复合函数求导练习题

合集下载

导数复合函数求导法则(非常实用)

导数复合函数求导法则(非常实用)

π
则y=sinu
y ' = [sin(2 x + )]' = 2(sin u )u ' 3 π
= 2 cos u = 2 cos(2 x + ) 3
π
通过点(1, 例3.已知抛物线 .已知抛物线y=ax2+bx+c通过点 ,1), 通过点 且在点(2,- 处与直线 相切, , 且在点 ,-1)处与直线 ,- 处与直线y=x-3相切,求a, - 相切 b,c的值 , 的值 的值. 函数y=ax2+bx+c的导数 ’=2ax+b, 的导数y’ 解:函数 的导数 , 由已知得f(1)=1,f(2)=-1,f ’(2)=1, , 由已知得 - , ,
1 所以y’ 所以 ’= u
·(2x)
2x = 2 x +1
(3) y = e )
−2 x −3
- 解:y=e-2x-3
令u=-2x-3,则y=eu, - - ,
- 所以y’ 所以 ’=eu·(-2)=-2e-2x-3 . - -
(4) y = sin(2 x + ) ) 解:令u=2x+
π
3
3
4.函数 .函数y=(1+cosx)3是由 个函数复合而成. 个函数复合而成.
y=u3, u=1+cosx 两
5.函数y=3sin x+l在点 5.函数y=3sin2x+l在点(π,1)处的切线方 在点(π,1)处的切线方 程是 y=1 .
6.求 y = 3 ax 2 + bx + c 的导数 .
例2.求下列函数的导数 . (1) y = (2 x 3) )
5
解:(1)y=(2x+3)5, :( ) 令u=2x+3,则y=u5, , 所以 [(5 x + 3) ]' = 5(u )u ' = 5 × 5u

复合函数求导练习题

复合函数求导练习题

复合函数求导练习题在微积分中,复合函数求导是一个重要的概念和计算方法。

本文将介绍复合函数求导的基本原理,并提供一些练习题来加深对该概念的理解和应用。

一、复合函数求导的基本原理复合函数,又称为合成函数,是由两个或多个函数组合而成的函数。

设有函数f(x)和g(x),则复合函数可以表示为f(g(x))。

在求复合函数的导数时,有两个基本原理需要了解。

1.链式法则链式法则是求解复合函数导数的基本原理之一。

对于复合函数f(g(x)),其导数可以表示为:f'(g(x)) * g'(x)其中f'(g(x))表示f(x)对于g(x)的导数,而g'(x)表示g(x)对于x的导数。

链式法则可以简化为“外函数的导数乘以内函数的导数”。

2.换元法则换元法则是求解复合函数导数的另一个基本原理。

当复合函数的内函数不易求导时,可以通过换元来简化求导过程。

设u=g(x),则复合函数可以表示为f(u),此时求导公式可以变为:f'(u) * g'(x)其中f'(u)表示f(u)对于u的导数。

二、复合函数求导的练习题在练习中,我们将使用链式法则和换元法则来求解一些复合函数的导数。

下面是一些练习题:1. 求解以下复合函数的导数:(1) f(x) = sin(2x^2 + 3x)(2) f(x) = e^(2x)cos(x)(3) f(x) = ln(1 + x^2)2. 求解以下复合函数的导数,并指出在哪些点上导数不存在:(1) f(x) = sqrt(3x - 2)(2) f(x) = arctan(2x - 1)(3) f(x) = ln(sqrt(x^2 + 1))3. 求解以下复合函数的导数,并求出函数的定义域:(1) f(x) = sin(sqrt(x^2 - 9))(2) f(x) = ln(cos(3x))(3) f(x) = sqrt(4 - x^2)请按顺序解答以上练习题,并在答案中详细写出求导过程和最终结果。

复合函数练习题链式法则

复合函数练习题链式法则

复合函数练习题链式法则复合函数练习题——链式法则复合函数是数学中的一个重要概念,在实际问题中经常用到。

复合函数的求导是微积分中的重要内容之一,链式法则是求导过程中常用的方法。

本文将通过一些复合函数的练习题介绍链式法则的应用。

1. 题目一设函数 f(x) 的导函数为 f'(x),函数 g(x) 的导函数为 g'(x),求复合函数 F(x) = f(g(x)) 的导函数 F'(x)。

解析:根据链式法则,复合函数的导数等于外函数对内函数求导乘以内函数的导数,即 F'(x) = f'(g(x)) * g'(x)。

2. 题目二设函数 f(x) 的导函数为 f'(x),函数 g(x) 的导函数为 g'(x),求复合函数 G(x) = g(f(x)) 的导函数 G'(x)。

解析:根据链式法则,复合函数的导数等于外函数对内函数求导乘以内函数的导数,即 G'(x) = g'(f(x)) * f'(x)。

3. 题目三设函数 f(x) 的导函数为 f'(x),函数 g(x) 的导函数为 g'(x),求复合函数 H(x) = g(f(g(x))) 的导函数 H'(x)。

解析:根据链式法则,复合函数的导数等于外函数对内函数求导乘以内函数的导数,即 H'(x) = g'(f(g(x))) * f'(g(x)) * g'(x)。

经过上述练习题的解析,我们可以总结出链式法则的一般表达形式:若有复合函数 y = f(g(x)),其中 f(u) 和 g(x) 均可导,则复合函数 y 对 x 的导数可以表示为:dy/dx = df/du * du/dx,其中 df/du 表示函数 f(u) 对 u 的导数,du/dx 表示函数 g(x) 对 x 的导数。

链式法则在求导过程中起到了重要的作用,通过对复合函数的求导,我们可以解决各种实际问题,如物理、经济等领域中的速度、加速度等相关问题。

复合函数求导练习题

复合函数求导练习题

复合函数求导练习题精品资料欢迎下载复合函数求导练题一、选择题(共26小题)1.设$f(x)=\sqrt{\frac{x}{x+1}}$,则$f'(2)=\frac{1}{9}$。

2.设函数$f(x)=g(x)+x+\ln x$,曲线$y=g(x)$在点$(1,g(1))$处的切线方程为$y=2x+1$,则曲线$y=f(x)$在点$(1,f(1))$处的切线方程为$y=2x+2$。

