ANSYS WORKBENCH 11.0热分析
ANSYS WORKBENCH 11.0模态分析
![ANSYS WORKBENCH 11.0模态分析](https://img.taocdn.com/s3/m/b6beb86cfe4733687e21aac1.png)
ANSYS WORKBENCH 11.0培训教程(DS)第五章模态分析概述•在本章节主要介绍如何在Design Simulation中进行模态分析. 在Design Simulation中, 进行一个模态分析类似于一个线性分析.–假定用户已经对第四章的线性静态结构分析有了一定的学习了解.•本节内容如下:–模态分析流程–预应力模态分析流程•本节所介绍的这些性能通常能适用于ANSYS DesignSpace Entra licenses及更高的lisenses.–在本节讨论的一些选项可能需要更多的高级lisenses, 需要时会相应的标示出来.–谐响应和非线性静态结构分析在本节将不进行讨论.模态分析基础•对于一个模态分析, 固有圆周频率ωi 和振型φi 都能从矩阵方程式里得到:在某些假设条件下的结果与分析相关:–[K] 和[M] 是常量:•假设为线弹性材料特性•使用小挠度理论, 不包含非线性特性•[C] 不存在, 因此不包含阻尼•{F} 不存在, 因此假设结构没有激励•根据物理方程, 结构可能不受约束(rigid-body modes present) ,或者部分/完全的被约束住•记住这些在Design Simulation 中进行模态分析的假设是非常重要的.[][](){}02=−ii M K φωA. 模态分析过程•模态分析过程和一个线性静态结构分析过程非常相似, 因此这里不再详细的介绍每一操作步骤. 下面这些步骤里面,黄色斜体字体部分是模态分析所特有的.–建模–设定材料属性–定义接触对(假如存在)–划分网格(可选择)–施加载荷(假如存在的话)–需要使用Frequency Finder 结果–设置Frequency Finder 选项–求解–查看结果…几何模型和质量点•类似于线性静态分析, 任何一种能被Design Simulation支持的几何模型都有可以使用:–实体、面体和线体•对于线体,只有振型和位移结果是可见的。
Ansys电机热(Fluent)分析设置
![Ansys电机热(Fluent)分析设置](https://img.taocdn.com/s3/m/2fc1b4cb336c1eb91b375d3e.png)
CCNP Lab Manual
Boundary Conditions(流体外表面)
• w_wj
@2007 NJUT Cisco Network Academy. All rights reserved..
CCNP Lab Manual
Boundary Conditions(流固耦合界面-固体)
• w_bearing_1;w_bearing_1:38; w_bearing_2; w_bearing_2:39; w_bearing_3; w_bearing_3:40; w_cable; w_cable:32; w_cap; w_cap#ic; w_cap#jacket; w_clip; w_clip#jacket; w_clip#shaft; w_glue; w_glue#stator; w_gs#cap; w_gs#ss; w_ic#cap; w_ic#gs; w_ic#jacket; w_ic#ss; w_ic_rotor; w_jacket; w_shaft; w_shaft#cap; w_shaft#jacket; w_shaft:34; w_shaft:35; w_shaft:36; w_shaft:37; w_shaft_r; w_shell1_inner; w_shell1_inner:41; w_shell1_inner:42; w_shell1_inner:43; w_shell1_inner:44; w_shell1_inner:45; w_shell1_inner:46; w_shell1_inner:47; w_shell2_inner#mix_stator1; w_shell2_inner#mix_stator_fluid1; w_shell3_inner ; w_shell3_inner:48 ; w_shell3_inner:50; w_shell_attach_inner; w_ss#cap; w_stator; w_steel_sheet; w_winding#glue; w_wj:31;w_180-shadow; w_184; w_185;
workbench 热分析案例
![workbench 热分析案例](https://img.taocdn.com/s3/m/c134df5633687e21af45a989.png)
定
义 边 界 条 件
热源: 与墙体平行的壁面采用 temperature边界条件,定 义其温度为50℃,其余壁 面均为绝热边界条件。
5
结
果
及
分
析
温度场云图: 通过显示计算得出的温度 场可以看出该模型的最小 温度值出现在墙体外表面 顶部与底部,在该模型中 温度场关于yz平面对称。
6
结
果
及
分
析
热通量矢量图:
物
理
模
型
物理模型简化:
混凝墙壁上附热源,热 源为一侧等壁温,其余 壁面为绝热壁面。热源 附在墙面中间并与墙面 垂直。在ansys的 DesignModeler中进行建 模。
1
பைடு நூலகம்
划
分
网
格
网格剖分:
采用ansys的mesh块对导入 的几何体进行网格划分,网 格为四面体网格,网格最大 边长为5mm。
2
定
通过观察热通量矢量图可 以发现热量的传递方向及 密度分布情况。
