第7章平均数差异的显著性检验讲义

合集下载

平均数差异显著性检验

平均数差异显著性检验

独立样本:秩和检验法
适用资料
秩和检验法与参数检验中独立样本的t 检验相对应。当“总体正态” 这一前提不成立,不能使用t检验时以秩和检验法代替t 检验。
计算过程
具体步骤: ① 将两个样本数据混合由小到大进行等级排列(最小的为1等); ② 设 n1 < n2 ,将容量较小的样本( n1 )中各数据的等级相加, 以T表示; ③ 把T值与秩和检验表(附表14)中的临界值比较,若T≤T1 或 T≥T2 ,则表明两样本差异有统计学意义;若T1<T<T2 ,则意味着两样本 差异无统计学意义。
s12 s22 n1 n2
(2)相关样本
Z DX DX SEDX
X X
1 2 1 2
12 22 2r 1 2 n

Z
D X DX SE DX

X
1
X 2 1 2 s12 s 22 2rs1 s 2 n
1
X 2 1 2
2 s12 s2 n 1
(1)两个样本容量均小于10 时(n1 ≤10 , n2 ≤10 )
独立样本:秩和检验法
(2)两个样本容量均大于10 时(n1>10,n2>10) 一般认为当两个样本容量均大于10时,秩和的分 布接近正态分布,其平均数及标准差如下(n1≤n2) :
n n n 1 T 1 1 2 2
配对样本:符号等级检验法(方法二)
(2)当N>25 时 当N>25 时,一般认为T 的分布接近正态分布。 其平均数、标准差分别为:
T
N N 1 4
N N 12 N 1 T 24
T T
因而可以进行Z 检验

7-2平均数差异的显著性检验

7-2平均数差异的显著性检验
平均数差异的显著性 检验
平均数差异的显著性检验
平均数差异的显著性检验是指通过从两个总 体中抽取出的两个样本来判断这两个总体的均值 的大小关系。 一、理论依据
抽样分布理论
• 两个平均数之差的标准误,是用一切可能的样本 平均数之差在抽样分布上的标准差来表示的: 1.相关样本:
SEX X
1 2
2 12 2 2r 1 2
Z X1 X 2
2 X 1
n1

2 X 2
n2

决断规则(查Z值表): 同前
2.独立小样本(n1≤30或n2≤30):
X1 X 2
2 2 n1 X 1 n2 X 2 n1 n2 n1 n2 2 n1n2
• •
检验统计量:
t
df n1 n2 2
决断规则(查t值表): 同前

2.独立样本:
SEX
1X2

12
n1

2 2
n2
平均数差异的显著性检验
二、相关样本平均数差异的显著性检验 相关样本的两种情况: 1.同组前后测 2.配对组 1.相关大样本(n=n1=n2>30): • • 检验统计量: Z
X1 X 2
2 2 X 1 X 2 2r X 1 X 2
n
决断规则(查Z值表): 同前 2.相关小样本(n=n1=n2≤30):
X1 X 2
2 2 X 1 X 2 2r X 1 X 2
• •
检验统计量:
t
df n 1
n 1
决断规则(查t值表): 同前
平均数差异的显著性检验
三、独立样本平均数差异的显著性检验 1.独立大样本(n1>30、n2>30): • 检验统计量:

