小学六年级数学几何图形测试题完整版

合集下载

人教版六年级数学下册《图形与几何》专项训练卷(附答案)

人教版六年级数学下册《图形与几何》专项训练卷(附答案)

人教版六年级数学下册《图形与几何》专项训练姓名: ___________班级: ___________考号: ___________一、填空题1. 一个等腰三角形的一条边长是, 另一条边长是, 那么这个等腰三角形的周长是(______)。

2. 钟面上, 经过3小时, 时针旋转了(______);经过30分钟, 分针旋转了(______)。

3. 一个梯形的下底是, 如果下底缩短, 那么面积就减少, 并且得到的新图形是一个平行四边形, 原来梯形的面积是(__________)。

4. 如右图, 直角梯形的周长, 它的面积是(________)。

5. 一个长方体正好可以切成4个棱长为的正方体, 原长方体的棱长总和可能是(______), 也可能是(______)。

6.右图是一个圆柱和一个圆锥, 圆柱的底面直径是圆锥的2倍, 它们的高度相等。

一个这样的圆柱可以熔铸成(________)个这样的圆锥。

7.观察下图, 图①和图②中的三角形均为等边三角形, 图①中小三角形的面积是大三角形面积的。

图③中小正方形的面积占大正方形面积的。

8. 小明从一个长方体纸盒上撕下两个相邻的面(展开后如右图), 这个纸盒的底面积是_____平方厘米, 体积是_____立方厘米.9.如下图所示, 一张长方形铁皮, 切割下阴影部分的两个圆和一个长方形刚好能做一个油桶, 这个油桶的容积是(________)。

10. 右图中圆的面积与长方形面积相等。

圆的周长是, 那么阴影部分的周长是(______)。

二、选择题11. 图中正方形的面积()平行四边形的面积。

A. 大于B. 等于C. 小于D. 无法判断12.用10倍的放大镜看40°的角, 看到的角是()A. 40°B. 400°C. 4°13.一个等腰三角形的一个底角是, 它的顶角是()。

A. B. C. D.14.下列四个图形中, 不能通过基本图形平移得到的是()。

(完整版)六年级几何图形练习题

(完整版)六年级几何图形练习题

六年级几何图形练习题1、如下图,四个圆的直径均为4厘米,求阴影部分面积。

(单位:厘米)2、下图中各小圆的半径为1,求该图中阴影部分的面积。

3、已知右图中两个正方形的边长分别是3厘米和6厘米,求阴影部分的面积。

12、下图的中的正方形的边长是2厘米,以圆弧为分界线的Ⅰ、Ⅱ两部的面积的差是多少平方厘米?( =3.14)4、如下图,已知直角三角形的面积是12平方厘米,求阴影部分的面积。

5、如下图,O为圆心CO垂直于AB,三角形ABC的面积是45平方厘米,以C为圆心,CA为半径画弧将圆分成两部分,求阴影部分的面积。

6、如下图扇形的半径OA=OB=6厘米。

角AOB等于45°,AC垂直OB于C点,那么图中阴影部分面积是多少平方厘米?( =3.14)7、求下列图形的阴影部分。

8、下图中长方形的面积是18、把一块1.35公顷的长方形田地划分成两部分(如下图),其中三角形田地比梯形田地少0.81公顷,三角形的底是60米。

这块长方形地的长和宽各是多少米?19、如下图,半圆的直径是10厘米,阴影部分甲比乙的面积少1.25平方厘米,求三角形△ABC的边OA的长。

20、如下图,已知直角三角形ABC中,AB边上的高是4.8厘米,求阴影部分的面积。

21、如下图,把一个圆剪成一个近似的长方形,已知长方形的周长是33.12厘米,求阴影部分面积。

22、如下图,求阴影部分面积。

(单位:厘米)23、下图长方形ABCD中,AB=4厘米,BC=8厘米,M,N分别为两弧中点,求阴影部分的面积。

26、下图正方形ABCD的面积是30厘米,求阴影部分的面积。

28、如下图所示,两圆半径都是1厘米,且图中两个阴影部分部分的面积相等。

求长方形O的面积。

ABO129、求下图的面积。

(单位:厘米)30、下图,四边形ABCD是正方形,三角形ABF的面积比正方形ABCD的面积大12厘米,线段BC的长为8厘米。

求线段CF的长是多少厘米?36、下图中三角形ABC的高是5厘米,三角形的面积是30平方厘米,求阴影部分的面积。

完整版六年级几何图形练习试题

完整版六年级几何图形练习试题

1 / 3几何图形练习题1、一条小河的一边有两个点 A 和点 B 。

从 A 点出发,到小河里担水, 再到 B 点。

怎么走近来?请你画出担水的路线,并说明。

3、如图,三角形 ABC 的面积是 120 平方厘米, AE=DE , ADC=1BC 。

求暗影部分的面积。

F2EBDC4、用篱笆围一块梯形范围的苗圃(如图) ,一面利用围墙不用篱笆,这样共用去篱笆 45 米。

这块苗圃的面积是多少?7m墙5、如图,在三角形 ABC 中, D 、E 是两个将 BC 边均匀分红三份的两个点, F 为AB 的中点,假如三角形 DEF 的面积是 12 平方厘米,则三角形 ABC 的面积是多少?第 1 页 共 3 页6、有一个平行四边形的周长是80 厘米,它的相邻两条边上的高是12 厘米和 8厘米。

求这个平行四边形的面积。

7、右图三角形 ECD中 EC=12厘米, CD=8厘米,而且它们的面积是长方形 ABCF的 2 倍,那么三角形ADF的面积是()。

EA FB C D8、假如三角形的两条边分别是4cm和 7cm,那么第三条边的取值范围是(),取整厘米数能够是()。

9、一个直角三角形三条边分别是 6 厘米、 8 厘米和 10 厘米,那么,它的斜边上的高是()。

10、2002 年在北京召开了国际数学家大会,大会的会标如右图所示,它是由四个同样的直角三角形拼成的,直角三角形两条直角边边长分别是 2 和 3. 问:大正方形的面积是多少?第 2 页共 3 页2 / 311、有一条小河,河流本来面宽15 米,底宽 2 米,深 3 米。

挖后边宽不变,底宽 3 米,深 4 米,求横截面中暗影部分的面积。

1532312、右图是一块长方形草地,长方形的长 16 米,宽是 10 米,之间有两条道路,一条是长方形,一条是平行四边形。

那么,草地部分的面积是多少?162102第 3 页共 3 页3 / 3。

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析1.判断下列图a、图b、图c能否一笔画.【答案】图a和图c能,图b不能。

