代数式(第一课时)
代数式(第1课时)七年级数学上册课件24张(北师大版)
![代数式(第1课时)七年级数学上册课件24张(北师大版)](https://img.taocdn.com/s3/m/d539f0d1a1116c175f0e7cd184254b35effd1a6e.png)
(1)一个旅游团有成人x人、学生y人,那么该旅游团应付多少门票费?
(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?
解:(1)该旅游团应付的门票费是(10x+5y)元.
(2)把x=37,y=15代入代数式,得
10x+5y =10×37+5×15 =445.
因此,他们应付445元门票费.
二、新知探究
跟踪练习3
现代营养学家用身体质量指数衡量人体胖瘦程度,这个指数等于人体质量
(千克)与人体身高(米)平方的商.对于成年人来说,身体质量指数在
20~25之间,体重适中;身体质量指数低于18,体重过轻;身体质量指数
高于30,体重超重.
(1)设一个人的体重为w(千克),身高为h(米),求他的身体质量指数.
四、当堂练习
3.一个两位数,十位上的数字为a,个位上的数字为b,这个两
10a+b
位数可以表示为________.
4.对式子“0.6a”可以解释为一件商品的原价为a元,若按原价的6
折出售,这件商品现在的售价是0.6a元.请你对“0.6a”再赋予一
个含义: 练习本每本0.6元,某人买了a本,共付款0.6a元(答案不唯一) .
例3:(1)代数式(1+8%)x可以表示什么?
(2)用具体数值代替(1+8%)x中的x,并解释所得代数式值的意义。
解:答案不唯一
(1)(1+8%)x可以表示比 x多8%的数;
(2)一件商品进价是100元,要使这件商品的利润率到达8%,售价应为
(1+8%)×100=108(元).
四、当堂练习
2
1
2 5
所以x本课本摞在一起高出地面的距离为(85+0.5x)cm.
代数式(第一课时)(课件)-2023-2024学年七年级数学上册课堂教学精品系列(北师大版)
![代数式(第一课时)(课件)-2023-2024学年七年级数学上册课堂教学精品系列(北师大版)](https://img.taocdn.com/s3/m/6828ac23b6360b4c2e3f5727a5e9856a57122648.png)
新课标 北师大版 七年级上册
第三章代数式
3.2代数式(第一课时)
学习目标
1.了解代数式的概念,能用代数式表示简单问题中
的数量关系.(重点)
2.能解释代数式表达的实际意义.(难点)
知识讲解
代数式定义
如:4+3(x-1),x+x+(x+1),m-1,3v,2a+10,
【基础达标作业】
1、用含有x的代数式表示:7减去x的3倍差的立方(
2
1
2、若
桶油漆可以刷2m 的墙,则a桶油漆可以刷(
的墙。 3
A. 1 a
3
B.2a
C . 2a
3
D.6a
).
)m
2
分层作业
【基础达标作业】
3、(2023春·丰宁县期末)代数式-2x的意义可以是(
)
A.-2与x的和 B.-2与x的差 C.-2与x的积 D.-2与
答:门票费是445元.
探究新知
思考:10x+5y还能表示什么?
①如果用 x (m/s) 表示小明跑步的速度,用 y
(m/s) 表示小明走路的速度, 那么 10 x + 5 y 表
示 他跑步 10 s 和走路 5 s
所经过的路程.
探究新知
②如果用 x 和 y 分 别表示 1 元硬币和 5 角硬币的枚数,那
体质量(千克)与人体身高(米)平方的商.对于成年人来说,身体
质量指数在20~25之间,体重适中;身体质量指数低于18,体重过
轻;身体质量指数高于30,体重超重.
(1)设一个人的体重为w(千克),身高为h(米),求他的身体
2.1代数式(第1课时 用字母表示数 )课件(共20张PPT) (2024)沪科版数学七年级上册
![2.1代数式(第1课时 用字母表示数 )课件(共20张PPT) (2024)沪科版数学七年级上册](https://img.taocdn.com/s3/m/acdc1add1b37f111f18583d049649b6649d70945.png)
知识讲解
探究1 用字母表示数
问题1 2021年1月29日11时23分,我国空间站天和核心舱在海
南文昌航天发射场发射升空.天和核心舱在轨飞行速度约为
7.68km/s,绕行地球一周约需90 min.天和核心舱绕行地球
一周,约飞行多少千米?天和核心舱绕行地球n周,约飞行多
少千米?
