第五章定积分

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 定积分

Chapter 5 Definite Integrals

5.1 定积分的概念和性质(Concept of Definite Integral and its Properties )

一、定积分问题举例(Examples of Definite Integral )

设在()y f x =区间[],a b 上非负、连续,由x a =,x b =,0y =以及曲线()

y f x =所围成的图形称为曲边梯形,其中曲线弧称为曲边。

Let ()f x be continuous and nonnegative on the closed interval [],a b . Then the region

bounded by the graph of ()f x , the x -axis, the vertical lines x a =, and x b = is called the trapezoid with curved edge.

黎曼和的定义(Definition of Riemann Sum )

设()f x 是定义在闭区间[],a b 上的函数,∆是[],a b 的任意一个分割,

011n n a x x x x b -=<<<<=L ,

其中i x ∆是第i 个小区间的长度,i c 是第i 个小区间的任意一点,那么和

()1

n

i

i

i f c x

=∆∑,1i i i x c x -≤≤

称为黎曼和。

Let ()f x be defined on the closed interval [],a b , and let ∆ be an arbitrary partition

of [],a b ,011n n a x x x x b -=<<<<=L , where i x ∆ is the width of the i th subinterval. If

i c is any point in the i th subinterval, then the sum

()1

n

i

i

i f c x

=∆∑,1i i i x c x -≤≤,

Is called a Riemann sum for the partition ∆.

二、定积分的定义(Definition of Definite Integral ) 定义 定积分(Definite Integral )

设函数()f x 在区间[],a b 上有界,在[],a b 中任意插入若干个分点

011n n a x x x x b -=<<<<=L ,把区间[],a b 分成n 个小区间:

[][][]01121,,,,,,,n n x x x x x x -L

各个小区间的长度依次为110x x x ∆=-,221x x x ∆=-,…,1n n n x x x -∆=-。在每个小区

间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i

x ∆的乘积()i i

f

x ξ∆(1,2,,i n =L ),并作出和

()1

n

i i i S f x ξ==∆∑。

记{}12max ,,,n P x x x =∆∆∆L ,如果不论对[],a b 怎样分法,也不论在小区间[]

1,i i x x -上点i ξ怎样取法,只要当0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在区间[],a b 上的定积分(简称积分),记作

()b

a f x dx ⎰,即

()b

a

f x dx ⎰=I =()0

1

lim n

i

i

P i f x ξ→=∆∑,

其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,

b 叫做积分上限,],a b ⎡⎣叫做积分区间。

Let ()f x be a function that is defined on the closed interval [],a b .Consider a partition

p of the interval [],a b into n subinterval (not necessarily of equal length ) by means of

points

011n n a x x x x b

-=<<<<=L and let

1

i i i x x x -∆=-.On each

subinterval ]1,i i x x -⎡⎣,pick an arbitrary point i ξ(which may be an end point );we call it a sample point for the ith subinterval.We call the sum ()1

n

i

i

i S f x ξ==

∆∑ a Riemann sum for

()f x corresponding to the partition p .

If

()0

1

lim n

i i P i f x ξ→=∆∑exists, we say

()f x is integrable on []

,a b ,where

{}12max ,,,n p x x x =∆∆∆L . Moreover,

()b

a f x dx ⎰,called definite integral (or Riemann

Integral) of ()f x from a to b ,is given by

()b

a

f x dx ⎰=()0

1

lim n

i

i

P i f x ξ→=∆∑.

相关文档
最新文档