绝对值函数图像的画法之欧阳光明创编

合集下载

绝对值函数图象的速画法

绝对值函数图象的速画法

绝对值函数图象的速画法高中数学涉及了诸多函数问题,解这类题若能用图象辅助思考,往往有事半功倍之效。

但遗憾的是,学生要么对图象形状不熟悉,不知怎么画图;要么觉得画图程序繁琐,懒于画出图象。

下面简介高中数学中常见而学生又甚感困难的绝对值函数图象的速画法,以帮助提高作图速度,培养作图兴趣。

一、用“三点定形法”画单绝对值函数)0()(≠+-=a k h x a x f 的图象)0()(≠+-=a k h x a x f 与)0()()(2≠+-=a k h x a x g 的图象类似,它们的顶点都是(k h ,),开口方向相同,对称轴相同,单调区间相同。

所不同的是前者的图象是折线,在对称轴两侧是两条射线,而后者的图象是抛物线,在对称轴两侧是两条曲线。

所以可用三点定其型。

三点中,顶点(k h ,)必取,然后在其两侧任意各取一点,分别以顶点为端点,过另一点作出射线,即得)0()(≠+-=a k h x a x f 的图象。

例:已知函数[)+∞+-=,02)(在b x a x f 上单调递增,则a 、b 的取值范围是 。

分析:当a=0时,2)(=x f 为常数函数,不具单调性;当0≠a 时,其顶点(b,2)总在直线y=2上,若0<a ,图象开口向下(见图1),总不满足条件;若0>a ,图象开口向上,当0>b 时,函数)(x f 在[)+∞,0不单调(见图2);当0≤b ,函数)(x f 在[)+∞,0单调(见图3)。

所以a 、b 的范围应是.0,0≤>b a平线段左端加一条向左上方延伸的射线(因其斜率为负),右端加一条向右上方延伸的射线(因其斜率为正)组成的图形,而图象总是在绝对值代数式的零点处转折。

又联立以上分段函数两侧解析式⎩⎨⎧+-=++-=)(2)(2b a x y b a x y 解得,⎪⎩⎪⎨⎧=+=02y b a x ,可知左右两侧射线延长线必交于x 轴上的点)0,2(b a +。

绝对值函数图像的画法精编版

绝对值函数图像的画法精编版

……………………………………………………………最新资料推荐…………………………………………………
1 首先要从简单的绝对值函数画起。

2-=x y :是一条以()0,2为拐点的折线。

或者可以理解为将直线2-=x y 在x 轴下面的部分沿x 轴翻折上去
然后再着手于复杂的图像的画法。

22
1121-++=x x y ,先单独画出两个绝对值的图像,再合到一起。

(叠加后直线的斜率不同) 其中-2和4由两个绝对值为零算的,3为由x=-2和x=4算得的y 值。

最后,最复杂的二次函数中的绝对值的画法。

122--=x x y ,很显然绝对值是将x 变成正数,由前面的图像可知a x y -=的图像总会关于a x =轴对称,故x y 21-=关于y 轴对称,又122-=x y 也关于y 轴对称,所以图像合并起来就容易多了。