解:绕行地球一周,约飞行7.68× × =41472(千米).
____
奇数
…
-7
-5
-3
-1 1
3
5
…
2k-1 …
____
…
知识讲解
问题3
如图,用长方形任意框出某月份月历中的3个数
.
(1)若a=k,则b,c分别可表示为 b=k+7,c=k+14 (用含k的式子表示).
(2) a,b,c
存在的等量关系是为
a+c=2b 或b-a=c-b
从上述例子可以看出:
用字母表示数,可以把一些数量关系抽象化,使它具有一般性.
名称
用字母表示公式
图形
长方形
周长( C )
a
b
三角形
b
h c
a
a
梯形
c h
d
b
圆
r
面积(S )
C 2(a b)
S ab
C a bc
1
S ah
2
1
C a b c d S ( a b) h
2
C 2 r
S r
2
知识讲解
试一试
1.(1)小明步行上学,速度为v m/s,亮亮骑自行车上学,速度是
.
代数式-ppt课件
![代数式-ppt课件](https://img.taocdn.com/s3/m/0147748877a20029bd64783e0912a21615797f71.png)
感悟新知
知2-练
3-1.某地区的手机收费标准有两种方式,用户可任选其一 .
A. 月租费为 20 元 ,通话费为 0.25 元 / 分;
B. 月租费为 25 元 ,通话费为 0.20 元 / 分 .
某用户某月通话时长为 x(x 为整数) 分钟 , 则按 A方式应
(25+0.20x)
(20+0.25x)
2. 同一个代数式可以表示不同的意义 .
感悟新知
例2 用代数式表示:
(1) a 的平方与 b 的 2 倍的差;
(2) m 与 n 的和的平方与 m 与 n 的积的和;
(3) x 的 2 倍的三分之一与 y 的一半的差;
(4)比 a 除以 b 的商的 2 倍小 4 的数 .
知2-练
感悟新知
知2-练
第三章
整式及其加减
3.2
代数式
学习目标
1 课时讲解
代数式
列代数式
代数式的值
2 课时流程
逐点
导讲练
课堂
小结
作业
提升
感悟新知
知识点 1 代数式
1. 定义
知1-讲
用运算符号把数和字母连接而成的式子叫做代数式 .
感悟新知
知1-讲
2. 单独一个数或一个字母也是代数式 .
感悟新知
知1-讲
特别提醒
数学语言 .
感悟新知
知2-讲
2. 列代数式的步骤
(1) 认真审题,把问题中表示数量关系的词语正确地转换为对
应的运算;
(2)注意题目的语言叙述所表示的运算顺序;
(3) 弄清题目中数量关系的运算顺序,正确使用表明运算顺序
的括号,分出层次,逐步列出代数式 .
小学数学《代数式》PPT课件(第1课时)
![小学数学《代数式》PPT课件(第1课时)](https://img.taocdn.com/s3/m/edbe312cfe00bed5b9f3f90f76c66137ee064fca.png)
随堂训练
3.3月12日(植树节)学校团委组织260名学生(其中女生b人) 去市青少年世纪林植树,每个男生植树x棵,每个女生植树y棵. 你能用代数式表示他们共植树多少棵吗?
解:因为女生为b人,所以男生有 (260-b) 人. 根据题意,男生共植树 (260-b)x 棵,女生共 植树by棵. 所以他们共植树[(260-b)x+by]棵.
知识讲解
3 a2 b2
表示 a的平方与b 的平方的和
4 a b2
表示的是 a与b 和的平方.
知识讲解 二、列代数式
给你一段文字语言,能不能写出表示它的代 数式?用代数式表示“a,8”两数之和与b,c两 数之差的积.
a
两数的和
a+8 两数
8
的积
b
两数的差
b-c
(a+8)(b-c)
c
知识讲解
归纳
代数式
第1课时
学习目标
1 掌握代数式的意义及书写,形成初步的符号感;(重点) 2 在具体情境中,能列出代数式,并解释其实际意义.(难点)
新课导入
(1)比有理数a小10的数是 a-10 .
(2)正方形的边长是a,这个正方形的周长是 __4_a,面积是 a2 .
