基本不等式优秀课件
合集下载
2.2.1 基本不等式 课件(28张)

【定向训练】
已知a,b,c都是非负实数,试比较 a2+b2+ b2+c2+ c2+a2 与 2 (a+b+c)的大小. 【解析】因为a2+b2≥2ab,
所以2(a2+b2)≥a2+b2+2ab=(a+b)2,
所以 a2+b2(a+b2 ),
2
同理 b2+c2(b +c2),
2
c(2c++aa2), 2
xyz
【证明】因为x,y,z是互不相等的正数,且x+y+z=1,
所以 1-1=1-x= y+z 2 yz ,①
x
x
x
x
1-1=1-y=x+z 2 xz ,②
y
yy
y
1-1=1-z=x+y 2 xy ,③
z
zz
z
又x,y,z为互不相等的正数,由①×②×③,
得 ( 1-1)( 1-1)( 1-1>) 8.
【定向训练】
已知a,b,c为正数,
求证: b+c-a+c+a-b+a+b-c 3.
a
b
c
课堂素养达标
1.下列不等式中,正确的是
()
A.a+ 16 ≥8
B.a2+b2≥4ab
a
C. ab a+b
2
D.
x
2+
3 x2
2
3
【解析】选D.若a<0,则a+ 16 ≥8不成立,故A错;若a=1,b=1,a2+b2<4ab,故B错,
x
C.当x≥2时,x+ 1 的最小值为2
x
D.当0<x≤2时,x-
1
基本不等式课件(共43张PPT)

02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。
基本不等式ppt课件

对于任意实数a和b,$(a-b)^2 \geq 0$,即 $a^2 - 2ab + b^2 \geq 0$。
利用均值不等式证明
对于任意实数a和b,$a^2 + b^2 \geq 2ab$,即$(a-b)^2 \geq 0$。
利用导数证明
对于任意实数a和b,设f(x) = x^2 - 2x(a+b) + (a+b)^2,则f'(x) = 2x - 2(a+b) = 2(x-ab),当x≥a+b时,f'(x) ≥0;当x ≤ a+b时, f'(x) ≤0。故f(x)在区间[a+b, +\infty)上单调 递增,在区间(-\infty, a+b]上单调递减。于 是有f(x) ≥ f(a+b) = a^2 - 2ab + b^2 ≥0 。
02
基本不等式的应用
几何意义
直线和圆
利用基本不等式可以判断直线和圆的 位置关系,以及求解圆中弦长等几何 问题。
面积和体积
利用基本不等式可以求解一些涉及面 积和体积的问题,例如在给定周长的 条件下,求矩形或立方体的最大面积 或体积等。
代数意义
方程
利用基本不等式可以求解一些涉及方程的问题,例如利用基本不等式求根,判 断方程解的个数等。
证明方法
利用代数公式和实数的性质进行 证明。
基本不等式的性质
非负性
对于任意实数a和b,总有$(a-b)^2 \geq 0$,即$a^2 - 2ab + b^2 \geq 0$。
等号成立条件
当且仅当a=b时,基本不等式取等号。
传递性
若a≥b,c≥d,则ac≥bd。
基本不等式的证明
利用均值不等式证明
对于任意实数a和b,$a^2 + b^2 \geq 2ab$,即$(a-b)^2 \geq 0$。
利用导数证明
对于任意实数a和b,设f(x) = x^2 - 2x(a+b) + (a+b)^2,则f'(x) = 2x - 2(a+b) = 2(x-ab),当x≥a+b时,f'(x) ≥0;当x ≤ a+b时, f'(x) ≤0。故f(x)在区间[a+b, +\infty)上单调 递增,在区间(-\infty, a+b]上单调递减。于 是有f(x) ≥ f(a+b) = a^2 - 2ab + b^2 ≥0 。
02
基本不等式的应用
几何意义
直线和圆
利用基本不等式可以判断直线和圆的 位置关系,以及求解圆中弦长等几何 问题。
面积和体积
利用基本不等式可以求解一些涉及面 积和体积的问题,例如在给定周长的 条件下,求矩形或立方体的最大面积 或体积等。
代数意义
方程
利用基本不等式可以求解一些涉及方程的问题,例如利用基本不等式求根,判 断方程解的个数等。
证明方法
利用代数公式和实数的性质进行 证明。
基本不等式的性质
非负性
对于任意实数a和b,总有$(a-b)^2 \geq 0$,即$a^2 - 2ab + b^2 \geq 0$。
等号成立条件
当且仅当a=b时,基本不等式取等号。
传递性
若a≥b,c≥d,则ac≥bd。
基本不等式的证明
2.2 基本不等式(第一课时)课件(共16张PPT).ppt

课后练习
1.已知x>0,求 值.