绝对值函数的图像与性质

绝对值函数的图像与性质

绝对值函数的图像与性质绝对值函数是数学中常见的一类函数。

它使用绝对值符号来表示,可以用一条直线段来表示其图像。

本文将详细讨论绝对值函数的图像与性质。

1. 绝对值函数的定义绝对值函数通常表示为|x|,表示x与原点的距离。

其定义如下:|x| = {x,x≥ 0−x,x < 0其中,x为实数。

2. 绝对值函数的图像由于x与原点的距离是非负的,绝对值函数的图像总是处于原点的左侧。

当x≥ 0时,绝对值函数的图像与x轴重合,即为x = x。

当x < 0时,绝对值函数的图像为一条通过原点的与x轴对称的直线段,斜率为-1,即为x = -x。

3. 绝对值函数的性质绝对值函数具有以下几个重要的性质:性质1:非负性对于任意实数x,绝对值函数的值都是非负数,即|x| ≥ 0。

性质2:对称性绝对值函数关于原点对称,即对于任意实数x,有|−x| = |x|。

性质3:单调性当x > x时,有|x| > |x|。

反之,当x < x时,有|x| < |x|。

性质4:三角不等式对于任意实数x和x,有|x + x| ≤ |x| + |x|。

三角不等式表示绝对值函数的加法性质,即两个数的绝对值之和大于等于它们的和的绝对值。

性质5:零点判定当且仅当x = 0时,有|x| = 0。

4. 绝对值函数的应用绝对值函数在实际问题中有广泛的应用,以下是一些典型的应用场景:应用1:距离计算绝对值函数可以用于计算两个点之间的距离。

例如,在数轴上,点x的坐标为x,点x的坐标为x,则点x和点x之间的距离为|x−x|。

应用2:温度变化绝对值函数可以用于表示温度的变化范围。

例如,在某城市中,某天的最高气温为10摄氏度,最低气温为-5摄氏度。

则该城市这一天的气温变化范围为|10−(−5)| = 15摄氏度。

应用3:经济收益绝对值函数可以用于描述经济收益的情况。

例如,某企业的利润为x万元,通过绝对值函数|x|可以表示利润的绝对值。

高中各种函数图像画法与函数性质之欧阳学创编

高中各种函数图像画法与函数性质之欧阳学创编

一次函数二次函数反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

2、性质:1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

指数函数y=a x(a>0,a≠1)注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。

⒉指数函数的定义仅是形式定义。

指数函数的图像与性质规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。

在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。

即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。

4. 指数函数既不是奇函数也不是偶函数比较幂式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较;2.当底数中含有字母时要注意分类讨论;3.当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较底数的平移:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

初一数学绝对值典型例题精讲之欧阳术创编

初一数学绝对值典型例题精讲之欧阳术创编

第三讲 绝对值巩固对绝对值的相关知识能够掌握要领。

绝对值的定义及性质绝对值 简单的绝对值方程化简绝对值式,分类讨论(零点分段法)绝对值几何意义的使用绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。

绝对值的性质:(1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质;a (a >0)(2) |a|= 0 (a=0) (代数意义)-a (a <0)(3)若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a ,且|a|≥-a ;(5) 若|a|=|b|,则a=b 或a=-b ;(几何意义)(6) |ab|=|a|·|b|;|b a |=||||b a (b ≠0);(7)|a|2=|a 2|=a 2; (8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|[例1](1)绝对值大于2.1而小于4.2的整数有多少个? (2) 若ab<|ab|,则下列结论正确的是( )A.a <0,b <0B.a >0,b <0C.a <0,b >0D.ab <0(3) 下列各组判断中,正确的是( )A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >bC. 若|a|>b ,则一定有|a|>|b|D.若|a|=b ,则一定有a 2=(-b)2(4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?分析:(1) 结合数轴画图分析。

绝对值大于2.1而小于4.2的整数有±3,±4,有4个(2)答案C 不完善,选择D.在此注意复习巩固知识点3。

(3)选择D 。

(4) 根据绝对值的非负性可以知道|a+b|≥0,则|a+b|≥9,有最小值9[巩固] 绝对值小于3.1的整数有哪些?它们的和为多少? <分析>:绝对值小于3.1的整数有0,±1,±2,±3,和为0。

MBA考研数学复习课(绝对值与重点整式公式)

MBA考研数学复习课(绝对值与重点整式公式)

(C)有无穷多个x使y取到最大值
(D)有无穷多个x使y取到最小值
(E)以上选项均不正确
提示:
− 1 − ( + 2) ≤ − 1 + + 2
即 − 1 + + 2 ≥ 3,有最小值3,当且仅当x-1和x+2异号即可取等号






经典例题
例 2 不等式 − 2 + 4 − < 无解。
o

2
x
(3)y= − 2 + + 2
①找零点(端点、临界点)
②分区间讨论
③画出每个区间的函数图像
y
y= −2 + ห้องสมุดไป่ตู้2
= 2
= −2
−2
< −2
= ቐ4
−2≤ ≤2
2
>2
=4
o
-2
2
x
例 1 设 = − 1 + + 2 ,则下列结论正确的是(

(A)y没有最小值
> ( > 0),解得x>a或者x<-a
+ < ( > 0)或者 + > (c > 0)可利用整体等效思想来解决
ax+b
x
例如: 2 − 1 ≤ 3 ⟺ −3 ≤ 2 − 1 ≤ 3 ⟺ −2 ≤ 2 ≤ 4 ⟺ −1 ≤ ≤ 2
经典例题
例 3 方程的整数解有5个
主讲老师:
日期:2020.1.15
复习课
绝对值
绝对值函数的图像
绝对值方程、不等式

