小学奥数:工程问题50道之15试题及答案.doc
小学生奥数题:工程问题
小学生奥数题:工程问题1、甲、乙两人在环形道上练习跑步,假如两人同时同地同向动身,每隔16分钟甲追上乙一次,假如同时同地反向动身,每隔4分钟两人相遇一次,求甲跑一圈要用多少分钟?2、从甲地到乙地快车要6小时,慢车要8小时,假如两车同时从甲、乙两地相对开出,可在距中点35千米初相遇,甲、乙两地的距离为()千米。
3、两列火车同时从甲、乙两地相向而行,货车从甲地开往乙地需要10小时,比客车从乙地开往甲地所需的时间多1/4,两车相遇时客车比货车多行60千米,甲、乙两地相距多少千米?4、甲、乙两个工程队中甲的工效比乙高25%,因此甲队比乙队单独完成A工程要少用6天,求两队合做完成A工程要用多少天?5、一艘轮船从甲港到乙港需航行4小时,从乙港返回甲港要用5小时,已知船的静水速度不变,那么,一块木板从甲港漂到乙港要用多少小时?6、一件工作,甲队派出2/3的人工作12小时以后,剩下的工程由乙队用1/2的人还要工作40小时才能完成,假如乙队派出5/8的人工作40小时以后,剩下的工程甲队只需派出1/4的人工作16小时即可完成,求甲、乙两堆单独完成这项工程分别要用多少小时?7、甲车每小时行45千米,乙车每小时行30千米,已知A、B之间的公路长120千米,甲、乙两车同时从A、B两地动身,在A、B之间持续的往返行驶,当两车第一次同时回到动身点时,乙车行驶了多少千米?8、某科研单位每天派小汽车早8时准时到总工程师家接他去上班,今天早晨总工程师临时决定提前办一件事,没等小汽车来接,没等小汽车来接,他就匆匆从家步行去单位,步行途中遇到接他的小汽车,立即乘车到单位,结果比平常早到单位40分钟,问:总工程师上汽车时是几时几分?9、某城市进行“万人申奥”长跑活动,长跑队伍以每小时6千米的速度前进,长跑开始时,两名电视记者小张和小王分别从排头、排尾同时向队伍中间行进,报道这次活动,小张和小王都乘摩托车每小时行10千米,他们在离队伍中点900米处相遇。
小学奥数--工程问题(含答案解析)
小学奥数--工程问题一.选择题(共8小题)1.三部同样的抽水机同时抽水,抽干一池水需用15小时,五部这样的抽水机抽干这一池水需用()小时.A.3 B.6 C.9 D.122.张师傅加工一批零件,原计划每天加工80个,5天加工完.实际张师傅只用4天就加工完了,实际每天比原计划多加工零件()个.A.20 B.16 C.8 D.43.完成一件工作,甲要小时,乙要小时,甲与乙的工作效率比是()A.2:6 B.5:3 C.3:5 D.6:24.水池有甲、乙两根出水管,单独打开甲进水管8小时可将满水池排空,单独打开乙出水管6小时可将满水池排空.如果按甲、乙、甲、…的顺序轮流打开1小时,将满水池排空需()小时.A.7 B.6C.4 D.35.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成.三人合做几小时可以完成这件工作的?()A.2 B.3 C.4 D.56.在A地植树1000棵,B地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵,甲在A地,乙在B地,丙在A与B两,同时开始,同时结束,丙在A地植树()棵.A.150 B.300 C.450 D.6007.甲乙两人合作打一份材料.开始甲每分钟打100 个字,乙每分钟打200 个字.合作到完成总量的一半时,甲速度变为原来的3 倍,而乙休息了5 分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共()个字.A.3000 B.6000 C.12000 D.180008.甲、乙两工程队共同修建一项工程,已知两队合作正好6天完成,如果甲队单独完成这项工程需要18天,那么乙队单独完成这项工程需要()天.A.9 B.10 C.12 D.15二.解答题(共5小题)9.一件工程,甲单独做16天完成,乙单独做12天完成,若甲先做若干天后,由乙接着单独做余下的工程,完成全部的工程共用了14天,问甲先做了多少天?10.有一桶水,一只小鸭可以饮用25天.如果和一只小鸡同饮,那么可以饮用20天.如果一只小鸡单独饮用,可以饮用几天?11.学校插花组同学要赶制花篮70个,已经做了5天,共做花篮40个.余下的要赶在2天做完,这样每天比原来平均多做个花篮.12.一个化肥厂原计划12天生产一批化肥,由于每天多生产2.5吨,结果9天就完成了这批化肥的生产任务.实际每天生产化肥多少吨?13.水池装有一个水管和若干每小时注水量相同的注水管,注水管注水时,排水管同时排水.若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池.现在用8个注水管注水,那么需要多少小时注满水池?小学奥数--工程问题参考答案与试题解析一.选择题(共8小题)1.三部同样的抽水机同时抽水,抽干一池水需用15小时,五部这样的抽水机抽干这一池水需用()小时.A.3 B.6 C.9 D.12【分析】把抽干这一池水的工作量看作单位“1”,先求出每部抽水机的工作效率÷3=,再求出五部这样的抽水机抽干每小时的工作效率=;然后再除工作总量1即可.【解答】解:÷3==1=9(小时)答:五部这样的抽水机抽干这一池水需用9小时.故选:C.【点评】解答本题的关键是求出每部抽水机的工作效率,解答依据是工作时间,工作效率以及工作总量之间数量关系.2.张师傅加工一批零件,原计划每天加工80个,5天加工完.实际张师傅只用4天就加工完了,实际每天比原计划多加工零件()个.A.20 B.16 C.8 D.4【分析】原计划每天加工80个,需要5天完成,则需要加工零件的总数为80×5=400个,实际工作4天就加工完了,则平均每天加工80×5÷4个,再减去80就是实际每天多加工的零件数.