2x
1 x
的最小值及相应的x
2.已知x,y>0,x+2y=4,求 xy的最大值及相 应的x,y值.
3.已知0<x<1,求x(1-x)的最大值及相应 的x值.
可以得到:
a b 2 a(b a 0,b 0)
通常把上式写作:
ab a b(a 0,b 0)(当且仅当a=b时,等号成立) 2
↑ 几何 平均值
↑ 算术 平均值
通常称上述不等式为基本不等式.其中,a b 叫做正数a,b的 2
算术平均数, ab 叫做正数a,b的几何平均数.
代数解释:两个正数的算术平均数不小于它们的几何平均数。
积定和最小,和定积最大
课堂练习
已知x,y都是正数,且x≠y,求证:
(1) x y 2 yx
2 2xy xy
x y
证明:1因为x, y 0,所以 x ,y 0,
yx
所以 x y 2 x y 2 y x yx
当且仅当 x y ,即x y时,等号成立. yx
又x y,
所以 x y 2. yx
注意 ⇔ ⇒ ⇔
4
可乘性 a>b,c>0⇒ac>bc; a>b,c<0⇒ac<bc c的符号
5 同向可加性 a>b,c>d⇒a+c>b+d
6
同向同正可乘 性
a>b>0,c>d>0⇒ac>bd
7
可乘方性 a>b>0⇒an>bn(n∈N*,n≥2)
8
可开方性 a>b>0⇒ n a n b (n∈N*,n≥2)
只要把上述过程倒过来,就是我们熟悉的方法了。
基本不等式ppt课件

a b
12 3
1 4b 3a 1
+
8+ a + b ≥ 8+2
5a b(a+2b)=5
5
4b 3a
4b 3a 8+4 3
(当且仅当 a = b ,
·
=
5
a b
8+4 3
2 3
即 2b= 3a 时取等号),∴ + 的最小值为
.故选 B.
a b
5
22.(多选)(2021·湖南省长沙市长郡中学上学期适应性调查考试)小王从
n 4m 9
4m·n =2,
2
1
当且仅当 n=3,m=6时取等号.故选 C.
2
3
3.设 x>0,则函数 y=x+
-2的最小值为( A )
2x+1
A.0
1
B.2
解析
2≥2
C.1
3
D.2
1
2
3
由 于 x>0 , 则 y = x +
- = x+2 +
2
2x+1
1
x+ ·
2
m· n 4
二、高考小题
13.(2021·全国乙卷)下列函数中最小值为 4 的是( C )
A.y=x +2x+4
4
B.y=|sin x|+|sin x|
C.y=2 +2
4
D.y=ln x+
ln x
2
x
2-x
15.(2020·上海高考)下列不等式恒成立的是( B )
A.a2+b2≤2ab
C.a+b≥2 |ab|
命题中正确的是( AB )
A.若 P=1,则 S 有最小值 2
B.若 S+P=3,则 P 有最大值 1
12 3
1 4b 3a 1
+
8+ a + b ≥ 8+2
5a b(a+2b)=5
5
4b 3a
4b 3a 8+4 3
(当且仅当 a = b ,
·
=
5
a b
8+4 3
2 3
即 2b= 3a 时取等号),∴ + 的最小值为
.故选 B.
a b
5
22.(多选)(2021·湖南省长沙市长郡中学上学期适应性调查考试)小王从
n 4m 9
4m·n =2,
2
1
当且仅当 n=3,m=6时取等号.故选 C.