绝对值大全(零点分段法、化简、最值)之欧阳美创编

绝对值大全(零点分段法、化简、最值)之欧阳美创编

绝对值大全(零点分段法、化简、最值)一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或 2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x|2=2x可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数x,2x,……,n x分别使含有1|x-x|,|x-2x|,……,|x-n x|的代数式中相应绝对值为1零,称x,2x,……,n x为相应绝对值的零点,零点1x,1x,……,n x将数轴分为m+1段,利用绝对值的意义化去绝对2值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

竞赛讲座1函数之欧阳光明创编

竞赛讲座1函数之欧阳光明创编

第一章 函数欧阳光明(2021.03.07)一、基础知识定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。

定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。

定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。

定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。

定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。

A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。

集合{f (x )|x ∈A }叫函数的值域。

通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}.定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。

例如:函数y =x -11的反函数是y =1-x1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。

定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。

定义7 函数的性质。

(1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)<f (x 2)(f (x )>f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。

几何画板怎样画绝对值函数

几何画板怎样画绝对值函数

几何画板怎样画绝对值函数
几何画板是一些数学爱好者经常使用的作图工具,利用几何画板能够很准确的画出自己想要画出的函数图像,可是有的时候函数解析式中带有了绝对值,那么怎样利用几何画板画绝对值函数图像呢?
具体步骤如下:
1.在几何画板窗口中,选择“绘图”——“绘制新函数”。

在“绘图”中选择“绘制新函数”
2.输入函数解析式,例如f(x)=|cosx|,在新建函数窗口中选择“函数”按钮,在下拉菜单中选择“abs”函数。

在新建函数窗口中的“函数”选择abs函数
3.确定后绘图区域自动出现函数图象,如图所示。

绝对值函数示例
以上内容向大家介绍了几何画板绝对值函数的绘制方法,操作简单。

绝对值函数是几何画板函数功能中默认的一种,可以直接绘制。

利用几何画板函数功能可以绘制出很多函数,例如对数函数。

[原创]绝对值函数的作图

[原创]绝对值函数的作图

[原创]绝对值函数的作图
绝对值函数的作图
大罕
含绝对值的函数分为三种情况。

一是函数式的一部分含有绝对值另一部分不含(称为部分“绝”);二是函数式整个在绝对值之下(称为整体绝);三是凡x处含有绝对值(称为x绝)。

本文的独到之处就是总结出以上三种情况,这样教给学生,脉络清晰,易懂好记,效果显著。

一部分“绝”——化为分段函数,分段画;
例⑴ y=|x-2|(x+1)
例⑵ y=|x2-2x-3|-x
二整体绝——上留下翻(x轴上方的图像保留,x轴下方的图像翻转上去)
例⑶ y=|2x2+x-1| ;
例⑷ y=|1/(x-1)| ;
三 x绝——右留翻左(y轴右方的图像保留,并把它翻转到y轴左方去)
例⑸ y=2x2+|x-1| ;
例⑹ y=1/(|x|-1) .。