【解答】解:80×5÷4﹣80=100﹣80=20(个)答:实际每天比原计划多加工零件20个.故选:A.【点评】首先根据计划工作时间及每天加工的个数,求出零件总数是完成本题的关键.3.完成一件工作,甲要小时,乙要小时,甲与乙的工作效率比是()A.2:6 B.5:3 C.3:5 D.6:2【分析】把工作总量看作“1”,根据工作总量÷工作时间=工作效率,分别求出甲、乙的工作效率,再写出对应的比,根据比的基本性质化成最简整数比.【解答】解:(1÷):(1÷)=5:3答:甲与乙的工作效率比是5:3.故选:B.【点评】掌握工作总量÷工作时间=工作效率是解决此题的关键.4.水池有甲、乙两根出水管,单独打开甲进水管8小时可将满水池排空,单独打开乙出水管6小时可将满水池排空.如果按甲、乙、甲、…的顺序轮流打开1小时,将满水池排空需()小时.A.7 B.6C.4 D.3【分析】把这项工作的量看作单位“1”,先依据工作时间=工作总量÷工作效率,求出两根排水管合做需要的时间(求得的时间是带分数),由于两根排水管是轮流工作1小时,那么两根排水管轮流工作的时间就是所得的带分数整数部分,然后依据工作总量=工作时间×工作效率,求出两根排水管轮流工作完成的工作量,再求出剩余的工作量,依据工作时间=工作总量÷工作效率,求出甲最后完成需要的时间,最后加两根排水管轮流工作的时间即可解答.【解答】解:甲的工作效率为,乙的工作效率为,所以甲乙各排水3小时后一共完成,还剩下1﹣=,甲排水管只需再需排水1小时可全部完成,所以一共需要2×3+1=7小时.故选:A.【点评】解答本题的关键是求出两根排水管轮流工作的时间,解答的依据是等量关系式:工作时间=工作总量÷工作效率.5.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成.三人合做几小时可以完成这件工作的?()A.2 B.3 C.4 D.5【分析】根据题意,甲每小时能完成这件工作的,乙每小时能完成这件工作的,丙每小时能完成这件工作的,要完成这件工作的,用除以他们每小时的效率之和即可.【解答】解:÷()=÷=4=3答:三人合做3小时可以完成这件工作的.故选:B.【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,解答时把工作总量看做单位“1”,要完成工作的,再利用它们的数量关系解答即可.6.在A地植树1000棵,B地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵,甲在A地,乙在B地,丙在A与B两,同时开始,同时结束,丙在A地植树()棵.A.150 B.300 C.450 D.600【分析】总棵数1000+1250=2250棵不变,由甲、乙、丙去植树,每天能植树28+32+30=90棵,用2250除以90求出共同工作的时间,再乘甲每天的工作效率,求出甲共植树的棵数,再用1000减去它就是丙在A地植树的棵数.【解答】解:(1000+1250)÷(28+32+30)=2250÷90=25(天)1000﹣28×25=1000﹣700=300(棵)答:丙在A地植树300棵.故选:B.【点评】此题解答思路:先求出A、B两地植树需要的时间,再求出甲在A地植树的棵数,进而求出丙在A地植树的棵数,进一步解决问题.7.甲乙两人合作打一份材料.开始甲每分钟打100 个字,乙每分钟打200 个字.合作到完成总量的一半时,甲速度变为原来的3 倍,而乙休息了5 分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共()个字.A.3000 B.6000 C.12000 D.18000【分析】前一半时乙的工作量是甲的2 倍,所以后一半甲应是乙的2倍.后来甲乙的工作效率比3:2,甲后来应为4 份,乙应为2 份,说明乙休息5分钟时甲打了1 份,把后一半工作量分为6 份,这一份的量是100×3×5=1500字,故总工作量是12份即可求解.【解答】解:前一半甲乙的工作效率比是100:200=1:2,完成一半的工作总量,甲乙两人的工作量比是工作效率比即1:2,甲完成工作总量的,乙完成工作总量的,在后一半的工作中需要甲的总量是乙的2倍,后来甲乙的效率比为3:2,说明乙休息是甲完成了一份量所以甲的总量是4份,乙的总量是2份,也就是甲在5分钟完成300×5=1500(个),后来甲4份乙2份,占一半,总共份数为12份,1500×12=18000.故选:D.【点评】找到两人的工作倍数关系是本题的关键,同时设份数法是常用方法,结合比例问题.8.甲、乙两工程队共同修建一项工程,已知两队合作正好6天完成,如果甲队单独完成这项工程需要18天,那么乙队单独完成这项工程需要()天.A.9 B.10 C.12 D.15【分析】把一项工程的工作量看作单位“1”,由两队合作正好6天完成,可以求出两队的工作效率和为,甲的工作效率为,由此求得乙的工作效率,再进一步利用工作总量÷工作效率=工作时间解决问题.【解答】解:1÷(﹣)=1÷=9(天);答:乙队单独完成这项工程需要9天.故选:A.【点评】此题主要利用工作总量、工作时间、工作效率三者之间的关系解决问题.二.解答题(共5小题)9.一件工程,甲单独做16天完成,乙单独做12天完成,若甲先做若干天后,由乙接着单独做余下的工程,完成全部的工程共用了14天,问甲先做了多少天?【分析】把全部工作量看作“1”,则甲的工作效率为,乙的工作效率为;设甲做了x天,则乙就做了14﹣x天,由工作效率×工作时间=工作量,可得方程:x+(14﹣x)=1.【解答】解:设甲做了x天,则乙就做了14﹣x天,可得方程:x+(14﹣x)=1+﹣=1,=,x=8;答:甲先做了8天.【点评】本题是据工作效率×工作时间=工作量这一基本关系式设未知数来解决的.10.