2
3
3.设 x>0,则函数 y=x+
-2的最小值为( A )
2x+1
A.0
1
B.2
解析
2≥2
C.1
3
D.2
1
2
3
由 于 x>0 , 则 y = x +
- = x+2 +
2
2x+1
1
x+ ·
2
m· n 4
二、高考小题
13.(2021·全国乙卷)下列函数中最小值为 4 的是( C )
A.y=x +2x+4
4
B.y=|sin x|+|sin x|
C.y=2 +2
4
D.y=ln x+
ln x
2
x
2-x
15.(2020·上海高考)下列不等式恒成立的是( B )
A.a2+b2≤2ab
C.a+b≥2 |ab|
命题中正确的是( AB )
A.若 P=1,则 S 有最小值 2
B.若 S+P=3,则 P 有最大值 1
基本不等式(共43张)ppt课件

15
判别式及根的关系
根的关系
判别式:$Delta = b^2 4ac$,用于判断一元二次方
程的根的情况。
01
02
03
当 $Delta > 0$ 时,方程有 两个不相等的实根;
当 $Delta = 0$ 时,方程有 两个相等的实根(即一个重
根);
04
2024/1/25
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
基本不等式性质
传递性
若$a > b$且$b > c$,则$a > c$。
正数乘法保序性
若$a > b > 0$且$c > d > 0$ ,则$ac > bd$。
对称性
若$a = b$,则$b = a$;若 $a > b$,则$b < a$。
2024/1/25
可加性
若$a > b$且$c > d$,则$a + c > b + d$。
2024/1/25
35
思考题与练习题
思考题:如何利用均值不 等式证明其他不等式?
2024/1/25
|x - 3| < 5
练习题:解下列不等式, 并在数轴上表示解集
(x + 1)/(x - 2) > 0
36
THANKS。
2024/1/25
37
次不等式组来解决。
12
03
一元二次不等式解法
2024/1/25
13
一元二次不等式概念
一元二次不等式
只含有一个未知数,并且未知数的最高次数是2的不等式。
标准形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a neq 0$。
判别式及根的关系
根的关系
判别式:$Delta = b^2 4ac$,用于判断一元二次方
程的根的情况。
01
02
03
当 $Delta > 0$ 时,方程有 两个不相等的实根;
当 $Delta = 0$ 时,方程有 两个相等的实根(即一个重
根);
04
2024/1/25
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
基本不等式性质
传递性
若$a > b$且$b > c$,则$a > c$。
正数乘法保序性
若$a > b > 0$且$c > d > 0$ ,则$ac > bd$。
对称性
若$a = b$,则$b = a$;若 $a > b$,则$b < a$。
2024/1/25
可加性
若$a > b$且$c > d$,则$a + c > b + d$。
2024/1/25
35
思考题与练习题
思考题:如何利用均值不 等式证明其他不等式?
2024/1/25
|x - 3| < 5
练习题:解下列不等式, 并在数轴上表示解集
(x + 1)/(x - 2) > 0
36
THANKS。
2024/1/25
37
次不等式组来解决。
12
03
一元二次不等式解法
2024/1/25
13
一元二次不等式概念
一元二次不等式
只含有一个未知数,并且未知数的最高次数是2的不等式。
标准形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a neq 0$。
基本不等式ppt课件

a+b
当且仅当a
2
= b时,等号成立.
思考:如图,是圆的直径,点是上一点, = ,
D
= .过点作垂直于的弦,连接,.
a+b
ab
2
半径 = _______________,则
= _______________
与大小关系怎么样?
a+b
≥
(1)当积xy等于定值P时,
≥
2
证明:∵ x,y都是正数, ∴
1 2
时,积有最大值 .
4
xy.
p, ∴ x + y ≥ 2 p,
积定和最小
当且仅当x = y时,上式等号成立.
于是,当x = y时,和x + y有最小值2 p.
(2)当和x + y等于定值S时, xy ≤
S
,∴xy
2
当且仅当x = y,上式等号成立.