7
结
果
及
分
析
一维导热区域分布:
在该模型中一维导热区域 (xz平面)如图所示。在 该稳态导热过程中y方向所 有截面热流密度均相同。
8
义
边
界 条 件
墙壁外表面: 采用convection边界条件, 设定外界空气温度10℃, 换热系数为0.36W/㎡·k。
3
定 义 边 界 条 件
墙壁内表面:
裸露于空气的表面采用 convection边界条件,拟 定外界空气温度20℃, 换热系数为0.36W/㎡·k, 与热源接触表面采用耦合 边界条件。
ansys workbench仿真传热方程
![ansys workbench仿真传热方程](https://img.taocdn.com/s3/m/5378258f9fc3d5bbfd0a79563c1ec5da50e2d696.png)
ansys workbench仿真传热方程在ANSYS Workbench中,进行传热仿真涉及到建立几何模型、设置物理特性、设置边界条件、求解方程和分析结果等多个步骤。
下面将详细介绍ANSYS Workbench中传热仿真的步骤和方法。
首先,在进行传热仿真之前,需要建立几何模型。
ANSYS Workbench提供了丰富的建模工具,可以根据实际情况选择不同的方式进行建模。
常用的建模工具包括几何体、划分、倒角、挤压等,可以很方便地创建各种几何形状。
建立几何模型之后,需要设置物理特性。
物理特性包括材料的热导率、密度、比热等参数。
在ANSYS Workbench中,可以通过导入材料库或者手动输入参数的方式设置物理特性。
根据实际需求选择合适的材料参数,以确保仿真结果的准确性。
接下来,需要设置边界条件。
边界条件决定了流体或结构体系与外部环境的交互方式。
常见的边界条件有固体边界条件、流体边界条件和约束边界条件。
在ANSYS Workbench中,可以通过选择预设条件或者手动输入参数的方式设置边界条件。
根据实际情况合理设置边界条件,以确保仿真结果的可靠性。
设置好边界条件之后,可以进行方程求解。
ANSYS Workbench使用有限元法来求解传热方程,可以根据实际情况选择稳态或者瞬态求解方式。
在进行求解之前,需要定义求解器的类型、收敛准则和求解精度等参数。
根据实际需求进行合理设置,以保证求解过程的准确性和高效性。
完成求解之后,可以对仿真结果进行后处理和分析。
ANSYS Workbench提供了多种后处理工具,可以对传热分布、温度场、流速场等进行可视化和数据统计。
可以通过绘制曲线、制作动画和导出数据等方式,对仿真结果进行深入分析,以获得更多的信息和洞察。
需要注意的是,在进行传热仿真时,需要合理选择网格类型和网格密度。
ANSYS Workbench提供了多种网格划分算法和优化工具,可以根据实际情况选择合适的方法进行网格划分和调整。
Workbench热分析实例之一.
![Workbench热分析实例之一.](https://img.taocdn.com/s3/m/5666e87bbe23482fb4da4cda.png)
Inventory #00557 WS9-4
飞轮铸造分析-控制
• 激活时间积分。使用向后欧拉时间积分。 • 激活线性搜索收敛增强工具。 • 热导率表现了沙与铝的接触。 • 将进行两个分析
–Case 1: 观察1分钟内的凝固。 –Case 2: 运行第二个工况,持续30秒。
• 激活自动时间步
–初始和最小时间步长为0.001 sec –Case 1: 最大时间步长2.0 sec –Case 2: 最大时间步长5.0 sec
•铝 注意,密度和比热将被删除,因为可以替代的计算热焓。
温度相关的热导率
Temperature (°C) 100 200 300 400 530 800
KXX (W/m-°C) 206 215 228 249 268 290
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer 11.0
Workshop 9 – 飞轮铸造(相变分析)
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Inventory #002557 WS9-1
案例 – 飞轮铸造分析
• 为了讲述在课程中论述的相变技术,将进行 一个飞轮铸造分析:
• 问题描述:
– 对一个铝制飞轮铸造进行相变分析。飞 轮是将溶解的铝注入沙模中制造的。
• 分析目标:
– 研究飞轮凝固过程。
Workshop Supplement
workbench 热分析案例
![workbench 热分析案例](https://img.taocdn.com/s3/m/6b8bf817852458fb770b56bd.png)
精品课件
2
界条件
定义边
墙壁外表面:
采用convection边界条件, 设定外界空气温度10℃, 换热系数为0.36W/㎡· k。
精品课件
3
条件
定义边界
墙壁内表面:
裸露于空气的表面采用 convection边界条件,拟 定外界空气温度20℃,换 热系数为0.36W/㎡· k, 与热源接触表面采用耦合 边界条件。
物理模型
ห้องสมุดไป่ตู้
物理模型简化:
混凝墙壁上附热源,热 源为一侧等壁温,其余 壁面为绝热壁面。热源 附在墙面中间并与墙面 垂直。在ansys的 DesignModeler中进行 建模。
精品课件
1
网
格
划
分
网格剖分:
采用ansys的mesh块对导入 的几何体进行网格划分,网 格为四面体网格,网格最大 边长为5mm。
及分析
结果
热通量矢量图:
通过观察热通量矢量图可 以发现热量的传递方向及 密度分布情况。
精品课件
7
及分析
结果