3.下列式子不正确的是$(2sin2x)'=2cos2x$。

4.设$f(x)=sin2x$,则$f''(\frac{\pi}{4})=-1$。

5.函数$y=cos(2x+1)$的导数是$y'=-2sin(2x+1)$。

6.下列导数运算正确的是$(x^2)'=2x$。

7.下列式子不正确的是$(3x^2+xcosx)'=6x+cosx-xsinx$。

8.已知函数$f(x)=e^{2x}-3x$,则$f'(0)=2$。

9.函数$f(x)=\frac{1}{1+e^x}$的导数是$f'(x)=-\frac{e^x}{(1+e^x)^2}$。

10.已知函数$f(x)=sin2x$,则$f'(x)=2cos2x$。

11.$y=e^{sinx\ cosx\ sinx}$,则$y'=\frac{d}{dx}(e^{sinx\ cosx\ sinx})=cosx\ cos^2x\ e^{sinx\ cosx\ sinx}$,所以$y'(-\frac{\pi}{4})=\frac{\sqrt{2}}{4}$。

12.下列求导运算正确的是$(e^{2x})'=2e^{2x}$。

13.若$f(x)=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{1-x}}$,则函数$f(x)$可以是$ln\frac{1+\sqrt{x}}{\sqrt{x}}$。

高一数学简单复合函数的求导法则试题

高一数学简单复合函数的求导法则试题

高一数学简单复合函数的求导法则试题1.(2014•榆林模拟)要得到函数的导函数f′(x)的图象,只需将f(x)的图象()A.向右平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B.向左平移个单位,再把各点的纵坐标缩短到原来的2倍(横坐标不变)C.向右平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)D.向左平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)【答案】D【解析】由题意可得f'(x)=2cos(2x+)==2sin[2(x+)+],而由y=sin(2x+)y=2sin[2(x+)+]=f′(x),分析选项可判断解:∵的导函数f'(x)=2cos(2x+)==2sin[2(x+)+]而由y=sin(2x+)y=2sin[2(x+)+]=f′(x)故选D点评:本题主要考查三角函数的平移.复合函数的求导的应用,三角函数的平移原则为左加右减上加下减.2.(2012•桂林模拟)设a∈R,函数f(x)=e x+a•e﹣x的导函数是f′(x),且f′(x)是奇函数.若曲线y=f(x)的一条切线的斜率是,则切点的横坐标为()A.ln2B.﹣ln2C.D.【答案】A【解析】已知切线的斜率,要求切点的横坐标必须先求出切线的方程,我们可从奇函数入手求出切线的方程.解:对f(x)=e x+a•e﹣x求导得f′(x)=e x﹣ae﹣x又f′(x)是奇函数,故f′(0)=1﹣a=0解得a=1,故有f′(x)=e x﹣e﹣x,设切点为(x0,y),则,得或(舍去),得x=ln2.点评:熟悉奇函数的性质是求解此题的关键,奇函数定义域若包含x=0,则一定过原点.3.(2012•德阳三模)已知,将函数的图象按向量平移后,所得图象恰好为函数y=﹣f′(x)(f′(x)为f(x)的导函数)的图象,则c的值可以为()A.B.πC.D.【答案】D【解析】先根据辅助角公式进行化简,f(x)=cos(x+),按向量平移后得到y=cos(x﹣c+)的图象.由题意可得cos(x﹣c+)=sin(x+),从而得到c的值.解:∵f(x)==cosx﹣sinx=cos(x+),把函数的图象按向量平移后,所得图象对应的函数为y=cos(x﹣c+).而﹣f′(x)=sin(x+),平移后,所得图象恰好为函数y=﹣f′(x),故cos(x﹣c+)=sin(x+),故可让c=,故选 D.点评:本题主要考查三角函数按照向量进行平移.其关键是要把向量的平移转化为一般的平移,然后根据三角函数的平移原则为左加右减上加下进行平移.4.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=4x B.y=4x﹣8C.y=2x+2D.【答案】A【解析】据曲线在切点处的导数值为曲线切线的斜率,求g′(1)进一步求出f′(1),由点斜式求出切线方程.解:由已知g′(1)=2,而,所以f′(1)=g′(1)+1+1=4,即切线斜率为4,又g(1)=3,故f(1)=g(1)+1+ln1=4,故曲线y=f(x)在点(1,f(1))处的切线方程为y﹣4=4(x﹣1),即y=4x,故选A.点评:本题考查曲线在切点处的导数值为曲线切线的斜率.5.已知y=f(x)=ln|x|,则下列各命题中,正确的命题是()A.x>0时,f′(x)=,x<0时,f′(x)=﹣B.x>0时,f′(x)=,x<0时,f′(x)无意义C.x≠0时,都有f′(x)=D.∵x=0时f(x)无意义,∴对y=ln|x|不能求导【答案】C【解析】利用绝对值的意义将函数中的绝对值去掉转换为分段函数;利用基本的初等函数的导数公式及复合函数的求导法则:外函数的导数与内函数的导数的乘积,分别对两段求导数,两段的导数合起来是f(x)的导数.解:根据题意,f(x)=,分两种情况讨论:(1)x>0时,f(x)=lnx⇒f'(x)=(lnx)'=.(2)x<0时f(x)=ln(﹣x)⇒f'(x)=[ln(﹣x)]'=(这里应用定义求导.)故选C点评:本题考查绝对值的意义、考查分段函数的导数的求法、考查基本初等函数的导数公式及简单的复合函数的求导法则.6.为得到函数y=sin(2x+)的导函数图象,只需把函数y=sin2x的图象上所有点的()A.纵坐标伸长到原来的2倍,横坐标向左平移B.纵坐标缩短到原来的倍,横坐标向左平移C.纵坐标伸长到原来的2倍,横坐标向左平移D.纵坐标缩短到原来的倍,横坐标向左平移【答案】C【解析】求出函数的导数,利用诱导公式化为正弦函数的形式,然后利用函数的平移原则,判断正确选项即可.解:函数y=sin(2x+)的导函数为y=2cos(2x+)=2sin(2x+),所以只需把函数y=sin2x的图象上所有点的纵坐标伸长到原来的2倍,得到y=2sin2x的图象,横坐标向左平移,得到y=2sin2(x+)的图象,即y=2sin(2x+)=2cos(2x+).故选C.点评:本题主要考查复合函数的导数,诱导公式以及三角函数的平移.三角函数的平移原则为左加右减上加下减.7.函数y=sin(2x2+x)导数是()A.y′=cos(2x2+x)B.y′=2xsin(2x2+x)C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x)【答案】C【解析】设H(x)=f(u),u=g(x),则H′(x)=f′(u)g′(x).解:设y=sinu,u=2x2+x,则y′=cosu,u′=4x+1,∴y′=(4x+1)cosu=(4x+1)cos(2x2+x),故选C.点评:牢记复合函数的导数求解方法,在实际学习过程中能够熟练运用.8.函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x【答案】D【解析】将f(x)=sin2x看成外函数和内函数,分别求导即可.解:将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x故选D点评:考查学生对复合函数的认识,要求学生会对简单复合函数求导.9.已知函数f(x﹣1)=2x2﹣x,则f′(x)=()A.4x+3B.4x﹣1C.4x﹣5D.4x﹣3【答案】A【解析】令x﹣1=t求出f(x)的解析式;利用导函数的运算法则求出f′(x).解:令x﹣1=t,则x=t+1所以f(t)=2(t+1)2﹣(t+1)=2t2+3t+1所以f(x)=2x2+3x+1∴f′(x)=4x+3故选A点评:本题考查通过换元法求出函数的解析式、考查导数的四则运算法则.10.若函数f(x)=,则f′(x)是()A.仅有最小值的奇函数B.仅有最大值的偶函数C.既有最大值又有最小值的偶函数D.非奇非偶函数【答案】C【解析】先求导,转化为二次函数型的函数并利用三角函数的单调性求其最值,再利用函数的奇偶性的定义进行判断其奇偶性即可.解:∵函数f(x)=,∴f′(x)=cos2x+cosx=2cos2x+cosx﹣1=,当cosx=时,f′(x)取得最小值;当cosx=1时,f′(x)取得最大值2.且f′(﹣x)=f′(x).即f′(x)是既有最大值,又有最小值的偶函数.故选C.点评:熟练掌握复合函数的导数、二次函数型的函数的最值、三角函数的单调性及函数的奇偶性是解题的关键.。

