=4,故答案选B.考点:根的判别式.【题文】下列命题是假命题的是()A.经过两点有且只有一条直线B.三角形的中位线平行且等于第三边的一半C.平行四边形的对角线相等D.圆的切线垂直于经过切点的半径【答案】C.【解析】试题分析:选项A,经过两点有且只有一条直线,正确;选项B,三角形的中位线平行且等于第三边的一半,正确;选项C,平行四边形的对角线相等,错误.矩形的对角线相等,平行四边形的对角线不一定相等.选项D,圆的切线垂直于经过切点的半径,正确.故答案选C.考点:命题.【题文】如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()【答案】A.【解析】试题分析::设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故答案选A.考点:函数图像.【题文】因式分解:a2+ab=.【答案】a(a+b).【解析】试题分析:l【题文】若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.【答案】5:4.【解析】试题分析:已知△ABC与△DEF相似且面积之比为25:16,根据相似三角形面积的比等于相似比的平方求出相似比,可得△ABC与△DEF的相似比为5:4;即可得△ABC与△DEF的周长之比为5:4.考点:相似三角形的性质.【题文】若圆锥底面圆的周长为8π,侧面展开图的圆心角为90°,则该圆锥的母线长为.【答案】16.【解析】试题分析:设该圆锥的母线长为l,圆锥的侧面展开图为一扇形,根据这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长可得8π=,解得l=16,即该圆锥的母线长为16.考点:圆锥的计算.【题文】如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.【答案】10.【解析】试题分析:n条直线最多可将平面分成S=1+1+2+3…+n=n(n+1)+1,n条直线最多可将平面分成56个部分,由此可得n(n+1)+1=56,解得x1=﹣11(不合题意舍去),x2=10.所以n的值为10.考点:一元二次方程的应用.【题文】先化简,再求值:(a+b)(a﹣b)+(a+b)2,其中a=﹣1,b=.【答案】原式=2a2+2ab,当a=﹣1,b=时,原式=1.【解析】试题分析:根据平方差公式、完全平方公式展开后再合并同类项,化简后将a、b的值代入求值即可.试题解析:原式=a2﹣b2+a2+2ab+b2=2a2+2ab,当a=﹣1,b=时,原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.考点:整式的化简求值.【题文】为庆祝建党95周年,某校团委计划在“七一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A,B,C,D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为;(2)请将图②补充完整;(3)若该校共有1530名学生,根据抽样调查的结果估计全校共有多少学生选择此必唱歌曲?(要有解答过程)【答案】(1)20%;(2)详见解析;(3)595.【解析】试题分析:(1)根据条形统计图和扇形统计图可以求得选择曲目代号为A的学生占抽样总数的百分比;(2)根据条形统计图和扇形统计图可以求得选择C的人数,从而可以将图②补充完整;(3)根据条形统计图和扇形统计图可以估计全校选择此必唱歌曲的人数.试题解析:(1)由题意可得,本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为:×100%=20%.故答案为:20%;(2)由题意可得,选择C的人数有:30÷﹣36﹣30﹣44=70(人),故补全的图②如下图所示,(3)由题意可得,全校选择此必唱歌曲共有:1530×=595(人),即全校共有595名学生选择此必唱歌曲.考点:条形统计图;扇形统计图;用样本估计总体.【题文】如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【答案】详见解析.【解析】试题分析:根据已知条件可证得AD=BC,再ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.试题解析:证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.考点:全等三角形的判定与性质.【题文】在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.【答案】(1)详见解析;(2).【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.试题解析:解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:.考点:列表法与树状图法.【题文】为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/台)甲库乙库A港1420B港108(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.【答案】(1)y=﹣8x+2560,x的取值范围是30≤x≤80;(3)1920,方案为把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.【解析】试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=80时,y最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.考点:一次函数的应用.【题文】在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?{{28l试题解析:(1)在RT△OBC中,∵BO=80,BC=60,∠OBC=90°,∴OC=,∵OC=×100=50∴雷达的有效探测半径r至少为50海里.(2)作AM⊥BC于M,∵∠ACB=30°,∠CBA=60°,∴∠CAB=90°,∴AB=BC=30,在RT△ABM中,∵∠AMB=90°,AB=30,∠BAM=30°,∴BM=AB=15,AM=BM=15,∴此时敌舰A离△OBC海域的最短距离为15海里.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,∵∠HBN=∠HNB=15°,∴∠MHN=∠HBN+∠HNB=30°,∴HN=HB=2x,MH=x,∵BM=15,∴15=x+2x,x=30﹣15,∴AN=30﹣30,BN=,设B军舰速度为a海里/小时,由题意,∴a≥20.∴B军舰速度至少为20海里/小时.考点:解直角三角形的应用.【题文】在平面直角坐标中,△ABC三个顶点坐标为A(﹣,0)、B(,0)、C(0,3).(1)求△ABC内切圆⊙D的半径.(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2为半径作⊙P.若⊙P上存在一点到△ABC 三个顶点的距离相等,求此时圆心P的坐标.【答案】(1)1;(2)y=x﹣1;(3)若⊙P上存在一点到△ABC三个顶点的距离相等,此时圆心P的坐标为(2,5)或(﹣,﹣4).【解析】试题分析:(1)由A、B、C三点坐标可知∠CBO=60°,又因为点D是△ABC的内心,所以BD平分∠CBO,然后利用锐角三角函数即可求出OD的长度;(2)根据题意可知,DF为半径,且∠DFE=90°,过点F作FG⊥y轴于点G,求得FG和OG的长度,即可求出点F的坐标,然后将E和F的坐标代入一次函数解析式中,即可求出直线EF的解析式;(3)⊙P上存在一点到△ABC三个顶点的距离相等,该点是△ABC的外接圆圆心,即为点D,所以DP=2,又因为点P在直线EF上,所以这样的点P共有2个,且由勾股定理可知PF=3.试题解析:(1)连接BD,∵B(,0),C(0,3),∴OB=,OC=3,∴tan∠CBO==,∴∠CBO=60°∵点D是△ABC的内心,∴BD平分∠CBO,∴∠DBO=30°,∴tan∠DBO=,∴OD=1,∴△ABC内切圆⊙D的半径为1;(2)连接DF,过点F作FG⊥y轴于点G,∵E(0,﹣1)∴OE=1,DE=2,∵直线EF与⊙D相切,∴∠DFE=90°,DF=1,∴sin∠DEF=,∴∠DEF=30°,∴∠GDF=60°,∴在Rt△DGF中,∠DFG=30°,∴DG=,由勾股定理可求得:GF=,∴F(,),设直线EF的解析式为:y=kx+b,∴,∴直线EF的解析式为:y=x﹣1;(3)∵⊙P上存在一点到△ABC三个顶点的距离相等,∴该点必为△ABC外接圆的圆心,由(1)可知:△ABC是等边三角形,∴△ABC外接圆的圆心为点D∴DP=2,设直线EF与x轴交于点H,∴令y=0代入y=x﹣1,∴x=,∴H(,0),∴FH=,当P在x轴上方时,过点P1作P1M⊥x轴于M,由勾股定理可求得:P1F=3,∴P1H=P1F+FH=,∵∠DEF=∠HP1M=30°,∴HM=P1H=,P1M=5,∴OM=2,∴P1(2,5),当P在x轴下方时,过点P2作P2N⊥x轴于点N,由勾股定理可求得:P2F=3,∴P2H=P2F﹣FH=,∴∠DEF=30°∴∠OHE=60°∴sin∠OHE=,∴P2N=4,令y=﹣4代入y=x﹣1,∴x=﹣,∴P2(﹣,﹣4),综上所述,若⊙P上存在一点到△ABC三个顶点的距离相等,此时圆心P的坐标为(2,5)或(﹣,﹣4).考点:圆的综合题.【题文】如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.【答案】(1)y=﹣x2+;(2)(1,1);(3)当△DMN是等腰三角形时,t的值为,3﹣或1.【解析】试题分析:(1)易得抛物线的顶点为(0,),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;(2)①当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式,设正方形OEFG的边长为p ,则F(p,p),代入直线AC的解析式,就可求出点F的坐标;②当点F在第二象限时,同理可求出点F 的坐标,此时点F不在线段AC上,故舍去;(3)过点M作MH⊥DN于H,如图2,由题可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三种情况(①DN=DM,②ND=NM,③MN=MD)讨论就可解决问题.试题解析:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.设正方形OEFG的边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.综上所述:点F的坐标为(1,1);(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.①当DN=DM时,(﹣t+)2=t2﹣t+2,解得t=;②当ND=NM时,﹣t+=,解得t=3﹣;③当MN=MD时,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.考点:二次函数综合题.。

