概率论与数理统计-点估计-矩法估计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 n
ab 3
n
i1
b2
i
1 n
n
i2
i1

3( 2 2 )
解方程组得:
aˆ bˆ
3S 3S
即为a, b的矩法估计量。
若(4.5 5.0 4.7 4.0 4.2)为一组样本观测值,
算得 x 4.48 s 0.3962,则可得 a, b的矩法估计值
分别为 aˆ 4.48 0.3962 3 3.7938
x2P(x)dx
0
x2 6x 3( x) dx 6 2 20
DX=EX2 (EX)2 6 2 20 ( 2)2 2 20
所以
D(ˆ)=D(2X)=4D(X)=4
2
20n
2Fra Baidu bibliotek
5n
例5 设总体 的分布密度为
p(x; )
1
x
e
( x , 0)
2
(1,2,L n) 为总体 的样本,求参数 的矩估
设有一个统计总体的分布函数F(x, ),
其中 为未知参数.的范围是已知(称为参数空间)
现从该总体中抽取样本
1 , 2 , ...n
要依据该样本对参数 作出估计,或估计 的某个已知函数 g( ).
这类问题称为参数估计.(一般分点估计, 区间估计)
一、点估计问题的提法
设总体的分布函数形式已知, 但它的一个或 多个参数为未知, 借助于总体的一个样本来估计 总体未知参数称为点估计问题.
事实上是我们已经知道X服从两点分布,
任务是估计参数p,
我们根据伯努里大数定理
显然可以用
n
n
1 n
n i 1
Xi去估计参数p.
用样本方差S2估计总体的方差DX,
例1:对某型20辆汽车纪录5L汽油所行驶的里程数, 29.8 27.6 28.3 27.9 30.1 28.7 29.9 28.0 27.9 28.7 28.4 27.2 29.5 28.5 28.0 30.0 29.1 29.8 29.6 26.9
i2
ˆ =
解方程组:得
ˆ 2
1 n
n i1
(i
)2
即为和 2的矩法估计量。
例3 总体在[a,b]上均匀分布,a, b为未知参数,
(1,2 K ,n)为样本,求a, b的矩法估计量?
解:由前面的知识得 E = a+b , E 2 a2 ab b2
2
3
列方程组得
a+b 2
a2
x
dx
2
2
0
故令
1
n
n
i2
i 1
2ˆ2
n
于是解得 的矩估计量为
ˆ
1 2n
i2
i 1
估计量的评价 标准
点估计有多种方法,同一个未知参数用不同的方法可得 到不同的估计量,那一个估计量好呢?必须有个评价标准。 评价标准有多种,用不同方法评价,得到的结论也不一样。
因此,说一个估计量的好坏,必须说明是用那一个评价标准 评价的。否则,是没有意义的。
(1).求出E j (1,2,L ,k ) j 1, 2,L k
(2).令 j
j
1 n
n
ij ;
i 1
j
1, 2,L
,k
这是一个包含 k 个未知参数1,2,L ,k 的方程组.
(3).解出其中1,2,L ,k , 用ˆ1,ˆ2,L ,ˆk表示.
(4).用方程组的解ˆ1,ˆ2,L ,ˆk分别作为1,2,L ,k的
计量.
解:由于 p(x; )只含有一个未知参数 ,一般
只需求出E 便能得到 的矩估计量,但是
E
xp(x; )dx
x
1
x
e dx 0
2
即 E 不含有 ,故不能由此得到 的矩估 计量.为此, 求
E( 2)
x2 p(x; )dx
x e dx 2 1
|x|
2
1
x
2
e
点估计的求法: (两种) 矩估计法和极大似然估计法.
一、 矩估计法 它是基于一种简单的“替换” 思想建立起来的一种估计方法 . 是英国统计学家K.皮尔逊最早提出的 . 其基本思想是用样本矩估计总体矩 .
理论依据: 大数定律
由辛钦大数定理知,
可以用
X
1 n
n i 1
Xi去估计EX,
如.求一个战士的射击命中率?
估计量,这个估计量称为矩估计量.
例2.设 : (, 2),求, 2的矩法估计量。
解:p( ,, 2 )
1
e
(
x )2 2 2
2
E x
1
(x )2
e 2 2 dx
2
xR
E 2 x2
1
(x )2
e 2 2 dx 2 2
2
列方程组:
2
1 n
n i1
2 1
n
i
n i 1
1.相合性:设总体X的概率函数为f(x, ), 为未知参数,
ˆn n (X1, X2,....Xn )为的一个估计量,n为样本容量,
若对任意 0,
lim
n
P(
ˆn
) 1
成立,
则称ˆn为的相合估计量。(一致估计量)
由定义可知, 估计量 ˆn P (未知参数)
依据伯努利大数定律: 频率 i 是概率P的相合估计量,
bˆ 4.48 0.3962 3 5.1662
例4:设总体X的概率密度如下:求的矩法估计量ˆ ?
并求 D(ˆ) ?
6x 3(
P(x)
解: EX=
0
xP(x)dx x6x
-
0
x)
3 (
,
0
x)
x
其它
dx
2
列方程 2 X
解方程得 ˆ 2X 即为的矩法估计量。
又 EX2 = -
点估计问题就是要构造一个适当的统计量
ˆ(1,2 ,L ,n ),用它的观察值ˆ(x1, x2 ,L , xn ) 来估计未知参数 .
ˆ(1,2,L ,n )称为 的估计量. 通称估计,
ˆ(x1, x2,L , xn )称为 的估计值.
简记为ˆ.
二、估计量的求法
由于估计量是样本的函数, 是随机变量, 故 对不同的样本值, 得到的参数值往往不同, 求估 计量的问题是关键问题.
n
由辛钦大数定律
样本均值
1 n
n
Xi
i 1

EX的相合估计量。
我们会计算出
1n
x
n
xi 28.695
i1
S2n
1 n
n
(xi x)2
i1
0.9185
来作为总体的期望、方差的点估计:
ˆ =28.695 ˆ 2 0.9815
这种方法就是替换原则:用样本矩去替换总体相应的矩 说的更本质一些,依据的原理是大数定律:
样本矩 np相应的总体矩
矩估计法的具体步骤:
第六 章
点估计
6.1矩法估计
一、点估计问题的提法 二、矩法估计的求法 三、估计量的评价 标准
现在我们来介绍一类重要的统计推断问题
参数估计问题是利用从总体抽样得到的信息 来估计总体的某些参数或者参数的某些函数.
估计新生儿的平均体重
估计废品率 估计湖中鱼数
估计平均降雨量
… …
参数估计问题的一般提法
相关文档
最新文档