复合求导练习题

复合求导练习题

复合求导练习题复合求导练习题在微积分学中,求导是一项基本的技能。

而复合求导则是在求导的过程中,遇到复合函数时所需要掌握的一种求导方法。

复合函数是由两个或多个函数组合而成的函数,其求导的过程需要运用链式法则。

为了更好地理解和掌握复合求导,我们来进行一些练习题。

1. 设有函数 f(x) = (2x^3 - 5x^2 + 3x - 1)^4,求 f'(x)。

解析:首先,我们可以将 f(x) 看作是一个外层函数和一个内层函数的复合。

外层函数是 g(x) = x^4,内层函数是 h(x) = 2x^3 - 5x^2 + 3x - 1。

根据链式法则,f'(x) = g'(h(x)) * h'(x)。

我们先来求解 g'(h(x)) 和 h'(x)。

g'(x) = 4x^3,h'(x) = 6x^2 - 10x + 3。

将 g'(h(x)) 和 h'(x) 代入链式法则,得到 f'(x) = 4(2x^3 - 5x^2 + 3x - 1)^3 *(6x^2 - 10x + 3)。

2. 设有函数 f(x) = sin(3x^2 + 2x + 1),求 f'(x)。

解析:在这个例子中,我们需要求解 sin 函数的复合求导。

sin 函数的导数是cos 函数,所以我们需要求解 (3x^2 + 2x + 1) 的导数,并将其与 cos 函数相乘。

f'(x) = cos(3x^2 + 2x + 1) * (6x + 2)。

3. 设有函数 f(x) = ln(2x^3 - 4x + 1),求 f'(x)。

解析:对于 ln 函数的复合求导,我们需要求解 (2x^3 - 4x + 1) 的导数,并将其除以 (2x^3 - 4x + 1)。

f'(x) = (6x^2 - 4) / (2x^3 - 4x + 1)。

复合函数求导练习题

复合函数求导练习题
将y=sin2x写成,
y=u2,u=sinx的形式.
对外函数求导为y′=2u,
对内函数求导为u′=cosx,
故可以得到y=sin2x的导数为
y′=2ucosx=2sinxcosx=sin2x
故选D
22.(2010春•朝阳区期末)函数 的导函数是( )
A.f'(x)=2e2xB.
C. D.
【解答】解:对于函数 ,
C. D.
8.已知函数f(x)=e2x+1﹣3x,则f′(0)=( )
A.0B.﹣2C.2e﹣3D.e﹣3
9.函数 的导数是( )
A. B.
C. D.
10.已知函数f(x)=sin2x,则f′(x)等于( )
A.cos2xB.﹣cos2xC.sinxcosxD.2cos2x
11.y=esinxcosx(sinx),则y′(0)等于( )
【解答】解:函数的导数y′=﹣sin(2x+1)(2x+1)′=﹣2sin(2x+1),
故选:C
6.(2014春•福建月考)下列导数运算正确的是( )
A.(x+ )′=1+ B.(2x)′=x2x﹣1C.(cosx)′=sinxD.(xlnx)′=lnx+1
【解答】解:根据导数的运算公式可得:
A,(x+ )′=1﹣ ,故A错误.
B,(2x)′=lnx2x,故B错误.
C,(cosx)′=﹣sinx,故C错误.
D.(xlnx)′=lnx+1,正确.
故选:D
7.(2013春•海曙区校级期末)下列式子不正确的是( )
A.(3x2+xcosx)′=6x+cosx﹣xsinxB.(sin2x)′=2cos2x