平均数差异分析

平均数差异分析

)
X1 − X 2 统计量 = SEDX
25
1.两总体正态,总体标准差已知 两总体正态,
总体标准差已知条件下,平均数之差的抽样分布服从正态分布, 总体标准差已知条件下,平均数之差的抽样分布服从正态分布, 作为检验统计量,计算公式为: 以Z作为检验统计量,计算公式为:
X1 − X 2 Z = SE D X
极其显著**
显著性水平拒绝H 在0.01显著性水平拒绝 0, 显著性水平拒绝 接受H 接受 1
17
表10-4 10-
单侧t 单侧t检验统计决断规则
∣t∣与临界值比较 ∣
P值 值
显著性
检验结果
∣t∣<t(df)0.
保留H 拒绝H 保留 0,拒绝 1
t(df)0.05≤∣t∣<t(df)0.01 ∣∣
8
3.平均数显著性检验的几种情形
⑴总体为正态,总体标准差σ已知 总体为正态,总体标准差 已知 平均数的抽样分布服从正态分布, 为检验统计量,其计算公式为: 平均数的抽样分布服从正态分布,以Z为检验统计量,其计算公式为:
Z =
X − µ0
σX
=
X − µ0
σ
n
9
例1:某小学历届毕业生汉语拼音测验平均分数为66分, 某小学历届毕业生汉语拼音测验平均分数为 分 标准差为11.7。现以同样的试题测验应届毕业生(假定应 。现以同样的试题测验应届毕业生( 标准差为 届与历届毕业生条件基本相同),并从中随机抽18份试卷 届与历届毕业生条件基本相同),并从中随机抽 份试卷, ),并从中随机抽 份试卷, 算得平均分为69分,问该校应届与历届毕业生汉语拼音测 算得平均分为 分 验成绩是否一样? 验成绩是否一样?
28
某幼儿园在儿童入园时对49名儿童进行了比奈智力测 例1:某幼儿园在儿童入园时对 名儿童进行了比奈智力测 某幼儿园在儿童入园时对 验(σ=16),结果平均智商为 ,结果平均智商为106。一年后再对同组被试施 。 测,结果平均智商分数为110。已知两次测验结果的相关 结果平均智商分数为 。 系数为r=0.74,问能否说随着年龄的增长和一年的教育, ,问能否说随着年龄的增长和一年的教育, 系数为 儿童智商有了显著提高? 儿童智商有了显著提高?

差异显著性检验t检验知识讲解

差异显著性检验t检验知识讲解
① 根据假说所涉及的内容安排相斥性的试验或抽样调查; ② 根据试验或调查所获的资料进行推理,肯定或否定或修改假
说,从而形成结论,或开始新一轮的试验以验证修改完善后的 假说,如此循环发展,使所获得的认识或理论逐步发展、深化
13
一、几个相关概念
9. 科学研究的基本过程
① 选题 ② 文献 ③ 假说 ④ 假说的检验 ⑤ 试验的规划与设计
质、仪器的不准等因素引起的真值与观测指间的差异; 通过努力可以克服 系统误差;
随机误差:随机误差又叫抽样误差(sampling error) ,这是由于许多无法控制的
内在和外在的偶然因素所造成的真值与观测指间的差异;在试验中,即使十 分小心也难以消除;随机误差影响试验的精确性;统计上的试验误差指随机 误差,这种误差愈小,试验的精确性愈高。
x 5 0 0 5 2 0 L 4 9 05 2 8 5= 5 2 8 .5
1 0
1 0
36
17.平均数
• 加权法 计算若干个来自同一总体的样本平均数的平均数 时,如果样本含量不等(或者其总要性程度不同), 也采用加权法计算
x fixi fx fi n
37
17.平均数
• 算术平均数的重要特性
17
一、几个相关概念
13. 单因素试验 指整个试验中只变更、比较一个试验因素的不同 水平,其他作为试验条件的因素均严格控制一致的试验。
18
一、几个相关概念
14 多因素试验 指在同一试验方案中包含2个或2个以上的试验因 素,各个因素都分为不同水平,其他试验条件均应严格控制一 致的试验。
19
一、几个相关概念
• 总体平均数
N
xi N i 1
39
17.平均数

均数差异显著性检验.PPT文档56页

均数差异显著性检验.PPT文档56页
均数差异显著性检验.
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
56
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

第七章 平均数差异的显著性检验

第七章 平均数差异的显著性检验

n
——第一个与第二个变量的总体方差; r——两个变量的相关系数 n——样本的容量(n对相关样本)
2 12 2
10
第一节 平均数差异显著性检验的基本原理
二、平均数之差的标准误 平均数之差的标准误——两个总体标准差已知 2、独立样本——
D