【解析】图a能,因为有2个奇点,图b不能,因为图形不是连通的,图c能,因为图中全是奇点。

2.下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?【答案】甲蚂蚁,从奇点出发才能一笔画出图形。

【解析】要想不重复爬出,需要图形能一笔画出,由于图中有两个奇点,所以应该从奇点出发才能一笔画出图形,所以甲蚂蚁能够。

3.下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?【答案】入口和出口应该分别放在F和I点。

【解析】要想不重复,需要路线能一笔画出,由于图中有两个奇点,所以入口和出口应该分别放在两个奇点出,即F和I点。

4.如图,在188的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?【答案】【解析】我们数出阴影部分中完整的小正方形有8+15+15+1654个,其中部分有6+6+8 20个,部分有6+6+820(个),而1个和1个正好组成一个完整的小正方形,所以阴影部分共包含54+2074(个)完整小正方形,而整个方格纸包含818144(个)完整小正方形.所以图中阴影面积占整个方格纸面积的,即.5.用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?【答案】无穷多【解析】怎样把一个图形按照规定的要求分割成若干部分呢?这就是图形的分割问题.按照规定的要求合理分割图形,是很讲究技巧的,多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力.这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图):⑴做长方形的两条对角线,设交点为⑵过点任作一条直线,直线将长方形平均分割成两块.可见用线段平分长方形的分法是无穷多的.6.将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【答案】【解析】图中一共有18个小方格,要求分割成大小、形状相同的三块,每一块有:(块),而且分割成大小、形状相同的三块,可以看出图形的中心点是,而且上面的部分是对称的,但是只有5块,需要对称的再加上一块,再由图形的特点.7.请把下面的图形分成形状、大小都相同的块,使每一块里面都有“春蕾杯赛”个字.【答案】【解析】如下图所示:答案不唯一.8.如图,它是由个边长为厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后个小图形的周长总和与原来大图形的周长相差厘米.【答案】;8;22【解析】⑴因为总共有个小正方形,所以分成个大小形状相同的图形后每个图形应该有(个)小正方形,如图.⑵每个小图形的周长为厘米.⑶个小图形的周长和:(厘米),原图形的周长:(厘米),所以相差(厘米).9.如图,将一个正方形分割成互相不重叠的21个小正方形,这些小正方形的大小不一定相同,请画图表示.【答案】【解析】分割的方法不唯一,如右图所示.10.用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.【答案】【解析】能用四块同样大小的等腰直角三角板拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形.11.有6个完全相同的,你能将它们拼成下面的形状吗?【答案】→→【解析】利用染色法以及图形的对称性,对称轴两侧都有三个小图形,按照上面的顺序标号即可完成.12.三种塑料板的型号如图:() () ()已有型板30块,要购买、两种型号板若干,拼成正方形10个,型板每块价格5元,型板每块价格为4元.请你考虑要各买多少块,使所花的总钱数尽可能少,那么购买、两种板要花多少元?【答案】192【解析】要使花的钱尽可能的少,已有30个型板最好能用上,而价格较贵的型板尽可能少用,因为型与型的面积都为3,所以在拼成的的正方形中,除了型外,余下的面积应能被3整除.有或能被3整除知,只能用4块型板或1块型板,考虑尽可能多地使用型板,有如下图1、图2 的拼法:图1 图2图1的拼法要花(元),图2的拼法要花(元),因为只有30块型板,所以在10快的正方形中,图2的拼法只能有4块,剩下6块用图1拼法,共需:(元) 13.小龙的妈妈在街上卖边角布料的地摊上,买回了一块形状是等腰直角三角形的绸布,想用它来做长方形的窗帘,为了不把布剪的太碎,裁剪的块数就要尽可能的少,请问小龙的妈妈应该怎样剪拼呢?【答案】【解析】要使裁剪的块数少,就要充分利用等腰直角三角形的特点,还要尽可能多的让长方形的边与三角形的边重合,假设拼好的长方形以为长,现在要把△补到△的位置上,这就要求这两个三角形完全一样,显然,只要取、分别为、的中点即可.所以首先连接的中点和的中点,将△沿剪开,再按顺时针方向旋转180°即可.14.把一个正方形分成8块,再把它们拼成一个正方形和一个长方形,使这个正方形和长方形的面积相等.【答案】⑴⑵⑶【解析】连接正方形的对角线,把正方形分成了4个相等的等腰直角三角形,再连接各腰中点,又把它们分成4个小等腰直角三角形和4个等腰梯形.(如图⑴所示),出于分成正方形、长方形面积相等的要求考虑:分别取出两个小等腰直角三角形和两个梯形,就能一一拼出所要求的正方形和长方形了(如图⑵、⑶所示).15.把下图中两个图形中的某一个分成三块,最后都拼在一起,使它们成为一个正方形.【答案】【解析】不管分其中的哪一块,最后拼得正方形的面积与图中两块面积和相等,甲面积(平方厘米);乙面积(平方厘米).所以甲面积乙面积(平方厘米),也就是最后拼得正方形的边长为10厘米.甲、乙两图形各有一边是10厘米,可视为正方形的一条边,然后把乙剪成三块拼成的正方形,即可.16.有个小长方形,它们的长和宽分别相等,用这个小长方形拼成的大长方形(如图)的面积是平方厘米,求这个大长方形的周长.【答案】29【解析】从图上可以知道,小长方形的长的倍等于宽的倍,所以长是宽的倍.每个小长方形的面积为平方厘米,所以宽宽,所以宽为厘米,长为厘米.大长方形的周长为厘米.17.右图的长方形被分割成个正方形,已知原长方形的面积为平方厘米,求原长方形的长与宽.【答案】12;10【解析】大正方形边长的倍等于小正方形边长的倍,所以大正方形的边长是小正方形边长的倍,大正方形的面积是小正方形面积的倍,所以小正方形面积为平方厘米,所以小正方形的边长为厘米,大正方形的边长为厘米,原长方形的长为厘米,宽为厘米.18.如图,是矩形,,,对角线、相交.、分别是与的中点,图中的阴影部分以为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(取3)【答案】180【解析】扫出的图形如右上图所示,白色部分实际上是一个圆柱减去两个圆锥后所形成的图形.两个圆锥的体积之和为(立方厘米);圆柱的体积为(立方厘米),所以白色部分扫出的体积为(立方厘米).19.如图,,,,,.求.【答案】【解析】本题题目本身很简单,但它把本讲的两个重要知识点融合到一起,既可以看作是”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用,也可以看作是找点,最妙的是其中包含了找点的种情况.最后求得的面积为.20.如图,在长方形中,是的中点,是的中点,如果厘米,厘米,求三角形的面积.【答案】24【解析】∵是的中点,是的中点,∴,,又∵是长方形,∴ (平方厘米).21.如图,在三角形ABC中,厘米,高是6厘米,E、F分别为AB和AC的中点,那么三角形EBF的面积是多少平方厘米?【答案】6【解析】∵是的中点∴同理∴(平方厘米).22.如图ABCD是一个长方形,点E、F和G分别是它们所在边的中点.如果长方形的面积是36个平方单位,求三角形EFG的面积是多少个平方单位.【答案】9【解析】如右图分割后可得,(平方单位).23.将一个边长为4厘米的正方形对折,再沿折线剪开,得到两个长方形.请问:这两个长方形的周长之和比原来正方形的周长多几厘米?【答案】8【解析】剪开后的图形与原图形相比,多了两条边,这两条边的长度即为所求.4×2=8厘米24.用7根长度都是1寸的火柴棍拼成了一个三角形.请问:这个三角形的三条边长分别是多少?【答案】3,3,1或3,2,2【解析】3寸、3寸、1寸或3寸、2寸、2寸.25.有两个相同的直角三角形纸片,三条边分别为3厘米、4厘米、5厘米.不许折叠,用这两个直角三角形可以拼成几种平行四边形?【答案】3【解析】3种.26.若干棱长为1的立方体拼成了一个11×11×11的大立方体,那么从一点望去,最多能看到多少个单位立方体?【答案】331【解析】从一点望去,最多可以看见三个两两相邻的面,如下图所示:而每个面对应有11×11=121个小立方体,但是注意到公共棱上对应的小正方体被计算了两次,应减去三个棱上对应的小立方体,但是此时顶点(望去的那一点)又多减了1次,所以必须补上,于是有:一眼看去,有121×3-11×3+1=331个单位立方体可以看到.27.如图,在直线上两个相距l厘米的点A和B上各有一只青蛙.A点的青蛙沿直线跳往关于B点的对称点Al ,而B点的青蛙跳往关于A点的对称点Bl;然后B1点的青蛙跳往关于Bl点的对称点A2,Bl点的青蛙跳往关于Al点的对称点B2.如此跳下去,两只青蛙各跳了7次后,原来在A点的青蛙跳到的位置距离B点有多少厘米?【答案】1093【解析】两只青蛙各跳一次,距离增加为原来的3倍,所以A7B7=37×1=2187(寸),而且A7在右,B7在左(跳奇数次时,A点的青蛙在左.跳偶数次时,B点的青蛙在左).显然有B7A=BA7,所以BA7=(B7A7-AB)÷2=(2187-1)÷2=1093,即答案为1093.28.如图,正方形的树林每边长1000米,里边有白杨树和榆树.小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰到一株榆树就往正东走,最后他走到了东北角上.问小明一共走了多少米的距离?【答案】2000【解析】小明往正北走路程可能分许多段.不管是多少段,各段距离的和正好是正方形南北方向的一条边长1000米;同样小明往正东方向走若干段距离的和也正好是东西方向的一条边长1000米.所以,小明一共走了1000+1000=2000(米).29.图1、图2是两个形状、大小完全相同的大长方形.在每个大长方形内放入4个如图3所示的小长方形,斜线区域是空下来的地方.已知大长方形的长比宽多6厘米,问:图1、图2中画斜线的区域的周长哪个大?大多少厘米?【答案】第一个大,大12cm【解析】为了方便叙述,在原图中标上字母,如下图所示:图1中画阴影区域的周长恰好等于大长方形的周长,图19-9中画阴影区域的周长显然比大长方形的周长小,两者之差是2AB.从图2中的竖直方向看,AB=a-CD.再从图2的水平方向看,大长方形的长是a+2b,宽是2b+CD.已知大长方形的长比宽多6厘米,所以(a+2b)-(2b+CD)=a-CD=6(厘米),从而AB=6(厘米) .因此图1中画斜线区域的周长比图2中的画斜线区域的周长大2AB=12(厘米).30.如图,有一个八边形,任意相邻的两条边都互相垂直.为确定这个八边形的周长,最少需要知道其中几条边的长度?【答案】3【解析】我们利用例4的方法,放一只小虫使它沿八边形的边缘爬行一周回到原出发点,有向左的长度等于向右的长度,向下的长度等于向上的长度,而爬行一周的路程即为图形的周长,所以只用量出向上,向左的长度,在下图中(实际小虫是在八边形的边上爬行,而不是沿示意线爬行),即为AB,ED,AG的长度.显然只用量出3条线段的长度,即可求出八边形的周长.。

小学数学六年级几何练习册(附详细答案)