复合函数求导练习题

复合函数求导练习题

复合函数求导练习题1. 简单函数的定义求导的方法求函数的增量?y?f?f; ?yf?f?。

?x?xf?f取极限求导数f’?lim?x?0?x求平均变化率2.导数与导函数的关系:特殊与一般的关系。

函数在某一点f’的导数就是导函数f,当x?x0时的函数值。

.常用的导数公式及求导法则:公式①C?0,③’??sinx‘②’?cosx ④’?nxn?1 ⑥’?ex⑤’?axlna ⑦?‘11’⑧? xlnax11’’cotx)??⑨? ⑩法则:[f?g]?[f]?[g],[fg]’?f’g?g’ff’f’g?g’f [ ]?2gg例:32y?xx?4y???sinxxy?3cosx?4sinx y??2x?3?y?ln?x?2?2复合函数的导数如果函数?在点x处可导,函数f 在点u=?处可导,则复合函数y= f =f [?]在点x处也可导,并且])ˊ= 或记作熟记链式法则若y= f ,u=?? y= f [?],则f??u?y?x=yuxy?x=f若y= f ,u=?,v=?? y= f [?)],则?? y?x=f复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。

在求导时要由外到内,逐层求导。

例1函数y?1的导数.4解:y?1?4. ?4,u?1?3x,则设y?u?4y’x?y’u?u’x?’u?’x??4u?5??12u?5?12?5?12.例2求y?x的导数. 1?x15解:y???x??, ?1?x??451?x?y’5?1?x??x?1?x1?x51?x????4‘?45?1?x?x21?x5?1?x??45?11?5??x5.56例求下列函数的导数y??2x解:y?3?2x令u=-2x,则有y=u,u=-2x??u??yux由复合函数求导法则y?x 有y′=??u?x=12?2x在运用复合函数的求导法则达到一定的熟练程度之后,可以不再写出中间变量u,于是前面可以直接写出如下结果:yˊ=123?2x1?2x在运用复合函数求导法则很熟练之后,可以更简练地写出求导过程:yˊ=12?2x1?2x例4求下列函数的导数 y=?2xcos x y=ln解:y=由于y=而其中?2x?2xcos x是两个函数?2x与cos x的乘积,又是复合函数,所以在对此函数求导时应先用乘积求导法则,而在求时再用复合函数求导法则,于是yˊ=ˊcos x -?2xsin xcosx-?2xsin x=?cosx?2x2?2x-?2xsin xy=ln )是u= x+?x2与y=ln u复合而成,所以对此函数求导时,应先用复合函数求导法则,在求u?x时用函数和的求导法则,而求′的导数时再用一次复合函数的求导法则,所以1x??x2? [1+ˊ]=1x??x2??1?????? ?2?x2?2x=1x??x2?x??x2?x2=1?x2例设y?ln 求 y?. 解利用复合函数求导法求导,得y??[ln]??1x?x?12??1x?x2?1[1??]?1x?x?12[1?12x?12?]?1x?x?12[1?xx?12]?1x?12.1.求下函数的导数. y?cos y= y=5y=y=y=2xy?3?112y= y=siny=cos363x?1c3; ?y?sinx2;?y?o1.求下列函数的导数y =sinx3+sin33x; y??4?x); ?y?lnsin.sin2xlogax?1技能演练基础强化1.函数y=cosnx的复合过程正确的是 A.y=un,u =cosxn B.y=t,t=cosnx C.y=tn,t=cosx D.y=cost,t=xn 答案 C2.y=ex2-1的导数是 A.y′=e22x2-1B.y′=2xeD.y′=ex2-1x2-1C.y′=e解析y′=e答案 B3.下列函数在x=0处没有切线的是 A.y=3x2+cosx1C.y=+2xxx2-1xx2-1′=e2·2x.B.y=xsinx 1D.y=cosx11解析因为y=2x在x=0处没定义,所以y=+2x在x=0处没有切线.xx答案 C4.与直线2x-y+4=0平行的抛物线y=x2的切线方程是 A.2x-y+3=0C.2x-y+1=0解析设切点为,则斜率k=2x0=2,∴x0=1,∴切点为.故切线方程为y-1=2,即2x-y-1=0. 答案 D5.y=loga的导数是x?2x-1?lna1?2x-1?lna4xB.2x-12x2-1lnaB.2x-y-3=0 D.2x-y-1=0 14x解析y′=x2-1)′=?2x-1?lna?2x-1?lna答案 A 6.已知函数f=ax-1,且f′=2,则a的值为 A.a =1C.a=11解析f′=·′22==12ax2ax-1axax-1B.a=D.a>0由f′=2,得a=2,∴a=2. a-1答案 B7.曲线y=sin2x在点M处的切线方程是________.解析y′=′=cos2x·′=2cos2x,∴k=y′|x=π=2.又过点,所以切线方程为y=2.答案 y=2f′?x?8.f=e2x-2x,则=________.e-1解析f′=′-′=2e2x-2=2.f′?x?2?e2x-1?∴2. e-1e-1答案能力提升9.已知函数f=2x3+ax与g=bx2+c的图像都过点P,且在点P处有相同的切线.求实数a,b,c的值.解∵函数f=2x3+ax与g=bx2+c的图像都过点P, ?2×23+2a=0,?∴?得a=-8,4b+c=0,?b×2+c=0,?∴f=2x3-8x,f′=6x2-8. 又当x=2时,f′=16,g′=4b,∴4b=16,∴b=4,c=-16. ∴a=-8,b =4,c=-16.110.已知函数f=lnx,g=2+a,直线l与函数f、g 的图像都相切,2且l与函数f图像的切点的横坐标为1,求直线的方程及a的值.1解∵f=lnx,∴f′=,∴f′=1,x即直线l的斜率为1,切点为.∴直线l的方程为y=x-1.y=x-1,??1又l与g的图像也相切,等价于方程组?1x2-x+1+a ??y=22+a2=0有两个相等的实根,∴Δ=1-4×12=0,∴a12品味高考11.曲线y=e-2x+1在点处的切线与直线y=0和y=x围成的三角形的面积为′e-2x=-2e-2x,∴k=y′|x=0=-2e0=-2,∴切线方程为y-2=-2,即y=-2x+2.如图,由y=-2x+2,?得交点坐标为,y=-2x+2与x轴的交点坐标为,∴所求面积为S =12×1×2133.答案 A12.若曲线y=x2+ax+b在点处的切线方程是x-y +1=0,则)A.a=1,b=1C.a=1,b=-1解析∵y=x2+ax+b,∴y′=2x+a. ∵在点处的切线方程是x-y+1=0,∴f′=a=1.B.a=-1,b=1 D.a=-1,b=-1又0-b+1=0,∴b=1. 答案 A函数求导1. 简单函数的定义求导的方法求函数的增量?y?f?f;?yf?f?。