有一桶水,一只小鸭可以饮用25天.如果和一只小鸡同饮,那么可以饮用20天.如果一只小鸡单独饮用,可以饮用几天?【分析】把一桶水饮用量看作单位“1”,一只小鸭每天可以饮用它的,小鸡和小鸭的一天的饮用量是这通水的,所以小鸡一天的饮用量是﹣,用单位“1”除以(﹣),就是小鸡饮用的天数.【解答】解:1÷(﹣)=1÷=100(天);答:可以饮用100天.【点评】本题运用运用工效问题的解答方法进行解答,把一桶水的饮用量看作单位“1”,再运用工作总量除以工作效率等于工作时间进行解答即可.11.学校插花组同学要赶制花篮70个,已经做了5天,共做花篮40个.余下的要赶在2天做完,这样每天比原来平均多做7个花篮.【分析】先求出原来每天做多少个;再求出剩下了总数量,然后用剩下的总数量除以后来工作的天数,就是后来每天做的个数;然后用后来每天做的个数减去原来每天做的个数就是平均每天需要多做的个数.【解答】解:40÷5=8(个);(70﹣40)÷2,=30÷2,=15(个);15﹣8=7(个);答:每天比原来平均多做7个花篮.故答案为;7.【点评】本题利用工作效率=工作量÷工作时间求出两部分的工作效率,再用后来的工作效率减去原来的工作效率即可.12.一个化肥厂原计划12天生产一批化肥,由于每天多生产2.5吨,结果9天就完成了这批化肥的生产任务.实际每天生产化肥多少吨?【分析】设计划每天生产化肥x吨,实际每天生产x+2.5吨,根据原计划每天生产化肥的吨数×原计划的天数=实际每天生产化肥的度数×实际生产的天数,列出方程解答即可列式为:12x=9×(x+2.5),解答即可.【解答】解:设计划每天生产化肥x吨,实际每天生产x+2.5吨,12x=9×(x+2.5)12x=9x+22.512x﹣9x=22.53x=22.5x=7.5答:实际每天生产化肥7.5吨.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.13.水池装有一个水管和若干每小时注水量相同的注水管,注水管注水时,排水管同时排水.若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池.现在用8个注水管注水,那么需要多少小时注满水池?【分析】把水池的容积看作单位“1”,12个注水管注水,8小时注满,每小时注水,9个注水管注水,24小时注满,每小时注水,12个注水管比9个注水管,每小时多注水,由此求出8个注水管每小时的工作效率,然后根据工作量÷工作效率=工作时间,据此列式解答.【解答】解:12个注水管注水,8小时注满,每小时注水,9个注水管注水,24小时注满,每小时注水,12个注水管比9个注水管,每小时多注水,那么8个注水管每小时注水:=,所以1(小时);答:用8个注水管注水,需要72小时注满水池.【点评】把水池的容积看作单位“1”,关键是求出8个注水管每小时的工作效率,再根据工作量÷工作效率=工作时间进行解答.。
【奥数题】人教版小学数学六年级上册奥数思维拓展:工程问题(试题)含答案与解析
奥数思维拓展:工程问题(试题)一、选择题1.一项工程,甲独做10天完成,乙独做8天完成,甲、乙工作效率的最简比是()。
A.5∶4B.4∶5C.8∶10D.11: 1082.A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,A结果做了6天,B 做了5天,C做了4天,D作为休息的代价,拿出48元给A、B、C三人作为报酬,算劳务费,则这48元中A应分()元。
A.18B.19.2C.20D.323.打印一份文稿,覃老师要用5分钟,韦老师要用4分钟,覃老师工作效率比韦老师工作效率低()。
A.125%B.25%C.120%D.20%4.一幢办公楼原有5台空调,现在又安装了1台,如果这6台空调全部打开就会烧断保险丝,因此最多只能同时使用5台空调.这样,在24小时内平均每台空调可使用()小时.A.24B.20C.18D.165.有一批工人完成某项工程,如果增加8个人,则10天就能完成;如果增加3个人,就要20天才能完成。
现在只能增加2个人,那么完成这项工程需要多少天?()A.25B.20C.30D.35二、填空题6.一项工程,甲队单独完成需40天。
若乙队先做10天,余下的工程由甲、乙两队合作,又需20天可完成。
如果乙队单独完成此工程,则需______天。
7.有一项工程,有三个工程队来争夺施工权利,已知甲乙丙三个工程队都是工作时间长短来付费的,甲、乙两队合作,10天可以全部完工,共需要支付18000元,由乙、丙两队合作,20天可以完工,共需要支付12000元,由甲、丙两队合作,12天可以完成,共需要支付15000,如果该工程只需要一个工程队承建,如果只能一个队伍单独施工,那么最快的比最慢的会早完工____天。
需要支付速度最快的队伍____元。
8.有一项工程,甲乙合作3天完成,乙丙合作5天完成,甲丙合作6天完成,三人合作需要______天完成。
9.放满一个水池,如果同时打开1,2号阀门,则12分钟可以完成;如果同时打开1,3号阀门,则15分钟可以完成;如果单独打开1号阀门,则20分钟可以完成;那么,如果同时打开1,2,3号阀门,( )分钟可以完成。
六年级奥数工程问题(含答案)
一、基本概念(1) 工作总量完成某一项工程所需的所有工作的数量和,常用“1”来表示.(2) 工作时间(3) 工作效率单位时间内所完成的工作量单位时间内所完成的工作量二、基本关系工作量工作量= 工作效率×工作时间工作效率×工作时间【提示】三者之间的关系,可以类比路程、速度和时间的关系.三、常用工具和方法(1) 基本关系(2) 整体化归思想(3) 对比分析的方法(1) 重点:利用整体化归思想和对比分析方法解决较为复杂的工程问题重点:利用整体化归思想和对比分析方法解决较为复杂的工程问题(2) 难点:复杂问题中整体化归思想、比例思想、方程思想与对比分析方法的综合运用重难点知识框架工程问题一、根据基本关系解题【例 1】一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?少时间?【巩固】 一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?天时间,如果乙单独做需要多少时间?【例 2】一项工程,甲队单独完成需40天。