【精编】2016年湖南省衡阳市蒸湘区船山实验中学数学中考一模试卷与解析

【精编】2016年湖南省衡阳市蒸湘区船山实验中学数学中考一模试卷与解析

2016年湖南省衡阳市蒸湘区船山实验中学中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共计36分)1.(3分)的绝对值是()A.2 B.﹣2 C.D.2.(3分)计算a3•a4的结果是()A.a5B.a7C.a8D.a123.(3分)如图中几何体的主视图是()A.B.C.D.4.(3分)如图,下列条件中能判定直线l1∥l2的是()A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠55.(3分)下列电视台的台标,是中心对称图形的是()A. B.C.D.6.(3分)2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A.32,31 B.31,32 C.31,31 D.32,357.(3分)计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y28.(3分)由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降.由原来每斤12元连续两次降价a%后售价下调到每斤5元,下列所列方程中正确的是()A.12(1+a%)2=5 B.12(1﹣a%)2=5 C.12(1﹣2a%)=5 D.12(1﹣a2%)=59.(3分)如图,△ABC中,点D在边AB上,且满足∠ACD=∠ABC,若AC=2,AD=1,则DB的长为()A.1 B.2 C.3 D.410.(3分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E 分别在AB、BC边上,BD=BE=1.沿直线将△BDE翻折,点B 落在点B′处.则点B′的坐标为()A.(1,2) B.(2,1) C.(2,2) D.(3,1)11.(3分)如图,点A在反比例函数y=﹣(x<0)的图象上,点B在反比例函数y=(x>0)的图象上,且∠AOB=90°.则tan∠OBA的值等于()A.2 B.3 C.D.12.(3分)如图,AB是半圆O的直径,点P从点O出发,沿OA﹣﹣BO的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共计24分)13.(3分)若二次根式有意义,则x的取值范围是.14.(3分)2014年全市初中毕业生总数将达到72500人,这个数据用科学记数法可表示为.15.(3分)分解因式:2a3﹣8a2+8a=.16.(3分)小明的圆锥形玩具的高为12cm,母线长为13cm,则其侧面积是cm2.17.(3分)如果鸟卵孵化后,雏鸟为雌为雄的概率相同.如果2枚卵全部成功孵化,则2只雏鸟都为雄鸟的概率是.18.(3分)如图,在△ABC中,∠C=90°,AB=8,cosB=,则BC的长是.19.(3分)在⊙O中,直径AB=4,弦CD⊥AB于P,OP=,则弦CD的长为.20.(3分)如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=度.三、解答下列各题(本大题共4小题,每小题6分,共计24分)21.(6分)计算:(﹣1)0+2sin30°﹣()﹣1.22.(6分)先化简:﹣;然后在﹣1,0,1三个数中选取一个你认为合适的数作为x的值代入求值.23.(6分)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.24.(6分)今年初我国多地的雾霾天气引发了公众对空气质量的关注.现随机调查了某城市若干天的空气质量情况,并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)本次调查中,一共调查的天数为天;扇形图中,表示“轻微污染”的扇形的圆心角为度;(2)将条形图补充完整;(3)估计该城市一年(以365天计算)中,空气质量达到良级以上(包括良级)的天数.四、解答下列各题(本大题共2小题,每小题8分,共计16分)25.(8分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)如果⊙O的半径为5,cos∠DAB=,求BF的长.26.(8分)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)求y与x之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?五、解答下列各题(本大题共2小题,每小题10分,共计20分)27.(10分)已知:抛物线C1:y=x2.如图(1),平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D.(1)求抛物线C2的解析式;(2)探究四边形ODAB的形状并证明你的结论;(3)如图(2),将抛物线C2向m个单位下平移(m>0)得抛物线C3,C3的顶点为G,与y轴交于M.点N是M关于x轴的对称点,点P(﹣m,m)在直线MG上.问:当m为何值时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?28.(10分)如图,在平面直角坐标系中,矩形OABC的顶点A的坐标为(6,0),将△ABC沿AC翻折,使点B落到点B′处,B′C交x轴于点D,且CD=2DB′.动点P从点C出发,沿CO以每秒1个单位的速度向点O运动;动点Q从点O出发,沿OA、AB以每秒3个单位的速度向点B运动,连接PQ.若P、Q两点同时出发,当其中一点到达终时整个运动随之结束,设运动时间为t秒.(1)求点B′的坐标;(2)若以P、Q、D、C为顶点的凸四边形的面积为S,求S与t之间的函数关系式;(3)当t>时,设PQ与B′C相交于点M,问:是否存在这样的t值,使得△PCM为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.2016年湖南省衡阳市蒸湘区船山实验中学中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分)1.(3分)的绝对值是()A.2 B.﹣2 C.D.【解答】解:根据绝对值的概念可知:||=,故选C.2.(3分)计算a3•a4的结果是()A.a5B.a7C.a8D.a12【解答】解:原式=a3+4=a7,故选:B.3.(3分)如图中几何体的主视图是()A.B.C.D.【解答】解:从正面看易得左排3层,中间排是2层,右排是一层,故选:A.4.(3分)如图,下列条件中能判定直线l1∥l2的是()A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠5【解答】解:A、根据∠1=∠2不能推出l1∥l2,故A选项错误;B、∵∠5=∠3,∠1=∠5,∴∠1=∠3,即根据∠1=∠5不能推出l1∥l2,故B选项错误;C、∵∠1+∠3=180°,∴l1∥l2,故C选项正确;D、根据∠3=∠5不能推出l1∥l2,故D选项错误;故选:C.5.(3分)下列电视台的台标,是中心对称图形的是()A. B.C.D.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.6.(3分)2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A.32,31 B.31,32 C.31,31 D.32,35【解答】解:∵数据31出现了3次,最多,∴众数为31,∵排序后位于中间位置的数是31,∴中位数是31,故选C.7.(3分)计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y2【解答】解:(2x3y)2=4x6y2.故选:A.8.(3分)由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降.由原来每斤12元连续两次降价a%后售价下调到每斤5元,下列所列方程中正确的是()A.12(1+a%)2=5 B.12(1﹣a%)2=5 C.12(1﹣2a%)=5 D.12(1﹣a2%)=5【解答】解:第一次降价后的价格为12(1﹣a%),两次连续降价后售价在第一次降价后的价格的基础上降低a%,为12(1﹣a%)(1﹣a%),则列出的方程是12(1﹣a%)2=5,故选B.9.(3分)如图,△ABC中,点D在边AB上,且满足∠ACD=∠ABC,若AC=2,AD=1,则DB的长为()A.1 B.2 C.3 D.4【解答】解:∵∠ACD=∠ABC,∠A=∠A,∴△ABC∽△ACD,∴,∵AC=2,AD=1,∴,解得DB=3.故选C.10.(3分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E 分别在AB、BC边上,BD=BE=1.沿直线将△BDE翻折,点B 落在点B′处.则点B′的坐标为()A.(1,2) B.(2,1) C.(2,2) D.(3,1)【解答】解:∵矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2),∴CB=3,AB=2,又根据折叠得B′E=BE,B′D=BD,而BD=BE=1,∴CE=2,AD=1,∴B′的坐标为(2,1).故选B.11.(3分)如图,点A在反比例函数y=﹣(x<0)的图象上,点B在反比例函数y=(x>0)的图象上,且∠AOB=90°.则tan∠OBA的值等于()A.2 B.3 C.D.【解答】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OBD=∠AOC,∴△OBD∽△AOC,∴,又点A在反比例函数y=﹣(x<0)的图象上,点B在反比例函数y=(x>0)的图象上,可得S=0.5,S△AOC=3,△OBD然后根据相似三角形面积的比等于相似比的平方,即可得,∴tan∠OAB==.故答案为.12.(3分)如图,AB是半圆O的直径,点P从点O出发,沿OA﹣﹣BO的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是()A.B.C.D.【解答】解:本题考查函数图象变化关系,可以看出从O到A逐渐变大,而弧AB中的半径不变,从B到O中OP逐渐减少直至为0.故选:C.二、填空题(本大题共8小题,每小题3分,共计24分)13.(3分)若二次根式有意义,则x的取值范围是x≥.【解答】解:∵二次根式有意义,∴2x﹣1≥0,解得:x≥.故答案为:x≥.14.(3分)2014年全市初中毕业生总数将达到72500人,这个数据用科学记数法可表示为7.25×104.【解答】解:72500人,这个数据用科学记数法可表示为7.25×104,故答案为:7.25×104.15.(3分)分解因式:2a3﹣8a2+8a=2a(a﹣2)2.【解答】解:2a3﹣8a2+8a,=2a(a2﹣4a+4),=2a(a﹣2)2.故答案为:2a(a﹣2)2.16.(3分)小明的圆锥形玩具的高为12cm,母线长为13cm,则其侧面积是65πcm2.【解答】解:底面半径是:=5cm,则侧面积是:×2π×5×13=65πcm2.故答案是:65π.17.(3分)如果鸟卵孵化后,雏鸟为雌为雄的概率相同.如果2枚卵全部成功孵化,则2只雏鸟都为雄鸟的概率是.【解答】解:根据题意,可得树状图:分析可得:2只雏鸟都为雄鸟的概率是;故答案为.18.(3分)如图,在△ABC中,∠C=90°,AB=8,cosB=,则BC的长是6.【解答】解:∵在直角△ABC中,cosB===,∴BC=6.故答案是:6.19.(3分)在⊙O中,直径AB=4,弦CD⊥AB于P,OP=,则弦CD的长为2.【解答】解:连接OC,∵在⊙O中,直径AB=4,∴OA=OC=AB=2,∴弦CD⊥AB于P,OP=,∴CP==1,∴CD=2CP=2.故答案为:2.20.(3分)如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=67.5度.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠CBD=45°,根据折叠的性质可得:A′B=AB,∴A′B=BC,∴∠BA′C=∠BCA′===67.5°.故答案为:67.5.三、解答下列各题(本大题共4小题,每小题6分,共计24分)21.(6分)计算:(﹣1)0+2sin30°﹣()﹣1.【解答】解:原式=1+1﹣2=0.22.(6分)先化简:﹣;然后在﹣1,0,1三个数中选取一个你认为合适的数作为x的值代入求值.【解答】解:原式===x﹣1,当x=0时,原式=﹣1.23.(6分)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.【解答】证明:(1)∵AE=CF,∴AE+EF=CF+FE,即AF=CE.又ABCD是平行四边形,∴AD=CB,AD∥BC.∴∠DAF=∠BCE.在△ADF与△CBE中,∴△ADF≌△CBE(SAS).(2)∵△ADF≌△CBE,∴∠DFA=∠BEC.∴DF∥EB.24.(6分)今年初我国多地的雾霾天气引发了公众对空气质量的关注.现随机调查了某城市若干天的空气质量情况,并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)本次调查中,一共调查的天数为30天;扇形图中,表示“轻微污染”的扇形的圆心角为144度;(2)将条形图补充完整;(3)估计该城市一年(以365天计算)中,空气质量达到良级以上(包括良级)的天数.【解答】解:(1)本次调查中,一共调查的天数为:=30(天),扇形图中,表示“轻微污染”的扇形的圆心角为×360°=144°;故答案为:30,144;(2)空气质量为良的天数是:30﹣3﹣12﹣3﹣3=9(天),补图如下:(3)根据题意得:×365=146(天),答:该城市一年中,空气质量达到良级以上(包括良级)的天数是146天.四、解答下列各题(本大题共2小题,每小题8分,共计16分)25.(8分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)如果⊙O的半径为5,cos∠DAB=,求BF的长.【解答】(1)证明:连接OD,∵AB是半圆⊙O的直径,∴∠ADB=90°,∵AB=AC,∴∠1=∠2,∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,即DE⊥EF,∴EF是⊙O的直径;(2)解:∵OA=5,∴AB=10,cos∠DAB=,∴AD=8,∵∠1=∠2,∴cos∠2=,∴AE=6.4,∵OD∥AC,∴△FOD∽△FAE,∴FO:FA=OD:AE,即(FB+5):(FB+10)=5:6.4,解得:FB=.26.(8分)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)求y与x之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?【解答】解:(1)根据图象可知当0<x≤20时,y=8000(0<x≤20),当20<x≤40时,将B(20,8000),C(40,4000),代入y=kx+b,得:,解得:,y=﹣200x+12000(20<x≤40);(2)根据上式以及老王种植水果的成本是2 800元/吨,由题意得:当0<x≤20时,W=(8000﹣2800)x=5200x,W随x的增大而增大,当x=20时,W最大=5200×20=104000元,当20<x≤40时,W=(﹣200x+12000﹣2800)x=﹣200x2+9200x,∵a=﹣200,∴函数有最大值,当x=﹣=23时,W最大==105800元.故张经理的采购量为23吨时,老王在这次买卖中所获的利润W最大,最大利润是105800元.五、解答下列各题(本大题共2小题,每小题10分,共计20分)27.(10分)已知:抛物线C1:y=x2.如图(1),平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D.(1)求抛物线C2的解析式;(2)探究四边形ODAB的形状并证明你的结论;(3)如图(2),将抛物线C2向m个单位下平移(m>0)得抛物线C3,C3的顶点为G,与y轴交于M.点N是M关于x轴的对称点,点P(﹣m,m)在直线MG上.问:当m为何值时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?【解答】解:(1)∵抛物线C2经过C1的顶点O,∴设抛物线C2的解析式为y=x2+bx,∵C2经过A(2,0),∴4+2b=0,解得:b=﹣2,∴求抛物线C2的解析式为y=x2﹣2x;(2)∵y=x2﹣2x=(x﹣1)2﹣1,∴抛物线C2的顶点坐标D为(1,﹣1),当x=1时,y=1,∴点B的坐标为(1,1),∴根据勾股定理得:OB=AB=OD=AD=,∴四边形ODAB是菱形,又∵OA=BD=2,∴四边形ODAB是正方形;(3)∵抛物线C2向m个单位下平移(m>0)得抛物线C3,∴抛物线C3的解析式为y=(x﹣1)2﹣1﹣m,在y=(x﹣1)2﹣1﹣m中,令x=0,得y=﹣m,∴M(0,﹣m),∵点N是M关于x轴的对称点,∴N(0,m),∴MN=2m,当M、N、P、Q为顶点的四边形为平行四边形时有两种情况:①若MN是平行四边形的一条边,由MN=PQ=2m和点P(﹣m,m)得Q(﹣m,m),∵点Q在抛物线C3上,∴m=(﹣m﹣1)2﹣1﹣m,解得:m=或m=0(舍去),②若MN是平行四边形的一条对角线,由平行四边形的中心对称得Q(m,﹣m)∵点Q在抛物线C3上,∴﹣m=(m﹣1)2﹣1﹣m,解得:m=或m=0(舍去)综上所述,当m=或时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形.28.(10分)如图,在平面直角坐标系中,矩形OABC的顶点A的坐标为(6,0),将△ABC沿AC翻折,使点B落到点B′处,B′C交x轴于点D,且CD=2DB′.动点P从点C出发,沿CO以每秒1个单位的速度向点O运动;动点Q从点O出发,沿OA、AB以每秒3个单位的速度向点B运动,连接PQ.若P、Q两点同时出发,当其中一点到达终时整个运动随之结束,设运动时间为t秒.(1)求点B′的坐标;(2)若以P、Q、D、C为顶点的凸四边形的面积为S,求S与t之间的函数关系式;(3)当t>时,设PQ与B′C相交于点M,问:是否存在这样的t值,使得△PCM为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.【解答】解:(1)如图1中,∵△ACB′是由△ACB翻折得到,∴∠1=∠2,∵BC∥OA,∴∠1=∠3,∴∠2=∠3,∴DC=AD,∵CD=2DB′,∴AD=2DB′,∵∠B′=90°,∴∠DAB′=30°,作B′H⊥OA于H.∵OA=CB′,∴OD=DB′,∴AD=2OD,∵OA=6,∴OD=2,AD=4,∴DB′=2,DH=1,B′H=,∴B′(2,﹣).=S△COD﹣S△POQ=×﹣(2(2)①如图2中,当0<t≤时,S四边形PQDC﹣t)•3t=t2﹣3t+2.=S△COQ﹣S△POD=•3t•2﹣•2•(2﹣②如图3中,当<t≤2时,S四边形PCQDt)=(3+1)t﹣2.③如图4中,当2<t≤时,S四边形PCQD=S四边形COAQ﹣S△POD﹣S△ADQ=•(2+3t﹣6)•6﹣•2•(2﹣t)﹣•4•(3t﹣6)=4t+4﹣6.(3)①如图5中,当PC=PM时,易知∠PQO=30°,∴tan30°=,∴=,解得t=3﹣.②如图6中,当CP=CM时,作PH⊥AB于H,在PH上截取运动N,使得PN=QN,连接NQ.易知∠CPM=75°,∠QPN=15°,∴∠NPQ=∠NQP=15°,∴∠QNH=∠NPQ+∠NQP=30°,∴PN=QN=2QH,NH=QH,∵QH=3t﹣6﹣(2﹣t)=4t﹣2﹣6,PH=OA=6,∴2(4t﹣2﹣6)+(4t﹣2﹣6)=6,解得t=,综上所述,t=3﹣或s时,△PCM是等腰三角形.。