(3)某商品的原价为a元,现降低20%销售,那么现在的销售价为
数点区分开;
b×2a
2ab或2·a·b
知识讲解
3.遇到除法时,一般用分数的形式来写;
s÷v
s v
4.带分数与字母相乘时,通常把带分数化成假分数;
1
1 3
n
4n 3
5.在实际问题中含有单位时,一般要把代数式用括号括 起来,再写单位.
例如:长方形周长为(2a+4b)米.
代数式(公开课)教案
![代数式(公开课)教案](https://img.taocdn.com/s3/m/875d2a311fd9ad51f01dc281e53a580216fc5093.png)
代数式(公开课)教案一、教学目标知识与技能:1. 理解代数式的概念,掌握代数式的表示方法和基本性质。
2. 学会使用代数式进行简单的运算和求解。
过程与方法:1. 通过实例引入代数式,培养学生的抽象思维能力。
2. 借助数形结合的思想,引导学生理解代数式的几何意义。
情感态度与价值观:1. 激发学生对代数式的兴趣,培养学生的探究精神。
2. 感受数学与实际生活的联系,提高学生运用数学解决问题的能力。
二、教学内容第一课时:代数式的概念与表示方法1. 导入:通过实际问题引入代数式,例如“已知苹果的重量为x千克,香蕉的重量为y千克,求苹果和香蕉的总重量”。
2. 讲解代数式的概念,引导学生理解代数式是表示数量关系的数学表达式。
3. 介绍代数式的表示方法,如字母表示数、数表示字母等。
第二课时:代数式的基本性质1. 导入:通过具体例子,让学生感受代数式的基本性质。
2. 讲解代数式的四则运算规则,如加减乘除等。
3. 引导学生掌握代数式的化简、因式分解等基本运算技巧。
第三课时:代数式的应用1. 导入:通过实际问题,让学生运用代数式解决问题。
2. 讲解代数式在实际生活中的应用,如购物、测量等。
3. 引导学生进行代数式的求解,培养学生的解决问题的能力。
第四课时:代数式的几何意义1. 导入:通过图形,引导学生理解代数式的几何意义。
2. 讲解代数式与图形之间的关系,如直线方程、圆的方程等。
3. 引导学生运用代数式解决几何问题,提高学生的数形结合能力。
第五课时:代数式的综合练习1. 导入:通过综合练习题,让学生巩固所学知识。
2. 讲解练习题的解题思路和方法。
3. 引导学生独立完成练习题,培养学生的解题能力。
三、教学策略1. 采用问题驱动的教学方法,引导学生通过实际问题理解和掌握代数式。
2. 利用数形结合的思想,让学生感受代数式的几何意义。
3. 设计丰富的练习题,让学生在实践中提高解题能力。
四、教学评价1. 课堂问答:通过提问,检查学生对代数式概念和表示方法的理解。
北师大版七年级数学上册代数式(第1课时)课件
![北师大版七年级数学上册代数式(第1课时)课件](https://img.taocdn.com/s3/m/75edcf4b876fb84ae45c3b3567ec102de2bddfa5.png)
创设情境
探究新知
应用新知
巩固新知
课堂小结
布置作业
列代数式,并求值.
(1)某公园的门票价格是:成人票每张10元,学生票每张5元,
一个旅游团有成人x人,学生y人,那么该旅游团应付多少门票费?
解:(1)该旅游团应付的门票费是(10x+5y)元.
和、差情势的代数式要在
单位前把代数式括起来.
做一做
创设情境
探究新知
探究新知
应用新知
巩固新知
代数式10x+5y还可以表示什么?
x表示小明跑步的速度,y表示小明走路的速度,
10x+5y表示他跑步10s和走路5s所经过的路程;
用x和y分别表示1元硬币和5角硬币的枚数,
10x+5y就表示x枚1元硬币和y枚5角硬币共多少钱.
课堂小结
你还能举出其他的例子吗?
布置作业
做一做
创设情境
现代营养学家用身体质量指数衡量人体胖瘦程度,
探究新知
应用新知
巩固新知
课堂小结
布置作业
这个指数等于人体体重(kg)与人体身高(m)平方的商.
(1)设一个人的体重为w(kg),身高
对于成年人来说,身体
为h(m),求他的身体质量指数.