一维导热区域分布:
在该模型中一维导热区域 (xz平面)如图所示。在 该稳态导热过程中y方向所 有截面热流密度均相同。
精品课件
8
精品课件
4
界条件
定 义边
热源:
与墙体平行的壁面采用 temperature边界条件,定 义其温度为50℃,其余壁 面均为绝热边界条件。
精品课件
5
及分析
结果
温度场云图:
通过显示计算得出的温度 场可以看出该模型的最小 温度值出现在墙体外表面 顶部与底部,在该模型中 温度场关于yz平面对称。
精品课件
6
Workbench热分析实例之一
![Workbench热分析实例之一](https://img.taocdn.com/s3/m/c3ea05fc770bf78a652954d0.png)
–选择Ts = 700 °C 以及Tl = 695 °C ( 在流体和固体之间定义5 °C 的相变 区间)
属性 熔点 密度 Cs, 固体比热 Cl,流体比热 L, 潜热 (或 L x 密度)
• 热焓计算结果数据
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Inventory #00557 WS9-16
焓
• 热焓数据必须要用命令行添加。 • 高亮 “wheel” ,然后插入命令:
• 注意命令行下的注释: 飞轮的材料属性号可以简单的记为参数 “matid”
Inventory #00557 WS9-4
飞轮铸造分析-控制
• 激活时间积分。使用向后欧拉时间积分。 • 激活线性搜索收敛增强工具。 • 热导率表现了沙与铝的接触。 • 将进行两个分析
–Case 1: 观察1分钟内的凝固。 –Case 2: 运行第二个工况,持续30秒。
• 激活自动时间步
–初始和最小时间步长为0.001 sec –Case 1: 最大时间步长2.0 sec –Case 2: 最大时间步长5.0 sec
• 建立对流边界条件。
–环境温度为30 °C,沙模侧面换热系数为7.5 W/m2-°C ,沙模顶面为5.75 W/m2-°C。
–底部不指定边界条件 (完全绝热).
• 在后处理中建立温度探测器。
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
ANSYS Workbench 热分析教程
![ANSYS Workbench 热分析教程](https://img.taocdn.com/s3/m/d2d8e38203d8ce2f006623d4.png)
传热学上机实验指导书ANSYS Workbench 热分析基础教程编制:杨润泽汽车工程系热能教研室2012年7月1.大平板一维稳态导热问题1.1. 问题描述长500mm,宽300mm,厚度30mm的大钢板,钢板上下表面的温度分别为200℃和60℃,钢的导热率为30W/(m·K),试分析钢板温度分布和热流密度。
图1-1 大平板一维稳态导热模型1.2. 问题分析该问题为稳态导热问题,分析思路如下:1.选择稳态热分析系统。
2.确定材料参数:稳态导热问题,仅输入平板导热率。
3.【DesignModeler】建立钢板的几何模型。
4.进入【Mechanical】分析程序。
5.网格划分:采用系统默认网格。
6.施加边界条件:钢板上下表面施加温度载荷,四周对称面无热量交换,为绝热边界,系统默认无需输入。
7.设置需要的结果:温度分布和热流密度。
8.求解及结果显示。
1.3. 数值模拟过程1、选择稳态热分析系统1)工程图解中调入稳态热分析系统Steady-State Thermal(ANSYS)2)工程命名Conduction Thermal Analysis3)保存工程名为Conduction Heat Transfer2、确定材料参数1)编辑工程数据模型,添加材料的导热率,右击鼠标选择【Engineering Data】【Edit】2)选择钢材料属性【Properties of Outline Row 3: Structure Steel】【Isotropic ThermalConductivity】3)出现【Table of Properties Row 2: Thermal Conductivity】材料属性表,双击鼠标,点击每个区域输入材料属性参数:温度20℃,导热率30W/(m·℃)。
4)参数输完后,工程数据表显示导热率-温度图表。
3、DM建立模型1)选择【Geometry】【New Geometry】,出现【DesignModeler】程序窗口,选择尺寸单位【Millimeter】。
ANSYS WORKBENCH 11.0热分析
![ANSYS WORKBENCH 11.0热分析](https://img.taocdn.com/s3/m/1ba90266f5335a8102d22083.png)
面,如果两侧都被指定成接触面或目标面,则称为对称接触。 但是,在热分析中,指定哪一侧是接触面,哪一侧是目标面并不 重要。 • 缺省时,DS对实体装配体使用对称接触。 对ANSYS Professional 及更高级licenses ,用户可在需要时改 为反对称接触。
Availability
x x
x
In the figure on the left, the solid green double-arrows indicate heat flow within the contact region. Heat flow only occurs if a target surface is normal to a contact surface.
Availability
x x
x
Model shown is from a sample Inventor assembly.