衡阳中考数学试题及答案中考.doc

衡阳中考数学试题及答案中考.doc

:2016年衡阳中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

2016年衡阳市衡阳县中考数学一模试卷含答案

2016年衡阳市衡阳县中考数学一模试卷含答案

2016年衡阳市衡阳县中考数学一模试卷含答案一、选择题1.一个不透明的口袋中,装有4个红球,3个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为()A.B.C.D.2.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.3.如图,直线a∥b,直线DC与直线a相交于点C,与直线b相交于点D,已知∠1=25°,则∠2的度数为()A.135° B.145° C.155° D.165°4.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣65.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.6.如图,正比例函数y1与反比例函数y2相交于点E(﹣1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()A.B.C.D.7.如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P 从点B出发,沿着B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为()A.B.C.D.8.四个小朋友站成一排,老师按图中所示的规则数数,数到2014时对应的小朋友可得一朵红花.那么,得红花的小朋友是()A.小沈B.小叶C.小李D.小王9.如图,两个反比例函数y=和y=(其中k1>k2>0)在第一象限内的图象依次是C l和C2,设点P在C1上,PC⊥x轴于点C,交C1于点A,PD上y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k l+k2B.k l﹣k2C.k l•k2D.10.抛物线y=x2+mx+n可以由抛物线y=x2向上平移2个单位,再向左平移3个单位得到,则mn值为()A.6 B.12 C.54 D.66二、填空题11.﹣2.5的相反数是.12.已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为.13.计算a2×的结果是.14.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=.:根据以上数据可以估计,该玉米种子发芽的概率约为(精确到0.1).16.在比例尺1:6000000的地图上,量得南京到北京的距离是15cm,这两地的实际距离是km.17.规定:在平面直角坐标系xOy中,“把某一图形先沿x轴翻折,再沿y轴翻折”为一次变化.如图,已知正方形ABCD,顶点A(1,3),C(3,1).若正方形ABCD经过一次上述变化,则点A变化后的坐标为,如此这样,对正方形ABCD连续做2015次这样的变化,则点D变化后的坐标为.18.如图,在等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,若BC=2,AD=1,=.则S四边形AOC P19.如图,抛物线y=x2﹣2x﹣3交x轴于A(﹣1,0)、B(3,0),交y轴于C(0,﹣3),M是抛物线的顶点,现将抛物线沿平行于y轴的方向向上平移三个单位,则曲线CMB在平移过程中扫过的面积为(面积单位).20.二次根式在实数范围内有意义,则x的取值范围为.三、计算题21.计算:.22.如图,在▱ABCD中,点O是AC与BD的交点,过点O的直线EF与AB、CD的延长线分别交于点E、F.(1)求证:△BOE≌△DOF;(2)当EF⊥AC时,四边形AECF是怎样的特殊四边形?证明你的结论.23.计算:|﹣2|+()﹣2+(﹣1)2011.四、解答题(题型注释)24.如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为G,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长.25.如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,AE垂直x轴于E点,已知,OE=3AE,点B的坐标为(m,﹣2).(1)求反比例函数的解析式.(2)求一次函数的解析式.(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.2016年湖南省衡阳市衡阳县中考数学模拟试卷参考答案与试题解析一、选择题1.一个不透明的口袋中,装有4个红球,3个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为()A.B.C.D.【考点】概率公式.【分析】由一个不透明的口袋中,装有4个红球,3个黄球,1个白球,这些球除颜色外其余都相同,直接利用概率公式求解即可求得答案.【解答】解:∵一个不透明的口袋中,装有4个红球,3个黄球,1个白球,这些球除颜色外其余都相同,∴从口袋中随机摸一个球,则摸到红球的概率为:=.故选C.2.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图的定义,找到从正面看所得到的图形即可.【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.3.如图,直线a∥b,直线DC与直线a相交于点C,与直线b相交于点D,已知∠1=25°,则∠2的度数为()A.135° B.145° C.155° D.165°【考点】平行线的性质.【分析】先根据直线a∥b得出∠1=∠3,再由平行线的性质即可得出结论.【解答】解:∵直线a∥b,∠1=25°,∴∠1=∠3=25°,∴∠2=180°﹣25°=155°.故选C.4.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k 的值是()A.3 B.﹣3 C.6 D.﹣6【考点】反比例函数系数k的几何意义.【分析】连结OA,如图,利用三角形面积公式得到S△O AB=S△CAB=3,再根据反比例函数的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△C AB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣6.故选D.5.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.6.如图,正比例函数y1与反比例函数y2相交于点E(﹣1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()A.B.C.D.【考点】反比例函数与一次函数的交点问题;在数轴上表示不等式的解集.【分析】根据两函数的交点坐标,结合图象即可求出x的范围,再在数轴上表示出来,即可得出选项.【解答】解:∵正比例函数y1与反比例函数y2相交于点E(﹣1,2),∴根据图象可知当y1>y2>0时x的取值范围是x<﹣1,∴在数轴上表示为:,故选A.7.如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P 从点B出发,沿着B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】由菱形的性质得出AB=BC=CD=DA,OA=AC=3,OB=BD=4,AC⊥BD,分两种情况:①当BM≤4时,先证明△P′BP∽△CBA,得出比例式,求出PP′,得出△OPP′的面积y是关于x的二次函数,即可得出图象的情形;②当BM≥4时,y与x之间的函数图象的形状与①中的相同;即可得出结论.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,OA=AC=3,OB=BD=4,AC⊥BD,①当BM≤4时,∵点P′与点P关于BD对称,∴P′P⊥BD,∴P′P∥AC,∴△P′BP∽△CBA,∴,即,∴PP′=x,∵OM=4﹣x,∴△OPP′的面积y=PP′•OM=×x(4﹣x)=﹣x2+3x;∴y与x之间的函数图象是抛物线,开口向下,过(0,0)和(4,0);②当BM≥4时,y与x之间的函数图象的形状与①中的相同,过(4,0)和(8,0);综上所述:y与x之间的函数图象大致为.故选:D.8.四个小朋友站成一排,老师按图中所示的规则数数,数到2014时对应的小朋友可得一朵红花.那么,得红花的小朋友是()A.小沈B.小叶C.小李D.小王【考点】规律型:数字的变化类.【分析】从图上可以看出,去掉第一个数,每6个数一循环,用÷6算出余数,再进一步确定2014的位置即可.【解答】解:去掉第一个数,每6个数一循环,÷6=2013÷6=335…3,所以2014时对应的小朋友与4对应的小朋友是同一个.故选:D.9.如图,两个反比例函数y=和y=(其中k1>k2>0)在第一象限内的图象依次是C l和C2,设点P在C1上,PC⊥x轴于点C,交C1于点A,PD上y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k l+k2B.k l﹣k2C.k l•k2D.【考点】反比例函数系数k的几何意义.【分析】四边形PAOB的面积为矩形OCPD的面积减去三角形ODB与三角形OAC的面积,根据反比例函数y=中k的几何意义,其面积为k1﹣k2.﹣S OB D﹣S O AC,【解答】解:根据题意可得四边形PAOB的面积=S矩形OC PD由反比例函数y=中k的几何意义,可知其面积为k1﹣k2.故选B.10.抛物线y=x2+mx+n可以由抛物线y=x2向上平移2个单位,再向左平移3个单位得到,则mn值为()A.6 B.12 C.54 D.66【考点】二次函数图象与几何变换.【分析】首先在抛物线y=x2确定顶点,进而就可确定顶点平移以后点的坐标,根据待定系数法求函数解析式.【解答】解:抛物线y=x2顶点坐标(0,0)向上平移2个单位,再向左平移3个单位得到(﹣3,2)代入y=(x﹣h)2+k得:y=(x+3)2+2=x2+6x+11,所以m=6,n=11.故mn=66;故选D.二、填空题11.﹣2.5的相反数是 2.5.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣2.5的相反数是2.5;故答案是:2.5.12.已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为11.【考点】根与系数的关系;一元二次方程的解.【分析】根据题意,解方程x2+2x﹣9=0,解得a和b的值,然后代入求值即可.