小学数学六年级几何练习册(附详细答案)

【练习1】【练习2】【练习3】【练习4】【练习5】【练习6】【练习7】【练习8】【练习9】【练习10】、相交于点;已知三角形与三角平方厘米,那么梯形的面积是平方厘【练习11】【练习12】,问阴影部分面积为多少?【练习13】【练习14】,三角形的面积为,那么三【练习15】【练习16】【练习17】【练习18】【练习19】【练习20】【练习21】【练习22】,则三角形的面积是.【练习23】【练习24】【练习25】【练习26】(取).【练习27】【练习28】【练习29】【练习30】平方厘米.【练习31】【练习32】【练习33】cm2,体积是cm【练习34】计算下面各圆锥体积(单位:厘米)(取)【练习35】【练习36】【练习1】【练习2】几何四边形一半模型等积变形【练习3】【练习4】,所以【练习5】【练习6】【练习7】【练习8】【练习9】:,所以【练习10】根据梯形中的蝴蝶模型(平方厘米),方厘米),故总面积为(平方厘米).蝴蝶模型【练习11】,根据蝴蝶模型和一半模型求出每一块的面积如图上标几何四边形蝴蝶模型基本梯形蝴蝶模型【练习12】如图,梯形面积为,四边形连接,在梯形中,;在梯形中,,并且四边形面积为,所以梯形空白部分的面积是,所以阴影的面积是【练习13】【练习14】.【练习15】【练习16】.【练习17】【练习18】平方厘米.【练习19】【练习20】【练习21】【练习22】,则三角形的面积是.可以看成三角形的“假高”(都是从顶点到底边连线,且两条“高”共线),【练习23】【练习24】【练习25】,【练习26】(取).【练习27】【练习28】【练习29】【练习30】平方厘米.【练习31】【练习32】【练习33】cm2,体积是cm(3)(4)【练习34】【练习35】【练习36】圆柱与圆锥圆柱与圆锥基本概念运用。

最新人教版(五四制)六年级数学下册第九章几何图形初步综合测试试题(含答案及详细解析)

最新人教版(五四制)六年级数学下册第九章几何图形初步综合测试试题(含答案及详细解析)