若乙队先做10天,余下的工程由甲、乙两队合作,又需20天可完成天可完成. . 如果乙队单独完成此工程,则需如果乙队单独完成此工程,则需__________________天天.【巩固】 一项工程,甲队单独做20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成.问:乙队单独完成这项工作需多少天?天完成.问:乙队单独完成这项工作需多少天?二、运用整体化归思想解题【例 3】有两个同样的仓库,搬运完一个仓库的货物,甲需6小时,乙需7小时,丙需14小时。
甲、乙同时开始各搬运一个仓库的货物。
开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完。
则丙帮甲的货物同时搬完。
则丙帮甲 小时,帮乙小时,帮乙 小时。
小时。
例题精讲【巩固】 一池水,甲、乙两管同时开,5小时灌满;乙、丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?【例 4】一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的112倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地.其他工人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天,那么这批工人有多少人?少人?【巩固】 甲、乙、丙三队要完成A ,B 两项工程,B 工程的工作量是A 工程工作量再增加14,如果让甲、乙、丙三队单独做,完成A 工程所需要的时间分别是20天,24天,30天.现在让甲队做A 工程,乙队做B 工程,为了同时完成这两项工程,丙队先与乙队合做B 工程若干天,然后再与甲队合做A 工程若干天.问丙队与乙队合做了多少天?工程若干天.问丙队与乙队合做了多少天?【例 5】一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?用了多少小时?【巩固】 蓄水池有甲、丙两条进水管和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,现在池内有16的水,若按甲、乙、丙、丁、甲、乙、丙、丁……的顺序轮流打开1小时,问多少时间后水开始溢出水池?问多少时间后水开始溢出水池?三、运用对比分析方法解题【例 6】一项工程,甲、一项工程,甲、乙合作需要乙合作需要20天完成,乙、天完成,乙、丙合作需要丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?那么如果甲、乙、丙合作,完成这项工程需要多少天?【巩固】 一项工程,甲、乙合作需要9天完成,乙、丙合作需要12天,由丙单独做需要36天完成,那么如果甲、丙合作,完成这项工程需要多少天?如果甲、丙合作,完成这项工程需要多少天?【例 7】一项工程,一项工程,如果甲先做如果甲先做5天,天,那么乙接着做那么乙接着做20天可以完成;天可以完成;如果甲先做如果甲先做20天,天,那么乙接着做那么乙接着做8天可以完成.如果甲、乙合作,那么多少天可以完成?天可以完成.如果甲、乙合作,那么多少天可以完成?【巩固】 一件工作甲先做6小时,乙接着做12小时可以完成;甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?小时后由乙接着做,还需要多少小时完成?【例 8】一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天. 问这项工程由甲独做需要多少天?问这项工程由甲独做需要多少天?【巩固】 抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的15.如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成?那么乙一人单独抄需要多少天才能完成?【例 9】放满一个水池,如果同时打开1,2,3号阀门,则20分钟可以完成;如果同时打开2,3,4阀门,则21分钟可以完成;如果同时打开1,3,4号阀门,则28分钟可以完成;如果同时打开1,2,4号阀门,则30分钟可以完成.问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?少分钟可以完成?【例 10】某工程如果由第一、二、三小队合干需要12天才能完成;如果由第一、三、五小队合干需要7天才能完成;如果由第二、四、五小队合干需要8天才能完成;如果由第一、三、四小队合干需要42天才能完成.那么这五个小队一起合干需要多少天才能完成这项工程?天才能完成.那么这五个小队一起合干需要多少天才能完成这项工程?【例 11】规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做一个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?要多少小时?