【解答】解:∵解方程:x2+2x﹣9=0得:∴ab=﹣9②,a+b=﹣2,∴b=﹣2﹣a③,把③代入②得:a2+2a﹣9=0∴a1=,a2=,∴b1=,b2=,∴当a1=,b1=时,∴a2+a﹣b=()2+()﹣()=11.当a2=,b2=,∴a2+a﹣b=(﹣)2+(﹣)﹣()=11故答案为11.13.计算a2×的结果是.【考点】分式的乘除法.【分析】直接利用分式的除法运算法则求即可求得答案.【解答】解:a2×=a2×=.故答案为:.14.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=7.5.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得到比例式,求出DF,结合图形计算即可.【解答】解:∵a∥b∥c,∴=,即=,解得DF=4.5,∴BF=BD+DF=3+4.5=7.5,故答案为:7.5.:根据以上数据可以估计,该玉米种子发芽的概率约为0.8(精确到0.1).【考点】利用频率估计概率.【分析】本题考查的是用频率估计概率,6批次种子粒数从100粒大量的增加到5000粒时,种子发芽的频率趋近于0.801,所以估计种子发芽的概率为0.801,精确到0.1,即为0.8.【解答】解:∵种子粒数5000粒时,种子发芽的频率趋近于0.801,∴估计种子发芽的概率为0.801,精确到0.1,即为0.8.故本题答案为:0.8.16.在比例尺1:6000000的地图上,量得南京到北京的距离是15cm,这两地的实际距离是900km.【考点】比例线段.【分析】根据比例尺=图上距离:实际距离,列比例式求得两地的实际距离.要统一注意单位.【解答】解:设两地的实际距离是xcm,则:=,解得x=90000000cm=900km,∴这两地的实际距离是900km.17.规定:在平面直角坐标系xOy中,“把某一图形先沿x轴翻折,再沿y轴翻折”为一次变化.如图,已知正方形ABCD,顶点A(1,3),C(3,1).若正方形ABCD经过一次上述变化,则点A变化后的坐标为(﹣1,﹣3),如此这样,对正方形ABCD连续做2015次这样的变化,则点D变化后的坐标为(﹣3,﹣3).【考点】翻折变换(折叠问题);规律型:点的坐标.【分析】根据平面直角坐标系内关于x和y轴成轴对称点的坐标特征易得解.关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.【解答】解:根据平面直角坐标系内关于x和y轴成轴对称点的坐标特征:关于x轴对称点的坐标特点,横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点,横坐标互为相反数,纵坐标不变.点A(1,3)先沿x轴翻折,再沿y轴翻折后的坐标为(﹣1,﹣3);由于正方形ABCD,顶点A(1,3),C(3,1),所以D(3,3),先沿x轴翻折,再沿y轴翻折一次后坐标为(﹣3,﹣3),两次后坐标为(3,3),三次后坐标为(﹣3,﹣3),故连续做2015次这样的变化,则点D变化后的坐标为(﹣3,﹣3).故答案为:(﹣1,﹣3);(﹣3,﹣3).18.如图,在等腰△ABC 中,AB=AC ,∠BAC=120°,AD ⊥BC 于点D ,点P是BA 延长线上一点,点O 是线段AD 上一点,OP=OC ,若BC=2,AD=1,则S 四边形AOC P = .【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等边三角形的判定与性质.【分析】首先在AC 上截取AE=PA ,易得△APE 是等边三角形,继而利用证得△OPA ≌△CPE ,即可得AC=AO+AP ;过点C 作CH ⊥AB 于H ,易得S △AB C =AB•CH ,S四边形AOC P =S △AC P +S △AOC =AP•CH+OA•CD=AP•CH+OA•CH=CH•(AP+OA )=CH•AC ,即可得S △AB C =S 四边形AOC P . 【解答】解:如图1,在AC 上截取AE=PA ,∵∠PAE=180°﹣∠BAC=60°,∴△APE 是等边三角形,∴∠PEA=∠APE=60°,PE=PA ,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE ,∵OP=CP ,在△OPA 和△CPE 中,,∴△OPA ≌△CPE (SAS ),∴AO=CE ,∴AC=AE+CE=AO+AP ;如图2,过点C 作CH ⊥AB 于H ,∵在等腰△ABC 中AB=AC ,∠BAC=120°,∴∠DAC=∠ABC=60°,∠PAC=180°﹣∠BAC=60°,∵∠PAC=∠DAC=60°,AD ⊥BC ,∴CH=CD ,∴S △AB C =AB•CH ,S 四边形AOC P =S △AC P +S △AO C =AP•CH+OA•CD=AP•CH+OA•CH=CH•(AP+OA )=CH•AC ,∵AB=AC ,=S△AB C=BC•AD=×2×1=.∴S四边形AOC P故答案为:.19.如图,抛物线y=x2﹣2x﹣3交x轴于A(﹣1,0)、B(3,0),交y轴于C(0,﹣3),M是抛物线的顶点,现将抛物线沿平行于y轴的方向向上平移三个单位,则曲线CMB在平移过程中扫过的面积为9(面积单位).【考点】二次函数图象与几何变换.【分析】由图象可知曲线CMB在平移过程中扫过的面积=平行四边形OCBD 的面积,求得四边形OCBD的面积即可.【解答】解;∵曲线CMB在平移过程中扫过的面积=平行四边形OCBD的面积,∴曲线CMB在平移过程中扫过的面积=OC•OB+OC•BD=×3×3+×3×3=9,故答案为9.20.二次根式在实数范围内有意义,则x的取值范围为x≥﹣.【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵二次根式在实数范围内有意义,∴2x+1≥0,解得x≥﹣.故答案为:x≥﹣.三、计算题21.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数计算即可得到结果.【解答】解:原式=2+1﹣2+2×=3﹣.22.如图,在▱ABCD中,点O是AC与BD的交点,过点O的直线EF与AB、CD的延长线分别交于点E、F.(1)求证:△BOE≌△DOF;(2)当EF⊥AC时,四边形AECF是怎样的特殊四边形?证明你的结论.【考点】平行四边形的性质;全等三角形的判定与性质;菱形的判定.【分析】(1)由矩形的性质得出OB=OD,AE∥CF,得出∠E=∠F,由AAS 即可证明△BOE≌△DOF;(2)先由对角线互相平分证明四边形AECF是平行四边形,再由对角线互相垂直,即可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,∴OB=OD,AE∥CF,∴∠E=∠F,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)解:当EF⊥AC时,四边形AECF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴OA=OC,又∵△BOE≌△DOF,∴OE=OF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形.23.计算:|﹣2|+()﹣2+(﹣1)2011.【考点】实数的运算;负整数指数幂.【分析】直接利用负整数指数幂的性质以及绝对值的性质和有理数的乘法运算法则化简求出即可.【解答】解:原式=2+9﹣1=10.四、解答题(题型注释)24.如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为G,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长.【考点】相似三角形的判定与性质;矩形的性质;解直角三角形.【分析】(1)由四边形ABCD是矩形,可得∠ABE=∠ECF=90°,又由EF⊥AE,利用同角的余角相等,可得∠BAE=∠CEF,然后利用有两组角对应相等的两个三角形相似,即可证得:△ABE∽△ECF;(2)由BG⊥AC,易证得∠ABH=∠ECM,又由(1)中∠BAH=∠CEM,即可证得△ABH∽△ECM;(3)首先作MR⊥BC,垂足为R,由AB:BC=MR:RC=1:2,∠AEB=45°,即可求得MR的长,又由EM=,即可求得答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠ABE=∠ECF=90°.∵AE⊥EF,∠AEB+∠FEC=90°.∴∠AEB+∠BAE=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)△ABH∽△ECM.证明:∵BG⊥AC,∴∠ABG+∠BAG=90°,∴∠ABH=∠ECM,由(1)知,∠BAH=∠CEM,∴△ABH∽△ECM;(3)解:作MR⊥BC,垂足为R,∵AB=BE=EC=2,∴AB:BC=MR:RC=,∠AEB=45°,∴∠MER=45°,CR=2MR,∴MR=ER=EC=×2=,∴在Rt△EMR中,EM==.25.如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,AE垂直x轴于E点,已知,OE=3AE,点B的坐标为(m,﹣2).(1)求反比例函数的解析式.(2)求一次函数的解析式.(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.【考点】反比例函数综合题.【分析】(1)过A作AE垂直x轴,垂足为E,根据OE=3AE,以及OA的长,利用勾股定理求出AE与OE的长,确定出A的坐标,代入双曲线解析式求出k的值,即可确定出反比例解析式;(2)把B坐标代入反比例解析式求出m的值,确定出B坐标,再由A坐标,利用待定系数法求出一次函数解析式即可;(3)过点C作CP⊥AB,垂足为点C,求出一次函数与坐标轴的交点确定出C与D坐标,求出DC的长,由△PDC与△ODC相似,得比例,求出PD的长,由PD﹣OD求出OP的长,即可确定出P坐标.【解答】解:(1)过A作AE垂直x轴,垂足为E,∵OE=3AE,OA=,∴在Rt△AOE中,根据勾股定理得:OE2+AE2=10,∴AE=1,OE=3,∴点A的坐标为(3,1).∵A点在双曲线上,∴1=,即k=3,则双曲线的解析式为y=;(2)∵点B(m,﹣2)在双曲线y=上,∴﹣2=,∴m=﹣,∴点B的坐标为(﹣,﹣2),设一次函数解析式为y=ax+b,把A与B坐标代入得:,解得:,则一次函数的解析式为y=x﹣1;(3)过点C作CP⊥AB,垂足为点C,∵C,D两点在直线y=x﹣1上,∴C,D的坐标分别是:C(,0),D(0,﹣1),即OC=,OD=1,∴DC=,∵△PDC∽△CDO,∴=,∴PD==,又OP=DP﹣OD=﹣1=,∴P点坐标为(0,).2016年7月5日第21页(共21页)。