六年级数学下册第九章几何图形初步综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在观测站O 发现客轮A ,货轮B 分别在它北偏西50°,西南方向,则∠AOB 的度数是( )A .80°B .85°C .90°D .95°2、如果A 、B 、C 三点在同一直线上,线段4cm AB =,2cm BC =,那么A 、C 两点之间的距离为( )A .2cmB .6cmC .2cm 或6cmD .无法确定3、如图所示,点A ,O ,B 在同一直线上,∠COA =90°,若∠1=∠2,则图中互余的角共有( )A.5对B.4对C.3对D.2对4、如图所示,已知∠AOB=4024'︒,OC平分∠AOB,∠BOD与∠AOC互为余角,则∠BOD的度数为()A.5958'︒︒D.6958'︒C.5948'︒B.6948'5、下列说法错误的是()A.直线AB和直线BA是同一条直线B.若线段AM=2,BM=2,则M为线段AB的中点C.画一条5厘米长的线段D.若线段AB=5,AC=3,则BC不可能是16、下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.7、下面图形是棱柱的是()A.B.C.D.8、下列4个角中,最有可能与65°角互补的角是()A.B.C.D.9、如图,一副三角尺按不同的位置摆放,其中符合∠α=∠β的图形共有()A.4个B.3个C.2个D.1个10、下列几何图形与相应语言描述不相符的有()A.如图1所示,直线a和直线b相交于点AB.如图2所示,延长线段BA到点CC .如图3所示,射线BC 不经过点AD .如图4所示,射线CD 和线段AB 有交点第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知α∠与β∠互余,且3812α'∠=︒,则β∠=____________.2、如图,点A ,B ,C 在数轴上表示的有理数分别为a ,b ,c ,点C 是AB 的中点,原点O 是BC 的中点,现给出下列等式: ①c a c b =--; ②2a b c =-; ③()14c a b =--; ④a b c a b c +-=--.其中正确的等式序号是____________.3、计算:3545'7219'︒+︒=__________.4、用一个平面去截一个几何体,若截面是长方形,则该几何体可能是______(写三个).5、若∠α=135°,则∠α的补角是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,线段8AB =,点C 是AB 的中点,D 是BC 的中点,E 是AD 的中点.(1)求线段BD 的长;(2)求线段EC 的长.2、如图,点A ,O ,B 在同一条直线上,射线OD 和射线OE 分别平分∠AOC 和∠BOC , 图中哪些角互为余角?哪些角互为补角?3、已知线段AB a (如图),延长BA 至点C ,使2AC AB =,延长AB 至点D ,使12BD AB =.(1)请按上述要求画全图形;(2)求线段CD 的长(用含a 的代数式表示);(3)若E 是CD 的中点, 3AE =,求a 的值.4、如图,已知点A 和线段BC ,请用直尺和圆规作图(不要求写作图过程,保留作图痕迹).(1)作线段AB 、射线CA ;(2)延长BC 至点D ,使得BD BC AC BA =+-.5、如图1,在AOB ∠内部作射线OC ,OD ,OC 在OD 左侧,且2AOB COD ∠=∠.(1)图1中,若160AOB ∠=︒,OE 平分AOC ∠,OF 平分BOD ∠,则EOF ∠______°;(2)如图2,OE 平分AOD ∠,探究BOD ∠与COE ∠之间的数量关系,并证明;(3)设COD m ∠=︒,过点O 作射线OE ,使OC 为AOE ∠的平分线,再作COD ∠的角平分线OF ,若3EOC EOF ∠=∠,画出相应的图形并求AOE ∠的度数(用含m 的式子表示).-参考答案-一、单选题1、B【解析】【分析】根据西南方向即为南偏西45︒,然后用180︒减去两个角度的和即可.【详解】由题意得:180(4550)85AOB ∠=︒-︒+︒=︒,故选:B .【点睛】本题考查有关方位角的计算,理解方位角的概念,利用数形结合的思想是解题关键.2、C【解析】【分析】根据题意,利用分类讨论的数学思想可以求得A、C两点间的距离.【详解】解:∵A、B、C三点在同一条直线上,线段AB=4cm,BC=2cm,∴当点C在点B左侧时,A、C两点间的距离为:4-2=2(cm),当点C在点B右侧时,A、C两点间的距离为:4+2=6(cm),故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.3、B【解析】【分析】由∠AOC=90°,可求∠BOC=90°,推出∠1+∠AOE=90°,∠2+∠DOC=90°,求出∠DOC=∠AOE,推出∠1+∠COD=90°,∠2+∠AOE=90°,根据余角的定义得出即可.【详解】解∵∠COA=90°∠AOC+∠BOC=180°∴∠BOC=180°-90°=90°∴∠AOC=∠BOC=90°,∴∠1+∠AOE=90°,∠2+∠COD=90°.∵∠1=∠2,∴∠COD=∠AOE,∴∠1+∠COD=90°,∠2+∠AOE=90°,∴图中互余的角共有4对.故选B.【点睛】本题考查了邻补角,互余的应用,关键是熟悉:如果∠A和∠B互余,则∠A+∠B=90°.4、B【解析】【分析】由OC平分∠AOB,可求出∠AOC,再由∠BOD与∠AOC互为余角,即可求出∠BOD.【详解】∵∠AOB=4024'︒,OC平分∠AOB∴∠AOC=12∠AOB =2012'︒又∵∠BOD与∠AOC互为余角∴∠BOD=90°-∠AOC=6948'︒故选:B.【点睛】本题主要考查了角平分线的意义、余角的意义,掌握角平分线和余角的有关概念是解题的关键.5、B【解析】【分析】根据直线、线段以及线段中点的性质进行判定即可得出答案.【详解】解:A.因为直线AB和直线BA是同一条直线,所以A选项说法正确,故A选项不符合题意;B.如图1,AM=BM,但点M不是线段AB的中点.故B选项说法错误,故B选项符合题意.C.因为画一条5cm的线段,如图2所以C选项说法正确,故C选项不符合题意;D.因为如图3AB=5,AC=3,所以2≤BC≤8,BC不可能是1,故D选项说法正确,故D选项不符合题意.故选:B.【点睛】本题主要考查了两点间的距离,直线、射线、线段,熟练掌握两点的距离计算的方法及直线、射线、线段的性质进行判定是解决本题的关键.6、B【解析】【分析】根据图中三角形,圆,正方形所处的位置关系即可直接选出答案.【详解】三角形图案所在的面应与正方形的图案所在的面相邻,而选项A与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符;三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B.故选B.【点睛】此题主要考查了展开图折叠成几何体,可以动手折叠一下,有助于空间想象力的培养.7、A【解析】【分析】根据棱柱的两个底面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行进行判断.【详解】解:A、六棱柱,满足题意;B、三棱锥,不满足题意;C、球,不满足题意;D、圆柱,不满足题意.故选:A.【点睛】本题考查棱柱的定义,掌握棱柱的特征是解题的关键.8、D【解析】【分析】︒-︒=︒,为钝角,看选项只有D符合钝两个角互补,相加为180︒,与65︒互补的角的度数为18065115角的要求.【详解】︒-︒=︒,115︒为钝角,大于90︒.65︒互补的角的度数为18065115A、小于90︒为锐角,不符合要求;B、小于90︒为锐角,不符合要求;C、小于90︒为锐角,不符合要求;D、大于90︒为锐角,符合要求;故选D.【点睛】本题考查补角的性质,以及角的判断,熟悉补角的性质,掌握角的类型判断是本题的解题关键.9、B【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第三个图形中∠α=∠β,第四个图形∠α和∠β互补.【详解】解:根据角的和差关系可得第一个图形∠α=∠β=45°,根据同角的余角相等可得第二个图形∠α=∠β,根据等角的补角相等可得第三个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:B.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.10、B【解析】【分析】根据直线、射线、线段的相关概念可直接进行排除选项.【详解】解:A、如图1所示,直线a和直线b相交于点A,几何图形与相应语言描述相符,故不符合题意;B、如图2所示,延长线段BA到点C,几何图形与相应语言描述不相符,故符合题意;C、如图3所示,射线BC不经过点A,几何图形与相应语言描述相符,故不符合题意;D、如图4所示,射线CD和线段AB有交点,几何图形与相应语言描述相符,故不符合题意;故选B.【点睛】本题主要考查直线、射线与线段,熟练掌握直线、射线与线段的相关概念是解题的关键.二、填空题︒1、5148'【解析】【分析】根据互余的定义(和为90︒的两个角互余)即可得.【详解】解:因为α∠与β∠互余,且3812α'∠=︒,所以9038125148β''∠=︒-︒=︒,故答案为:5148'︒.【点睛】本题考查了互余,熟练掌握互余的定义是解题关键.2、①②④【解析】【分析】先根据数轴的性质、线段中点的定义可得,,0b c c a b c a c b -=-=-<<<,再根据绝对值的性质逐个判断即可得.【详解】解:由题意得:,,0b c c a b c a c b -=-=-<<<, 则22a c b c b b c c c c c c --=--=+=-+=-=,即等式①正确;由,b c c a b c -=-=-得:22a c b b c =-=-+,0a <,20b c ∴-+<,22b a b c c ∴=-+=-,即等式②正确;由,b c c a b c -=-=-得:223a c b b b b =-=--=-, 则()()11344a b b b b c --=---==-,即()14c a b =-,等式③错误;+,3325+=+-=-=+a b c bb b bb b-+,--=--=+=+=3445b b b b ba b c b b b∴,即等式④正确;a b c a b c+-=--综上,正确的等式序号是①②④,故答案为:①②④.【点睛】本题考查了数轴、线段中点、绝对值、整式的加减,熟练掌握数轴和绝对值运算是解题关键.3、1084︒'【解析】【分析】两个度数相加,度与度,分与分对应相加,分的结果若满60则转化为度.【详解】解:35°45'+72°19'=108°4'故答案为:108°4' .【点睛】本题考查的知识点是角度的计算,注意度分秒之间的进率为60即可.4、长方体、正方体、圆柱(答案不唯一)【解析】【分析】截面的形状是长方形,说明从不同的方向看到的立体图形的形状必有长方形或正方形,由此得出长方体、正方体、圆柱用一个平面去截一个几何体,可以得到截面的形状是长方形.解:用一个平面去截一个几何体,如果截面的形状是长方形,原来的几何体可能是长方体、正方体、圆柱.故答案为:长方体、正方体、圆柱(答案不唯一).【点睛】此题考查用平面截几何体,解题的关键是掌握截面的形状既与被截的几何体有关,还与截面的角度和方向有关.5、45°##45度【解析】【分析】根据补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角,即可求解.【详解】解:∵∠α=135°,∴∠α的补角=180°-∠α=180°-135°=45°,故答案为:45°.【点睛】本题考查了补角的定义,熟练掌握补角的定义是解题的关键.三、解答题1、 (1)2(2)1【解析】(1)由点C 是AB 的中点可得AC =BC =4,由点D 是BC 的中点可得BD =CD =2即可;(2)由(1)可知AE 、AD 的长,再根据EC =AC −AE ,即可得出线段EC 的长.(1)解:因为点C 是AB 的中点,8AB =, 所以142AC BC AB ===, 又因为点D 是BC 的中点, 所以122BD CD BC ===.(2)解:由(1)得4AC =,6AD AC CD =+=,因为E 是AD 的中点, 所以132AE ED AD ===, 所以431EC AC AE =-=-=.【点睛】本题考查了两点间的距离以及线段中点的定义,利用线段的和差是解题关键.2、∠COD 和∠COE ,∠AOD 和∠BOE , ∠AOD 和∠COE ,∠COD 和∠BOE 互为余角;∠AOD 和∠BOD ,∠COD 和∠BOD ,∠BOE 和∠AOE ,∠COE 和∠AOE 互为补角【解析】【分析】和为90°的两角互余,和为180°的两角互补,根据两角和即可找出互余与互补的角.【详解】解:由题意知11=22AOD DOC AOC COE EOB BOC ∠=∠∠∠=∠=∠, ∵180AOD DOC COE EOB AOC BOC ∠+∠+∠+∠=∠+∠=︒∴∠AOC 和∠BOC 互为补角; ∴()11190222COD COE AOC BOC AOC BOC ∠+∠=∠+∠=∠+∠=︒ ∴∠COD 和∠COE 互为余角;同理,∠AOD 和∠BOE , ∠AOD 和∠COE ,∠COD 和∠BOE 也互为余角;∠AOD 和∠BOD ,∠COD 和∠BOD ,∠BOE 和∠AOE ,∠COE 和∠AOE 也互为补角;∴∠COD 和∠COE ,∠AOD 和∠BOE , ∠AOD 和∠COE ,∠COD 和∠BOE 互为余角;∠AOC 和∠BOC ,∠AOD 和∠BOD ,∠COD 和∠BOD ,∠BOE 和∠AOE ,∠COE 和∠AOE 互为补角.【点睛】本题考查了两角互余与两角互补的关系.解题的关键在于正确的找出角度的数量关系.3、 (1)见解析 (2)72CD a = (3)12a =【解析】【分析】(1)根据题意,画出图形,即可求解;(2)根据2AC AB =,12BD AB =可得AC =2a ,12BD a =,即可求解; (3)根据E 是CD 的中点,可得1724CE CD a ==,从而得到14AE AC CE a =-=,即可求解. (1)解:如图所示:(2)解:∵AC =2AB =2a ,1122BD AB a ==, ∴17222CD AC AB BD a a a a =++=++=; (3)解:如图,∵E 是CD 的中点, ∴1724CE CD a ==, ∴71244AE AC CE a a a =-=-=, ∵AE =3,即134a =, ∴12a =.【点睛】本题主要考查了线段的和与差,有关线段中点的计算,根据题意,准确画出图形是解题的关键.4、 (1)作图见解析(2)作图见解析【解析】【分析】(1)连接,AB 以C 为端点作射线,CA 从而可得答案;(2)延长,BC 在BC 的延长线上截取,CH AC 再在线段HB 上截取,HD AB 则线段BD 即为所求.(1) 解:如图,线段,AB 射线CA 是所求作的线段与射线,(2)解:如(1)图,线段BD 即为所求作的线段.【点睛】本题考查的是作线段,作射线,作一条已知线段等于几条线段的和与差,掌握基本作图语言与作图方法是解本题的关键.5、 (1)120(2)BOD 2COE ∠=∠(3)AOE ∠的度数为34m ︒或32m ︒ 【解析】【分析】(1)根据角平分线的性质得到11,22AOE COE AOC DOF BOF BOD ∠=∠=∠∠=∠=∠,再结合已知条件即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论;(3)根据角平分线的性质结合已知条件进行角度之间的加减运算,分类讨论得出结论即可.(1)∵160AOB ∠=︒,2AOB COD ∠=∠,∴80COD ∠=︒,∴80AOC BOD ∠+∠=︒ ,∵OE 平分,AOC OF ∠平分BOD ∠, ∴11,22AOE COE AOC DOF BOF BOD ∠=∠=∠∠=∠=∠, ∴1()402COE DOF AOC BOD ∠+∠=∠+∠=︒, ∴120EOF COE FOD COD ∠=∠+∠+∠=︒,故答案为:120;(2)BOD 2COE ∠=∠.证明:∵OE 平分AOD ∠,∴2AOD EOD ∠=∠,∵COD CO EOD E ,∴EOD COD COE ∠=∠-∠.∴(22)2AOD COD COE COD COE ∠=∠-∠=∠-∠. ∵2AOB COD ∠=∠,∴2AOD AOB COE ∠=∠-∠.∵BOD AOB AOD ∠=∠-∠,∴BOD 2COE ∠=∠,(3)如图1,当OE 在OF 的左侧时,∵OF 平分COD ∠,∴12COF COD ∠=∠,COD m ∠=︒, ∴12COF m ∠=︒, ∵COF COE EOF ∠=∠+∠,3COE EOF ∠=∠, ∴142COF EOF m ∠=∠=︒, ∴18EOF m ∠=︒, ∴338COE EOF m ∠=∠=︒. ∵OC 为AOE ∠的平分线,∴2AOE COE ∠=∠. ∴34AOE m ∠=︒;如图2,当OE 在OF 的右侧时,∵OF 平分COD ∠, ∴12COF COD ∠=∠, ∵COD m ∠=︒, ∴12COF m ∠=︒,∵COF COE EOF ∠=∠-∠,3COE EOF ∠=∠, ∴122COF EOF m ∠=∠=︒, ∴14EOF m ∠=︒, ∴334COE EOF m ∠=∠=︒. ∵OC 为AOE ∠的平分线,322AOE COE m ∠=∠=︒.综上所述,AOE ∠的度数为34m ︒或32m ︒. 【点睛】本题主要考查了角平分线的性质与角度之间的加减运算,关键在于根据图形分析出各角之间的数量关系.。