2 1
n1


2 2
n2
n1、n2——第一个与第二个样本的容量
第二节 相关样本平均数差异的显著性检验
一、配对组的情况 例1: 检验的步骤: 分别用平均数差异的标准误的三种不同形式计算t值: ①用D计算
t
D
D D
2
n( n 1)
( D ) / n
2
19
第二节 相关样本平均数差异的显著性检验
一、配对组的情况 例1: 检验的步骤: ②用总体标准差估计值S计算
23
第二节 相关样本平均数差异的显著性检验
二、同一组对象的情况 例1 32人的射击小组经过三天集中训练,训练前后分数如表, 问三天集训有无明显效果?
检验的步骤:
(1)提出假设
H0:μ1≤μ2(或μD≤0) H1:μ1>μ2(或μD>0)
24
第二节 相关样本平均数差异的显著性检验
二、同一组对象的情况 例1 检验的步骤: (2)选择检验统计量并计算其值 ——假定训练前后射击得分是从两个正态总体抽出的相关样 本,那么它们差数的总体也呈正态分布; ——而差数的总体标准差σD未知, ——于是样本的差数平均数与差数的总体平均数的离差统计 量呈t分布。 ——但因差数的数目n=32>30,t分布接近正态,也可以用 Z检验近似处理。
25
第二节 相关样本平均数差异的显著性检验

(优选)第七平均数差异的显著性检验

(优选)第七平均数差异的显著性检验

16
第二节 相关样本平均数差异的显著性检验
一、配对组的情况 例1: 检验的步骤:
③用样本标准差σX表示
SD
2 X1
2 X
2
2r
X
1
X
2
n 1
17
第二节 相关样本平均数差异的显著性检验
一、配对组的情况 例1: 检验的步骤:
分别用平均数差异的标准误的三种不同形式计算t值: ①用D计算
t
D D
D2 ( D)2 / n
n(n 1)
18
第二节 相关样本平均数差异的显著性检验
一、配对组的情况 例1: 检验的步骤:
②用总体标准差估计值S计算
t
X1 X2
S12 S22 2rS1S2

19
第二节 相关样本平均数差异的显著性检验
一、配对组的情况 例1: 检验的步骤:
③用样本标准差σX计算
t
X1 X2
2 X1
2 X
一、平均数差异显著性检验的原理 当样本平均数之差较小,在其抽样分布上出现的概率较大, 那么,应保留零假设而拒绝备择假设。 意味着,两个样本平均数是来自同一个总体或来自平均数 相同的两个总体,而样本平均数之差是由于抽样误差所致。
5
抽样分布
拒绝域 a/2
1 -a 接受域
置信水平 拒绝域
a/2
临界值
DX
临界值
1 2 0
样本统计量
第一节 平均数差异显著性检验的基本原理
二、平均数之差的标准误 平均数之差的标准误 ——是两个样本平均数差的抽样误差。 ——是用一切可能的样本平均数之差在抽样分布上的标准 差来表示。 由公式推导知: ——两个变量之差的平均数等于两个变量平均数之差。 ——两个变量之差的离差等于两个变量离差之差。

05第七章_平均数差异的显著性检验

05第七章_平均数差异的显著性检验

计算
t
X1 X2
n1
S12
n2
S
2 2
n1
n2
n1 n2 2
n1 n2
59.9 50.3
10 6.6402 9 7.2722 10 9
10 9 2
10 9
2.835
3.两总体非正态, n1和n2大于30(或50)
总体标准差未知条件下,平均数之差的 抽样分布服从t分布,但样本容量较大,t分 布接近于正态分布,可以以Z近似处理,因 此以Z′作为检验统计量,计算公式为:
计算
t
X1 X2
n1
S12
n2
S
2 2
n1
n2
n1 n2 2
n1 n2
59.9 50.3
10 6.6402 9 7.2722 10 9
10 9 2
10 9
2.835
对本题做方差齐性检验
1.提出假设
H0
:
2 1
2 2
H1
:
2 1
2 2
2.选择检验统计量并计算
对两总体方差是否齐性进行检验,应选F 做检验统计量,其计算公式为
2.选择检验统计量并计算 两种识字教学法的测验得分假定是从两个正
态总体中随机抽出的样本,它们差数的总体也呈 正态分布。两总体标准差未知,因此平均数之差 的抽样分布服从t分布,应以t为检验统计量。
两样本为配对实验结果,属于相关样本,已 计算出相关系数,因此选公式(11.5)计算。
t
X1 X2
S12
106 110
162 162 2 0.741616
49
1.71
确定显著性水平 显著性水平为α=0.05 做出统计结论 单侧检验时Z0.05=1.65,Z0.01=2.33 而计算得到的Z=1.71﹡ Z0.05 <|Z|<Z0.01,则概率 0.05>P>0.01 差异显著,应在0.05显著性水平接受零假设 结论:可以说随着年龄的增长和一年的教育, 儿童智商有了显著提高。