导数--复合函数的导数练习题

导数--复合函数的导数练习题

函数求导1. 简单函数的定义求导的方法(一差、二比、三取极限) (1)求函数的增量)()(00x f x x f y -∆+=∆;(2)求平均变化率xx f x x f x y ∆-∆+=∆∆)()(00。

(3)取极限求导数=)(0'x f xx f x x f x ∆-∆+→∆)()(lim 0002.导数与导函数的关系:特殊与一般的关系。

函数在某一点)(0'x f 的导数就是导函数)(x f ,当0x x =时的函数值。

3.常用的导数公式及求导法则: (1)公式①0'=C ,(C 是常数) ②x x cos )(sin '= ③x x sin )(cos '-=④1')(-=n n nxx⑤a a a xx ln )('=⑥xx e e =')(⑦a x x a ln 1)(log '=⑧x x 1)(ln '= ⑨x x 2'cos 1)(tan = ⑩(xx 2'sin 1)cot -= (2)法则:''')]([)]([)]()([x g x f x g x f ±=±, )()()()()]()(['''x f x g x g x f x g x f +=)()()()()(])()([2'''x g x f x g x g x f x g x f -= 例:(1)()324y x x =- (2)sin xy x=(3)3cos 4sin y x x =- (4)()223y x =+(5)()ln 2y x =+复合函数的导数如果函数)(x ϕ在点x 处可导,函数f (u )在点u=)(x ϕ处可导,则复合函数y= f (u )=f [)(x ϕ]在点x 处也可导,并且(f [)(x ϕ])ˊ= [])(x f ϕ')(x ϕ'或记作 x y '=u y '•x u '熟记链式法则若y= f (u ),u=)(x ϕ⇒ y= f [)(x ϕ],则x y '=)()(x u f ϕ''若y= f (u ),u=)(v ϕ,v=)(x ψ⇒ y= f [))((x ψϕ],则x y '=)()()(x v u f ψϕ'''(2)复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。

导数的运算律,复合函数求导及极值问题习题

导数的运算律,复合函数求导及极值问题习题

和、差、积、商的导数+复合函数求导1.曲线2)(3-+=x x x f 在P 点处的切线平行于直线14-=x y ,则P 点坐标为( )A .)0,1(B .)8,2(C .)8,2(和)4,1(-D .)0,1(和)4,1(--2.已知直线1+=kx y 与曲线b ax x y ++=3切于点)3,1(,则b 的值为( )A .3B .3-C .5D .5-3、已知y =21sin2x +sin x ,那么y ′是 A 仅有最小值的奇函数 B 既有最大值,又有最小值的偶函数C 仅有最大值的偶函数D 非奇非偶函数4.函数y=(x+2a)(x -a)2的导数为 ( )A .2(x 2-a 2) B.3(x 2+a 2) C.3(x 2-a 2) D.2(x 2+a 2)5.已知函数11313+-=xx y ,则其导函数的值域为 。

6.曲线106323+++=x x x y 的切线中,斜率最小的切线方程是 。

7、曲线y =sin3x 在点P (3π,0)处切线的斜率为___________ 8、函数y =x sin(2x -2π)cos(2x +2π)的导数是 9.求曲线122+=x x y 在点(1,1)处的切线方程10、求函数cos(2)3y x π=-的导数11、求函数1lny x=的导数极值1、关于函数762)(23+-=x x x f ,下列说法不正确的是 ( )A .在区间(∞-,0)内,)(x f 为增函数B .在区间(0,2)内,)(x f 为减函数C .在区间(2,∞+)内,)(x f 为增函数D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数2、函数y =1+3x -x 3有 ( )A.极小值-2,极大值2B.极小值-2,极大值3C.极小值-1,极大值1D.极小值-1,极大值33、函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则() A.0<b <1 B.b <1 C.b >0 D.b <214、求下列函数的单调区间,极值(1)59323+--=x x x y ,[4,4]x ∈-(2)()ln(1)34f x x x =--+答案和、差、积、商的导数+复合函数求导1.曲线2)(3-+=x x x f 在P 点处的切线平行于直线14-=x y ,则P 点坐标为( D )A .)0,1(B .)8,2(C .)8,2(和)4,1(-D .)0,1(和)4,1(--2.已知直线1+=kx y 与曲线b ax x y ++=3切于点)3,1(,则b 的值为( A )A .3B .3-C .5D .5-3、已知y =21sin2x +sin x ,那么y ′是 ( B ) A 仅有最小值的奇函数 B 既有最大值,又有最小值的偶函数C 仅有最大值的偶函数D 非奇非偶函数4.函数y=(x+2a)(x -a)2的导数为 ( C )A .2(x 2-a 2) B.3(x 2+a 2) C.3(x 2-a 2) D.2(x 2+a 2)5.已知函数11313+-=xx y ,则其导函数的值域为 [2,)+∞ 。