【巩固】 公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙、……的顺序轮流打开1小时,恰好在打开水管整数小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.小时.【例 12】一项工程,甲、乙合作3125小时可以完成,若第1小时甲做,第2小时乙做,这样交替轮流做,恰好整数小时做完;若第1小时乙做,第2小时甲做,这样交替轮流做,比上次轮流做要多13小时,那么这项工作由甲单独做,要用多少小时才能完成?时,那么这项工作由甲单独做,要用多少小时才能完成?【巩固】 甲、乙、丙三人完成一件工作,原计划按甲、乙、丙顺序每人轮流工作一天,正好整数天完成,若按乙、丙、甲的顺序每人轮流工作一天,则比原计划多用12天;若按丙、甲、乙的顺序每人轮流工作一天,则比原计划多用13天.已知甲单独完成这件工作需10.75天.问:甲、乙、丙一起做这件工作,完成工作要用多少天?做这件工作,完成工作要用多少天?四、综合运用多种思想解题【例 13】一批零件平均分给甲、乙两人同时加工,两人工作5小时,共完成这批零件的23。
小学奥数五年级测试及答案(工程问题、时钟问题)
一、工程问题(一)如果你的文档出现显示不全的问题,请调整页边距,或将图片缩小查看。
第1题第2题第3题第4题第5题第6题试题答案第1题:正确答案:B 答案解析第2题:正确答案:C 答案解析第3题:正确答案:C 答案解析第4题:正确答案:B 答案解析第5题:正确答案:C 答案解析第6题:正确答案:A 答案解析二、工程问题(二)第1题第2题第3题第4题第5题第6题试题答案第1题:正确答案:D 答案解析第2题:正确答案:C 答案解析第3题:正确答案:D 答案解析第4题:正确答案:B 答案解析第5题:正确答案:A 答案解析第6题:正确答案:D 答案解析三、时钟问题(一)第1题第2题第3题第4题第5题第6题试题答案第1题:正确答案:C 答案解析第2题:正确答案:C 答案解析第3题:正确答案:C 答案解析第4题:正确答案:C 答案解析第5题:正确答案:C 答案解析第6题:正确答案:C答案解析四、时钟问题(二)第1题第2题第3题第4题第6题第8题第9题第11题第12题第13题第14题第15题第16题第17题第18题第19题第20题第21题第22题第23题第24题第25题第26题第27题第28题第29题第30题试题答案第1题:正确答案:D 答案解析第2题:正确答案:B 答案解析第3题:正确答案:C 答案解析第4题:正确答案:C 答案解析第5题:正确答案:B 答案解析第6题:正确答案:D 答案解析第7题:正确答案:A 答案解析第8题:正确答案:D 答案解析第9题:正确答案:D 答案解析第10题:正确答案:C 答案解析第11题:正确答案:D 答案解析第12题:正确答案:C 答案解析第13题:正确答案:D 答案解析第14题:正确答案:D 答案解析第15题:正确答案:C 答案解析第16题:正确答案:C 答案解析第17题:正确答案:D 答案解析第18题:正确答案:B 答案解析第19题:正确答案:C 答案解析第20题:正确答案:C 答案解析第21题:正确答案:A 答案解析第22题:正确答案:A 答案解析第23题:正确答案:C 答案解析第24题:正确答案:C 答案解析第25题:正确答案:B 答案解析第26题:正确答案:A 答案解析第27题:正确答案:D 答案解析第28题:正确答案:C 答案解析第29题:正确答案:C 答案解析第30题:正确答案:A 答案解析。
小学奥数思维训练-工程问题(通用,含答案)
保密★启用前小学奥数思维训练-工程问题学校:___________姓名:___________班级:___________考号:___________一、解答题1.一项工程,由甲队做30天完成,由乙队做20天完成。
(1)两队合做5天可以完成工程的几分之几?(2)两队合做10天,还剩下工程的几分之几?(3)两队合做几天完成?2.一项工程,由甲工程队修建,需要12天,由乙工程队修建,需要20天,两队共同修建需要多少天?3.一项工程单独做甲队要8天完成,乙队要10天完成,两队合作几天能完成这项工程的34?4.一项工程,甲、乙合做6天可以完成。
甲独做18天可以完成,乙独做多少天可以完成?5.加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。
如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成?6.一件工程,甲、乙合作6天可以完成。
现在甲、乙合作2天后,余下的工程由乙独做又用8天正好做完。
这件工程如果由甲单独做,需要几天完成?7.有一项工作,小华做需3天,小芳做需4天,小梅做需5天,如果三人合作,需几天完成?8.有一项工程,甲队单独做需要10天,甲、乙两队合做需要4天,乙单独做需要几天?9.一项工程,甲队独做60天完成,乙队独做40天完成,现先由甲队独做10天后,乙队也参加工作。
还需几天完成?10.一批货物,用一辆卡车运18次运完,用一辆大车运30次运完。
现在用同样的3辆卡车和5辆大车一起运,几次可以运完?11.一袋米,甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完?12.修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天?13.一项工程,甲独做要10天,乙独做要15天,丙独做要20天。
三人合做期间,甲因病请假,工程6天完工,问甲请了几天病假?14.快车和一辆慢车同时从甲、乙两地相对开出,经过12小时相遇,相遇后,慢车又行了18小时达到甲地。
小学五年级数学下册奥数50题、附解析及参考答案