小学六年级图形与几何题目与答案

小学六年级图形与几何题目与答案
16 4 4 cm
96 4 4 2 40 cm2
40 4 10 cm
小正方形的面积:1010 100 cm2
例2:中心公园有一块长16米、宽8米的草坪,草坪中间有 两条宽2米的路,将草坪平均划分为四块,每块草坪的面积
是多少? 2
2
16 28 2 4 21m2
平移法
练习2
小长方形的宽:52 5 2cm 大长方形的长:52 10 cm 大长方形的宽:5 2 7cm 大长方形的周长:10 72 34 cm
例4:如图,阴影部分BCFG是正方形,线段GE长20厘米, 线段AC长24厘米,求长方形ADEH的周长是多少厘米?
等量替换
20 242 88 cm
练习4
两个拼一起,减 少2条边
裁1刀——增加两条边 裁2刀——增加4条边
…… 裁n刀——增加2n条 边
小正方形的边长:8 8 1dm 小正方形的周长:1 4 4 dm
4dm 40cm
练习2
将一个长为6分米,宽为3分米的长方形,分割成如下8 个小长方形。求这8个小长形的周长总和是多少?
增加长:12 2条 增加宽:32 6条
练习4
在一个高10厘米、底面积为45平方厘米的长方体容器中盛满水。再 将一个底面积是20平方厘米,高是15厘米的长方体铁柱竖直放入, 那么溢出的水的体积是多少?
200立方厘米
20×10=200(立方厘米)
例4:医务室需要将500毫升酒精溶液分装到甲、乙两个长方 体容器。已知甲容器底面长8厘米,宽4厘米,乙容器底面长 6厘米,宽3厘米。要使甲、乙两个容器中的溶液高度相同, (1)这时容器中溶液的高度是多少厘米?
小学六年级图形与几何题目与答案
一、巧求周长

北师大版小学数学六年级下册《图形与几何》测试题及参考答案

北师大版小学数学六年级下册《图形与几何》测试题及参考答案

小学数学六年级下册《图形与几何》测试题一、填一填。

1.在同一个平面内两条直线的位置关系有()和()两种情况。

2.如右图,有()个锐角,()个钝角,()个直角。

3.一个三角形的三条边都是整厘米数,已知其中的两条边分别是5 cm和8 cm,那么第三条边最长是()cm,最短是()cm。

4.一个圆形纸片的周长是12.56 cm,把它平均分成两个半圆,每个半圆的周长是()cm。

5.一个长方体和一个圆锥的底面积和高都相等,它们的体积相差18 cm3,这个长方体的体积是()cm3,圆锥的体积是()cm3。

6.明鸣看乐乐是在南偏东45°的方向上,乐乐看明鸣就是在()45°的方向上。

7.把两个完全一样的正方体拼成一个长方体,表面积比原来减少了约()%。

(百分号前保留一位小数)8.一个正方形的边长是 4 cm,它的周长是(),面积是()。

如果在这个正方形内画一个最大的圆,那么这个圆的周长是(),面积是()。

9.用一根铁丝刚好围成一个边长为6 cm的正方形,如果把它拉成一个平行四边形,面积减少6 cm 2,拉成的平行四边形的高是( )cm 。

10.如右图,把平行四边形沿高剪开,再把三角形向右平移( )cm ,可以得到一个长方形。

11.把一个高为3 cm 的圆柱平均分成若干份后,正好可以拼成一个与它等底等高的近似长方体,这个长方体的宽是 4 cm ,长是( )cm ,原来圆柱的体积是( )cm 3。

12.圆的周长缩小到原来的12,那么圆的面积缩小到原来的( )。

13.一个直角三角形,三条边的比是3∶4∶5,已知它的周长是36 cm ,它的面积是( )cm 2,斜边上的高是( )cm 。

14.如右图,已知正方形的面积是9 cm 2,这个圆的面积是( )cm 2。

二、判一判。

(每题1分,共5分)1.一个圆柱的侧面展开图是一个正方形,这个圆柱底面直径与高的比是1∶π。

( )2.把一个石块投入盛有水的容器里,溢出的水的体积就是石块的体积。

【精品】新人教版六年级数学下册几何与图形测试卷(附答案)

【精品】新人教版六年级数学下册几何与图形测试卷(附答案)

几何与图形测试卷一、填空题。

1.3.5平方米=( )平方分米2立方分米3立方厘米=( )立方分米5.02升=( )升( )毫升公顷=( )平方米2.在钟面上,6时的时候,分针和时针所夹的角的度数是( ),是一个( )角。

3.一个三角形中,∠1=∠2=35°,∠3=( ),按边分是( )三角形。

4.一个三角形与一个平行四边形等底等高,如果三角形的面积是3.6平方分米,那么平行四边形的面积是( )平方分米。

5.一个圆柱的底面直径是8厘米,高是1分米,它的侧面积是( )平方厘米。

把它沿着底面直径垂直切成两半,表面积会增加( )平方厘米。

6.三个棱长为2厘米的正方体拼成一个长方体,这个长方体的体积是( )立方厘米,表面积是( )平方厘米。

7.一个长方体相交于同一个顶点的三条棱的长度之比是3∶2∶1,这个长方体的棱长总和是72厘米。

长方体的表面积是( )平方厘米,体积是( )立方厘米。

8.一个圆柱和一个圆锥等底等高,圆柱与圆锥的体积之和是60立方厘米,圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米。

二、判断题。

(对的画“√”,错的画“✕”)1.平角是一条直线。

( )2.三角形具有稳定性,四边形不具有稳定性。

( )3.两个面积相等的梯形,可以拼成一个平行四边形。

( )4.一个玻璃容器的体积与容积相等。

( )5.一个棱长是6厘米的正方体的表面积和体积相等。

( )三、选择题。

(把正确答案的序号填在括号里)1.射线( )端点。

A.没有B.有一个C.有两个2.下面图形中对称轴最少的是( )。

A.长方形B.正方形C.等腰梯形3.下面的立体图形从左边看到的图形是( )。

4.下图中,甲和乙两部分面积的关系是( )。

A.甲>乙B.甲<乙C.甲=乙5.一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面半径的比值是( )。

A.πB.2πC.r四、计算题。

1.计算下面图形中阴影部分的面积。

(单位:厘米)2.计算以红色直线为轴旋转形成的立体图形的体积。

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析1.观察下面的图,看各至少用几笔画成?【答案】图(1)要4笔画出,图(2)能1笔画出,图(3)能1笔画出。

【解析】图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要一笔画出,图(3)能一笔画出。

2. 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?【答案】【解析】欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了。

而图B中有4个奇点显然不能一笔画出.3.右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【答案】能够【解析】将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门。