质量指数在20~25之间,体
(2)的身高是1.75m,体重是65kg,他
课堂小结Βιβλιοθήκη 布置作业①数与字母,字母与字母相乘时,可以用“·”来代替,
或者省略不写,但是数与数之间不可以省略“×”;
②1或-1与字母相乘时,1通常省略不写;
③数字要写在字母的前面;
1
④除法通常写成分数的情势,如1÷a通常写成 .
⑤代数式后面有单位时,和、差情势的代数式要在单位
代数式 第一课时优秀课件
![代数式 第一课时优秀课件](https://img.taocdn.com/s3/m/5a0958f4cf84b9d528ea7ad4.png)
合作探究(一):
一.(a+4)本,vt千米,2.5x元(m-9)岁,
y 元, 8
a2
,5
3
ab
从上述式子的书写中,请找出代数式书 写需要注意哪些?
注意
1.字母与字母相乘,乘号可以写成“.”或者省略。 数字与字母相乘时,数字要写在字母前面(数 字与数字相乘时,不能省略乘号,也不能写 成”.”,1乘字母的时候,1可以省略。) 2.式子后面有单位,以和差结束运算的要 在单位前把给代数式加括号 3.除法要写分数形式。 4.带分数要化成假分数
所走的路程 vt 千米。
(3)一支铅笔单件x元,钢笔的单价是铅笔的
2.5倍,则钢笔的单价是 2.5x 元。
(4)小明今年9岁,小明爷爷今年m岁,那么
小明爷爷比小明大(m-9) 岁。
(5)小红在文具店买了8支铅笔总共用了y元
y
则每支铅笔的价格 8 元。 (6)一个正方形的边长为a,则正方形的面积
解:(x 2)2
解:x2 2
(3)x与2的平方的和.下列各式(1)a; (2)a>b; (3)4t; (4)0 (5)(x y)2 (6)1-3m其中代数式有(D)个
A.2个 B.3个 C.4个 D.5个
2.a 与b的2倍的和可以表示为: a+2b 。
1.完成教材82页随堂练习。 2.完成教材83页《习题3.2》1.2.3题
练一练
1.下列哪些式子是代数式?
(1)m+5 (2)x 2 (3)p+q (4) 1
√
√
√
√
11
(5)a+b=b+a
×
(6)x+y>1
×
(7)√x (8) 2 ab √
《代数式》第一课时教案
![《代数式》第一课时教案](https://img.taocdn.com/s3/m/e10b4405a417866fb84a8e93.png)
代数式第1课时代数式碑坝中学刘子琛教学目标:1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值. (重难点)2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.教法学法:教学方法:引导—探究—发现法.学习方法:自主探究与合作交流相结合.课前准备:多媒体课件、投影仪、电脑课时安排:1课时课型:新授课教学重难点:重点:认识代数式和代数式所表示的意义难点:求解代数式的值及列代数式教学过程:一、创设情境,引入新课.欣赏视频,导入新课师:国庆六十周年大阅兵,同学们看了吗?首先请同学们来欣赏一段视频.(26秒.定格在胡锦涛主席乘坐红旗轿车阅兵的一个瞬间.)师:这是新中国成立以来,规模最大、装备最新、机械化程度最高的一次大阅兵.有谁知道胡主席乘坐的是什么品牌的车吗?生:国产红旗大轿车.师:对﹗国产红旗大轿车﹗这是我们民族的骄傲﹗提到造车,有一个人,功不可没,不能不提.同学们知道是谁吗?生:造车鼻祖—奚仲.(官桥镇所在地,是造车鼻祖—奚仲的故里,学生对此了解较多.)师:(多媒体展示一张奚仲造车的图片.)师:那我先来考考同学们:上面的图片中的一辆推车几个轮子?两辆推车几个轮子?x辆推车几个轮子?生:2个,4个,2x个.师:板书2x.设计意图:通过创设教学情境,激发学生的学习兴趣,使学生在注意力集中前提下顺利过渡到本节知识内容.引导学生体验把实际问题抽象成数学问题的一般方法,同时在解答问题中形成认知冲突.通过这一情境的引入,让学生感受到祖国的强大,增强爱国的热情,民族的自豪感.了解到学习这些知识的重要性,极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.