练习题一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至这个自然数依次写下来得到一个多位数123456789.....,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。
六年级奥数难题专练—工程问题(含答案)
六年级奥数难题专练—工程问题(含答案)1、师徒两人合作生产一批零件,6天可以完成任务。
师傅先做5天,因事外出后,由徒弟接着做3天,共完成任务的107,如果每人单独做这批零件,则各需几天?2、蓄水池有一条进水管和一条排水管要灌满一池水,单开进水管需5小时。
排光一池水,单开排水管需3小时。
现在池内有半池水,如果按进水,排水,进水,排水....的顺序轮流各开1小时。
问:多长时间后水池的水刚好排完?(精确到分钟)3、一件工作,甲5小时完成了41,乙6小时又完成剩下任务的一半,最后余下的部分由甲、乙合作,还需要 小时才能完成。
4、一项工程,甲单独完成需12天,乙单独完成需9天,若甲先做若干天后,乙接着做,共用10天完成。
问:甲做了几天?5、加工一批零件,甲、乙合作24天可以完成。
现在由甲先做16天,然后乙再做12天,还剩下这批零件的52没有完成。
已知甲每天比乙多加工3个零件,问:这批零件共多少个?6、一项工程,甲单独做要12小时完成,乙单独做要18小时完成,若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时....两人如此交替工作,问:完成任务时,共用了多少小时?7、客车与货车同时从甲、乙两站相对开出,经2小时24分钟相遇,相遇时客车比货车多行9.6平米。
已知客车从甲站到乙站行4小时30分钟,问:客车与货车的速度各是多少?8、一项工程,甲、乙两队合作6天能完成65。
已知甲单独做,甲完成31与乙完成21所需时间相等。
问:甲、乙单独做各需多少天?9、一项工程,甲队单独做需10天完成,乙队单独做需30天完成,现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息),问:从开始到完工用了多少天?10、一项工程,甲、乙两队合作需 12天完成,乙、丙两队合作需 15天完成,甲、丙两队合作需20天完成,如果由甲、乙、丙三队合作,问:需几天完成?11、一项工程,甲队单独做12天可以完成,甲队做3天后乙队接着做2天可完成一半。
六年级下册数学试题-奥数专题训练:工程问题人教版
工程问题一、概念(1)工作总量:工作的总量,一般抽象成单位“1”(2)工作时间:工作的时间(3)工作效率:工作的快慢程度,也就是单位时间内完成的工作量二、数量关系(1)工作总量=工作效率X工作时间(2)工作效率=工作总量+工作时间(3)工作时间=工作总量+工作效率三、解题技巧(1)一般算术法,涉及的思想方法可能有:代换法、比例法、列表法、方程法(2)方程法【例题1]某工程甲单独干10天完成,乙单独干15天完成,他们合作多少天才可完成全部的工程?1. 1.【练习题1.11某工程甲单独干20天完成,乙单独干5天完成,他们合作多少天才可完成全部的工程?2. 2.【练习题1.2]某工程甲单独干10天完成,乙单独干15天完成,他们合作多少天才可完成工程的一半?3. 3.【练习题1.3】一条水渠,甲、乙两队合挖需10天完工。
已知乙单独挖需要30天,求问这条水渠由甲队单独挖需多少天?【例题2]一条水渠,甲、乙两队合挖需30天完工。
现在合挖12天后,剩下的乙队单独又挖了24天挖完。
这条水渠由甲队单独挖需多少天?1. 1.【练习题2.1]师徒二人加工一批零件,师傅单独加工要8小时完成,徒弟单独加工要10小时,师傅先加工2小时后,再与徒弟共同加工,还需多少小时?(答案请用分数表示,格式为A/B)2. 2.【练习题2.2]某工程甲队单独做需48天,乙队单独做需36天。
甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完。
求乙队在中间单独工作的天数。
3. 3.[练习题2.3]一项工程,甲独做75天完成,乙独做50天完成,在合做过程中,甲中途离开了一些天数,结果整个工程40天才完成。
甲中途离开了几天?【例题3】甲、乙二人同时从两地出发,相向而行。
走完全程甲需60分钟,乙需40分钟。
出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。
甲再出发后多长时间两人相遇?1.2. 1.【练习题3.1】甲、乙二人同时从两地出发,相向而行。
小学奥数工程问题题型大全含答案.doc
奥数之工程问题在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是——工作量 =工作效率×时间 .在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”。
工程问题方法总结:一:基本数量关系:工效×时间 =工作总量二:基本特点:设工作总量为“ 1”,工效 =1/ 时间三:基本方法:算术方法、整体思想、组合法、比例方法、方程方法、假设法四:基本思想:分做合想、合做分想。
五:类型与方法:一:分做合想 :1. 合想 ,2. 假设法 ,3. 巧抓变化 ( 比例 ),4.假设法。
二:按劳分配思路:每人每天工效→每人工作量→按比例分配三:休息请假:方法: 1. 分想:划分工作量。
2. 假设法:假设不休息。
3. 方程法四:周期工程休息与周期:1.已知条件的顺序:①先工效,再周期,②先周期,再天数。
2.. 天数:①近似天数,②准确天数。
3.列表确定工作天数。
交替与周期:估算周期,注意顺序!注水与周期: 1. 顺序, 2. 池中原来是否有水, 3. 注满或溢出。
五:工效变化。
六:比例: 1. 分比与连比, 2. 归一思想, 3. 正反比例的运用,4.假设法思想 ( 周期 ) 。