差异显著性检验t检验课件

差异显著性检验t检验课件
差异显著性检验t检 验课件
目录
• 差异显著性检验t检验概述 • t检验的数学模型 • t检验的实施步骤 • t检验的案例分析 • t检验的局限性及解决方法 • t检验的软件实现与结论
01
差异显著性检验t检验概述
定义与概念
差异显著性检验t检验是一种常用的统计分析方法,用 于比较两组数据的均值是否存在显著差异。它利用t分 布理论来评估数据的可靠性。
配对样本t检验案例
总结词
配对样本t检验用于比较两个相关样本的平均值之间是否存在显著差异。
详细描述
配对样本t检验(也称为两相关样本t检验)是一种常用的差异显著性检验方法,用于比较两个相关样 本的平均值之间是否存在显著差异。例如,假设我们有两个由同一组研究对象在不同时间点上收集的 样本,我们要检验这两个样本的平均血压值是否存在显著差异。
01 如果p值小于0.05,那么我们可以认为这两个样本
的均值存在显著差异。
02
如果p值大于0.05,那么我们不能认为这两个样本 的均值存在显著差异。
t检验的实际应用建议
t检验主要用于比较两个独立样 本的均值是否存在显著差异,或 者一个样本与一个已知值之间是
否存在显著差异。
在进行t检验之前,需要先对数 据进行正态性检验,因为t检验 的前提假设是数据符合正态分布
在科学、工程、医学等领域,差异显著性检验t检验被 广泛应用于验证实验结果、比较实验组与对照组之间的 差异等。
t检验的应用范围
确定两组数据的均值是否存在显著差异,如研究 01 对象的身高、体重、年龄等。
检验一个样本的均值与已知的参照值是否存在显 02 著差异,如检测产品的质量、评估治疗效果等。
比较两个或多个独立样本的均值是否存在显著差 03 异,如不同地区、不同时间的数据比较。

第七章 假设检验(F检验与卡方检验)

第七章 假设检验(F检验与卡方检验)

• F检验
– 方差齐性检验 – 两个独立样本的方差齐性检验
• F检验
– – – – – 提出待检验的假设H0和H1 S12 确定并计算统计量 F S 2 2 根据df1和df2值,对给定的显著性水平α 建立拒绝虚无假设的规则 作出统计决策
• 将检验统计量的值与拒绝规则所指定的临界值相比 较,确定是否拒绝虚无假设
i 1 • 则2服从自由度为n的2(n)分布,记为 2~2(n)。
xi2
2
n
2的特点
• (1) 2是一个正偏态分布,n越大,曲线越趋于对称(趋于 正态分布),n越小,曲线越不对称。 • (2) 2值都是正值。
• (3)若X1,X2,…,Xm相互独立,且Xi~ 2(ni),i=1,2,…,m,则 X=X1+X2+Xm~ 2(n),其中n=n1+n2+…+nm。
性别 男生 女生 合计 录取人数 10(9) 8(9) 18 未录取人数 80(81) 82(81) 162 合计 90 90 180
对平均数差异的显著性检验的理论前提是假设两 个总体的方差是相同,或至少没有显著性差异。 Z检验和t检验 对两个总体的方差是否有显著性差异所进行的检 验称为方差齐性检验,即必须进行F检验。
F分布
• 若有两个服从正态分布的总体N1(μ1,σ1),N2(μ2,σ2)。检 验σ1和σ2是否有显著性差异? • 在方差分析中,需要检验某个因素是否对指标有显著 的作用时需要F分布来解决。 • 设有两个总体X,Y,已知X~2(n1),Y~2(n2),并且 X与Y相互独立,则称随机变量F,所服从的分布为第 一自由度为n1,第二自由度为n2的F分布,记为F~F (n1,n2)。
• • 若自由度df=1,α=0.900,查2分布表可知P(2>0.02)=0.900 记20.900(1)=0.02