… 装配体 – 接触区
• 在DS中,每个接触区都用到接触面和目标面的概念。
– 接触区的一侧由接触面组成,另一侧由目标面组成。 – 在接触的法向上允许有接触面和目标面间的热流。
Initially Touching
Inside Pinball Region Outside Pinball Region
Yes
Yes
No
Yes
Yes
No
Yes
No
No
Yes
No
No
– 接触的 pinball 区域由程序自动定义并被设置一个相对较小的 值,以调和模型中可能出现的小间隙。pinball 区域将在下一
The light, dotted green arrows indicate that no heat transfer will occur between parts.
基于ANSYS Workbench的回转窑稳态热分析及窑皮厚度优化
![基于ANSYS Workbench的回转窑稳态热分析及窑皮厚度优化](https://img.taocdn.com/s3/m/54859e42fe4733687e21aaad.png)
关键词 :回转窑 ;燃烧火焰 ; 数 值模 型 ;窑皮 ; 优化
中图分类号 :T F 0 6 2 文献标识码 :A 文章编号 :1 0 0 1 —3 8 8 1( 2 0 1 3 )1 3—1 3 2— 4
S t e a d y ・ s t a t e T h e r ma l An a l y s i s f o r Ro ar t y K_ j l n a n d t h e Co a t i n g Th i c k n e s s
基于 A N S Y S Wo r k b e n c h的回转窑稳态热分析及窑皮厚度优化
高真 ,熊禾根 ,张文强
( 武汉科 技 大学 ,湖北 武汉 4 3 0 0 8 1 )
摘要 :基于 A N S Y S Wo r k b e n c h 平台, 运用 F l u e n t 软件模 拟 了某 矿用 回转窑燃 烧火焰 及其 所产生 高温 气流 的温度 场分 布 ;建立 了回转窑的数值模 型 ,并通 过稳 态热 分析得 出了回转 窑窑体 的温度分布 云图 ,结果表 明:窑外 壁部分长度 内温度 超过 了4 0 0℃ ,且沿窑长方 向温差较大 。为保证不 因窑壁温度过高而影响托轮正常 工作 ,且使得沿窑 长方 向窑壁 温度尽量 均匀 ,提出采用变窑皮厚度的结构改进措 施 ;进一 步通过 模拟 得 出了较优化 的窑皮 厚度 。对 优化后 的结 构进 行稳态 热分
e x c e e d s 4 0 0℃ w i t h i n s o me l e n g t h r ng a e a n d t e mp e r a t u r e s v a r y g r e a t l y lo a n g t h e k i l n l e n  ̄h d i r e c t i o n .I n o r d e r t o a v o i d t h e b a c k u p r o l l
ANSYS workbench稳态及瞬态热分析
![ANSYS workbench稳态及瞬态热分析](https://img.taocdn.com/s3/m/f697c7558762caaedd33d4f6.png)
b. 网格控制:在Details of “Mesh ” 中单击sizing,size function选择 Proximity and Curvature(临近 以及曲率)选项
c. 选中Mesh,单击鼠标右键
→Generate Mesh
c
1
稳态热分析实例
划分网格 e. 对于曲面模型使用Proximity and Curvature(临近以及曲率)网格控制会
k导热系数(W/(m·℃)),q二次导数为热流密度(W/m^2)
1
热分析简介
基本的传热方式:热传导、热对流、热辐射、相变 2. 热对流(Convection) 对流是指温度不同的各个部分流体之间发生相对运动所引起的热量传递方 式。 热对流满足牛顿冷却方程:
q" h(Ts Tb)
q"为热流密度; h为物质的对流传热系数 ; TS是固体的表面温度; Tb为周围流体温度。
(续)
1
流程简介ቤተ መጻሕፍቲ ባይዱ
材料属性
1
流程简介
装配体与接触
•对于复杂的装配体模型,如果零件初始不接触将不会互相传热
•如果初始有接触就会发生传热
•对于不同的接触类型,将会决定接触面以及目标面之间是否会发生热量传递。 可以利用pinball调整模型可能出现的 间隙,如下表所示:
接触类型
•节点位于Pinball 内:
Mechanical。选中模型树 Geometry 下模型1 2. 在Detail of “1”中,展开Material选 项,单击Assignment后三角 3. 在下拉菜单中选择Copper Alloy
1
稳态热分析实例
划分网格 a. 首先使用程序自动划分网格,查
基于ANSYS WORKBENCH的摩擦生热分析
![基于ANSYS WORKBENCH的摩擦生热分析](https://img.taocdn.com/s3/m/c7f700a8a6c30c2258019e91.png)