七:牛吃草问题: 1. 新生草量, 2. 原有草量, 3. 解决问题。
一、用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题 1。
一项工程,甲、乙两队合作15 天完成,若甲队做 5 天,乙队做73 天,只能完成工程的30,乙队单独完成全部工程需要几天1【思路导航】此题已知甲、乙两队的工作效率和是15 ,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做 5 天,乙队独做 3天,组合成甲、乙两队合作了 3 天后,甲队独做 2 天来考虑,就可以求出甲队 2 天的工作量7-1× 3 30 151=30,从而求出甲队的工作效率。
小学奥数试题---工程问题
工程问题例1: 一项工程,甲、乙两人合作36天完成,乙、丙两人合作45天完成, 甲、丙两人合作60天完成。
甲、乙、丙单独做,各需要多少天完成?2 -(1 1 ++丄[=30(天),甲:1斗1 1;=90(天),乙:1十广1-1 1=60 <36 4560丿<30 45 丿<3060丿(天),丙:1斗(1〔、-1 1=180 (天) (30 36 丿例2: —项工作,甲组3人8天能完成,乙组4人7天也能完成。
现在由甲组2人和乙组7人合作,多少天可以完成这项工作?'1 11* 汉2 + <7 1=3 (天)\3^84疋7 丿例3:甲组6人15天能完成的工作,乙组5人12天也能完成。
乙组7人8 天能完成的工作,丙组3人14天也能完成。
一项工作,需要甲组9人4天完成。
如果由丙组派人10天完成,丙组应该派多少人?甲组的工效:」1,乙组的工效:—1,6 15 90 5"2 601 1丙组的工效:X7X 8*3* 14=-,60 451 1—X 9X 4*(一X10)=1.8"2 (人)90 45例4:单独完成一项工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。
如果甲、乙两人合做2天后,剩下的由乙单独做,那刚好在规定时间内完成。
甲、乙两人合做需要多少天完成?分析:解法(一):说明甲做2天的相当于乙做3天的,甲、乙合做2天后,剩下的乙单独做,在规定时间内完成。
乙比甲多用5天,设甲的工效为丄,乙x1 1 1的工效为----- 根据甲做2天等于乙做3天列方程得:- X 2= ------------ X3,解之得:x十5 x x十51 1x=10,乙为15 天,1*()=6 (天)10 15分析:解法(二):甲做2天的工作量,乙要做3天,甲提前2天,乙超过23天,相差5天,把乙做的天数看作“ T,甲用的天数相当于乙的-,32 2乙用的天数:(2+3)*(1— - )=15 (天),甲用的天数:15X - =10 (天),3 31 1"(10 15)=6(天)例5:单独完成某项工作,甲需要9小时,乙需要12小时。
六年级 工程问题(综合)奥数 含答案
耐心 细心 责任心1 工程问题(综合)知识梳理教学重、难点作业完成情况典题探究例1. 甲、乙、丙三人合修一堵围墙,甲、乙合修6天完成了31,乙、丙合修2天完成余下工程的41,剩下的再由甲、乙、丙三人合修5天完成,现领工资共180元,按工作量分配,甲、乙、丙应各领多少元?例2. 一项工程,甲单独完成要30天,乙单独完成要45天,丙单独完成要90天。
现由甲、乙、丙三个合作完成此工程。
在工作过程中甲休息了2天,乙休息了3天,丙没有休息,最后把这项工程完成了。
问这项工程前后一共用了多少天?例3. 一项工程,乙队先单独做4天,继而甲、丙两队合做6天,剩下的工程甲队又独做9天才全部完成。
已知乙队完成的是甲队完成的31,丙队完成的是乙队完成的2倍。
甲、乙、丙三队独做,各需要多少天完成?例4. 一个水池装了一根进水管和3根粗细相同的出水管。
单开一根进水管20分钟可将水池注满,单开一根出水管45分钟可将水池的水放完。
现在水池中有32池水,4根水管一起打开,多少分钟后水池的水还剩下52?例5. 2个蟹将和4个虾兵能打扫龙宫的103,8个蟹将和10虾兵在同样的时间里就能打扫完全部龙宫,如果单让蟹将去打扫与单让虾兵去打扫进行比较,那么要打扫完全部龙宫,虾兵比蟹将要多几个?例6. 一批工人到甲、乙两上工地进行清理工作,甲工地的工作量是乙工地工作量的211倍。
上午去甲工地人数是去乙工地人数的3倍,其他工人到乙工地,到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做一天。
那么这批工人有多少人?例7. 一个空水池有甲、乙两根进水管和一根排水管,单开甲管需5分钟注满水池,单开乙管需10分钟注满水池,满池水如果单开排水管需要6分钟流尽。
某次池中无水,打开甲管若干分钟后,发现排水管未关上,随即关上排水管,同时打开乙管。
又过了同样时间,水池的41注了水。
如果继续注满水池,前后一共花了多少时间?例8. 一件工作,甲做了5小时以后由乙来做,再做3小时可以完成。
五年级奥数..工程问题,有答案
工程问题(二)工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是解决工程应用题的关键。