第7章平均数差异的显著性检验讲义

第7章平均数差异的显著性检验讲义

解:1.提出假设
H0 : D 0, H1 : D 0
2.计算检验的统计量
t
X1 X2
S2 X1
S
2 X
2
2rS X1 S X2
n 1
99 101
0.954
142 152 2 0.721415
28 1
3.确定检验形式 左侧检验 4.统计决断 当df=27时,
t(27)0.05 1.703
二、独立小样本平均数差异的显著性检验
两个样本容量
n1
n2
均小于30,或其中一个小于30的独立样本 称为独立小样本。
独立小样本平均数差异的显著性检验方法:
1、方差齐性时
方法和步骤: 如果两个独立样本的总体方差未知,经方 差齐性检验表明两个总体方差相等,则要用汇 合方差来计算标准误,
公式为:
S合2
解:1.提出假设
H0 : D 0, H1 : D 0
2.计算检验的统计量
t
D
D2 (D)2 / n
n(n 1)
85
10
3.456
1267 852 /10
10(10 1)
3.确定检验形式 双侧检验
4.统计决断 因为是t检验,所以要根据自由度df=n-1 =10-1=9查t值表(即附表2),找双侧检验的临 界值。
( X1
X1)2 ( X 2 (n1 1) (n2 1)
X
2 )2
S x1-x2
( X1 X1)2 ( X 2 X 2 )2 n1 n2
n1 n2 2
n1n2
S x1 - x 2
(n1
-1)S
2 X
1
(n2
-1)S
2 X

显著性检验

显著性检验

第7 章显著性检验的基本问题教学目的与要求:通过本章讲授,使学生了解下列概念:观察到的显著水平(p_值)、检验时规定的显著水平标准、显著水平、临界值、检验规则、原假设和备择假设,知道什么是双尾检验,什么是左(右)单尾检验以及各自的适用场合,知道什么是显著性检验中的两类错误以及犯这类错误的概率的图示,掌握总体均值是否为某定值以及两点分布总体中一次试验成功率为某定值的检验问题,知道显著性检验中应当注意的问题。

重点内容与难点:1.显著性检验的基本问题2.总体均值为某定值的显著性检验3.随机试验中某种事件出现的概率为某定值的显著性检验§7.1 显著性检验的基本问题1.显著性检验是除参数估计之外的另一类重要的统计推断问题。

2.显著性检验,又称假设检验:就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(原假设)是否合理,即判断总体的真实情况与原假设是否显著地有差异。

或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。

3.显著性检验是针对我们对总体所做的假设做检验。

一、显著性检验的基本思想显著性检验的基本思想可以用小概率原理来解释1.小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中事件A事实上发生了。