本篇文章说明,如何在WORBENCH中通过改变单元的形式来做摩擦生热的耦合分析。
【问题描述】在一个定块上,有一个滑块。
在滑块顶顶面上施加一垂直于表面指向定块的10MPa的分布力系。
现在滑块在定块表面上滑行3.75mm,要求摩擦而产生的热量,并计算滑块和定块内部的温度分布和应力分布。
定块的尺寸:宽5mm,高1.25mm,厚1mm滑块的尺寸:宽1.25mm,高1.5mm,厚1mm材料:弹性模量:7e10Pa;泊松比:0.3;密度:2700kg/m(3);热膨胀系数:23.86e-6/k;摩擦系数:0.2;热导率:150W/(M K);比热:900J/(kg K)(注)该问题来自于许京荆的《ANSYS13.0 WORKBNCH数值模拟技术》,中国水利水电出版社,2012,P381.【问题分析】关键技术分析:此问题属于摩擦生热,不能够使用载荷传递法,而只能使用直接耦合法。
这就是说,只能用一个耦合单元来计算摩擦生热问题。
解决该问题的基本思路如下:(1) 使用瞬态结构动力学分析系统(2)在该系统中更改单元为PLANE223,它是一个耦合单元,可以完成多种耦合分析,这里使用其结构-热分析功能。
(3)定义两个载荷步,第一步将动块移动到指定位置,第二步保持最终位置,以获得平衡解。
(4)在求解设置中,关闭结构分析的惯性部分,而只做静力学结构分析,但是对于热分析仍旧做瞬态热分析。
(5)由于使用了瞬态动力学分析,结果中默认是没有温度可以直接从界面中得到的。
需要自定义结果,提取温度。
(6)此问题要多处使用插入命令的方式,从而可以在WORKBENCH中使用APDL的功能。
(7)瞬态结构动力学分析系统的工程数据中,无法得到热分析的部分参数,所以需要先创建一个单独的工程数据系统,然后把它与瞬态结构动力学分析的工程数据单元格相关联。
(8)在DM中创建两个草图,然后根据草图得到面物体。
再对这两个面物体进行平面应力的分析。
(9)本博文的主要目的是要阐述:如何在WORKBENCH中使用耦合单元进行多物理场的耦合分析。
基于ANSYSWorkbench的研球机主轴热态特性分析
![基于ANSYSWorkbench的研球机主轴热态特性分析](https://img.taocdn.com/s3/m/59461a9369eae009591bec1a.png)
基于ANSYSWorkbench的研球机主轴热态特性分析以研球机主轴为研究对象,通过三维实体软件UG对主轴进行几何建模,利用ANSYS Workbench平台建立了主轴热态特性有限元分析模型,对主轴进行了热态特性分析。
通过分析,得到了机床主轴温度场的变化,热通量大小分布以及热变形的大小分布,为有效控制主轴热变形,保证机床的加工精度提供了理论依据。
标签:主轴;热态特性;加工精度引言随着现代加工技术的不断发展,高精度加工已逐渐成为现代工业化生产的主流。
在精密机械加工过程中,影响机床加工精度的因素很多,其中,机床主轴一直是影响机床加工精度的关键部件,主轴的转动和摩擦产生的热会造成主轴的热变形,而主轴的变形会直接影响机床的加工精度。
文章以ANSYS Workbench为平台,对研球机主轴的热态特性进行了分析。
1 主轴有限元模型的建立该研球机为陶瓷球研磨机床,其主轴组件主要包括主轴、轴承、研磨盘等零件。
文章通过UG6.0三维实体软件对主轴进行了几何建模,然后通过UG输出转换文件,导入到ANSYS Workbench分析软件中。
该分析主要是进行的热应力的部分分析,通过采用直接耦合法来求解得出耦合场的分析结果,即温度在主轴上的分布和结构的变形。
在ANSYS Workbench中对主轴进行网格划分,因为轴承所对应的主轴部分是发热的主要部分和受力处,在主轴转动时产生较多的热量,因此对该部位的网格划分要更加细密。
该研球机主轴的有限元模型如图1所示。
2 主轴的热源以及稳态热分布分析在研球机工作过程中,主轴主要受到两种热源:一是周围环境的空气对流以及阳光等一些外在的辐射热源;二是主轴转动与轴承产生的摩擦发出的热。
在一般情况下,机床加工通常处于室温的稳定情况,所以,我们主要考虑主轴与轴承在转动过程中产生的发热量。
当轴承在高速轻载条件下,M0占主要部分;当轴承在低速重载条件下,M1占主要部分。
该分析所用研球机运行过程中主轴转速75r/min,并且带动研磨板进行运动,主轴工作压力是25kN,属低速重载条件,因此在该研球机主轴的摩擦力矩中M1占主要部分。
ansys workbench热分析报告教程
![ansys workbench热分析报告教程](https://img.taocdn.com/s3/m/626106650722192e4536f6bc.png)
6-1•本章练习稳态热分析的模拟,包括:A.几何模型B.组件-实体接触C.热载荷D.求解选项E.结果和后处理F. 作业6.1•本节描述的应用一般都能在ANSYS DesignSpaceEntra或更高版本中使用,除了ANSYSStructural•提示:在ANSYS 热分析的培训中包含了包括热瞬态分析的高级分析•对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得:•假设:KT TQ T–在稳态分析中不考虑瞬态影响–[K]可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数•上述方程基于傅里叶定律:•固体内部的热流(Fourier’s Law)是[K]的基础;•热通量、热流率、以及对流在{Q}为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要的。