2
2
∴x +
4
]
2−x
4
,得x
2−x
4
的最大值为−2.
x−2
+ 2 ≤ −2 (2 − x)(
4
)
2−x
+ 2 = −2,
= 0或x = 4(舍去),即x = 0时等号成立.
练习巩固
练习2:已知0 < < 1,求 1 − 的最大值.
解:∵0 < < 1,∴ 1 − x > 0
∴ 1 − ≤
∴x +
4
x+4
− 4 ≥ 2 (x + 4) ∙
4
,即x
x+4
4
的最小值为0.
基本不等式ppt课件

基本不等式
我们都知道,把一个物体放在天平的一个盘
子上,在另一个盘子上放砝码使天平平衡,
可称得物体的质量为 .
如果是一架臂长不同(其他因素不计)的天平,
那么 并非物体的实际质量.
问题1.怎样用两臂长不同的天平称物体的质量?
问题1.怎样用两臂长不同的天平称物体的质量?
取平均值:
ab
导果”的证明思路.
ab
如果 a,b是正数,那么 ab
(当且仅当 a b时,等号成立).
2
当 a,b 0 时,不等式仍然成立.
基本不等式:
ab
ab
(a,b 0)
2
对于正数 a,b ,
ab
算术平均数:
2
几何平均数: ab
两个正数的几何平均数不大于算术平均数
问题3.设 a,b为正数,证明下列不等式成立:
2
证法2: 对于正数 a,b ,
ab
要证 ab
,
2
只要证 2 ab a b ,
只要证 0 a 2 ab b ,
只要证 0 ( a b ) 2 .
ab
因为最后一个不等式成立,所以 ab
成立,
2
当且仅当 a b时,等号成立.
分析法:是从结论出发,分析确定不等式成立的
2
1
( a b)2
2
ab
- ab 0
因为 ( a b ) 0, 所以
2
ab
得 ab
(当且仅当 a b时,等号成立).
2
2
ab
如果 a,b是正数,那么 ab
(当且仅当 a b时,等号成立).
我们都知道,把一个物体放在天平的一个盘
子上,在另一个盘子上放砝码使天平平衡,
可称得物体的质量为 .
如果是一架臂长不同(其他因素不计)的天平,
那么 并非物体的实际质量.
问题1.怎样用两臂长不同的天平称物体的质量?
问题1.怎样用两臂长不同的天平称物体的质量?
取平均值:
ab
导果”的证明思路.
ab
如果 a,b是正数,那么 ab
(当且仅当 a b时,等号成立).
2
当 a,b 0 时,不等式仍然成立.
基本不等式:
ab
ab
(a,b 0)
2
对于正数 a,b ,
ab
算术平均数:
2
几何平均数: ab
两个正数的几何平均数不大于算术平均数
问题3.设 a,b为正数,证明下列不等式成立:
2
证法2: 对于正数 a,b ,
ab
要证 ab
,
2
只要证 2 ab a b ,
只要证 0 a 2 ab b ,
只要证 0 ( a b ) 2 .
ab
因为最后一个不等式成立,所以 ab
成立,
2
当且仅当 a b时,等号成立.
分析法:是从结论出发,分析确定不等式成立的
2
1
( a b)2
2
ab
- ab 0
因为 ( a b ) 0, 所以
2
ab
得 ab
(当且仅当 a b时,等号成立).
2
2
ab
如果 a,b是正数,那么 ab
(当且仅当 a b时,等号成立).