知识点18 复合函数的求导

知识点18 复合函数的求导

e lim
x 0
1 ln(1 x ) 1 x
x
e . 2
2sin x 1 2 2sin x 1 2 sin x 1 2 sin x 1

2 sin x 2cos x 2 sin x cos x 2sin x 1 ( x 时, cos x 0 ) 2 2 2 3cos x 2 sin x
例18.6(难度系数0.4) 求函数 y x x 的导数. 解析:此函数既不是指数函数也不是幂函数,而是“幂指函数”,对幂指函数 可以两边取对数后再求导.这也是“对数求导法”适合的类型.
解:两边取对数,得 ln y x ln x ,两边求导
y 1 ln x x 1 ln x ,故有 y x
学科:高等数学
第二章 导数与微分
知识点18 复合函数的求导 精选习题 作者:邹群
例18.1(难度系数0.2) y = arcsin e x ,求 y . 解析:基础题型.对于复合函数的求导要注意分析函数的结构,搞清楚中间变 量(必要时可以设出中间变量),详细步骤是:分解—求导—相乘— 回代.具体操作时可省略“回代”. 解: y
f x x 1 x x 1 , g x , f x , 2 2 1 x 1 f x 1 x 1 x
1
f x f x 1 x 1 . 1 f x f x f x g x 2 2 2 2 x 2 x 1 1 f x 1 f x 1 1 x
当 x 0 时,
1 1 ln(1 x ) 1 (1 x ) x 1 f x f 0 (1 x ) e ex 1 e f 0 lim lim e lim e lim x 0 x 0 x 0 x 0 x x x x

复合导数求导练习题

复合导数求导练习题

复合导数求导练习题在微积分中,复合函数是一种由多个简单函数通过组合而成的函数。

求解复合函数的导数是微积分中的重要内容之一。

本文将给出一些复合导数求导的练习题,帮助读者巩固这一概念。

练习题一:设函数y = y^3−2y+1,函数y = y^2+2y−1,求解y对y的复合函数y = y∘y的导数。

解答:首先,我们需要计算出y = y∘y = y(y),对应的y的表达式。

将函数y代入y的表达式中,我们有:y = y(y) = (y)^2+2(y)−1 = (y^3−2y+1)^2+2(y^3−2y+1)−1接下来,我们将求解导数y′= yy/yy对于复合函数的求导,我们需要使用链式法则。

根据链式法则,我们有:y′= yy/yy=yy/y(y^3−2y+1) ×y(y^3−2y+1)/yy首先,我们计算导数yy/y(y^3−2y+1):yy/y(y^3−2y+1) = 2(y^3−2y+1) × (3y^2−2)然后,我们计算导数y(y^3−2y+1)/yy:y(y^3−2y+1)/yy = 3y^2−2将两个导数相乘,得到:y′= 2(y^3−2y+1) × (3y^2−2)至此,我们求解出了复合函数y = y∘y的导数。

练习题二:设函数y = sin(y^2),函数y = yyy(y^3−2y),求解y对y的复合函数y = y∘y的导数。

解答:首先,我们需要计算出y = y∘y = y(y),对应的y的表达式。

将函数y代入y的表达式中,我们有:y = y(y) = yyy((sin(y^2))^3−2(sin(y^2)))接下来,我们将求解导数y′= yy/yy同样使用链式法则,我们有:y′= yy/yy=yy/y(y^3−2y) ×y(y^3−2y)/yy ×yy/yy首先,我们计算导数yy/y(y^3−2y):yy/y(y^3−2y) = cos((sin(y^2))^3−2(sin(y^2)))然后,我们计算导数y(y^3−2y)/yy:y(y^3−2y)/yy = 3(y^2−2)最后,我们计算导数yy/yy:yy/yy = cos(y^2) × 2y将三个导数相乘,得到:y′= cos((sin(y^2))^3−2(sin(y^2))) × 3(y^2−2) × cos(y^2) × 2y至此,我们求解出了复合函数y = y∘y的导数。

函数求导公式和复合函数

函数求导公式和复合函数

1、y=c,y'=0(c为常数)。

2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。

3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。

4、y=logax,y'=1/(xlna)(a>0且a≠1);y=lnx,y'=1/x。

5、y=sinx,y'=cosx。

6、y=cosx,y'=-sinx。

7、y=tanx,y'=(secx)^2=1/(cosx)^2。

8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。

9、y=arcsinx,y'=1/√(1-x^2)。

10、y=arccosx,y'=-1/√(1-x^2)。

11、y=arctanx,y'=1/(1+x^2)。

12、y=arccotx,y'=-1/(1+x^2)。

13、y=shx,y'=ch x。

14、y=chx,y'=sh x。

15、y=thx,y'=1/(chx)^2。

16、y=arshx,y'=1/√(1+x^2)。

设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y 值与之对应,则变量x与y 之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。

复合函数:总的公式f'[g(x)]=f'(g)×g'(x)。

复合函数如何求导:f[g(x)]中,设g(x)=u,则f[g(x)]=f(u)。

f[g(x)]=sin(2x),则设g(x)=2x,令g(x)=2x=u,则f(u)=sin(u) 所以f'[g(x)]=[sin(u)]'*(2x)'=2cos(u),再用2x 代替u,得f'[g(x)]=2cos(2x). 从而(公式):f'[g(x)]=f'(u)*g'(x)1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^213:复合函数求导:(uv)'=uv'+u'v(u+v)'=u'+v'(u/)'=(u'v-uv')/^214:y'=[cos(3x)]'=-3sin(x)15:y'={sin(3-x)]'=-cos(x)16:F'(g(x)) = [ F(g(x+dx)) - F(g(x)) ] / dx .(1)g(x+dx) - g(x) = g'(x)*dx = dg(x).(2)g(x+dx) = g(x) + dg(x) .(3)F'(g(x)) = [ F(g(x) + dg(x)) - F(g(x)) ] /dx =[ F(g(x) + dg(x)) - F(g(x)) ] / dg(x) * dg(x)/dx =F'(g) * g'(x)。