•热分析里所有实体类都被约束:–体、面、线•线实体的截面和轴向在DesignModeler中定义•热分析里不可以使用点质量(PointMass)的特性•壳体和线体假设:•唯一需要的材料特性是导热性(ThermalConductivity)•Thermal Conductivity在Engineering Data中输入•温度相关的导热性以表格形式输入•对于结构分析,接触域是自动生成的,用于激活各部件间的热传导–如果部件间初始就已经接触,那么就会出现热传导。
–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball的解释)。
–总结:–Pinball区域决定了什么时候发生接触,并且是自动定义的,同时还给了一个相对较小的值来适应模型里的小间距。
•如果接触是Bonded(绑定的)或noseparation (无分离的),那么当面出现在pinballradius内时就会发生热传导(绿色实线表示)。
PinballRadius右图中,两部件间的间距大于pinball 区域,因此在这两个部件间会发生热传导。
ansys workbench稳态热分析
![ansys workbench稳态热分析](https://img.taocdn.com/s3/m/c6e8fc4acf84b9d528ea7af4.png)
Workbench -Mechanical Introduction Introduction作业6.1稳态热分析作业6.1 –目标Workshop Supplement •本作业中,将分析下图所示泵壳的热传导特性。
•确切说是分析相同边界条件下的塑料(Polyethylene)泵壳和铝(Aluminum)泵壳。
)泵壳•目标是对比两种泵壳的热分析结果。
作业6.1 –假设Workshop Supplement 假设:•泵上的泵壳承受的温度为60度。
假设泵的装配面也处于60度下。
•泵的内表面承受90度的流体。
•泵的外表面环境用一个对流关系简化了的停滞空气模拟,温度为20度。
作业6.1 –Project SchematicWorkshop Supplement •打开Project 页•从Units菜单上确定:–项目单位设为Metric (kg, mm, s, C, mA, mV)–选择Display Values in Project Units…作业6.1 –Project SchematicWorkshop Supplement 1.在Toolbox中双击Steady-State Thermal创建一个新的Steady State Thermal(稳态Steady State Thermal热分析)系统。
1.2.在Geometry上点击鼠标右键选择p y,导入文Import Geometry件Pump_housing.x_t 2.…作业6.1 –Project SchematicWorkshop Supplement3.双击Engineering Data得到materialproperties(材料特性) 3.4.选中General Materials的同时,点击Aluminum Alloy和Polyethylene旁边的‘+’符号,把它们添加到项目中。
5.Return to Project(返回到项目)4.5.Workshop Supplement…作业6.1 –Project Schematic6.把Steady StateThermal 拖放到第一个系统的Geometry 上。
ansys workbench 11.0LED热分析
![ansys workbench 11.0LED热分析](https://img.taocdn.com/s3/m/d94b91eb6294dd88d0d26b9d.png)
1
ANSYS 热分析实例教程—一灯论坛罗勇梨提供
1.
打开软件
2.选取模块
3.导入零件
4.设定零件的材料特性
点击Part 1,出来上示对话档(在左下角),在Material 一栏中选择New material 来设定材料的散热系数,如下图:选择Thermal 一栏,
在
中先输入数值,再点击前面方框,以保存.完
成后退出对话框
.
或选Import 直接设定零件材质(如材料能在Ansys 的材料库中找到,否则一般都采用前一种方法
):
5.创建网格
右键点击Mesh---Generate Mesh,自动创建即可.
6.设定分析项目.
在New anslysis 下拉菜单中选择稳态分析(Steady-State Thermal)
7.设定对流参数
按下图步骤点选:点击处,会弹出2处菜单,点选
.
8.设定热源
9.计算
如图右键弹出下拉菜单点选Temperature.