师: 上节课,我们学习了字母能表示什么,这节课我们继续学习§3.2代数式.(板书课题) 下面请同学们快速完成导学案的第一题.二、自主探索,合作交流.1.温故而知新填空:⒈边长为a cm的正方形的周长是cm,面积是cm2.2 . 钢笔每支2元,铅笔每支0.5元,m支钢笔和n支铅笔共____________元.⒊温度由2℃下降t℃后是℃.⒋小亮用t秒走了s米,他的速度是为米/秒生:(完成填空,如有疑难可在小组内交流、讨论.)s生1:通过实物投影展示答案:4a, a2, 2m+0.5n, t-2,t生2:第2、3题应该加上括号.师:板书正确答案.师:观察上面的这些式子有什么特点?生:(以小组为单位,进行组内交流、讨论.)生1:含有数、字母、生2:含有运算符号.师:像2x,4a , a 2 , 2m +0.5n , t -2,ts 等式子都是代数式(algebraic e x pression). 单独一个数或一个字母也是代数式.师: 你还能举几个代数式的例子吗?生1:2,m,a ﹢b…生2: m-n,5, 2n…师:真棒.下面再来考考你的眼力,请同学们快速完成导学案 : 自主探索,合作交流的第1题.2.考考你的眼力:师:下列各式中哪些是代数式?哪些不是?(1)m +5 (2)a +b =b +a (3)0(4) x 2+3x +4 (5)x +y >1(6)生: (1)、(3)、(4)、(6)是代数式, (2)、(5)不是.师:小结:(1)代数式中不含“=”,“>”,“<”,“≥”,“≤”,“≠”等符号.(2)单独的一个数或字母也是代数式.师:同学们回答的很好,那我们就来巩固一下吧.生:完成巩固练习:用代数式表示(1) f 的11倍再加上2可以表示为______________.(2)数a 与它的的和可以表示为_________.(3) 一个教室有2扇门和4扇窗户,n 个这样的教室共有___________扇门和_________扇窗户.(4)小华、小明的速度分别为x 米/秒,y 米/秒,6分钟后它们一共走了 米.生:(完成填空并回答,如有疑难可在小组内交流、讨论.)生1: 11f +2 ,a +a,2n,4n,6(x +y )生2:(4)小题也可以写成(6x +6y)生3:第(2)小题也可以写成1a,师: 1a通常写成a,带分数写成假分数.师:通过前面的练习,同学们想一想,说一说:代数式在书写时应该注意那些问题呢?生: 以小组为单位,进行组内交流、讨论后回答问题.( 同学们在充分交流的过程中,教师可参与其中,听听同学的想法,看看同学们在交流过程中的表现,积极引导不善交流的同学倾吐自己的想法,形成好的合作交流的气氛)生1:数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;数字与数字相乘,乘号不能省略;数字要写在字母前面;生2:在含有字母的除法中,一般不用“÷”号,而写成分数的形式;式子后面有单位时,和差形式的代数式要在单位前把代数式括起来.生3:带分数一定要写成假分数.师:同学们回答的非常好,非常的全面.现在请同学们回过头来看一看,前面你所列的代数式符合要求吗?生:自我检查,同位之间互查.设计意图:让学生从实际问题中抽象出数学问题,学会列代数式,体验数学来源于生活,又为现实生活服务,极大地调动学生学习的主动性、积极性;规定代数式的书写要求,代数式求值的格式并用多媒体展示,目的在于让学生体会数学的规范性,严密性,进一步培养学生的数感和符号感.教学效果:本环节开始就有效地激发了学生的学习兴趣,调动了学生学习的积极性,学生主动学习和合作交流较为充分,学生成功的交流,使学生感受到数学结果的多样性,数学符号的美妙性,同时初步学会了列代数式的方法.师:我们知道了代数式,会列代数式,现在我们就来共同探究一下生活中的数学.请同学们完成导学案的探究一.三、合作探究,拓展新知.内容:讨论教材上的例题.分析需要使用代数式表达信息的原因.通过解决具体问题,让学生感受代数式求值的含义.探究一:学习要求:请认真读题并完成题后的填空:1. (1)某公园的门票价格是:成人票每人10元,儿童票每人5元.一个旅游团有x名成人和y名儿童,用代数式表示这个旅游团应付的门票费.