基本不等式课件(共43张)

应用
可用于证明数列中的基本不等式及其他需要归纳证明的数学问题。
复合函数的不等式
概念
由函数f和g构成的复合函数,通常记为f(g(x))。
定理
若g(x) 在[a,b]上单调递增,且在[a,b]上有连续导数, 则f(g(x)) 在[g(a),g(b)]上也有连续导数;若f(x) 在 [g(a),g(b)]上是凸函数,则有:f(g((sa+tb)/(s+t))) < (sf(g(a))+tf(g(b)))/(s+t) (0<s<t)
3 注意事项
某些情况下需要分类讨论,如系数符号和大小关系不同。
两个变量的基本不等式
定义
指两个变量之间的不等关系。
公式
(a+b)² > a²+2ab+b² (a,b为变量)
多个变量的基本不等式
公式
对于n个非负实数a1、a2、…、an,有(∑ai)² ≥ n∑ai²
应用
可用于证明柯西不等式、绝对值不等式等多项式不 等式。
集中不等式
2
权值后再求和,然后除以所有的权值之 和所得的数。
对于任意n个实数(不限正负),有下 面这些不等式。
(1)(非加权)算数平均数 ≥ (非 加权)几何平均数 ≥ 调和平均数 (2)若各实数互不相等,则平方差
中项≥2几何平均中项减去(非加权) 算数平均中项
3
应用
可以用于求解一些需要加权平均数作为 结果的应用题。
(1+a)^x > 1+ax (1-a)^x > 1-ax
3
应用
可用于证明基本不等式等各种不等式定理。
函数保证与不等式
概念
将不等式在两端同时乘以正数或同时乘以负数, 得到的新不等式的符号不变,就称原不等式与 新不等式互为保证。
可用于证明数列中的基本不等式及其他需要归纳证明的数学问题。
复合函数的不等式
概念
由函数f和g构成的复合函数,通常记为f(g(x))。
定理
若g(x) 在[a,b]上单调递增,且在[a,b]上有连续导数, 则f(g(x)) 在[g(a),g(b)]上也有连续导数;若f(x) 在 [g(a),g(b)]上是凸函数,则有:f(g((sa+tb)/(s+t))) < (sf(g(a))+tf(g(b)))/(s+t) (0<s<t)
3 注意事项
某些情况下需要分类讨论,如系数符号和大小关系不同。
两个变量的基本不等式
定义
指两个变量之间的不等关系。
公式
(a+b)² > a²+2ab+b² (a,b为变量)
多个变量的基本不等式
公式
对于n个非负实数a1、a2、…、an,有(∑ai)² ≥ n∑ai²
应用
可用于证明柯西不等式、绝对值不等式等多项式不 等式。
集中不等式
2
权值后再求和,然后除以所有的权值之 和所得的数。
对于任意n个实数(不限正负),有下 面这些不等式。
(1)(非加权)算数平均数 ≥ (非 加权)几何平均数 ≥ 调和平均数 (2)若各实数互不相等,则平方差
中项≥2几何平均中项减去(非加权) 算数平均中项
3
应用
可以用于求解一些需要加权平均数作为 结果的应用题。
(1+a)^x > 1+ax (1-a)^x > 1-ax
3
应用
可用于证明基本不等式等各种不等式定理。
函数保证与不等式
概念
将不等式在两端同时乘以正数或同时乘以负数, 得到的新不等式的符号不变,就称原不等式与 新不等式互为保证。
基本不等式课件(共43张PPT)

重要不等式:一般地,对于任意实数a、b,总有
立
a2 b2≥2ab 当且仅当a=b时,等号成
适用范围: a,b∈R
文字叙述为: 两数的平方和不小于它们积的2倍.
如果a 0,b 0,我们用 a, b分别代替a,b, 可得到什么结论?
即: a b≥ ab (a 0,b 0) 2
通常我们把上式写作: ab≤ a b (a 0,b 0) 2
课堂练习: 已知 a,b,c∈{正实数},且 a+b+c=1.
求证:1a+1b+1c≥9.
解:证明:1a+1b+
1c = a+ab+c + a+bb+c +
a+b+c c
=3+
(ba+ab)+(ac+ac)+(bc+bc)
≥3+2+2+2=9.
当且仅当a=b=c=13时取等号.
小结 基本不等式 ab a b (a 0,b 0)
第三章 不等式
§3.4 基本不等式
这是2002年在北京召开的第24届国际数 学家大会会标.会标根据中国古代数学家赵爽 的弦图设计的,颜色的明暗使它看上去象一个 风车,代表中国人民热情好客。
D
a2 b2
b
G
F
A
a HE
探究1:
1、正方形ABCD的
面积S=_a__2 __b2
C 2、四个直角三角形的
例1.(1) 已知 x 0, 求证x 1 2, 并指出等号
成立的条件.
x
(2) 已知 ab 0, 寻找 a b 与2的大小关系, ba
并说明理由.