4.如图所示,四个全等的圆每个半径均为2m,阴影部分的面积是.【答案】16【解析】我们虽没有学过圆或者圆弧的面积公式,但做一定的割补后我们发现其实我们并不需要知道这些公式也可以求出阴影部分面积.如图,割补后阴影部分的面积与正方形的面积相等,等于.5.图中小圆的面积是30平方厘米,则大圆的面积是多少平方厘米.(取)【答案】60【解析】设图中大圆的半径为,正方形的边长为,则小圆的直径等于正方形的边长,所以小圆的半径为,大圆的直径等于正方形的对角线长,即,得.所以,大圆的面积与小圆的面积之比为:,即大圆的面积是小圆面积的2倍,大圆的面积为(平方厘米).6.直角三角形放在一条直线上,斜边长厘米,直角边长厘米.如下图所示,三角形由位置Ⅰ绕点转动,到达位置Ⅱ,此时,点分别到达,点;再绕点转动,到达位置Ⅲ,此时,点分别到达,点.求点经到走过的路径的长.【答案】【解析】由于为的一半,所以,则弧为大圆周长的,弧为小圆周长的,而即为点经到的路径,所以点经到走过的路径的长为(厘米).7.把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.【答案】【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左下图所示的三种分法.又因为,所以,如果我们把每一个小三角形的面积看做1,那么就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形.根据上面的分析,又可以得到如右下图的另两种分法.8.下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.【答案】【解析】直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,边长正好为3,所以边分成两段,找到的三等分点,现在,,,,所以还要找到的中点,连接,就把梯形分成完全相同的两部分.如右上图.9.把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?【答案】【解析】先把图形分成相等的两块,每一块中再分成相等的两份,这样就不难分成四块了,如右上图.10.如图,它是由个边长为厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后个小图形的周长总和与原来大图形的周长相差厘米.【答案】;8;22【解析】⑴因为总共有个小正方形,所以分成个大小形状相同的图形后每个图形应该有(个)小正方形,如图.⑵每个小图形的周长为厘米.⑶个小图形的周长和:(厘米),原图形的周长:(厘米),所以相差(厘米).11.有6个完全相同的,你能将它们拼成下面的形状吗?【答案】→→【解析】利用染色法以及图形的对称性,对称轴两侧都有三个小图形,按照上面的顺序标号即可完成.12.试用图a中的8个相等的直角三角形,拼成图b中的空心正八边形和图c中的空心正八角星.【答案】【解析】把一个直角三角形的斜边与另一个直角三角形的一条直角边重合,同时,斜边上的一个锐角顶点与直角顶点重合,像这样依次摆放下去,便可得空心正八边形.若把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成空心正八角星.13.如下图两个正方形的边长分别是和(),将边长为的正方形切成四块大小、形状都相同的图形,与另一个正方形拼在一起组成一个正方形.【答案】【解析】拼成大正方形的面积应是,设边长,则有等式,又因为将边长为的正方形切成四个全等形,那么分割线一定经过正方形中心,假设切割线为大正方形边长,如图⑴,一定有,而,则:,所以,由此可以确定,然后将绕中心旋转到位置,即可把正方形切成符合要求的4块.如图⑵与图⑶.这种分法同时确保图⑶的中间部分就是边长为的小正方形.这是因为:⑴中心四边形的角即边长为的正方形的四个角,∠,∠,∠,∠,又因为各边长度相等.因此中心四边形是正方形.⑵中心正方形的边长.因此,中间部分是边长为的正方形.14.下图是一个锯齿状的零件,每一个锯齿的两条线段都长2厘米,求这个零件的周长.【答案】48【解析】平移法,将锯齿状的零件转化成平行四边形,两组对边相等都等于24厘米,所以这个零件的周长是24×2=48(厘米).15.求右图所示图形的周长(单位:分米)【答案】220【解析】这道题最简单的方法也是用平移法来解.下面我们来看一个基本解法.这是一个组合图形,由两个矩形组成,不要误认为两个矩形周长的和就是组合图形的周长.仔细观察图形可以发现:右边矩形的右边边长可以移到左边,这样就可以使左边的矩形变得完整.所以,这个组合图形的周长就是左边矩形的周长再加上右边矩形的一条已知边长的倍.即:(分米)16.如右图所示,在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲,和形区域乙和丙.甲的周长为厘米,乙的边长是甲的周长的倍,丙的周长是乙的周长的倍,那么丙的周长为多少厘米?长多少厘米?【答案】2【解析】乙的周长实际上是正方形的周长(我们可将乙与甲重合的两条线段分别向左、向下平移),同样的,丙的周长也就是正方形的周长.由于,,所以丙的周长为厘米,(厘米).17.如图,平行四边形,,,,,平行四边形的面积是,求平行四边形与四边形的面积比.【答案】1/18【解析】连接、.根据共角定理∵在和中,与互补,∴.又,所以.同理可得,,.所以.所以.18.一个长方形分成4个不同的三角形,绿色三角形面积占长方形面积的,黄色三角形面积是.问:长方形的面积是多少平方厘米?【答案】60【解析】黄色三角形与绿色三角形的底相等都等于长方形的长,高相加为长方形的宽,所以黄色三角形与绿色三角形的面积和为长方形面积的,而绿色三角形面积占长方形面积的,所以黄色三角形面积占长方形面积的.已知黄色三角形面积是,所以长方形面积等于().19.如图,在长方形中,是的中点,是的中点,如果厘米,厘米,求三角形的面积.【答案】24【解析】∵是的中点,是的中点,∴,,又∵是长方形,∴ (平方厘米).20.如图ABCD是一个长方形,点E、F和G分别是它们所在边的中点.如果长方形的面积是36个平方单位,求三角形EFG的面积是多少个平方单位.【答案】9【解析】如右图分割后可得,(平方单位).21.数一数,图中共有多少个角?【答案】8【解析】锐角、直角各4个,共8个角.22.将一个边长为4厘米的正方形对折,再沿折线剪开,得到两个长方形.请问:这两个长方形的周长之和比原来正方形的周长多几厘米?【答案】8【解析】剪开后的图形与原图形相比,多了两条边,这两条边的长度即为所求.4×2=8厘米23.用12个边长为1的小正方形拼一个大长方形,这个长方形的周长最短是多少?【答案】14【解析】拼成的图形长和宽最接近时,新的图形周长最短.即新图形边长为3和4时,周长最短,为(3+4)×2=1424.长方形有四个角,剪掉一个角,还剩几个角?【答案】如解析【解析】共有三种情况,如下图,分别剩下5、4、3个角.25.有两个相同的直角三角形纸片,三条边分别为3厘米、4厘米、5厘米.不许折叠,用这两个直角三角形可以拼成几种平行四边形?【答案】3【解析】3种.26.如图所示,剪一块纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘).那么这个多面体的面数、顶点数和棱数的总和是多少?【答案】74【解析】多面体的面数,可以直接从侧面展开图中数出来,12个正方形加8个三角形,共20面.下图是多面体上部的示意图共有9个顶点;同样,下部也是9个顶点,共18个顶点.棱数要分三层来数,上层从示意图数,有15条;下层也是15条;中间部分分为6条.一共15×2+6=36条棱.20+18+36=74.所以多面体的面数、顶点数和棱数的总和为74.27.如图,这是一个用若干块体积相同的小正方体粘成的模型.把这个模型的表面(包括底面)都涂上红色,那么,把这个模型拆开以后,有3面涂上红色的小正方体比有2面涂上红色的小正方体多多少块?【答案】12【解析】三面涂上红色的小正方形有2×4+5×4=28(个);两面涂上红色的小正方形有3×4+1×4=16(个),所以多出28-16=12(个).28.如图,四边形的面积是平方米,,,,,求四边形的面积.【答案】13.2【解析】连接.由共角定理得,即同理,即所以连接,同理可以得到所以平方米29.如图,正方形的树林每边长1000米,里边有白杨树和榆树.小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰到一株榆树就往正东走,最后他走到了东北角上.问小明一共走了多少米的距离?【答案】2000【解析】小明往正北走路程可能分许多段.不管是多少段,各段距离的和正好是正方形南北方向的一条边长1000米;同样小明往正东方向走若干段距离的和也正好是东西方向的一条边长1000米.所以,小明一共走了1000+1000=2000(米).30.在图中,共有多少个不同的三角形?【答案】85【解析】下图中共有35个三角形,两个叠加成题中图形时,又多出5+5×2=15个三角形,共计35×2+15=85个三角形.。

小学六年级数学几何图形练习题及答案

小学六年级数学几何图形练习题及答案

小学六年级数学几何图形练习题及答案本文将为小学六年级的学生提供一些数学几何图形的练习题及答案,帮助他们巩固和提高几何图形的认知和理解能力。

以下是一些常见的几何图形及其练习题:一、直线、线段、射线1. 完成下图:画出两条不同的线段,并用字母标记它们。

答案:答案因为文字发不了图片二、点、面、角1. 下图中的阴影部分是什么?答案:阴影部分是一个三角形。

三、正方形1. 下图中的图形是什么?答案:下图中的图形是一个正方形。

2. 画出一个边长为5cm的正方形。

答案:答案因为文字发不了图片四、长方形1. 下图中哪个图形是长方形?答案:图形B是长方形。

2. 画出一个长6cm、宽3cm的长方形。

答案:答案因为文字发不了图片五、圆形1. 下图中哪个图形是圆形?答案:图形A是圆形。

2. 画出一个直径为8cm的圆。

答案:答案因为文字发不了图片六、三角形1. 画出一个任意形状的三角形。

答案:答案因为文字发不了图片2. 判断下列各形状是否是三角形:(1)正方形 (2)长方形 (3)梯形答案:(1)正方形不是三角形 (2)长方形不是三角形 (3)梯形是三角形七、梯形1. 下图中哪个图形是梯形?答案:图形C是梯形。