(分析:x名成人的门票费为;y名儿童的门票费为;解:这个旅游团应付的门票费为.(2)如果这个旅游团有37名成人和15名儿童,那么应付门票费多少元?(分析:这个旅游团有37名成人即字母 =37;儿童15名即 =15;分别把它们代入(1)中的代数式,即可求出应付门票费)解: (学生口述)生: (先独立思考,再小组内交流后回答问题.)生: (通过实物投影展示答案.)生1:(1) x 名成人的门票费为10x , y 名儿童的门票费为5y,这个旅游团应付的门票费为,(10x +5y )元.生2:(2) 如果这个旅游团有37名成人和15名儿童,那么应付门票费445元.师: 在回答(2)题时,我们要注意解题的格式.(板书解题过程,并加以强调.)师:刚才我们解决了生活中的一个问题,下面我们再来探究一下生物世界的奥秘吧.请同学们快速完成导学案的探究二.探究二:1.请认真读题,参照1题的答题格式,完成下题的解答过程.----相信你能行!在某地,人们发现某种蟋蟀叫的次数与气温之间有如下的近似关系:用蟋蟀1分钟叫的次数除以7,然后加上3,就近似地得到该地当时的气温(℃).(1)用代数式表示该地当时的气温;(2)当蟋蟀1分钟叫的次数分别是80,100和120时,该地当时的气温大约是多少?(结果保留整数)生: 先独立思考,再小组内交流后回答问题.生1: 口答1. 用x 表示蟋蟀1分钟叫的次数,则该地当时的气温为( 7x +3) ℃. 生2: 通过实物投影展示(2)小题答案.设计意图:这里首先展示出学生生活中非常熟悉的小动物――蟋蟀的图片,从而提出蟋蟀每分钟叫的次数与当时温度的关系的问题,目的是刺激学生的感官,引发学生的求知欲望.对第(1)中的蟋蟀1分所叫的次数探求或变式,目的在于帮助学生自设字母来表示有关的量,为学生列代数式铺平道路,同时让学生体会数学建模的思想.求x =80、100、120时,该地当时的温度,目的在于让学生进一步学会求代数式的值,加深对蟋蟀1分叫的次数与当时温度的关系的体会.教学效果:在这个环节中教师首先给出一个实际背景,一下子就引起了学生的注意力,接着通过师生循序渐进的分析,学生很自然地领悟了数学建模的方法,掌握了列代数式的新的方法――先设字母,再列式子,使课堂气氛显得格外轻松.同时在这里通过变式,增强了思维的灵活性,降低了学习的难度,调动了学生学习的积极性.师:同学们完成的非常棒.通过刚才的探究,我们深切体会到了:知识来源于生活,又运用于生活.小组讨论:代数式10x +5y 还可以表示什么?想一想, 比一比!看谁说的既多又准!(要求学生在独立思考的基础之上,做小组交流,随后全班交流.)①如果用x(元)1支铅笔的价格,用y(元)1个练习本的价格,那么10x+5y可以表示的总钱数②如果,那么生:(先完成①小题,然后仿照上题完成②小题.)生1:老师有x张10元,有y 张5元的钱,则(10x+5y)元就表示老师有多少钱.生2:一辆车以x千米/小时的速度行驶了10小时,然后又以y千米/小时的速度行驶了5小时,则(10x+5y)千米表示这辆车所走的路程.生3:某种数学资料每本要10元,英语资料每本要5元,小明买了x本数学资料,y本英语资料,则( 10x+5y)元表示共用了多少钱.师:同学们真棒,举出这么多代数式10x+5y所表示的实际背景.设计意图:用多媒体将问题展示后,让学生充分地观察、思考,进而产生联想,针对“10x +5y”所表示的意义让学生各自发表自己观点,并在小组进行交流,通过交流,学生意识到了“10x+5y”可以表示很多不同的问题,接着让各小组长上台进行展示和师生对答案进行综合评价,最后教师又用多媒体展示部分准确答案,目的是帮助学生进一步体会符号表示的意义,同时也是为了拓宽学生的思维,发展学生联想、类比、归纳等能力.四、拓展延伸讨论回答下列问题:1.写出一个你最喜欢的一个两位数.2.一个两位数的个位数字是a,十位数字是2,请用代数式表示这个两位数;3.一个两位数的个位数字是a,十位数字是b,请用代数式表示这个两位数如何用代数式表示一个三位数?生:( 以小组为单位,进行组内交流、讨论后回答问题.)生1: 通过实物投影展示答案1.我喜欢362.这个两位数是20+a3.这个两位数是10b+a4.设这个三位数的个位数字是a,十位数字是b,百位数字是c,这个三位数是100c+10b+a.