再右键Solve.。
关于Ansys workbench热辐射APDL、Enclosure等的一些讨论
![关于Ansys workbench热辐射APDL、Enclosure等的一些讨论](https://img.taocdn.com/s3/m/d4bb141f02d8ce2f0066f5335a8102d276a2611e.png)
关于Ansys workbench热辐射APDL、Enclosure等的一些讨论ANSYS workbench对于热分析初学者来说相对比较容易简单上手,市面上和网络上也有不少的相关教程。
但是初学者在学到workbench中的热辐射一节时,往往会有一些疑惑。
本文将根据作者的一些理解以及大量的验证性例子,为大家进一步剖析一下,希望对初学者有所助益。
初学者学到热辐射这一节时通常会碰到如下几个问题:1、workbench平台中mechanical进行热辐射时,通过点击工具栏的相关快捷按扭仅能完成几何体对空气的热辐射?2、Workbench想要完成两个或者多个几何体之间的热辐射设置,只能通过APDL?APDL里的所谓的“封闭体数量”是指什么?3、Mechanical平台能否通过点击工具栏完成多个体之间的热辐射?4、Enclosure到底怎么设置,指的是什么?下面作者将对以上4个问题逐一进行讲解,并给出相应的计算结果进行验证。
问题一:workbench平台中mechanical进行热辐射时,通过点击工具栏的相关快捷按扭仅能完成几何体对空气的热辐射?讲解:很多初学者在一些参考书里都能看到这样一段话,就是通过点击工具栏仅仅能完成几何体对环境(空气)的热辐射而无法完成2个面或者多个面之间的热辐射。
对此我们先从下边一个例子开始讲起。
当我们模拟一个物体在空气中自然冷却的时候,mechanical中的设置比较简单,只需要设置物体的发射率和环境温度即可。
这里我们假设有一个直径1000mm的半球壳,球壳厚度50mm,初始温度100°,球壳外表面绝热,内表面参与热辐射。
计算它在23°空气中的导热情况,显然最后球体稳定下来的温度应该和环境温度一致,即23°。
相关设置情况和最终结果如下图所示。
仔细的读者可能已经发现在菜单栏radiation热辐射设置中,在correlation的下拉菜单里有一个surface to surface(面对面辐射)的选项。
基于ANSYS WORKBENCH的通电导线的热分析
![基于ANSYS WORKBENCH的通电导线的热分析](https://img.taocdn.com/s3/m/57e76dfc551810a6f52486fa.png)
基于ANSYS WORKBENCH的通电导线的热分析本篇文章是关于ANSYS WORKBENCH的耦合场分析的一个例子。
一根导线在通稳恒电流后会发热,这属于电-热耦合分析,例子本身很简单,只是说明WORKBENCH自带的耦合分析系统的使用。
【问题描述】一根裸露导线,电阻为R,通过电流为I,需要计算电线中心温度和表面温度。
已知导线的长度为0.1米,截面半径为0.005米,导线的热传导率是60.5瓦每米摄氏度,电阻率是1.7e-1欧姆米,电流大小是20安培,环境温度是20摄氏度,导线裸露表面与空气的对流换热系数是5瓦特每平方米摄氏度。
(注:该题来自于《ANSYS 13.0 WORKBENCH数值模拟技术》,许京荆编著)【问题分析】ANSYS WORKBENCH中自带热电分析系统,可以直接进行热电耦合分析。
使用过程与一般分析相同。
【求解过程】1.打开ANSYS WORKBENCH14.52.创建热-电分析系统。
3.创建材料模型。
双击engineering data进入到工程数据中。
系统默认的钢材的热传导率和电阻率与已知条件相同,不需要修改。
退回到WB界面。
4.创建几何模型。
双击geometry进入到DM中,选择长度单位是毫米。
其尺寸如下图退出DM.5.划分网格。
6.设置边界条件。
设置一个端面电压为零。
设置另外一个端面的电流为20安。
对外圆柱面设置对流边界条件。
7.求解。
8.后处理。
温度云图。
整个导体温度均匀。
电压云图。
焦耳热云图。
workbench 热分析案例
![workbench 热分析案例](https://img.taocdn.com/s3/m/bae03467cdbff121dd36a32d7375a417866fc1db.png)
2021/5/27
6
结 果及分析
热通量矢量图:
通过观察热通量矢量图可 以发现热量的传递方向及 密度分布情况。
2021/5/27
7
结 果及分析
一维导热区域分布:
在该模型中一维导热区域 (xz平面)如图所示。在 该稳态导热过程中y方向所 有截面热流密度均相同。
2021/5/27
8
2021/5/27
采用convection边界条件, 设定外界空气温度10℃, 换热系数为0.36W/㎡·k。
2021/5/27
3
定义边界条件
墙壁内表面:
裸露于空气的表面采用 convection边界条件,拟 定外界空气温度20℃, 换热系数为0.36W/㎡·k, 与热源接触表面采用耦合 边界条件。
物理模型
2021/5/27
物理模型简化:
混凝墙壁上附热源,热 源为一侧等壁温,其余 壁面为绝热壁面。热源 附在墙面中间并与墙面 垂直。在ansys的 DesignModeler中进行建
1
划分网 格
网格剖分:
采用ansys的mesh块对导入 的几何体进行网格划分,网 格为四面体网格,网格最大 边长为5mm。
2021/5/27
4
定 义边界条件
热源:
与墙体平行的壁面采用 temperature边界条件,定 义其温度为50℃,其余壁 面均为绝热边界条件。
2021/5/27
5
结 果及分析
温度场云图:
通过显示计算得出的温度 场可以看出该模型的最小 温度值出现在墙体外表面 顶部与底部,在该模型中 温度场关于yz平面对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Availability / / x
x
… 几何模型
• 理解使用壳和线单元时的一些相关假设很重要:
– 对于壳,不考虑沿壳厚度方向的温度梯度。壳体应 当用于较薄的结构,此时,才能假设壳的上下表面 温度相等。
• 表面的温度变化仍然要考虑,但不是厚度方向的。
– 对于线,不考虑截面厚度上的温度变化。线应当用 于类似梁或桁架的结构,此时可认为其截面上的温 度是常量。
… 材料属性
• 唯一需要的材料属性是导热系数。
– 材料输入在 “Engineering Data” 标签下,然后在 “Geometry” 分支下指定每个part的材料。
– 导热系数 作为材料属性的
一个子分支输入。 温度相关的导热系数可以 用表输入。
– 比热 同样也可输入, 但目
前用不到。 – 其它的材料输入在热分析
• 本部分讲述的一些功能通常适用于 ANSYS DesignSpace Entra 及更高级的licenses , 但 ANSYS Structural license除外。
稳态传热基础
• 对于一个DS中的稳态热分析, 温度 {T} 是由如下的矩 阵求解:
[K(T )]{T}= {Q(T )}
这就导致了如下的一些假设:
Availability
x x
x
Model shown is from a sample Inventor assembly.