【中考数学试题汇编】2013-2018年湖南省衡阳市(含参考答案与解析)

【中考数学试题汇编】2013-2018年湖南省衡阳市(含参考答案与解析)

【中考数学试题汇编】2013—2018年湖南省衡阳市(含参考答案与解析)1、2013年湖南省衡阳市中考数学试题及参考答案与解析 (2)2、2014年湖南省衡阳市中考数学试题及参考答案与解析 (20)3、2015年湖南省衡阳市中考数学试题及参考答案与解析 (39)4、2016年湖南省衡阳市中考数学试题及参考答案与解析 (57)5、2017年湖南省衡阳市中考数学试题及参考答案与解析 (75)6、2018年湖南省衡阳市中考数学试题及参考答案与解析 (94)2013湖南省衡阳市中考数学试题及参考答案一、选择题(本大题共12个小题,每小题3分,满分36分)1.﹣3的相反数是()A.3 B.﹣3 C.13D.13-2.如图,AB平行CD,如果∠B=20°,那么∠C为()A.40°B.20°C.60°D.70°3.“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件4.如图,∠1=100°,∠C=70°,则∠A的大小是()A.10°B.20°C.30°D.80°50的结果为()A.2+B1C.3 D.56.如图,在⊙O中,∠ABC=50°,则∠AOC等于()A.50°B.80°C.90°D.100°7.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③8.下列几何体中,同一个几何体的主视图与俯视图不同的是()A .B .C .D .9.下列运算正确的是( )A .3a+2b=5abB .a 3•a 2=a 5C .a 8•a 2=a 4D .(2a 2)3=﹣6a 6 10.下列命题中,真命题是( )A .位似图形一定是相似图形B .等腰梯形既是轴对称图形又是中心对称图形C .四条边相等的四边形是正方形D .垂直于同一直线的两条直线互相垂直11.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得( )A .168(1+x )2=128B .168(1﹣x )2=128C .168(1﹣2x )=128D .168(1﹣x 2)=128 12.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S (阴影部分),则S 与t 的大致图象为( )A .B .C .D .二、填空题(本大题共8个小题,每小题3分,满分24分)13.计算()142⎛⎫-⨯-= ⎪⎝⎭.14.反比例函数ky x=的图象经过点(2,﹣1),则k 的值为 . 15.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB= .16.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(三)班的演唱打分情况为:89、92、92、95、95、96、97、,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为 .17.计算:2111a a a -=++ . 18.已知a+b=2,ab=1,则a 2b+ab 2的值为 .19.如图,要制作一个母线长为8cm ,底面圆周长是12πcm 的圆锥形小漏斗,若不计损耗,则所需纸板的面积是 .20.观察下列按顺序排列的等式:11 13a=-,211 24a=-,311 35a=-,411 46a=-,…,试猜想第n个等式(n为正整数):a n=.三、解答题(本大题共8个小题,满分60分)21.(6分)先化简,再求值:(1+a)(1﹣a)+a(a﹣2),其中12a=.22.(6分)解不等式组:1022xx x-⎧⎨+⎩≥<;并把解集在数轴上表示出来.23.(6分)如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)24.(6分)目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为.家长表示“不赞同”的人数为;(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是;(3)求图②中表示家长“无所谓”的扇形圆心角的度数.25.(8分)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)档用地阿亮是180千瓦时时,电费是元;(2)第二档的用电量范围是;(3)“基本电价”是元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?26.(8分)如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.27.(10分)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.(1)求抛物线对应的函数关系式;(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O 点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPQ为矩形;②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.28.(10分)如图,在平面直角坐标系中,已知A(8,0),B(0,6),⊙M经过原点O及点A、B.(1)求⊙M的半径及圆心M的坐标;(2)过点B作⊙M的切线l,求直线l的解析式;(3)∠BOA的平分线交AB于点N,交⊙M于点E,求点N的坐标和线段OE的长.四、附加题(本小题满分0分,不计入总分)29.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.参考答案与解析一、选择题(本大题共12个小题,每小题3分,满分36分)1.﹣3的相反数是()A.3 B.﹣3 C.13D.13【知识考点】相反数【思路分析】根据相反数的概念解答即可.【解答过程】解:﹣3的相反数是3,故选A.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图,AB平行CD,如果∠B=20°,那么∠C为()A.40°B.20°C.60°D.70°【知识考点】平行线的性质.【思路分析】根据平行线性质得出∠C=∠B,代入求出即可.【解答过程】解:∵AB∥CD,∠B=20°,∴∠C=∠B=20°,故选B.【总结归纳】本题考查了平行线性质的应用,注意:两直线平行,内错角相等.3.“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件【知识考点】随机事件.【思路分析】根据必然事件、不可能事件、随机事件的概念和绝对值的定义可正确解答.【解答过程】解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0.故选A.【总结归纳】用到的知识点为:必然事件指在一定条件下一定发生的事件.4.如图,∠1=100°,∠C=70°,则∠A的大小是()A.10°B.20°C.30°D.80°【知识考点】三角形的外角性质.【思路分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.【解答过程】解:∵∠1=100°,∠C=70°,∴∠A=∠1﹣∠C=100°﹣70°=30°.故选C.【总结归纳】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.50的结果为()A.2+B1C.3 D.5【知识考点】二次根式的乘除法;零指数幂.【思路分析】原式第一项利用二次根式的乘法法则计算,第二项利用零指数幂法则计算,即可得到结果.【解答过程】解:原式=2+1=3.故选C【总结归纳】此题考查了二次根式的乘除法,以及零指数幂,熟练掌握运算法则是解本题的关键.6.如图,在⊙O中,∠ABC=50°,则∠AOC等于()A.50°B.80°C.90°D.100°【知识考点】圆周角定理.【思路分析】因为同弧所对圆心角是圆周角的2倍,即∠AOC=2∠ABC=100°.【解答过程】解:∵∠ABC=50°,∴∠AOC=2∠ABC=100°.故选D.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③【知识考点】全面调查与抽样调查【思路分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答过程】解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.【总结归纳】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.下列几何体中,同一个几何体的主视图与俯视图不同的是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形.【解答过程】解:A、圆柱的主视图与俯视图都是矩形,错误;B、正方体的主视图与俯视图都是正方形,错误;C、圆锥的主视图是等腰三角形,而俯视图是圆和圆心,正确;D、球体主视图与俯视图都是圆,错误;故选C.【总结归纳】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图.9.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5C.a8•a2=a4D.(2a2)3=﹣6a6【知识考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答过程】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.【总结归纳】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.10.下列命题中,真命题是()A.位似图形一定是相似图形B.等腰梯形既是轴对称图形又是中心对称图形C.四条边相等的四边形是正方形D.垂直于同一直线的两条直线互相垂直【知识考点】命题与定理【思路分析】根据位似图形的定义、等腰梯形的性质、正方形的判定、两直线的位置关系分别对每一项进行分析即可.【解答过程】解:A、位似图形一定是相似图形是真命题,故本选项正确;B、等腰梯形既是轴对称图形,不是中心对称图形,原命题是假命题;C、四条边相等的四边形是菱形,原命题是假命题;D、同一平面内垂直于同一直线的两条直线互相垂直,原命题是假命题;故选A.【总结归纳】此题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=128 B.168(1﹣x)2=128 C.168(1﹣2x)=128 D.168(1﹣x2)=128 【知识考点】由实际问题抽象出一元二次方程.【思路分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.【解答过程】解:根据题意得:168(1﹣x)2=128,故选B.【总结归纳】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.12.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.【知识考点】动点问题的函数图象.【思路分析】本题考查动点函数图象的问题.。