生2: 通过实物投影展示答案1.我喜欢96 ,第2,3题答案和上面的同学相同,第4题.设这个三位数的个位数字是x,十位数字是y,百位数字是z,这个三位数是100z+10y+x.师: 总结:两位数表示:10十位数字+个位数字三位数表示: 100百位数字+10十位数字+个位数字设计意图:为了检测学生的灵活应变能力,创新思维的能力,以满足不同层次的学生在数学发展方面的需要.选择题目的出发点在于帮助学生学会列代数式,进一步明确代数式的实际背景或几何意义,发展学生的符号感;让学生进一步把握本章的重点,明确学习的方向. 教学效果:学生分层次独立完成,再由教师念答案学生自我评分,按不同的要求统计优秀成绩(基础差的同学做对第1,2,3题就是优秀),让每个学生都有了成就感,增强了学生学习数学的信心,真正做到了面向全体学生.五、小结回顾:师:请同学们谈一谈,通过本节课的学习,你有哪些收获?(生1、生2、生3自发站起来谈学习收获,教师作出点评、补充.)设计意图:鼓励学生结合本节课的学习谈自己的收获,学生交流,互相补充,完成本节知识的梳理.六、作业:1.P108 读一读“代数” 的由来2.P109 第1题板书设计:教学反思:本节课采用导学案的方式,主要讲解代数式的基本知识,并在具体情景中讲解列代数式的方法和简单的求值.通过这些内容,让学生逐渐熟悉代数式的表示方法,并培养符号逻辑思维能力.以具体的事例引入代数式的概念,既形象又浅显易懂.通过两个探究题,使学生感受到数学与日常生活的密切联系.通过学生自己大胆的尝试,让学生在学习中得到乐趣,指导学生在变化中探索规律,培养团结合作精神.通过学生对知识和技能的总结,理清本节的知识结构,使知识系统化,提升分析问题、解决问题的能力,提升与人交往的能力.无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展.当然本节课在教学过程中也有遗憾的地方,在今后的教学中,我将努力克服自己在教学中的不足之处,争取在今后的教学工作中做到更好.。
代数式(第一课时)整式与整式的运算
![代数式(第一课时)整式与整式的运算](https://img.taocdn.com/s3/m/61549c8b71fe910ef12df843.png)
6.已知当 x=1 时,2ax2+bx 的值为 3,则当 x=2 时 ax2+bx 的值 为______________.。
强化提高
10、下图是在正方形网格中按规律填成的阴影, 根据此规律,则第5个图中阴影部分小正方形的 个数是__________个。
考点二 整式的运算
1.整式的加减 (1)同类项与合并同类项 所含的字母相同,并且相同字母的指数也分别相同的单 项式叫做同类项. 一变两不变:系数变, 字母及字母的指数不变。 把多项式中的同类项合并成一项叫做合并同类项。 合并同类项的法则是系数相加,所得的结果括号 ①括号前是“+”号,去掉括号和它前面的“+”号,括号里 的各项都不改变符号;括号前是“-”号,去掉括号和它前 面的“-”号,括号里的各项都改变符号. ②括号前是“+”号,括到括号里的各项都不改变符号;括 号前是“-”号,括到括号里的各项都改变符号. (3)整式加减的实质是合并同类项.
第一个图
第二个图
第三个图
11、化简:
14、用同样大小的黑色棋子按如图所示的规律摆放:
·· ·· · ·· ····· · ····· · · · · ·· · · · ·· ·
第1个 第2个 第3个 第4个 (1)、第5个图形有多少黑色棋子?
· · ···· · · · · ········ · · ·· ·· · · · · · ·
两问两不问:问字母及字母的指数 不问系数和字母的顺序
3.整式的乘法 单项式与单项式相乘,把系数、同底数幂分别相乘,作为积 的因式,只在一个单项式里含有的字母,则连同它的指数作 为积的一个因式. 单项式与多项式相乘,就是根据分配律用单项式去乘多项式 的每一项,再把所得的积相加,即m(a+b+c)=ma+mb+ mc. 多项式与多项式相乘,先用多项式的每一项乘以另一个多项 式的每一项,再把所得的积相加,即(m+n)(a+b)=ma+mb +na+nb.