那只能认为事件A不是来自我们假设的总体, 就是认为我们对总体所做的假设不正确。

2 .观察到的显著水平:由样本资料计算出来的检验统计量观察值所截取的尾部面积为。

这个概率越小,反对原假设,认为观察到的差异表明真实的差异存在的证据便越强,观察到的差异便越加理由充分地表明真实差异存在。

3 .检验所用的显著水平:针对具体问题的具体特点,事先规定这个检验标准。

4.在检验的操作中,把观察到的显著性水平与作为检验标准的显著水平标准比较,小于这个标准时,得到了拒绝原假设的证据,认为样本数据表明了真实差异存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 相关样本平均数差异的显著性检验
定义:两个样本内个体之间存在着一一对应的 关系,这两个样本称为相关样本。
(1)用同一测验对同一组被试在试验前后进行 两次测验,所获得的两组测验结果是相关样本。
(2)根据某些条件基本相同的原则,把被试一 一匹配成对,然后将每对被试随机地分入实验组和 对照组,对两组被试施行不同的实验处理之后,用 同一测验所获得的测验结果,也是相关样本。
表示差数的总体平均数 D
D表示观察值的差数 n表示差数的数目
(三)确定检验形式 包括双侧检验、左侧检验和右侧检验 (四)统计决断 当进行t检验时,df=n-1。
一、配对组的情况
例如:有人做了一项分散识字教学法与集中识字 教学法的比较实验。根据研究的需要,实验之前先将 被试配成对。为了控制无关因素的干扰,配对时研究 者考虑了被试以下几方面的情况:智力水平、努力程 度、识字量多少及家庭辅导力量等,然后按照各方面 条件基本相同的原则,将学生配成了10对,再把每对 学生中的一个随机地指派到实验组,另一个指派到对 照组。两组学生分别接受用不同的教学法进行的教学。 经过一段时间的学习之后,两组学生接受统一的测试, 结果如表7.1所示。现在问,两种识字教学法是否有显 著性差异?
25 28 2
25 28
3.确定检验形式 双侧检验 4.统计决断 当自由度df=25+28-2=51时,
t(51)0.05 2.009
因为|t|=0.0509<2.009,P>0.05 所以,要接受零假设,其结论是:在这项 教学实验中男女生英语测验成绩无显著性差异。
2、方差不齐性时
方差不齐性独立样本平均数差异的显著性 检验(自学)
( X1 X 1 )2 ( X 2 X 2 )2 n1 n2
n1 n2 2
n1n2
t
X1 X2
(n1
-
1)S
2 X
1
(n2
-
2)S
2 X
2
n1
n2
n1 n2 2
n1n2
如:
有人在某小学的低年级做了一项英语教学 实验,在实验的后期,分别从男女学生中抽取 一个样本进行统一的英语水平测试,结果如下 表所示。问在这项教学实验中男女生英语测验 成绩有无显著性差异?(假定方差齐性)
t=0.954<1.703,P>0.05 所以,要保留零假设,即一年后儿童的智 商没有显著地提高。
第三节 独立样本平均数差异的显著性检验
定义:两个样本内的个体是随机抽取的, 它们之间不存在一一的对应关系,这样的两个 样本称为独立样本。
一、独立大样本平均数差异的显著性检验
两个样本容量
n1
n2
都大于30的独立样本称为独立大样本。
t(9)0.05 2.262
t(9)0.01 3.250
t 3.456** 3.250
p<0.01,所以,在0.01的显著性水平上拒 绝零假设,接受备择假设。即可得出小学分散
识字教学法与集中识字教学法有极其显著的差 异的结论。
又如:
某小学为了更有效地训练中年级学生掌握有关 计算机操作的基本技能,特对两种训练方法的有效 性进行了比较研究。在四年级学生中,根据智力水 平、兴趣、数学和语文成绩,以及家庭中有无学习 计算机的机会等有关因素都基本相同的条件下,将 学生匹配成34对,然后把每对学生拆开,随机地分 配到不同的训练组中,经训练后,两组学生考核的 分数如下,问两种不同的训练方法是否确实造成学 习效果上的显著性差异?
人数 90 100
平均数 80.50 76.00
标准差 11 12
解:1.提出假设
H :
0
1
2
H1 : 1 2
2.计算检验的统计量
Z X1 X2
2
2
S S X1
X2
n1 n2
80.50 76 2.69 112 122 90 100
3.确定检验形式 右侧检验
4.统计决断 Z=2.69>2.33,P<0.01 所以,要拒绝零假设,接受备择假设,由 此得出结论:高年级思想品德教育的效果极显 著地优于中年级。
二、独立小样本平均数差异的显著性检验
两个样本容量
n1
n2
均小于30,或其中一个小于30的独立样本 称为独立小样本。
独立小样本平均数差异的显著性检验方法:
1、方差齐性时
方法和步骤: 如果两个独立样本的总体方差未知,经方 差齐性检验表明两个总体方差相等,则要用汇 合方差来计算标准误,
公式为:
S合2
独立大样本平均数差异的显著性检验所用
的公式是:
S x1-x2
S2 X1
S2 X2
n1 n2

假设某小学从某学期刚开学就在中、高年 级各班利用每周班会时间进行思想品德教育, 学期结束时从中、高年级各抽取两个班进行道 德行为测试,结果如下表所示,问高年级思想 品德教育的效果是否优于中年级?
年级 高 中
-1
27
67
63
4
11
70
68
2
28
64
65
-1
12
65
64
1
29
85