绝对值的性质及运用之欧阳学创编

绝对值的性质及运用之欧阳学创编

基本要求:借助数轴理解绝对值的意义,会求实数的绝对值略高要求:会利用绝对值的知识解决简单的化简问题【知识点整理】绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5.求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②(0)(0)a a a a a ≥⎧=⎨-<⎩③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a a b b=(0)b ≠;(4)222a a a==;||||a的几何意义:在数轴上,表示这个数的点离开原点的距离.-的几何意义:在数轴上,表示数a.b对应数轴上两点a b间的距离.【例题精讲】模块一、绝对值的性质【例1】到数轴原点的距离是2的点表示的数是()A.±2 B.2 C.-2 D.4【例2】下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A.②④⑤⑥B.③⑤C.③④⑤D.③⑤⑥【例3】如果a的绝对值是2,那么a是()A.2 B.-2 C.±2 D.1±2【例4】若a<0,则4a+7|a|等于()A.11a B.-11a C.-3a D.3a【例5】一个数与这个数的绝对值相等,那么这个数是()A.1,0 B.正数 C.非正数 D.非负数【例6】已知|x |=5,|y |=2,且xy >0,则x -y 的值等于( )A .7或-7B .7或3C .3或-3D .-7或-3【例7】若1-=x x,则x 是( )A .正数B .负数C .非负数D .非正数【例8】已知a .b 互为相反数,且|a -b |=6,则|b -1|的值为( )A .2B .2或3C .4D .2或4【例9】给出下面说法:(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m |>m ,则m <0;(4)若|a |>|b |,则a >b ,其中正确的有( )A .(1)(2)(3)B .(1)(2)(4)C .(1)(3)(4)D .(2)(3)(4)【例10】已知a ,b ,c 为三个有理数,它们在数轴上的对应位置如图所示,则|c -b |-|b -a |-|a -c |= _________【例11】已知数,,a b c 的大小关系如图所示,则下列各式: ①()0b a c ++->;②0)(>+--c b a ;③1=++c c b b a a ;④0>-a bc ;⑤b c a b c b a 2-=-++--.其中正确的有.(请填写番号)同值时,M 有 ____种不同可能.当a 、b 、c 都是正数时,M = ______;当a 、b 、c 中有一个负数时,则M = ________; 当a 、b 、c 中有2个负数时,则M = ________; 当a 、b 、c 都是负数时,M =__________ .模块二 绝对值的非负性 1. 非负性:若有几个非负数的和为0,那么这几个非负数均为02. 绝对值的非负性;若0a b c ++=,则必有0a =,0b =,0c = 3. 若42a b -=-+,则_______a b +=【巩固】若7322102m n p ++-+-=,则23_______p n m +=+ 【例2】()2120a b ++-=,分别求a b ,的值 【课堂检测1】1. 若a 的绝对值是12,则a 的值是( ) A .2 B .-2 C .12 D .12± 2. 若|x |=-x ,则x 一定是( )A .负数B .负数或零C .零D .正数 3. 如果|x -1|=1-x ,那么( )A .x <1B .x >1C .x ≤1D .x ≥14. 若|a -3|=2,则a +3的值为( )A .5B .8C .5或1D .8或4 5.若x <2,则|x -2|+|2+x |=_______________ 6.绝对值小于6的所有整数的和与积分别是__________ 7. 如图所示,a .b 是有理数,则式子|a |+|b |+|a +b |+|b -a |化简的结果为 __________8. 已知|x |=2,|y |=3,且xy <0,则x+y 的值为 _________【课堂检测2】1.-19的绝对值是________ 2. 如果|-a |=-a ,则a 的取值范围是(A .a >0B .a ≥0C .a ≤0D .a <03.对值大于1且不大于5的整数有 __________个. 4. 绝对值最小的有理数是 _________.绝对值等于本身的数是________.5.当x __________时,|2-x|=x-2. 6. 如图,有理数x ,y 在数轴上的位置如图,化简:|y-x |-3|y +1|-|x |= ________7. 若3230x y -++=,则yx 的值是多少?模块三 零点分段法1. 零点分段法的一般步骤:①找零点→②分区间→③定符号→④去绝对值符号.【例1】阅读下列材料并解决相关问题: 我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:⑴当1x <-时,原式()()1221x x x =-+--=-+⑵当12x -<≤时,原式()123x x =+--=⑶当2x ≥时,原式1221x x x =++-=-综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥通过阅读上面的文字,请你解决下列的问题:(1)别求出2x +和4x -的零点值(2)化简代数式24x x ++-【巩固】 1、化简12x x +++2、化简12m m m +-+-的值。