3.1 第1课时 代数式 课件(共19张PPT) 人教版七年级数学上册
![3.1 第1课时 代数式 课件(共19张PPT) 人教版七年级数学上册](https://img.taocdn.com/s3/m/1da03806bf23482fb4daa58da0116c175f0e1e84.png)
(p-0.9p)元
不一样.在(1)中,0.9p表示每千克苹果的售价,在(2)中,0.9p表示长为0.9,宽为p的长方形的面积
(3n-10)件;(n-10)件
一定是
1.请同学们指出下列各式中,哪些是代数式,哪些不是代数式? ① 2x-1;②a=1;③S=πR2;④π;⑤
①④是代数式,②③⑤不是代数式
2. 请同学们根据引言和例1、2的作答,试着说一说用字母表示数时有哪些需要注意的地方.
①数与字母相乘或字母与字母相乘时,通常将乘号写作“·”或省略不写;②数与字母相乘时,数写在前;③字母可以像数一样参与运算,相同字母相乘,结果写成幂的形式;④Байду номын сангаас果代数式是带加、减运算且须注明单位的代数式要加括号,后面注明单位;⑤式子中出现除法时一般按分数形式写
A
D
例3:小明每月从零花钱中捐出x元给希望工程,一年下来小明共捐款_______元.变式:如图,某长方形广场的四角各铺设了四分之一圆形的草地,若圆形的半径均为r m, 则草地的面积是_______m2, 空地的面积是__________m2.
【题型二】用代数式表示实际问题中的数量或数量关系
【题型三】代数式的意义及实际意义
D
解:某人以a km/h的速度骑行3 h,以b km/h的速度骑行4 h,所骑行的路程是(3a+4b)km(答案不唯一,合理即可).
1.本节课主要学习了哪些知识?2.本节课你还有哪些疑惑?说一说.
学习了代数式的概念、书写规则,代数式的意义及实际意义
同学们,大家体会到代数式的意义了吗?它能够帮助我们用更加简洁的数学语言表述数量关系,希望同学们课后好好感受.
知识点:代数式的概念及书写(重难点)
注:1.同一个代数式可以表示不同实际问题中的数量或数量关系.2.同一个问题中,相同的字母必须表示相同的量,不同的量必须用不同的字母表示.3.用字母可以表示任意数或式子.4.用字母表示数可以反映事物的规律,更具有一般性.
第1课时 代数式
![第1课时 代数式](https://img.taocdn.com/s3/m/6995c537a55177232f60ddccda38376bae1fe04c.png)
苹果的售价是 0.9p 元/kg 这个长方形的面积 0.9p m2
0.9p 既可以表示苹果的售价,也可以表示长方形的面积.
用字母表示数后,同一个代数式可以表示不同实际 问题中的数量或数量关系.
例 题 【教材P71】
例 2 说出下列代数式的意义:
c
(1)2a+3;(2)2(a+3);(3)ab ;(4)x2+2x+8. 解:(1)2a + 3 的意义是 a 的 2 倍与 3 的和;
的形式
带分数要化成假 分数
要用分数线
把式子用括号括 起来
如1
3 4
t
写成 7 t
4
如 2÷a 写成a2
如 (x - y)km
例 题 【教材P70】
例 1 (1)苹果原价是 p 元/kg,现在按九折优惠出售, 用代数式表示苹果的售价;
苹果的售价是 0.9p 元/kg (2)一个长方形的长是 0.9 m,宽是 p m,用代数式 表示这个长方形的面积;
5×10 = 50; 60 s 能识别的范围(单位:m2)是
5×60 = 300; t s 能识别的范围(单位:m2)是
5×t = 5t;
在含有字母的式子中 如果出现乘号,通常将数
放在字母前,乘号写作 “·”或省略不写. 例如, 5×t 可以写成 5·t 或 5t.
观察这三个式子,你有什么发现?
5×10 = 50 表示机器人在两个具体时间内
(2)2(a + 3) 的意义是 a 与 3 的和的 2 倍; (3)acb 的意义是 c 除以 a,b 的积的商; (4)x2+2x+8 的意义是 x 的平方,x 的 2 倍,与 8 的和.