湖南省衡阳市蒸湘区2016年中考数学模拟试卷及答案

湖南省衡阳市蒸湘区2016年中考数学模拟试卷及答案

2016年湖南省衡阳市蒸湘区中考数学模拟试卷一、选择题(本题共12小题,每题只有一个正确答案,共36分)1.下列各数中,比﹣1小1的数为()A.0 B.1 C.﹣2 D.22.下列等式成立的是()A.(a+4)(a﹣4)=a2﹣4 B.2a2﹣3a=﹣a C.a6÷a3=a2D.(a2)3=a63.将数412000用科学记数法表示为()A.4.12×106B.4.12×105C.41.2×104D.0.412×1064.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,则∠CAE的度数是()A.40°B.60°C.70°D.80°5.如图,在一张正六边形纸片中剪下两个全等的直角三角形(阴影部分),拼成一个四边形,若拼成的四边形的面积为2,则纸片的剩余部分拼成的五边形的面积为()A.5 B.6 C.8 D.106.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,四边形OABC是矩形,四边形CDEF是正方形,点C,D在x轴的正半轴上,点A在y轴的正半轴上,点F在BC上,点B,E在反比例函数y=的图象上,OA=2,OC=1,则正方形CDEF的面积为()A.4 B.1 C.3 D.28.在一个不透明的盒子中装有m个除颜色外完全相同的球,这m个球中只有3个红球,从中随机摸出一个小球,恰好是红球的概率为,那么m的值是()A.12 B.15 C.18 D.219.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是()A.180(1+x%)=300 B.180(1+x%)2=300 C.180(1﹣x%)=300 D.180(1﹣x%)2=30010.如图,已知△ABC,按如下步骤作图:(1)以A圆心,AB长为半径画弧;(2)以C为圆心,CB长为半径画弧,两弧相交于点D;(3)连接BD,与AC交于点E,连接AD,CD.①四边形ABCD是中心对称图形;②△ABC≌△ADC;③AC⊥BD且BE=DE;④BD平分∠ABC.其中正确的是()A.①②B.②③C.①③D.③④11.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连接PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E 运动到点A时,点F运动的路径长是()A.8 B.10 C.3πD.5π12.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.二、填空题(本大题共有6小题,每小题3分,共18分)13.计算:|﹣5|=.14.若分式有意义,则x的取值范围是.15.因式分解:﹣2x2y+12xy﹣18y=.16.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是.17.如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度约为m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)18.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为.三、解答题(共66分)19.计算:﹣12+(﹣)﹣2﹣20160+.20.先化简,再求值:,其中x=3.21.某社区从2011年开始,组织全民健身活动,结合社区条件,开展了广场舞、太极拳、羽毛球和跑步四个活动项目,现将参加项目活动总人数进行统计,并绘制成每年参加总人数折线统计图和2015年各活动项目参与人数的扇形统计图,请你根据统计图解答下列题(1)2015年比2011年增加人;(2)请根据扇形统计图求出2015年参与跑步项目的人数;(3)组织者预计2016年参与人员人数将比2015年的人数增加15%,各活动项目参与人数的百分比与2016年相同,请根据以上统计结果,估计2016年参加太极拳的人数.22.某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?23.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.24.已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若DA=AF,求证:CF⊥AB.25.如图,点A(1,0)、B(4,0)、M(5,3).动点P从A点出发,沿x轴以每秒1个单位的速度向右移动,过点P的直线l:y=﹣x+b也随之移动.设移动时间为t秒.(1)当t=1时,求直线l的解析式.(2)若直线l与线段BM有公共点,求t的取值范围.(3)当点M关于直线l的对称点落在坐标轴上时,求t的值.26.如图,抛物线y=ax2+c经过点A(0,2)和点B(﹣1,0).(1)求此抛物线的解析式;(2)将此抛物线平移,使其顶点坐标为(2,1),平移后的抛物线与x轴的两个交点分别为点C,D(点C在点D的左边),求点C,D的坐标;(3)将此抛物线平移,设其顶点的纵坐标为m,平移后的抛物线与x轴两个交点之间的距离为n,若1<m<3,直接写出n的取值范围.2016年湖南省衡阳市蒸湘区中考数学模拟试卷参考答案与试题解析一、选择题(本题共12小题,每题只有一个正确答案,共36分)1.下列各数中,比﹣1小1的数为()A.0 B.1 C.﹣2 D.2【考点】1A:有理数的减法.【分析】根据有理数的减法,即可解答.【解答】解:﹣1﹣1=﹣2,故选:C.2.下列等式成立的是()A.(a+4)(a﹣4)=a2﹣4 B.2a2﹣3a=﹣a C.a6÷a3=a2D.(a2)3=a6【考点】4F:平方差公式;35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】A、原式利用平方差公式化简得到结果,即可作出判断;B、原式不能合并,错误;C、原式利用同底数幂的除法法则计算得到结果,即可作出判断;D、原式利用幂的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=a2﹣16,不成立;B、原式不能合并,不成立;C、原式=a3,不成立;D、原式=a6,成立.故选D.3.将数412000用科学记数法表示为()A.4.12×106B.4.12×105C.41.2×104D.0.412×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将412000用科学记数法表示为:4.12×105.故选:B.4.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,则∠CAE的度数是()A.40°B.60°C.70°D.80°【考点】JA:平行线的性质.【分析】过点C作CF∥BD,根据两直线平行,内错角相等即可求解.【解答】解:过点C作CF∥BD,则CF∥BD∥AE.∴∠BCF=∠DBC=20°,∵∠C=90°,∴∠FCA=90﹣20=70°.∵CF∥AE,∴∠CAE=∠FCA=70°.5.如图,在一张正六边形纸片中剪下两个全等的直角三角形(阴影部分),拼成一个四边形,若拼成的四边形的面积为2,则纸片的剩余部分拼成的五边形的面积为()A.5 B.6 C.8 D.10【考点】MM:正多边形和圆.【分析】由题意得出拼成的四边形的面积是正六边形面积的六分之一,求出正六边形的面积,即可得出结果.【解答】解:根据题意得:正六边形的面积=6×2=12,故纸片的剩余部分拼成的五边形的面积=12﹣2=10;故选:D.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】首先求不等式组中每个不等式的解集,再利用解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到,找到不等式组的公共解集,再用数轴表示公共部分.【解答】解:,由①得:x<3,由②得:x≥﹣1,∴不等式组的解集为:﹣1≤x<3,在数轴上表示为:.故选:A.7.如图,四边形OABC是矩形,四边形CDEF是正方形,点C,D在x轴的正半轴上,点A在y轴的正半轴上,点F在BC上,点B,E在反比例函数y=的图象上,OA=2,OC=1,则正方形CDEF的面积为()A.4 B.1 C.3 D.2【考点】G5:反比例函数系数k的几何意义.【分析】先确定B点坐标(2,1),根据反比例函数图象上点的坐标特征得到k=2,则反比例函数解析式为y=,设CD=t,则OD=1+t,所以E点坐标为(1+t,t),再根据反比例函数图象上点的坐标特征得(1+t)•t=2,利用因式分解法可求出t 的值.【解答】解:∵OA=2,OC=1,∴B点坐标为(2,1),∴k=2×1=2,∴反比例函数解析式为y=,设CD=t,则OD=1+t,∴E点坐标为(1+t,t),∴(1+t)•t=2,整理为t2+t﹣2=0,解得t1=﹣2(舍去),t2=1,∴正方形ADEF的边长为1.故选B.8.在一个不透明的盒子中装有m个除颜色外完全相同的球,这m个球中只有3个红球,从中随机摸出一个小球,恰好是红球的概率为,那么m的值是()A.12 B.15 C.18 D.21【考点】X4:概率公式.【分析】根据摸到红球的概率为列出方程,求解即可.【解答】解:由题意得=,解得m=15.故选B.9.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是()A.180(1+x%)=300 B.180(1+x%)2=300 C.180(1﹣x%)=300 D.180(1﹣x%)2=300【考点】AC:由实际问题抽象出一元二次方程.【分析】本题可先用x%表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于x%的方程.【解答】解:当商品第一次提价x%时,其售价为180+180x%=180(1+x%);当商品第二次提价x%后,其售价为180(1+x%)+180(1+x%)x%=180(1+x%)2.∴180(1+x%)2=300.故选B.10.如图,已知△ABC,按如下步骤作图:(1)以A圆心,AB长为半径画弧;(2)以C为圆心,CB长为半径画弧,两弧相交于点D;(3)连接BD,与AC交于点E,连接AD,CD.①四边形ABCD是中心对称图形;②△ABC≌△ADC;③AC⊥BD且BE=DE;④BD平分∠ABC.其中正确的是()A.①②B.②③C.①③D.③④【考点】N3:作图—复杂作图;KD:全等三角形的判定与性质;R5:中心对称图形.【分析】利用作法可判断ACAC垂直平分BD,则可对①③进行判断;利用“SSS”可对③进行判断;通过说明∠ABD≠∠CBD可对④进行判断.【解答】解:由作法得AB=AD,CB=CD,则AC垂直平分BD,点B与点D关于点E对称,而点A与点C不关于E对称,所以①错误,③正确;利用AB=AC,CD=CB,AC为公共边,所以△ABC≌△ADC,所以②正确;由于AD与BC不平行,则∠ADB≠∠CBD,而∠ADB=∠ABD,则∠ABD≠∠CBD,所以④错误.故选B.11.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连接PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E 运动到点A时,点F运动的路径长是()A.8 B.10 C.3πD.5π【考点】O4:轨迹.【分析】连结DE,作FH⊥BC于H,如图,根据等边三角形的性质得∠B=60°,过D点作DE′⊥AB,则BE′=BD=2,则点E′与点E重合,所以∠BDE=30°,DE=BE=2,接着证明△DPE≌△FDH得到FH=DE=2,于是可判断点F运动的路径为一条线段,此线段到BC的距离为2,当点P在E点时,作等边三角形DEF1,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ=AE=8,所以F1F2=DQ=8,于是得到当点P从点E运动到点A时,点F运动的路径长为8.【解答】解:连结DE,作FH⊥BC于H,如图,∵△ABC为等边三角形,∴∠B=60°,过D点作DE′⊥AB,则BE′=BD=2,∴点E′与点E重合,∴∠BDE=30°,DE=BE=2,∵△DPF为等边三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,在△DPE和△FDH中,,∴△DPE≌△FDH,∴FH=DE=2,∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为2,当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ=AE=10﹣2=8,∴F1F2=DQ=8,∴当点P从点E运动到点A时,点F运动的路径长为8.故选:A12.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.【考点】PB:翻折变换(折叠问题).【分析】在Rt△ABC中,设AB=2a,已知∠ACB=90°,∠CAB=30°,即可求得AB、AC的值,由折叠的性质知:DE=CE,可设出DE、CE的长,然后表示出AE的长,进而可在Rt△AEC中,由勾股定理求得AE、CE的值,即可求∠ACE的正弦值.【解答】解:∵△ABC中,∠ACB=90°,∠BAC=30°,设AB=2a,∴AC=a,BC=a;∵△ABD是等边三角形,∴AD=AB=2a;设DE=EC=x,则AE=2a﹣x;在Rt△AEC中,由勾股定理,得:(2a﹣x)2+3a2=x2,解得x=;∴AE=,EC=,∴sin∠ACE==.故选:B.二、填空题(本大题共有6小题,每小题3分,共18分)13.计算:|﹣5|=5.【考点】15:绝对值.【分析】根据绝对值定义去掉这个绝对值的符号即可.【解答】解:|﹣5|=5.故答案为:514.若分式有意义,则x的取值范围是x≠3.【考点】62:分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得,x≠3.故答案为:x≠3.15.因式分解:﹣2x2y+12xy﹣18y=﹣2y(x﹣3)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣2y(x2﹣6x+9)=﹣2y(x﹣3)2.故答案为:﹣2y(x﹣3)2.16.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是a<2,且a≠1.【考点】AA:根的判别式;A1:一元二次方程的定义.【分析】本题是根的判别式的应用,因为关于x的一元二次方程(a﹣1)x2﹣2x+l=0有两个不相等的实数根,所以△=b2﹣4ac>0,从而可以列出关于a的不等式,求解即可,还要考虑二次项的系数不能为0.【解答】解:∵关于x的一元二次方程(a﹣1)x2﹣2x+l=0有两个不相等的实数根,∴△=b2﹣4ac>0,即4﹣4×(a﹣1)×1>0,解这个不等式得,a<2,又∵二次项系数是(a﹣1),∴a≠1.故a的取值范围是a<2且a≠1.17.如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度约为7.2m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度.