第五章定积分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 定积分
Chapter 5 Definite Integrals
5.1 定积分的概念和性质(Concept of Definite Integral and its Properties )
一、定积分问题举例(Examples of Definite Integral )
设在()y f x =区间[],a b 上非负、连续,由x a =,x b =,0y =以及曲线()
y f x =所围成的图形称为曲边梯形,其中曲线弧称为曲边。
Let ()f x be continuous and nonnegative on the closed interval [],a b . Then the region
bounded by the graph of ()f x , the x -axis, the vertical lines x a =, and x b = is called the trapezoid with curved edge.
黎曼和的定义(Definition of Riemann Sum )
设()f x 是定义在闭区间[],a b 上的函数,∆是[],a b 的任意一个分割,
011n n a x x x x b -=<<<<=L ,
其中i x ∆是第i 个小区间的长度,i c 是第i 个小区间的任意一点,那么和
()1
n
i
i
i f c x
=∆∑,1i i i x c x -≤≤
称为黎曼和。
Let ()f x be defined on the closed interval [],a b , and let ∆ be an arbitrary partition
of [],a b ,011n n a x x x x b -=<<<<=L , where i x ∆ is the width of the i th subinterval. If
i c is any point in the i th subinterval, then the sum
()1
n
i
i
i f c x
=∆∑,1i i i x c x -≤≤,
Is called a Riemann sum for the partition ∆.
二、定积分的定义(Definition of Definite Integral ) 定义 定积分(Definite Integral )
设函数()f x 在区间[],a b 上有界,在[],a b 中任意插入若干个分点
011n n a x x x x b -=<<<<=L ,把区间[],a b 分成n 个小区间:
[][][]01121,,,,,,,n n x x x x x x -L
各个小区间的长度依次为110x x x ∆=-,221x x x ∆=-,…,1n n n x x x -∆=-。在每个小区
间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i
x ∆的乘积()i i
f
x ξ∆(1,2,,i n =L ),并作出和
()1
n
i i i S f x ξ==∆∑。
记{}12max ,,,n P x x x =∆∆∆L ,如果不论对[],a b 怎样分法,也不论在小区间[]
1,i i x x -上点i ξ怎样取法,只要当0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在区间[],a b 上的定积分(简称积分),记作
()b
a f x dx ⎰,即
()b
a
f x dx ⎰=I =()0
1
lim n
i
i
P i f x ξ→=∆∑,
其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,
b 叫做积分上限,],a b ⎡⎣叫做积分区间。
Let ()f x be a function that is defined on the closed interval [],a b .Consider a partition
p of the interval [],a b into n subinterval (not necessarily of equal length ) by means of
points
011n n a x x x x b
-=<<<<=L and let
1
i i i x x x -∆=-.On each
subinterval ]1,i i x x -⎡⎣,pick an arbitrary point i ξ(which may be an end point );we call it a sample point for the ith subinterval.We call the sum ()1
n
i
i
i S f x ξ==
∆∑ a Riemann sum for
()f x corresponding to the partition p .
If
()0
1
lim n
i i P i f x ξ→=∆∑exists, we say
()f x is integrable on []
,a b ,where
{}12max ,,,n p x x x =∆∆∆L . Moreover,
()b
a f x dx ⎰,called definite integral (or Riemann
Integral) of ()f x from a to b ,is given by
()b
a
f x dx ⎰=()0
1
lim n
i
i
P i f x ξ→=∆∑.