一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:①具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵活运用;③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.熟练掌握工程问题的基本数量关系与一般解法;(1)工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;(2)根据题目中的实际情况能够正确进行单位“1”的统一和转换;(3)工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.一、周期性工程问题【例 1】 一件工程,甲单独做要6小时,乙单独做要10小时,如果接甲、乙、甲、乙...顺序交替工作,每次1小时,那么需要多长时间完成?【考点】工程问题 【难度】4星 【题型】解答【解析】 甲1小时完成整个工程的16,乙1小时完成整个工程的110,交替干活时两个小时完成整个工程的11461015+=,甲、乙各干3小时后完成整个工程的443155⨯=,还剩下15,甲再干1小时完成整个工程的16,还剩下130,乙花13小时即20分钟即可完成.所以需要7小时20分钟来完成整个工程. 【答案】7小时20分钟【巩固】 一项工程,甲单独完成需l2小时,乙单独完成需15小时。
小学奥数全国推荐最新六年级奥数通用学案附带练习题解析答案15工程问题(一)
年 级六年级 学 科 奥数 版 本 通用版 课程标题 工程问题(一)工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,也是函数一一对应思想在应用题中的有力渗透。
工程问题是研究工作效率、工作时间和工作总量之间相互关系的一种应用题。
一般情况下是把工作总量看作单位“1”,因此工作效率就是工作时间的倒数。
工程问题是小学分数应用题中的一个重点,也是一个难点。
工程问题指的是与工程建造有关的数学问题。
其实,这类题目的内容已不仅仅是工程方面的问题,也包括注水与周期等许多内容。
工程问题是研究工作总量、工作时间和工作效率三个量之间的关系的一种应用题,它们有如下关系:工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率。
那么我们应该怎样分析工程问题呢?1. 深刻理解、正确分析相关概念。
对于工程问题,要深刻理解工作总量、工作时间、工作效率,简称工总、工时、工效。
通常工作总量的具体数值是无关紧要的,一般利用它不变的特点,把它看作单位“1”;工作时间是指完成工作总量所需的时间;工作效率是指单位时间内完成的工作量,即用单位时间内完成工作总量的几分之一或几分之几来表示工作效率。
2. 以工作效率为突破口。
工作效率是解答工程问题的要点,解题时往往要求出一个人一天(或一个小时)的工作量,即工作效率(如修路的长度、加工的零件数等)。
如果能直接求出工作效率,再解答其他问题就较容易,如果不能直接求出工作效率,就要仔细分析单独做或合作的情况,想方设法求出单独做的工作效率或合作的工作效率。
工程问题中常出现单独做、几人合作或轮流做的情况,分析时要梳理、理顺工作过程,抓住完成工作的几个过程或几种变化,通过对应工作的每一阶段的工作量、工作时间来确定单独做或合作的工作效率。
也常将问题转化为由甲(或乙)完成全部工程(工作)的情况,使问题得到解决。
要抓住题目中总的工作时间比、工作效率比、工作量比,及隐蔽的条件来确定工作效率,或确定工作效率之间的关系。
工程问题奥数思维拓展(试题)-小学数学六年级上册人教版(含答案)
工程问题奥数思维拓展(试题)-小学数学六年级上册人教版一.填空题(共9小题)1.一件工作,甲的工作效率是乙丙工作效率之和,乙的工作效率是甲丙之和的.如果三人合作1天就可以完成,那么乙单独完成需要天.2.如果2个熟练工和4个新手一天可做完一批零件的,8个熟练工和10个新手一天就能把这批零件做完.若这批零件全部由新手一天做完,则应要新手个.3.一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的1倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有的人去甲工地,其他工人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天,那么这批工人有人.4.用计算机录入一份书稿,甲单独做10天可完成,乙单独做15天可以完成.现在由甲、乙二人合做,由于乙中途生病休息了若干天,结果一共用了8天才完成任务.那么,乙中途休息了天.5.某一个工程甲单独做50天可以完成,乙单独做75天可以完成,现在两人合作,但途中乙因事离开了几天,从开工后40天把这个工程做完,则乙中途离开了天.6.一项工程,甲工程队做需30天完成,每天工程费用万元;乙工程队做需40天完成,每天工程费用万元.为了在20天内完成,安排甲、乙两队共同参与这项工程,如果两队工作的天数可以不一样,那么,两队共同完成这项工程的总费用至少需要万元.7.甲、乙、丙三个人生产一批玩具,甲生产的个数是乙、丙两人生产个数之和的,乙生产的个数是甲、丙两人生产个数之和的,丙生产了40个.这批玩具共有个.8.运送一批货物,甲车3次运这批货物的,若运,乙车只需2次.两车合运,每次运这批货物的.9.师徒三人合作承包一项工程,4天能全部完成.已知师傅单干所需天数与两个徒弟合做所需天数相等;而师傅与乙徒弟合做所需天数的2倍与甲徒弟单独完成所需天数相等.那么乙徒弟单独做完这项工程需天.二.应用题(共12小题)10.一件工程,甲、乙合作需6天完成,乙、丙合作需9天完成,甲、丙合作需15天完成,现在甲、乙、丙合作,需多少天完成?11.甲乙两个队伍完成一项工程修地铁,甲队150天修完,乙队180天修完,在维修的过程中甲队干5天休息2天,乙队干6天休息1天,问甲乙合作几天完成?12.为“雪顿”节做一顶藏式帐篷,师傅单独完成要用30天,徒弟单独完成,要多用半个月.如果按照师、徒、师、徒、…的顺序每人轮流工作一天,这顶帐篷多少天才能做完.13.甲、乙两个车间织布,原计划每天共织700m,现技术改进,甲车间每天多织布100m,乙车间的日产量提高一倍,这样,两车间一天共织了1020m。