【解答】解:根据题意得:EF⊥AC,CD∥FE,∴四边形CDEF是矩形,已知底部B的仰角为45°即∠BEF=45°,∴∠EBF=45°,∴CD=EF=FB=38,在Rt△AEF中,AF=EF•tan50°=38×1.19≈45.22∴AB=AF﹣BF=45.22﹣38≈7.2,∴旗杆的高约为7.2米.故答案为:7.2.18.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为.【考点】M2:垂径定理;J4:垂线段最短;KQ:勾股定理.【分析】由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,由Rt△ADB为等腰直角三角形,则AD=BD=1,即此时圆的直径为1,再根据圆周角定理可得到∠EOH=60°,则在Rt△EOH中,利用锐角三角函数可计算出EH=,然后根据垂径定理即可得到EF=2EH=.【解答】解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,在Rt△ADB中,∠ABC=45°,AB=,∴AD=BD=1,即此时圆的直径为1,∵∠EOF=2∠BAC=120°,而∠EOH=∠EOF,∴∠EOH=60°,在Rt△EOH中,EH=OE•sin∠EOH=•sin60°=,∵OH⊥EF,∴EH=FH,∴EF=2EH=,即线段EF长度的最小值为.故答案为.三、解答题(共66分)19.计算:﹣12+(﹣)﹣2﹣20160+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用负整数指数幂的性质以及零指数幂的性质和立方根的性质分别化简各数,进而得出答案.【解答】解:﹣12+(﹣)﹣2﹣20160+=﹣1+4﹣1﹣3=﹣1.20.先化简,再求值:,其中x=3.【考点】6D:分式的化简求值.【分析】首先通分计算括号里面的,再计算乘法,把多项式分解因式后约分,得出化简结果,再代入x的值计算即可.【解答】解:=•=,当x=3时,原式==.21.某社区从2011年开始,组织全民健身活动,结合社区条件,开展了广场舞、太极拳、羽毛球和跑步四个活动项目,现将参加项目活动总人数进行统计,并绘制成每年参加总人数折线统计图和2015年各活动项目参与人数的扇形统计图,请你根据统计图解答下列题(1)2015年比2011年增加990人;(2)请根据扇形统计图求出2015年参与跑步项目的人数;(3)组织者预计2016年参与人员人数将比2015年的人数增加15%,各活动项目参与人数的百分比与2016年相同,请根据以上统计结果,估计2016年参加太极拳的人数.【考点】VD:折线统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)用2015年的人数﹣2011年的人数即可;(2)用2015年总人数×参与跑步项目的人数所占的百分数即可;(3)2015年总人数×(1+15%)×参加太极拳的人数所占的百分数即可.【解答】解:(1)1600﹣610=990(人);故答案为:990人;(2)1600×55%=880(人);答:2015年参与跑步项目的人数为880人;(3)1600×(1+15%)×(1﹣55%﹣30%﹣5%)=184(人);答:估计2016年参加太极拳的人数为184人.22.某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值.【解答】解:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:解之得:答:孔明同学测试成绩为90分,平时成绩为95分;(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥75答:他的测试成绩应该至少为75分.23.已知正方形ABCD 中,BC=3,点E 、F 分别是CB 、CD 延长线上的点,DF=BE ,连接AE 、AF ,过点A 作AH ⊥ED 于H 点.(1)求证:△ADF ≌△ABE ;(2)若BE=1,求tan ∠AED 的值.【考点】LE :正方形的性质;KD :全等三角形的判定与性质.【分析】(1)根据辅助线的性质得到AD=AB ,∠ADC=∠ABC=90°,由邻补角的定义得到∠ADF=∠ABE=90°,于是得到结论;(2)过点A 作AH ⊥DE 于点H ,根据勾股定理得到AE=,ED==5,根据三角形的面积S △AED =AD ×BA=,S △ADE =ED ×AH=,求得AH=1.8,由三角函数的定义即可得到结论.【解答】解:(1)正方形ABCD 中,∵AD=AB ,∠ADC=∠ABC=90°,∴∠ADF=∠ABE=90°,在△ADF 与△ABE 中,,∴△ADF ≌△ABE ;(2)过点A 作AH ⊥DE 于点H ,在Rt △ABE 中,∵AB=BC=3,∵BE=1,∴AE=,ED==5,=AD×BA=,∵S△AEDS△ADE=ED×AH=,解出AH=1.8,在Rt△AHE中,EH=2.6,∴tan∠AED=.24.已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若DA=AF,求证:CF⊥AB.【考点】M5:圆周角定理;KJ:等腰三角形的判定与性质;KO:含30度角的直角三角形.【分析】(1)由AB是⊙O直径,得到∠ACB=90°,由于△AEF为等边三角形,得到∠CAB=∠EFA=60°,根据三角形的外角的性质即可得到结论;(2)过点A作AM⊥DF于点M,设AF=2a,根据等边三角形的性质得到FM=EM=a,AM=a,在根据已知条件得到AB=AF+BF=8a,根据直角三角形的性质得到AE=EF=AF=CE=2a,推出∠ECF=∠EFC,根据三角形的内角和即可得到结论.【解答】解:(1)∵AB是⊙O直径,∴∠ACB=90°,∵△AEF为等边三角形,∴∠CAB=∠EFA=60°∴∠B=30°,∵∠EFA=∠B+∠FDB,∴∠B=∠FDB=30°,∴△DFB是等腰三角形;(2)过点A作AM⊥DF于点M,设AF=2a,∵△AEF是等边三角形,∴FM=EM=a,AM=a,在Rt△DAM中,AD=AF=2a,AM=,∴DM=5a,∴DF=BF=6a,∴AB=AF+BF=8a,在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,∵AE=EF=AF=2a,∴CE=AC﹣AE=2a,∴∠ECF=∠EFC,∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,∴∠AFC=∠AFE+∠EFC=60°+30°=90°,∴CF⊥AB.25.如图,点A(1,0)、B(4,0)、M(5,3).动点P从A点出发,沿x轴以每秒1个单位的速度向右移动,过点P的直线l:y=﹣x+b也随之移动.设移动时间为t秒.(1)当t=1时,求直线l的解析式.(2)若直线l与线段BM有公共点,求t的取值范围.(3)当点M关于直线l的对称点落在坐标轴上时,求t的值.【考点】FI:一次函数综合题.【分析】(1)根据点P的运动用t表示出点P的坐标,代入t=1即可得出点P的坐标,根据点P的坐标利用待定系数法即可求出此时直线l的解析式;(2)分别找出直线l过点B、M时的b值,再根据一次函数图象上点的坐标特征找出t值,由此即可得出结论;(3)分对称点落在x轴和y轴上考虑.根据直线l的解析式可设出直线MC的解析式,根据点M的坐标利用待定系数法即可求出直线MC的解析式,则直线MC 与x、y轴的交点将是点M关于直线l的对称点,找出两直线的交点坐标,再根据一次函数图象上点的坐标特征求出t值即可得出结论.【解答】解:(1)直线y=﹣x+b交x轴于点P(1+t,0)(b>0,t≥0).当t=1时,1+t=2,∴P(2,0),∴﹣2+b=0,解得b=2,故当t=1时,直线l的解析式为y=﹣x+2.(2)当直线y=﹣x+b过点B(4,0)时,有1+t=4,∴t=3;当直线y=﹣x+b过点M(5,3)时,有3=﹣5+b,解得:b=8,∴0=﹣(1+t)+8,解得t=7.故若l与线段BM有公共点,t的取值范围是:3≤t≤7.(3)点M关于直线l的对称点落在对称轴上分两种情况(如图所示):①当点M的对称点落在y轴上时,过点M作MC⊥直线l,交y轴于点C,交直线l于点D,则点C为点M在坐标轴上的对称点.设直线MC的解析式为y=x+m,则:3=5+m,解得:m=﹣2,∴直线MC的解析式为y=x﹣2.当x=0时,y=0﹣2=﹣2,∴C点坐标为(0,﹣2).∵(0+5)÷2=2.5,(3﹣2)÷2=0.5,∴D点坐标为(2.5,0.5),当直线y=﹣x+b过点D(2.5,0.5)时,有0.5=﹣2.5+b,解得:b=3,即0=﹣(1+t)+3,解得t=2.∴t为2时,点M关于l的对称点落在y轴上.②当点M的对称点落在x轴上时,设直线MC分别与x轴、直线l交与点E,F.当y=0时,有x﹣2=0,解得:x=2,∴点E(2,0),点F(3.5,1.5).∴1.5=﹣3.5+b,解得:b=5,∴t=b﹣1=4,∴t=4时点M关于l的对称点落在x轴上.综上,t=2或4时,M的对称点在坐标轴上.26.如图,抛物线y=ax2+c经过点A(0,2)和点B(﹣1,0).(1)求此抛物线的解析式;(2)将此抛物线平移,使其顶点坐标为(2,1),平移后的抛物线与x轴的两个交点分别为点C,D(点C在点D的左边),求点C,D的坐标;(3)将此抛物线平移,设其顶点的纵坐标为m,平移后的抛物线与x轴两个交点之间的距离为n,若1<m<3,直接写出n的取值范围.【考点】H6:二次函数图象与几何变换;H8:待定系数法求二次函数解析式.【分析】(1)把点A、B的坐标分别代入函数解析式,列出关于a、c的方程组,通过解方程求得它们的值;(2)根据平移的规律写出平移后抛物线的解析式,然后令y=0,则解关于x的方程,即可求得点C、D的横坐标;(3)根据根与系数的关系来求n的取值范围;【解答】解:(1)∵抛物线y=ax2+c经过点A(0,2)和点B(﹣1,0).∴解得:∴此抛物线的解析式为y=﹣2x2+2;(2)∵此抛物线平移后顶点坐标为(2,1),∴抛物线的解析式为y=﹣2(x﹣2)2+1令y=0,即﹣2(x﹣2)2+1=0解得x1=2+,x2=2﹣.∵点C在点D的左边∴C(2﹣,0),D(2+,0)‘(3)<n<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年湖南省衡阳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.﹣4的相反数是()A.﹣ B. C.﹣4 D.42.如果分式有意义,则x的取值范围是()A.全体实数 B.x≠1 C.x=1 D.x>13.如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70° B.80° C.90° D.100°4.下列几何体中,哪一个几何体的三视图完全相同()A.球体 B.圆柱体C.四棱锥 D.圆锥5.下列各式中,计算正确的是()A.3x+5y=8xy B.x3•x5=x8 C.x6÷x3=x2 D.(﹣x3)3=x66.为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000套,把3600000用科学记数法表示应是()A.0.36×107 B.3.6×106 C.3.6×107 D.36×1057.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.平均数 B.中位数 C.众数 D.方差8.正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.139.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.910.关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥411.下列命题是假命题的是()A.经过两点有且只有一条直线B.三角形的中位线平行且等于第三边的一半C.平行四边形的对角线相等D.圆的切线垂直于经过切点的半径12.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A. B. C. D.二、填空题(共6小题,每小题3分,满分18分)13.因式分解:a2+ab= .14.计算:﹣= .15.点P(x﹣2,x+3)在第一象限,则x的取值范围是.16.若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.17.若圆锥底面圆的周长为8π,侧面展开图的圆心角为90°,则该圆锥的母线长为.18.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.三、解答题(共8小题,满分66分)19.先化简,再求值:(a+b)(a﹣b)+(a+b)2,其中a=﹣1,b=.20.为庆祝建党95周年,某校团委计划在“七一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A,B,C,D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为;(2)请将图②补充完整;(3)若该校共有1530名学生,根据抽样调查的结果估计全校共有多少学生选择此必唱歌曲?(要有解答过程)21.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.22.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.23.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:运费(元/台)港口甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.24.在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C 在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?25.在平面直角坐标中,△ABC三个顶点坐标为A(﹣,0)、B(,0)、C(0,3).(1)求△ABC内切圆⊙D的半径.(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.26.如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t 的值;若不存在请说明理由.2016年湖南省衡阳市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.﹣4的相反数是()A.﹣B. C.﹣4 D.4【考点】相反数.【分析】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:﹣4的相反数是:4.故选:D.2.如果分式有意义,则x的取值范围是()A.全体实数 B.x≠1 C.x=1 D.x>1【考点】分式有意义的条件.【分析】直接利用分式有意义的条件得出x的值.【解答】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.故选:B.3.