(3) 已知 ab 0, a b 能得到什么结论? 请说明理由. b a
[例 2] 若 a>b>1,P= lga·lgb,Q=lga+2 lgb,R=lg(a+2 b), 试比较 P、Q、R 的大小.
《基本不等式》PPT课件

一元一次不等式的解法
解一元一次不等式的基本步骤
01
去分母、去括号、移项、合并同类项、系数化为1。
解一元一次不等式需要注意的事项
02
在解不等式的过程中,要确保每一步都是等价变换,不改变不
等式的解集。
解一元一次不等式的实例分析
03
通过具体例子展示解一元一次不等式的详细步骤和注意事项。
一元一次不等式的应用举例
课程目标与要求
知识与技能
掌握不等式的定义、性质及基本 不等式,能够运用所学知识解决
相关问题。
过程与方法
通过探究、归纳、证明等方法, 培养学生的数学思维和解决问题
的能力。
情感态度与价值观
培养学生对数学的兴趣和热爱, 认识到数学在解决实际问题中的 重要作用。同时,通过基本不等 式的学习,培养学生的严谨、细
排序不等式的概念与性质
性质 反序和不大于乱序和,乱序和不大于顺序和。
当且仅当$a_i = b_i$($i = 1, 2, ldots, n$)时,反序和等于顺序和。
切比雪夫不等式的概念与性质
概念:对于任意两个实数序列$a_1, a_2, ldots, a_n$和$b_1, b_2, ldots, b_n$,若它们分别单调不 减和单调不增,则有$frac{1}{n}sum_{i=1}^{n}a_i cdot frac{1}{n}sum_{i=1}^{n}b_i leq frac{1}{n}sum_{i=1}^{n}a_ib_i$。
1 2
一元一次不等式在生活中的应用 例如比较两个数的大小、判断某个数是否满足某 个条件等。
一元一次不等式在数学中的应用 例如在解方程、求函数值域等问题中,经常需要 利用一元一次不等式进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变形式:
ab a b 平方 2
ab
a
2
b
2
2020/8/30
重要不等式:a2 b2 2ab(a、b R)
当且仅当a=b时,等号成立.
基本不等式: ab a b (a 0,b 0) 2
当且仅当a =b时,等号成立.
注意:
(1)不同点:两个不等式的适用范围不同。 (2)相同点:当且仅当a=b时,等号成立。
2020/8/30
重要变形2
若a 0,b 0,则 2ab ab a b b时取等号。(由小到大)
2020/8/30
应用基本不等式求最值的条件: ab a b ( a>0,b>0)
2
一正
二定
三相等
a与b为正实数
2020/8/30
积定和最小 和定积最大
例题:
(1)已知x 0,求y x 4 的最小值。 x
变式:已知x 1,求y x 4 的最小值。 x 1
(2)设0 x 1,求y x(1 x)的最大值。
变式:
已知0 x 1 ,求y x(1 2x)的最大值。
2020/8/30
2
练习:
求y 3x 4 的最小值 x 1
(其中x 1);
x
2
号成立。
由于x>0,所以 x
6 2
,式中等号成立,
因此 f (x)max 1 2 6
,此时 x 6 。
2
2020/8/30
1
例4、已知正数x、y满足2x+y=1,求
1
的最小值
xy
错解:1 2x y 2 2xy
错因:
xy 1 即 1 2 2 2 2 xy
思考:如何证明?
2020/8/30
证明:
a2 b2 2ab (a b)2 0 a2 b2 2ab
当且仅当 a b时,(a b)2 0 此时
a2 b2 2ab
2020/8/30
二、新课讲解
1.思考:如果当 a 0,b用 0 去替a ,换b
a2 b2 中2的a b ,能得a到, b什么结论?