83
2
13
62
60
2
30
81
79
2
14
58
56
2
31
78
75
3
15
73
70
3
32
75
71
4
16
90
88
2
33
67
67
0
17
82
81
1
34
76
73
3
总和
34
76
解:1.提出假设 H0 : D 0, H1 : D 0
2.计算检验的统计量
相关样本平均数差异的显著性检验方 法和步骤:
(一)提出假设
H 0 : D 0, H1 : D 0
(二)选择检验统计量并计算其值。
在小样本的情况
t
D D
D2 ( D)2 / n
n(n 1)
在大样本的情况
Z
D D
D2 ( D)2 / n
n(n 1)
D表示样本的差数平均数或两个样本平均数之差
二、平均数之差的标准误
两个样本平均数差的抽样误差称为平均数之差的 标准误,用一切可能的样本平均数之差在抽样分 布上的标准差来表示。
D
2 1
2 2
-
2r1
2
(相关总体)
N
S S12 S22 2rS1S2 (相关样本)
D
n
2 1
2 2
D
n
S
S2 1
S2 2
D
n 1
(独立总体,r=0) (独立样本,r=0)
1.F分布是一簇分布,随分子和分母的自 由度不同而有不同的分布曲线(见书P98)。
2.F分布是正偏态的,即一簇正偏态的曲 线(不过,随着分子和分母自由度的增大而逐 渐趋于正态)。
3.F比值都是正的。 4.由于计算F比值时总把大的方差估计值 作为分子,小的作为分母,所以F比值≥1。
F检验的基本步骤:
( X1
X1)2 ( X 2 (n1 1) (n2 1)
X
2 )2
S x1-x2
( X1 X1)2 ( X 2 X 2 )2 n1 n2
n1 n2 2
n1n2
S x1 - x 2
(n1
-1)S
2 X
1
(n2
-1)S
2 X
2
n1 n2 2
n1 n2 n1n2
t
X1 X2
第一步:提出假设 第二步:选择检验统计量并计算其值 第三步:一般情况下,经常应用的是右侧 F检验。 第四步:统计决断 查附表3 举例(见教材)
两个独立样本的方差齐性检验
例:某市初中毕业班进行了一次数学考试, 为了比较该市毕业班男女生成绩的离散程度, 从男生中抽出一个样本,容量为31,从女考生 中也抽出一个样本,容量为21。男女生成绩的 方差分别为49和36,请问男女生成绩的离散程 度是否一致?
2 1
表示第一个变量总体方差
2 2
表示第二个变量总体方差
r 表示第一个与第二个变量的相关系数
n表示样本容量
S2 1
表示第一个变量样本方差
S2 2
表示第二个变量样本方差
对两个总体平均数差异的显著性检验涉及 到两个总体,要考虑到如下五个因素:
样本是相关的还是独立的; 总体是正态分布还是非正态分布; 总体方差是已知还是未知; 总体方差是否齐性; 样本的大小。
展望
本章将介绍如何由两个样本平均数之差检验两个相应 总体平均数之差的显著性。
如果某两个样本平均数之间的差异达到了一定的限度, 即达到了显著性水平,就可以认为这两个样本来自不同的 总体,或者说,这两个样本各自所代表的总体之间有真正 的差异;如果两个样本平均数之间的差异不显著,则可以 认为,这两个样本平均数之间的差异是由抽样误差造成的, 它们所来自的总体的平均数相等或就来自同一个总体。
D
2.2353 0
Z
D
6.031
D2 ( D)2 / n 324 762 34
n(n 1)
34(34 1)
3.确定检验形式 双侧检验 4.统计决断 Z=6.031**>2.58,P<0.01 所以,要在0.01的显著性水平上拒绝零假 设,接受备择假设。
二、同一组对象的情况
例子:某小学在新生入学时对28名儿童进行了 韦氏智力测验,结果平均智商=99,标准差=14, 一年后再对这些被试施测,结果平均智商=101, 标准差=15,已知两次测验结果的相关系数r=0.72, 问能否说随着年龄的增长与一年的教育,儿童智商 有了显著提高?
相关文档
最新文档