函数绝对值图形画法

函数绝对值图形画法

函数绝对值图形画法
首先预祝考上高中的同学
那么问题来了,是不是就可以高枕无忧了?也是也不是!是的话就是你懂了大部分需要衔接的知识;不是的话就是你还不了解这个学完了之后可以让你较为轻松面对高中的知识!那么接下来我们就开始吧!学习一中新的图形的画法,带有绝对值图形的函数表达式的画法!本次就从一次函数与二次函数讲起!一次函数这个内容我们就以y=x-2这个函数来说起,首先我们现在坐标系上利用描点法画出这个图像,如下图
y=x-2的图像就是这个样子,没毛病!号,我们接下来看y=abs(x-2)的函数图像(abs就是表示绝对值的意思):
那么这个图像为什么是这个样子的呢(蓝色线条)?首先我们从表达式上说起,在初中阶段我们得知平方、绝对值、偶次根式都是具有非负性,那么本题带有绝对值也就不能使函数图像在x轴以下了!其次不在以下那又会在哪里了呢?当然得翻折上去,图像就变成了y=2-x(x≤2)的函数图像了!
一次函数图像视频:
二次函数看完了一次函数我们来看一下二次函数图像(带有绝对值哦)的画法!首先来看看我们常见的:y=x²-x-3…
好的,上面的图形是不是我们初中见到的中规中矩的形状,有没有亲切感?好,接下来我们就要变形了…y=x²-abs(x)-3
y=abs(x²-x)-3
y=abs(x²-x-3)
好的,各位同学看清楚了吗?感觉怎么样?关于开口向下的在这边我就不啰嗦了,抓紧学习吧!哦,对了,还要放个刚才关于二次函数的动态视频!
二次函数图像介绍:
上面的视频由于上传的原因被我减去了一小部分,以下为我要说的话:这类题目一般会出现在高一第一学期期中考试之前的压轴题当中,主要考察学生的分类讨论思想、数形结合思想。

主要考题方向为:动点定对称轴、动对称轴动点类问题等等。

《概率论与数理统计》习题三答案-设二维随机变量(x,y)之欧阳光明创编

《概率论与数理统计》习题三答案-设二维随机变量(x,y)之欧阳光明创编

《概率论与数理统计》习题及答案欧阳光明(2021.03.07)习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.【解】X 和Y 的联合分布律如表:222⨯⨯222⨯⨯2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.【解】X 和Y 的联合分布律如表:223247C 3C 35= 313247C 2C 35=11232247C C 6C 35= 21132247C C 12C 35=313247C 2C 35=12132247C C 6C 35=223247C 3C 35=3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率.【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}.【解】(1)由-(34)0(,)d d e d d 112x y A f x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得A =12(2)由定义,有 (3) {01,02}P X Y ≤<≤<5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3};(3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1)由性质有故18R =(2)13{1,3}(,)d d P X Y f x y y x-∞-∞<<=⎰⎰(3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y<<=⎰⎰⎰⎰如图(4)24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y+≤+≤=⎰⎰⎰⎰如图b题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为而 所以(2)5()(,)d d 25e d d y y xDP Y X f x y x y x y-≤≤=⎰⎰⎰⎰如图7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y+∞-∞=⎰题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y+∞-∞=⎰题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ; (2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y+∞+∞-∞-∞⎰⎰⎰⎰如图得214c =.(2)()(,)d X f x f x y y+∞-∞=⎰11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y+∞-∞=⎰所以12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y . (1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立?【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =1 3511C 10= 3522C 10= 3533C 10= 610 2 0 3511C 10= 3522C 10= 310 32511C 10= 110{}i P Y y =110 310610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03(1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立?YXXY【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i } 0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38(2) 因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他;21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他. 故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是故 X 2≥Y , 从而方程有实根的概率为:15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为XYf (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y =≤=≤(1) 当z ≤0时,()0Z F z = (2) 当0<z <1时,(这时当x =1000时,y =1000z )(如图a)题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )即11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…,P{Y=r}=q(r),r=0,1,2,….证明随机变量Z=X+Y的分布律为P{Z=i}=∑=-ikkiqkp)()(,i=0,1,2,….【证明】因X和Y所有可能值都是非负整数,所以于是18.设X,Y是相互独立的随机变量,它们都服从参数为n,p的二项分布.证明Z=X+Y服从参数为2n,p的二项分布.【证明】方法一:X+Y可能取值为0,1,2,…,2n.方法二:设μ1,μ2,…,μn;μ1′,μ2′,…,μn′均服从两点分布(参数为p),则X=μ1+μ2+…+μn,Y=μ1′+μ2′+…+μn′,X+Y=μ1+μ2+…+μn+μ1′+μ2′+…+μn′,所以,X+Y服从参数为(2n,p)的二项分布.19.设随机变量(X,Y)的分布律为(1) 求P{X=2|Y=2},P{Y=3|X=0};(2)求V=max(X,Y)的分布律;(3)求U=min(X,Y)的分布律;(4)求W=X+Y的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======(2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤= 所以V 的分布律为(3) {}{min(,)}P U i P X Y i === 于是(4)类似上述过程,有20.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布.(1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为(1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为(X ,Y )关于X 的边缘密度函数为 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和Y 的边缘分布律中的部分数值.试将其余数值填入表中的空白处.【解】因21{}{,}j j i j i P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-=而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++==从而131{,}.12P X x Y y ===同理21{},2P Y y ==223{,}8P X x Y y ===又31{}1jj P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而 故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布. 【解】(1){|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=.(2) {,}{}{|}P X n Y m P X n P Y m X n ======24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫ ⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ). 【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为由于X 和Y 独立,可见 由此,得U 的概率密度为25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有 因为X ,Y 相互独立,所以 推得1{max{,}1}9P X Y ≤=.26. 设二维随机变量(X ,Y )的概率分布为-1 0 1-1 0 1a 0 0.2 0.1b 0.2 0 0.1 c其中a ,b ,c 为常数,且X 的数学期望E (X )=0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求:(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4.由()0.2E X =-,可得0.1a c -+=-.再由{0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为2,1,0,1,2,X Y{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.。