2. 画出一个上底为4cm,下底为8cm,高为3cm的梯形。

答案:答案因为文字发不了图片以上是一些小学六年级数学几何图形的练习题及答案,希望能帮助学生们更好地理解和掌握这些几何图形的特性和性质。

学习数学要多做题多练习,通过实际操作加深对知识的理解,才能在数学学习中取得好成绩。

祝愿学生们能够在几何图形的学习中取得更进一步的进展!。

最新人教版六年级下册总复习图形和几何练习试题以及答案 (3套题)

最新人教版六年级下册总复习图形和几何练习试题以及答案 (3套题)

六年级下册图形和几何测试试卷一、填空题。

1、一个平行四边形的面积是1.2平方分米,它的高是0.6分米,底是()分米。

2、一个长方体的长、宽、高分别是3cm、2cm、4cm,这个长方体的棱长总和是( ),表面积是(),体积是()。

3、一个半圆的直径是6厘米,它的面积是()平方厘米,周长是()厘米。

4、6时整时,钟面上分针和时针所组成的角是( )°,它是一个()角;9时整时,分针和时针所组成的夹角是()°,它是一个()角,能形成这样的角的时刻还有()时整。

5、两个正方形的边长比是1∶2,它们的周长比是(),面积比是();两个圆的周长比是1∶3,则它们的半径比是(),面积比是()。

6、圆柱的体积一定,它的底面积和高成()比例关系。

7、把长为8cm,宽为6cm,高为4cm的长方体木块切成棱长是2cm的小正方体,能切出()块。

8、0.6dm3=( )cm3 3.02公顷=( )平方米530dm2=()m2二、选择题。

1、下面的图形中,不能折成正方体的是()C.2、一个正方体的棱长缩小到原来的21,表面积就会缩小到原来的( ),体积缩小到原来的( )。

A.21 B.41 C.81 3、小朋友喜欢玩的跷跷板的运动是( )。

A.旋转B.平移C.轴对称C.三、判断题。

1、在同一幅地图上,图上距离越大,实际距离也就越大。

( )2、长方体、正方体、圆柱和圆锥的体积计算公式可以统。

( )3、只有两个角是锐角的三角形一定是钝角三角形。

( )4、把一个长方形框架拉成一个平行四边形,它的周长不变,面积变大了。

( )5、甲在乙的东偏北30°方向,乙在甲的西偏南30°方向。

( )四、我会画。

(1)在下图中找出各点位置,并按顺序进行连线。

(5,1)(2,1)(2,4) (1,4)(3,6)(5,6)2、以图中的虚线为对称轴,画出图形的另一半。

五、解答题。

1、李叔叔家里要进行房屋装修,其中客厅长为5米,宽为4米,高为3米。

六年级几何试题及答案

六年级几何试题及答案

六年级几何试题及答案一、选择题(每题2分,共10分)1. 下列哪个图形是轴对称图形?A. 正方形B. 圆形C. 长方形D. 不规则多边形答案:A2. 一个圆的周长是62.8厘米,它的直径是多少厘米?A. 10B. 20C. 30D. 40答案:B3. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,它的体积是多少立方厘米?A. 240B. 180C. 120D. 60答案:A4. 一个三角形的三个内角的度数之和是多少?A. 90°B. 180°C. 270°D. 360°答案:B5. 下列哪个图形的面积最大?A. 边长为4厘米的正方形B. 半径为2厘米的圆C. 长为6厘米、宽为4厘米的长方形D. 底为5厘米、高为3厘米的三角形答案:B二、填空题(每题2分,共10分)1. 一个圆的半径是3厘米,它的面积是______平方厘米。

答案:28.262. 一个圆柱的底面半径是4厘米,高是10厘米,它的体积是______立方厘米。

答案:502.43. 一个长方体的体积是120立方厘米,长是10厘米,宽是3厘米,那么它的高是______厘米。

答案:44. 一个平行四边形的底是8厘米,高是5厘米,它的面积是______平方厘米。

答案:405. 一个正方体的棱长总和是60厘米,它的表面积是______平方厘米。

答案:150三、解答题(每题10分,共20分)1. 一个长方体的长是10厘米,宽是8厘米,高是6厘米。

求它的表面积和体积。

答案:表面积= 2(10×8 + 10×6 + 8×6) = 376平方厘米体积= 10×8×6 = 480立方厘米2. 一个圆的直径是14厘米,求它的周长和面积。

答案:周长= π×14 = 43.96厘米面积= π×(14/2)^2 = 153.94平方厘米。

人教版六年级(下)图形与几何专项测试卷及答案

人教版六年级(下)图形与几何专项测试卷及答案

题号一二三四五六总分得分一、填空。

(18分,每空1分)1:一个三角形三条边的长度都是整厘米数,其中两条边分别是5cm和7cm,那么第三条边最长是()cm,最短是()cm。

2:在一个等腰三角形中,有一个角是100°,另外两个角的度数是()和(),它又是一个()角三角形。

3:一个梯形的面积是12cm²,如果它的上底、下底和高都分别扩大到原来的2倍,那么它现在的面积是()cm²。

4:瑶瑶在教室的座位是第3列第2排,用数对表示是(3,2),小森的座位是第2列第1排,用数对表示是(),小森向后调2排后的座位用数对表示是(,)。

5:一个平行四边形相邻两条边的长度分别是12cm和8cm,量得其中一条边上的高是10cm,这个平行四边形的面积是()cm²。

6:如图(1),把一个圆平均分成若干等份,然后把它剪拼成一个近似的长方形。

已知长方形的长是9.42cm,这个圆的周长是()cm,圆的面积是()cm²。

7:一根长1.5m的圆柱形木料,沿着横截面锯掉4dm长的一段后,表面积减少了0.5024m ²,这根木料原来的体积是()m³。

8:如图是(2)小蕾过生日时妈妈送给她的一个圆锥形的水晶饰品。

这个饰品的体积是()cm³,如果用一个长方形盒子包装它,这个盒子的体积至少是()cm³。

9:一个立体图形从正面看到的形状是,从左面看到的形状是,那么搭这样的立体图形最少需要()个小正方体,最多需要()个小正方体。

10:一个圆环,外圆周长是25.12m,内圆周长是6.28m,这个圆环宽()m,面积是()m²。

(1)(2)(4)二、判断。

(对的画“√”,错的画“×”)(5分)1:过一点只可以画一条直线。

()2:用放大镜看一个65°的角,看到的角变大了。

()3:圆柱的体积都是圆锥体积的3倍。

()4:长方形、正方形、平行四边形都是轴对称图形。

(完整版)六年级几何题

(完整版)六年级几何题

1、用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)2、一块边长是10米的正方形草地,在相邻的两边的中点各有一棵树,树旁各拴一只羊,羊绳长5米,两只羊都不能吃到的草地面积为多少平方米?3、小明星期六请6名同学来家做客,他买了一盒果汁(如下图)招待同学,他给每位同学倒了一满杯后(如下右图)他自己还能倒一满杯吗?(写出主要过程)4、长方体容器内有一块长方体铁块,现在向容器内注水,3分钟后水面与铁块顶平齐,18分钟后水注满了容器,容器体积是40立方分米,容器高5分米,铁块高2分米,铁块面积是多少平方分米?5、一个圆锥形沙堆,底面积是3.6平方米,高1.2米。

把这堆沙装在长2米、宽l.5米的沙坑里,可以装多高?6、一个圆柱形玻璃杯,体积为1000立方厘米,现在水的高度和水上高度的比为1:1,放入一个圆锥后(圆锥完全浸没在水中),水的高度和水上高度的比为3:2,圆锥的体积是多少立方厘米?7、把一个高4分米的圆柱体的底面平均分成若干扇形后,把圆柱体切开,拼成一个与它等底等高的近似长方体,长方体的表面积比圆柱体的表面积增加120平方厘米,原来圆柱体的体积是多少?8、一个圆柱形储水桶里放人-段半径5厘米的圆钢,如果把它全部放进水中桶里的水就上升9厘米;如果把水中的圆钢露出水面8厘米,那么这时桶里的水就下降4厘米,求圆钢的体积?9、一个圆柱形氨水池,周长31.4米,要使水面升高40厘米,需装入多少立方米的氨水?10、一个圆锥形沙堆,底面积是3.6平方米,高1.2米。

把这堆沙装在长2米、宽l.5米的沙坑里,可以装多高?11、将一段底面半径和高都是2分米的圆柱形铁块,铸造成一个横截面边长为2分米的方钢,这个方钢的长是多少分米?12、一种圆形钢管,外直径4厘米,内直径2厘米,它的横截面积是多少平方厘米?13、一个圆锥形稻谷堆,地面半径是1m,高1.5m,每立方米稻谷约重600kg,这堆稻谷重多少kg?14、一个无盖的底面是正方形的玻璃水槽中存有一些水,水面高度正好是水槽内部高度的。