高等数学导数求导练习题

高等数学导数求导练习题

高等数学导数求导练习题一、基本初等函数求导1. 求函数 f(x) = x^3 3x^2 + 2x 5 的导数。

2. 求函数 f(x) = (3x + 1)^4 的导数。

3. 求函数 f(x) = 1/(x^2 1) 的导数。

4. 求函数f(x) = √(x^2 + 3) 的导数。

5. 求函数 f(x) = 2^x 3^x 的导数。

二、复合函数求导6. 求函数 f(x) = (x^2 + 1)^3 的导数。

7. 求函数 f(x) = sin(2x + 1) 的导数。

8. 求函数 f(x) = ln(e^x + 1) 的导数。

9. 求函数 f(x) = cos^2(x) 的导数。

10. 求函数 f(x) = (1 + x^2)^5 的导数。

三、隐函数求导11. 已知 y = x^3 + y^3,求 dy/dx。

12. 已知 x^2 + y^2 = 25,求 dy/dx。

13. 已知 e^y = x^2 + y^2,求 dy/dx。

14. 已知 sin(x + y) = y^2,求 dy/dx。

15. 已知 ln(x^2 + y^2) = 2x,求 dy/dx。

四、参数方程求导16. 已知参数方程 x = t^2,y = t^3,求 dy/dx。

17. 已知参数方程 x = cos(t),y = sin(t),求 dy/dx。

18. 已知参数方程 x = 2t + 1,y = 3t^2 2,求 dy/dx。

19. 已知参数方程 x = e^t,y = e^(2t),求 dy/dx。

20. 已知参数方程 x = asin(t),y = acos(t),求 dy/dx。

五、高阶导数21. 求函数 f(x) = x^4 2x^3 + 3x^2 的二阶导数。

22. 求函数 f(x) = e^x sin(x) 的一阶和二阶导数。

23. 求函数 f(x) = ln(x^2 + 1) 的一阶和二阶导数。

24. 求函数 f(x) = (x^2 + 1)^(3) 的一阶和二阶导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合函数求导练习题一.选择题(共26小题)1.设,则f′(2)=()A.B.C.D.2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=4x B.y=4x﹣8 C.y=2x+2 D.3.下列式子不正确的是()A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2C.(2sin2x)′=2cos2x D.()′=4.设f(x)=sin2x,则=()A.B.C.1 D.﹣15.函数y=cos(2x+1)的导数是()A.y′=sin(2x+1) B.y′=﹣2xsin(2x+1)C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1)6.下列导数运算正确的是()A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+17.下列式子不正确的是()A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2xC.D.8.已知函数f(x)=e2x+1﹣3x,则f′(0)=()A.0 B.﹣2 C.2e﹣3D.e﹣39.函数的导数是()A.B.C.D.10.已知函数f(x)=sin2x,则f′(x)等于()A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x11.y=e sinx cosx(sinx),则y′(0)等于()A.0 B.1 C.﹣1 D.212.下列求导运算正确的是()A.B.C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x13.若,则函数f(x)可以是()A.B.C.D.lnx14.设,则f2013(x)=()A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x)C.22012(cos2x+sin2x)D.22013(sin2x+cos2x)15.设f(x)=cos22x,则=()A.2 B.C.﹣1 D.﹣216.函数的导数为()A.B.C.D.17.函数y=cos(1+x2)的导数是()A.2xsin(1+x2)B.﹣sin(1+x2)C.﹣2xsin(1+x2)D.2cos(1+x2)18.函数y=sin(﹣x)的导数为()A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+)19.已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是()A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)20.函数y=sin(2x2+x)导数是()A.y′=cos(2x2+x)B.y′=2xsin(2x2+x)C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x)21.函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x22.函数的导函数是()A.f'(x)=2e2x B.C. D.23.函数的导数为()A.B.C.D.24.y=sin(3﹣4x),则y′=()A.﹣sin(3﹣4x)B.3﹣cos(﹣4x)C.4cos(3﹣4x)D.﹣4cos(3﹣4x)25.下列结论正确的是()A.若,B.若y=cos5x,则y′=﹣sin5xC.若y=sinx2,则y′=2xcosx2D.若y=xsin2x,则y′=﹣2xsin2x26.函数y=的导数是()A.B.C.D.二.填空题(共4小题)27.设y=f(x)是可导函数,则y=f()的导数为.28.函数y=cos(2x2+x)的导数是.29.函数y=ln的导数为.30.若函数,则的值为.参考答案与试题解析一.选择题(共26小题)1.(2015春•拉萨校级期中)设,则f′(2)=()A.B.C.D.【解答】解:∵f(x)=ln,令u(x)=,则f(u)=lnu,∵f′(u)=,u′(x)=•=,由复合函数的导数公式得:f′(x)=•=,∴f′(2)=.故选B.2.(2014•怀远县校级模拟)设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=4x B.y=4x﹣8 C.y=2x+2 D.【解答】解:由已知g′(1)=2,而,所以f′(1)=g′(1)+1+1=4,即切线斜率为4,又g(1)=3,故f(1)=g(1)+1+ln1=4,故曲线y=f(x)在点(1,f(1))处的切线方程为y﹣4=4(x﹣1),即y=4x,故选A.3.(2014春•永寿县校级期中)下列式子不正确的是()A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2C.(2sin2x)′=2cos2x D.()′=【解答】解:由复合函数的求导法则对于选项A,(3x2+cosx)′=6x﹣sinx成立,故A正确对于选项B,成立,故B正确对于选项C,(2sin2x)′=4cos2x≠2cos2x,故C不正确对于选项D,成立,故D正确故选C4.(2014春•晋江市校级期中)设f(x)=sin2x,则=()A.B.C.1 D.﹣1【解答】解:因为f(x)=sin2x,所以f′(x)=(2x)′cos2x=2cos2x.则=2cos(2×)=﹣1.故选D.5.(2014秋•阜城县校级月考)函数y=cos(2x+1)的导数是()A.y′=sin(2x+1) B.y′=﹣2xsin(2x+1)C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1)【解答】解:函数的导数y′=﹣sin(2x+1)(2x+1)′=﹣2sin(2x+1),故选:C6.