有理数绝对值和相反数之欧阳育创编

有理数绝对值和相反数之欧阳育创编

数轴做一做:1、画一条水平直线,并在直线上取一点表示O,我们把这个点称为原点。

2、规定直线上从原点向右为正方向(画箭头表示),向左为负方向。

3、取适当长度(如1cm)为单位长度,在直线上,从原点向右每隔一个单位长度取一点,依次表示1,2,3……从原点向左每隔一个单位长度取一点,一次表示-1,-2,-3······像这样规定了原点、正方向和单位长度的直线叫做数轴。

数轴的要素是:原点、正方向、单位长度;如何确定一个正方向:向右正方向,向左负方向如何确定一条数轴的长度单位呢?:可以由自己确定,例如以1cm为一个单位长度,也可以以0.5厘米为一个单位长度,但是在同一条数轴上的单位一旦确定下来,就不能再更改。

1、如果数轴上点A到原点的距离为3,点B到原点的距离为5,则点A、点B各代表什么数?A、B两点间的距离是多少?2、小明从A地向东跑了100米,然后掉头向西跑了80米,又折回向东跑了60米,你能否用数轴求出小明最终位于A地哪个方向?有多远?3、一个蚂蚱在数轴上跳动,先从A点向左跳1个单位到B点,然后由B点向右跳2个单位到C点.如果C点表示的数是-3,则A点表示的数是注意:在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于0,负数都小于0,正数大于负数1、在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。

2、在数轴上,离原点距离等于3的数是。

3、在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的侧,距原点个单位;两点之间的距离为个单位长度。

4、在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。

5、与原点距离为2.5个单位长度的点有个,它们表示的有理数是。

6、到原点的距离不大于3的整数有个,它们是:。

若数轴上表示―3的点记为A,表示2的点记为B,那么把A点向____边移动_____个单位长度就得到了B点.绝对值定义:数轴上表示一个数的点与原点的距离叫做这个数的绝对值.你能说出数轴上的点A、B、C、D、E所表示的数的绝对值吗?利用数轴求一个数的绝对值例1 求4、-3.5的绝对值.解:如图,在数轴上分别画出表示4、-3.5的点A 、点B . 因为点A 与原点的距离是4,所以4的绝对值是4;因为点B 与原点的距离是3.5,所以-3.5的绝对值是3.5. 绝对值的表示方法:通常,我们将数a 的绝对值记为 a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

*欧阳光明*创编 2021.03.07
*欧阳光明*创编 2021.03.07 首先要从简单的绝对值函数画起。

欧阳光明(2021.03.07)
2-=x y :是一条以()0,2为拐点的折线。

或者可以理解为将直线2-=x y 在x 轴下面的部分沿x 轴翻折上去 然后再着手于复杂的图像的画法。

221121-++=x x y ,先单独画出两个绝对值的图像,再合到一起。

(叠加后直线的斜率不同)
其中-2和4由两个绝对值为零算的,3为由x=-2和x=4算得的y 值。

最后,最复杂的二次函数中的绝对值的画法。

122--=x x y ,很显然绝对值是将x 变成正数,由前面的图像可知a x y -=的图像总会关于a x =轴对称,故x y 21-=关于y 轴对称,又122-=x y 也关于y 轴对称,所以图像合并起来就容易多了。

相关文档
最新文档