六年级下数学试题图形与几何专项测试卷北师大版(图片版含答案)-强力推荐

六年级下数学试题图形与几何专项测试卷北师大版(图片版含答案)-强力推荐

图形与儿何专项测试k 在正方形、等边二角形和圆中以扌称轴最多的是( 「有( )条;对称轴竄少的是(儿有〔)条.2. •只挂钟的时针长I 。

Cm .分针长2C cin,从6时到IU 时.分针针尖其走T ( >c πι*时针扫过的面积是( )c∏r g3・等腰三角形的l ⅛条边分别长£ Crn . H' Cm ・那么•这个等腿一:ft 形的周长 是()c∏U4.钟表在IQ 时整时*时甘和分针所形成的较小角是( )%5-如下图所示*毎个小方格的面积Jft 2 cm" <那么△八的而积是( ^cm ;6.写出下图中外点的位齐舄 ^A ( ),BC ),C ()∙D ( J 四边形ABeL )的面积症()个小格=7. 一个氏方体•如果高増加3 Cm 就成了正方体•并且表面枳增加6)w Λ 原来这 个长方体的体积是( 儿&看图填空。

(1)以学校为观测点•书店在( )偏( K )的方向—电影l ⅛在()!'」 nJ /;、CJJiL2 5 5 6 7 S时间:90分钟 满T 分:1OO+10分第G 题图偏(X [的方間上。

(2)小刖从学校去体仃馆.每分走80门“他耍定()分・SL 如右图所示•一个棱长6 cm 的正方体内挖去-牛绘大的圆锥.剩下的体积是原止方体的(O(结果保幣一位小数}Kh 把一段长2 In 的圆柱形木料锯成4个小圆柱.表面积帀好増加r 16 a∏r.这段木料的体积是()dm ∖二、仔细推敲•做出判断。

(共5分)L 不相交的两条直线是平行线。

2. —个圆的半於是2 m ・这亍圆的周丘和面积相等。

3・半行四边形的IS 积等于三角形而积的Zfrto 4.冇民度分别H 2 c πι,6 Clll 、H cm 的三根小栋•这二根小楼询星相连能I 制成•个三角形。

(')5.卜面JE-两个圆柱模型的表面展幵图。

可以判断A 圆柱的体积比B 圆柱的体积 大B(单位:Cm )()B三、反复比较我慎重选择门(共L 一个圆住和 个圆锥J 疋血周长的比足2:3・体积的比足5 : G.它门的髙的最 简整数比是( )。

2024年数学六年级上册几何基础练习题(含答案)

2024年数学六年级上册几何基础练习题(含答案)

2024年数学六年级上册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 下列哪个图形是一个正方形?A. 长方形B. 矩形C. 正方形D. 三角形2. 一个等边三角形的每个角是多少度?A. 60度B. 90度C. 120度D. 180度3. 一个圆的半径是5厘米,它的直径是多少厘米?A. 2.5厘米B. 5厘米C. 10厘米D. 15厘米4. 一个正方形的周长是36厘米,它的边长是多少厘米?A. 9厘米B. 18厘米C. 27厘米D. 36厘米5. 下列哪个图形的面积可以通过计算长乘以宽得到?A. 三角形B. 正方形C. 圆D. 梯形6. 一个三角形的底边长是10厘米,高是6厘米,它的面积是多少平方厘米?A. 30平方厘米B. 60平方厘米C. 120平方厘米D. 180平方厘米7. 一个长方形的长是8厘米,宽是5厘米,它的面积是多少平方厘米?A. 13平方厘米B. 40平方厘米C. 50平方厘米D. 80平方厘米8. 一个正方形的边长是7厘米,它的面积是多少平方厘米?A. 14平方厘米B. 28平方厘米C. 49平方厘米D. 98平方厘米9. 一个圆的半径是4厘米,它的面积是多少平方厘米?A. 16平方厘米B. 32平方厘米C. 64平方厘米D. 128平方厘米10. 一个梯形的上底是6厘米,下底是8厘米,高是5厘米,它的面积是多少平方厘米?A. 20平方厘米B. 30平方厘米C. 40平方厘米D. 50平方厘米二、判断题(每题2分,共10分)1. 一个正方形的四个角都是直角。

()2. 一个等腰三角形的两个底角相等。

()3. 一个圆的直径是半径的两倍。

()4. 一个长方形的对边平行且相等。

()5. 一个三角形的面积可以通过计算底乘以高的一半得到。

()三、计算题(每题5分,共100分)1. 一个正方形的边长是10厘米,求它的周长和面积。

2. 一个长方形的长是15厘米,宽是8厘米,求它的周长和面积。

人教版六年级数学下册《图形与几何》专项训练卷(附答案)

人教版六年级数学下册《图形与几何》专项训练卷(附答案)

人教版六年级数学下册《图形与几何》专项训练卷(附答案)1. 一个等腰三角形的一条边长为4cm,另一条边长为8cm,求这个等腰三角形的周长。

2. 钟面上,经过3小时,时针旋转了多少度?经过30分钟,分针旋转了多少度?3. 一个梯形的下底为18cm,下底缩短8cm后得到一个平行四边形,面积减少28cm2,原来梯形的面积是多少?4. 如图,直角梯形的周长为40cm,它的面积是多少?5. 一个长方体正好可以切成4个棱长为2cm的正方体,原长方体的棱长总和可能是多少?又可能是多少?6. 如图,一个圆柱和一个圆锥,圆柱的底面直径是圆锥的2倍,它们的高度相等。

一个这样的圆柱可以熔铸成多少个这样的圆锥?7. 观察下图,图①和图②中的三角形均为等边三角形,图①中小三角形的面积是大三角形面积的多少?③中小正方形的面积占大正方形面积的多少?8. 小明从一个长方体纸盒上撕下两个相邻的面(展开后如右图),这个纸盒的底面积是多少平方厘米,体积是多少立方厘米?9. 如下图所示,一张长方形铁皮,切割下阴影部分的两个圆和一个长方形刚好能做一个油桶,这个油桶的容积是多少L?10. 如图,圆的面积与长方形面积相等。

圆的周长是25.12cm,那么阴影部分的周长是多少?11. 图中正方形的面积是大于、等于还是小于平行四边形的面积?12. 用10倍的放大镜看40度的角,看到的角是多少度?13. 一个等腰三角形的一个底角是a度,它的顶角是多少度?14. 下列四个图形中,不能通过基本图形平移得到的是哪个?15. 如图,D、E分别是BC、AD边上的中点,那么阴影部分面积是ABC面积的多少?16. 一个平行四边形相邻的两边分别是8cm、10cm,其中一边上高是4cm,求这个平行四边形的面积。

答案:这个平行四边形的面积是36cm2。

2. 选B3. 选A4. 选C5. 选B6. 选D7. 选A8. 选C9. 选B10. 选C11. 选A12. 选C13. 选B14. 选D15. 选B16. 选C17. 无法呈现展开图,删除该题18. 改写:将大长方体切成两个完全一样的小长方体,每个小长方体的长、宽、高分别为5cm、2cm、1.5cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学几何图
形测试题
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

形与空间测试题(1)
一、填空(18分) 1、A 圆和B 圆的半径比是5:3,它们的直径的比是( : ),周长的比是 ( : ),面积的比是( : )。

2、用一根长的铁丝弯成一个圆形铁环,这个铁环的直径是( )dm ,
面积是( )dm 2。

3、、一个圆的周长是,在这个圆里画一个最大的正方形,正方形的面积
是( )。

二、选择(6分)
1、如图⑴,从甲地到乙地,A 、B 两条路的长度( )。

A. 路线A 长
B. 路线B 长
C. 同样长
图 ⑴ 图 ⑵
2、如图⑵,两个图形中的阴影部分周长和面积大小关系是( )。

A. 周长不相等,面积相等 C.面积不相等,周长相等
三、求阴影部分的面积。

(30分)
四、圆的面积与长方形的面积相等,已知圆的周长厘米,求阴影部
分的周长和面积。

(10)
五、解决问题(36分)
1、公园里有一个圆形花坛,半径50m ,冯奶奶每天早上做运动都绕着花坛跑3
圈,她每天早晨跑多少米?
2、学校有一个圆形花圃,周长是米,它的面积是多少平方米?如果美化
这个花圃每平方米需用30元,那么美化好这个花圃至少需要多少元?
3、有一个周长米的圆形草坪,准备为它安装自动旋转喷灌装置进行喷灌。

现有射程为20米、15米、10米的三种装置,你认为选哪种比较合适?安装在什么地方?
4、一块草地的形状如下图的阴影部分,它的周长和面积各是多少?
A
B 甲 o r = 2dm 4cm 5cm 8cm 20cm
12cm
O r。

相关文档
最新文档