(2014春•福建月考)下列导数运算正确的是()A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+1【解答】解:根据导数的运算公式可得:A,(x+)′=1﹣,故A错误.B,(2x)′=lnx2x,故B错误.C,(cosx)′=﹣sinx,故C错误.D.(xlnx)′=lnx+1,正确.故选:D7.(2013春•海曙区校级期末)下列式子不正确的是()A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2xC.D.【解答】解:因为(3x2+xcosx)′=6x+cosx﹣xsinx,所以选项A正确;(sin2x)′=2cos2x,所以选项B正确;,所以C正确;,所以D不正确.故选D.8.(2013春•江西期中)已知函数f(x)=e2x+1﹣3x,则f′(0)=()A.0 B.﹣2 C.2e﹣3D.e﹣3【解答】解:∵f′(x)=2e2x+1﹣3,∴f′(0)=2e﹣3.故选C.9.(2013春•黔西南州校级月考)函数的导数是()A.B.C.D.【解答】解:∵函数,∴y′=3cos(3x+)×3=,故选B.10.(2013春•东莞市校级月考)已知函数f(x)=sin2x,则f′(x)等于()A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x【解答】解:由f(x)=sin2x,则f′(x)=(sin2x)′=(cos2x)•(2x)′=2cos2x.所以f′(x)=2cos2x.故选D.11.(2013秋•惠农区校级月考)y=e sinx cosx(sinx),则y′(0)等于()A.0 B.1 C.﹣1 D.2【解答】解:∵y=e sinx cosx(sinx),∴y′=(e sinx)′cosx(sinx)+e sinx(cosx)′(sinx)+e sinx(cosx)(sinx)′=e sinx cos2x(sinx)+e sinx(﹣sin2x)+e sinx(cos2x)∴y′(0)=0+0+1=1故选B12.(2012秋•珠海期末)下列求导运算正确的是()A.B.C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x【解答】解:因为,所以选项A不正确;,所以选项B正确;((2x+3)2)′=2(2x+3)•(2x+3)′=4(2x+3),所以选项C不正确;(e2x)′=e2x•(2x)′=2e2x,所以选项D不正确.故选B.13.(2012秋•朝阳区期末)若,则函数f(x)可以是()A.B.C.D.lnx【解答】解:;;;.所以满足的f(x)为.故选A.14.(2012秋•庐阳区校级月考)设,则f2013(x)=()A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x)C.22012(cos2x+sin2x)D.22013(sin2x+cos2x)【解答】解:∵f0(x)=sin2x+cos2x,∴f1(x)==2(cos2x﹣sin2x),f2(x)==22(﹣sin2x﹣cos2x),f3(x)==23(﹣cos2x+sin2x),f4(x)==24(sin2x+cos2x),…通过以上可以看出:f n(x)满足以下规律,对任意n∈N,.∴f2013(x)=f503×4+1(x)=22012f1(x)=22013(cos2x﹣sin2x).故选:B.15.(2011•潜江校级模拟)设f(x)=cos22x,则=()A.2 B.C.﹣1 D.﹣2【解答】解:∵f(x)=cos22x=∴=﹣2sin4x∴故选D.16.(2011秋•平遥县校级期末)函数的导数为()A.B.C.D.【解答】解:∵∴∴=故选D17.(2011春•南湖区校级月考)函数y=cos(1+x2)的导数是()A.2xsin(1+x2)B.﹣sin(1+x2)C.﹣2xsin(1+x2)D.2cos(1+x2)【解答】解:y′=﹣sin(1+x2)•(1+x2)′=﹣2xsin(1+x2)故选C18.(2011春•瑞安市校级月考)函数y=sin(﹣x)的导数为()A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+)【解答】解:∵函数y=sin(﹣x)可看成y=sinu,u=﹣x复合而成且y u′=(sinu)′=cosu,∴函数y=sin(﹣x)的导数为y′=y u′u x′=﹣cos(﹣x)=﹣sin[﹣(﹣x)]=﹣sin(+x)故答案选D19.(2011春•龙港区校级月考)已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是()A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)【解答】解:∵对任意实数x,f′(x)>f(x),令f(x)=﹣1,则f′(x)=0,满足题意显然选项A成立故选A.20.(2010•永州校级模拟)函数y=sin(2x2+x)导数是()A.y′=cos(2x2+x)B.y′=2xsin(2x2+x)C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x)【解答】解:设y=sinu,u=2x2+x,则y′=cosu,u′=4x+1,∴y′=(4x+1)cosu=(4x+1)cos(2x2+x),故选C.21.(2010•祁阳县校级模拟)函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x【解答】解:将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x故选D22.(2010春•朝阳区期末)函数的导函数是()A.f'(x)=2e2x B.C. D.【解答】解:对于函数,对其求导可得:f′(x)===;故选C.23.(2009春•房山区期中)函数的导数为()A.B.C.D.【解答】解:令y=3sint,t=2x﹣,则y′=(3sint)′•(2x﹣)′=3cos(2x﹣)•2=,故选A.24.(2009春•瑞安市校级期中)y=sin(3﹣4x),则y′=()A.﹣sin(3﹣4x)B.3﹣cos(﹣4x)C.4cos(3﹣4x)D.﹣4cos(3﹣4x)【解答】解:由于y=sin(3﹣4x),则y′=cos(3﹣4x)×(3﹣4x)′=﹣4cos(3﹣4x)故选D25.(2006春•珠海期末)下列结论正确的是()A.若,B.若y=cos5x,则y′=﹣sin5xC.若y=sinx2,则y′=2xcosx2D.若y=xsin2x,则y′=﹣2xsin2x【解答】解:函数的导数为,,∴A错误函数y=cos5x的导数为:y′=﹣5sin5x,∴B错误函数y=sinx2的导数为:y′=2xcosx,,∴C正确函数y=xsin2x的导数为:y′=sin2x+2xcos2x,∴D错误故选C26.函数y=的导数是()A.B.C.D.【解答】解:由复合函数的求导法则可得,•[ln(x2+1)]′ln2=(1+x2)′ln2=•ln2故选A二.填空题(共4小题)27.(2013春•巨野县校级期中)设y=f(x)是可导函数,则y=f()的导数为y′=f′().【解答】解:设y=f(u),u=,则y′=f'(u),u′=,∴y′=f′()故答案为:y′=f′().28.(2013春•吴兴区校级月考)函数y=cos(2x2+x)的导数是﹣(4x+1)sin(2x2+x).【解答】解:y′=﹣(4x+1)sin(2x2+x),故答案为﹣(4x+1)sin(2x2+x).29.(2012•洞口县校级模拟)函数y=ln的导数为.【解答】解:y′=()′=•()′=•.=•=故答案为:30.(2009春•雁塔区校级期中)若函数,则的值为.【解答】解:由故=故答案为:.。

相关文档
最新文档