连接AD、BD。
E
Rt三角形ACD与Rt三角形DCB相似
a CD CD b
CD2 ab CD ab
a b ab (当且仅当a b时,取" "号)
2
基本不202等0/8式/30的几何意义是:“半径不小于半弦。”
1.如图,AB是圆o的
P
直径,Q是AB上任
一点,
AQ=a,BQ=b,过
A
证明:要证 a b ab ① 2
只要证 a b ( 2 ab ) ②
要证②,只要证 a b (2 ab) 0 ③
要证③,只要证(
a-
2
b) 0
④
显然: ④ 是成立的,当且仅当 a b时
④ 2020/8中/30的等号成立.
当a 0,b 0时,a b 2 ab 当且仅当a b时等号成立
2020/8/30
知识要点:
1. 基本不等式:
如果a≥0,b≥0,那么 a b ≥ ab. 2
(当且仅当__a_=_b____时取“=”号).
基本不等式的变形:
如果a 0, b 0,则a b 2 ab.或 ab a b .
或ab ( a b )2 .
2
2
(当且仅当a=b时取“=”号).
D
G
F
A
a
H
E
a2 b2
b
B
2020/8/30
C a2 +b2 > 2ab
S四个三角形 2ab S大正方形 a2 b2
新课探究
特别地,当a=b时又有怎样的结论?
D
a2 +b2 =2ab
A
a GHFE
C
b
2020/8/30
B
一般地,对于任意实数 a, b ,我们有
a2 b2 2ab
当且仅当 a b 时等号成立
2020/8/30
2(.基均本值不定等理式)如果(a当且0,仅b当a0, b那时么,a取2"b"号a)b
我们把 a b 叫做正数a,b的算术平均数, 2
把 ab叫做正数a,b的几何平均数。
此定理又可叙述为:
1.两个正数的算术平均数不小于它们的几何平 均数.
2.两个正数的等差中项不小于它们的等比中项。
D
D
G
F
C
A
aH
E
ab
b
A
a GHFE
C
ab b
2020/8/30
B
B
小组合作:
ab a b (a 0,b 0) 2
当且仅当a=b时,取“=”号
能否用不等式的性质进行证明?
2020/8/30
P98探究
在右图中,AB是圆的直径,
点C是AB上的一点,
设 AC = a , BC = b 。
过点C作垂直于AB的弦DE,
若等号成立, a与b必须 能够相等
基本不等式
a2 b2 2ab 当且仅当a b时等号成立
a b 2 ab (a 0,b 0)
当且仅当a b时等号成立
ab a b (a>0,b>0) 2
ab
a
2
b
2
(a
0,
b
0)
结论1:两个正数积为定值,则和有最小值
结论2:两个正数和为定值,则积有最大值 2020/8/30
ab a b (a 0,b 0) 2
(当且仅当a=b时,等号成立)
几何平均数 算术平均数
基本不等式
22..代代数数意证义明:: 几何平均数小于等于算术平均数
33..几几何何意证义明:: 半弦长小于等于半径
从数列角度看:两个正数的等比中项小于等于它们的 等差中项 2020/8/30
若a 0,b 0,则a b 2 ab 当且仅当a b时取等号
3.4基本不等式: ab a b
2
2020/8/30
一、问题引入
2002年国际数学大会 (ICM-2002)在北京召开,此 届大会纪念封上的会标图案,其 中央正是经过艺术处理的“弦 图”。
它标志着中国古代的数学成 就,又像一只转动着的风车,欢 迎来自世界各地的数学家。
2020/8/30
新课探究
a o Qb
你能用这个图得出基本 不等式的几何解释吗?
点Q作垂直于AB的
B
弦PQ,连AP,aBbP,
则半弦PQa=__b __,
半径AO=__2___
2.PQ与AO的大小关系怎样
动态演示
几何意义:圆的半径不小于圆内半弦长 2020/8/30
证明:当 a 0,b 0 时,a b ab . 2
2020/8/30
例3.求函数 f (x) 2x2 x 3 (x 0) 的最大
x
值,及此时x的值。
解: f (x) 1 (2x 3) ,因为x>0,
x
所以 2x 3 ≥ 2 2x 3 2 6
x
x
得 (2x 3)≤ -2 6
x
因此f(x)≤ 1 2 6
2020/8/30
当且仅当 2x 3 ,即 x2 3 时,式中等