如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70° B.80° C.90° D.100°【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠B=50°,∵∠C=40°,∴∠E=180°﹣∠B﹣∠1=90°,故选C.4.下列几何体中,哪一个几何体的三视图完全相同()A.球体 B.圆柱体 C.四棱锥 D.圆锥【考点】简单几何体的三视图.【分析】根据各个几何体的三视图的图形易求解.【解答】解:A、球体的三视图都是圆,故此选项正确;B、圆柱的主视图和俯视图都是矩形,但左视图是一个圆形,故此选项错误;C、四棱柱的主视图和左视图是一个三角形,俯视图是一个四边形,故此选项错误;D、圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形,故此选项错误.故选:A.5.下列各式中,计算正确的是()A.3x+5y=8xy B.x3•x5=x8C.x6÷x3=x2D.(﹣x3)3=x6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘除法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、3x+5y,无法计算,故此选项错误;B、x3•x5=x8,故此选项正确;C、x6÷x3=x3,故此选项错误;D、(﹣x3)3=﹣x9,故此选项错误;故选:B.6.为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000套,把3600000用科学记数法表示应是()A.0.36×107B.3.6×106C.3.6×107D.36×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3600000=3.6×106,故选:B.7.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.平均数 B.中位数 C.众数 D.方差【考点】统计量的选择.【分析】根据方差的意义:方差是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.标准差是方差的平方根,也能反映数据的波动性;故要判断他的数学成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的方差.【解答】解:方差是衡量波动大小的量,方差越小则波动越小,稳定性也越好.故选:D8.正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.13【考点】多边形内角与外角.【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.9.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9 【考点】由实际问题抽象出一元二次方程.【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.【解答】解:设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.10.关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥4【考点】根的判别式.【分析】根据判别式的意义得到△=42﹣4k=0,然后解一次方程即可.【解答】解:∵一元二次方程x2+4x+k=0有两个相等的实根,∴△=42﹣4k=0,解得:k=4,故选:B.11.下列命题是假命题的是()A.经过两点有且只有一条直线B.三角形的中位线平行且等于第三边的一半C.平行四边形的对角线相等D.圆的切线垂直于经过切点的半径【考点】命题与定理.【分析】根据直线公理、三角形中位线定理、切线性质定理即可判断A、B、D正确.【解答】解:A、经过两点有且只有一条直线,正确.B、三角形的中位线平行且等于第三边的一半,正确.C、平行四边形的对角线相等,错误.矩形的对角线相等,平行四边形的对角线不一定相等.D、圆的切线垂直于经过切点的半径,正确.故选C.12.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A. B. C. D.【考点】动点问题的函数图象.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.二、填空题(共6小题,每小题3分,满分18分)13.因式分解:a2+ab= a(a+b).【考点】因式分解-提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2+ab=a(a+b).故答案为:a(a+b).14.计算:﹣= 1 .【考点】分式的加减法.【分析】由于两分式的分母相同,分子不同,故根据同分母的分式相加减的法则进行计算即可.【解答】解:原式==1.故答案为:1.15.点P(x﹣2,x+3)在第一象限,则x的取值范围是x>2 .【考点】点的坐标.【分析】直接利用第一象限点的坐标特征得出x的取值范围即可.【解答】解:∵点P(x﹣2,x+3)在第一象限,∴,解得:x>2.故答案为:x>2.16.若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为5:4 .【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方求出相似比,再根据相似三角形周长的比等于相似比求解.【解答】解:∵△ABC与△DEF相似且面积之比为25:16,∴△ABC与△DEF的相似比为5:4;∴△ABC与△DEF的周长之比为5:4.故答案为:5:4.17.若圆锥底面圆的周长为8π,侧面展开图的圆心角为90°,则该圆锥的母线长为16 .【考点】圆锥的计算.【分析】设该圆锥的母线长为l,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到8π=,然后解方程即可.【解答】解:设该圆锥的母线长为l,根据题意得8π=,解得l=16,即该圆锥的母线长为16.故答案为16.18.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为10 .【考点】点、线、面、体.【分析】n条直线最多可将平面分成S=1+1+2+3…+n=n(n+1)+1,依此可得等量关系:n条直线最多可将平面分成56个部分,列出方程求解即可.【解答】解:依题意有n(n+1)+1=56,解得x1=﹣11(不合题意舍去),x2=10.答:n的值为10.故答案为:10.三、解答题(共8小题,满分66分)19.先化简,再求值:(a+b)(a﹣b)+(a+b)2,其中a=﹣1,b=.【考点】整式的混合运算—化简求值.【分析】原式利用平方差公式、完全平方公式展开后再合并同类项即可化简,将a、b的值代入求值即可.【解答】解:原式=a2﹣b2+a2+2ab+b2=2a2+2ab,当a=﹣1,b=时,原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.20.为庆祝建党95周年,某校团委计划在“七一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A,B,C,D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为20% ;(2)请将图②补充完整;(3)若该校共有1530名学生,根据抽样调查的结果估计全校共有多少学生选择此必唱歌曲?(要有解答过程)【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图和扇形统计图可以求得选择曲目代号为A的学生占抽样总数的百分比;(2)根据条形统计图和扇形统计图可以求得选择C的人数,从而可以将图②补充完整;(3)根据条形统计图和扇形统计图可以估计全校选择此必唱歌曲的人数.【解答】解:(1)由题意可得,本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为:×100%=20%.故答案为:20%;(2)由题意可得,选择C的人数有:30÷﹣36﹣30﹣44=70(人),故补全的图②如下图所示,(3)由题意可得,全校选择此必唱歌曲共有:1530×=595(人),即全校共有595名学生选择此必唱歌曲.21.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【考点】全等三角形的判定与性质.【分析】求出AD=BC,根据ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.22.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.【解答】解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为: =.23.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/台)甲库乙库A港14 20 B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.【考点】一次函数的应用.【分析】(1)根据题意表示出甲仓库和乙仓库分别运往A、B两港口的物资数,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简;最后根据不等式组得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=80时,y最小,并求出最小值,写出运输方案.【解答】解(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.24.在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C 在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?【考点】解直角三角形的应用-方向角问题.【分析】(1)求出OC,由题意r≥OC,由此即可解决问题.(2)作AM⊥BC于M,求出AM即可解决问题.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,先列出方程求出x,再求出BN、AN利用不等式解决问题.【解答】解:(1)在RT△OBC中,∵BO=80,BC=60,∠OBC=90°,∴OC===100,∵OC=×100=50∴雷达的有效探测半径r至少为50海里.(2)作AM⊥BC于M,∵∠ACB=30°,∠CBA=60°,∴∠CAB=90°,∴AB=BC=30,在RT△ABM中,∵∠AMB=90°,AB=30,∠BAM=30°,∴BM=AB=15,AM=BM=15,∴此时敌舰A离△OBC海域的最短距离为15海里.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,∵∠HBN=∠HNB=15°,∴∠MHN=∠HBN+∠HNB=30°,∴HN=HB=2x,MH=x,∵BM=15,∴15=x+2x,x=30﹣15,∴AN=30﹣30,BN==15(﹣),设B军舰速度为a海里/小时,由题意≤,∴a≥20.∴B军舰速度至少为20海里/小时.25.在平面直角坐标中,△ABC三个顶点坐标为A(﹣,0)、B(,0)、C(0,3).(1)求△ABC内切圆⊙D的半径.(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.【考点】圆的综合题.【分析】(1)由A、B、C三点坐标可知∠CBO=60°,又因为点D是△ABC的内心,所以BD 平分∠CBO,然后利用锐角三角函数即可求出OD的长度;(2)根据题意可知,DF为半径,且∠DFE=90°,过点F作FG⊥y轴于点G,求得FG和OG 的长度,即可求出点F的坐标,然后将E和F的坐标代入一次函数解析式中,即可求出直线EF的解析式;(3)⊙P上存在一点到△ABC三个顶点的距离相等,该点是△ABC的外接圆圆心,即为点D,所以DP=2,又因为点P在直线EF上,所以这样的点P共有2个,且由勾股定理可知PF=3.【解答】解:(1)连接BD,∵B(,0),C(0,3),∴OB=,OC=3,∴tan∠CBO==,∴∠CBO=60°∵点D是△ABC的内心,∴BD平分∠CBO,∴∠DBO=30°,∴tan∠DBO=,∴OD=1,∴△ABC内切圆⊙D的半径为1;(2)连接DF,过点F作FG⊥y轴于点G,∵E(0,﹣1)∴OE=1,DE=2,∵直线EF与⊙D相切,∴∠DFE=90°,DF=1,∴sin∠DEF=,∴∠DEF=30°,∴∠GDF=60°,∴在Rt△DGF中,∠DFG=30°,∴DG=,由勾股定理可求得:GF=,∴F(,),设直线EF的解析式为:y=kx+b,∴,∴直线EF的解析式为:y=x﹣1;(3)∵⊙P上存在一点到△ABC三个顶点的距离相等,∴该点必为△ABC外接圆的圆心,由(1)可知:△ABC是等边三角形,∴△ABC外接圆的圆心为点D∴DP=2,设直线EF与x轴交于点H,∴令y=0代入y=x﹣1,∴x=,∴H(,0),∴FH=,当P在x轴上方时,过点P1作P1M⊥x轴于M,由勾股定理可求得:P1F=3,∴P1H=P1F+FH=,∵∠DEF=∠HP1M=30°,∴HM=P1H=,P1M=5,∴OM=2,∴P1(2,5),当P在x轴下方时,过点P2作P2N⊥x轴于点N,由勾股定理可求得:P2F=3,∴P2H=P2F﹣FH=,∴∠DEF=30°∴∠OHE=60°∴sin∠OHE=,∴P2N=4,令y=﹣4代入y=x﹣1,∴x=﹣,∴P2(﹣,﹣4),综上所述,若⊙P上存在一点到△ABC三个顶点的距离相等,此时圆心P的坐标为(2,5)或(﹣,﹣4).26.如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.【考点】二次函数综合题.【分析】(1)易得抛物线的顶点为(0,),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;(2)①当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式,设正方形OEFG 的边长为p,则F(p,p),代入直线AC的解析式,就可求出点F的坐标;②当点F在第二象限时,同理可求出点F的坐标,此时点F不在线段AC上,故舍去;(3)过点M作MH⊥DN于H,如图2,由题可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三种情况(①DN=DM,②ND=NM,③MN=MD)讨论就可解决问题.【解答】解:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.设正方形OEFG的边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.综上所述:点F的坐标为(1,1);(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.①当DN=DM时,(﹣t+)2=t2﹣t+2,解得t=;②当ND=NM时,﹣t+==,解得t=3﹣;③当MN=MD时,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.。

相关文档
最新文档