… 装配体 – 接触区
• 在DS中,每个接触区都用到接触面和目标面的概念。
– 接触区的一侧由接触面组成,另一侧由目标面组成。 – 在接触的法向上允许有接触面和目标面间的热流。
外边界的对角线ASMDIAG,被设为一个相对较“高”的值。
TCC = KXX ⋅10,000 / ASMDIAG
这最终提供了零件间完全的传热。
ANSYS License DesignSpace Entra De si gnS pa ce P rofe ssiona l S tructura l M e cha ni ca l /M ultiphysics
ANSYS License DesignSpace Entra De si gnS pa ce P rofe ssiona l S tructura l M e cha ni ca l /M ultiphysics
Availability
x x
x
… 装配体 – 接触区
• 正如前面的幻灯片所提到的,热量在接触区内沿着接 触法向流动
• 沿着线方向的温度变化仍然要考虑, 但不是沿着截面的。
ANSYS License DesignSpa ce Entra DesignSpa ce P rofe ssi ona l S tructura l Mecha nica l/Multiphysics
A vailabilit y / / x
x
– 在接触/目标 界面中,不考虑热量的扩散。
• 在壳或实体单元内的接触面或目标面上,由于傅立叶定律 ( Fourier’s Law),需考虑热量扩散 。
• 在接触区内,热流仅在接触的法向方向上进行。
• 这就意味着,不管接触区定义如何,只要接触法向上有接触单 元,热量就会流动。
ANSYS License DesignSpace Entra De signS pa ce P rofe ssi ona l S tru ctu ra l M e cha nica l/M ulti physics
张幻灯片中讨论。
ANSYS License DesignSpace Entra De signS pa ce P rofe ssi ona l S tru ctu ra l M e cha nica l/M ulti physics
Availability
x x
x
… 装配体 – 接触区
• pinball 区域可以在ANSYS Professional 及更高级 licenses中输 入并看到。
不接触,零件间将不会互相传热。
– 基于不同的接触类型,将热量是否会在接触面和目标面间传 递总结如下:
Contact Type
Bonded No Separation Rough F ric t ionles s
Heat Transfer Betw een Parts in Contact Region?
ANSYS WORKBENCH 11.0 培训教程(DS)
第六章
热分析
本章概览
• 在本章中, 将讲述如何在DS中进行稳态和瞬态热分析:
– 几何模型 – 接触以及支持的装配体类型 – 热载荷 – 求解选项 – 结果和后处理 – Workshop 6.1 – 热瞬态启动 – 瞬态设置 – 瞬态载荷 – 瞬态结果 – Workshop 6.2
• 固体内部的热流(Fourier’s Law) 是 [K]的基础; • 热通量, 热流率、以及对流 在{Q}中被认为是边界条件; • 目前不考虑任何辐射; • 目前不考虑任何时间相关的效应。
– 传热分析与 CFD(Computational Fluid Dynamics)分析不 同。
• 对流被处理成简单的边界条件,虽然对流传热膜系数有可能与温 度相关
– 如果目标节点落在pinball 区域内,并且
接触是绑定的或者无分离的,则将发生传热 (绿色实线) – 否则,节点间将不会发生传热(绿色虚
线)
ANSYS License DesignSpace Entra De signS pa ce P rofe ssi ona l S tru ctu ra l M e cha nica l/M ulti physics
The light, dotted green arrows indicate that no heat transfer will occur between parts.
… 装配体 – 接触区
• 在DS中,存在不同的接触行为:
– 通常,接触类型仅对结构应用有意义 – 如果零件初始有接触,零件间就会发生传热,如果零件初始
B. 装配体 – 实体接触
• 当导入实体零件组成的装配体时,实体间的接触区将 会被自动创建。
• 面-面接触允许实体零件间的边界上不匹配的网格。
– 接触实现了装配体中零件间的传热。
ANSYS License DesignSpace Entra De signS pa ce P rofe ssi ona l S tru ctu ra l M e cha nica l/M ulti physics
Availability
x x
Pinball Radius
In this figure on the right, the gap between the two parts is bigger than the pinball region, so no heat transfer will occur between the parts
… 装配体 – 热传导
• 缺省时,在装配体的零件间会定义一个高的接触导热 系数(TCC)
– 两个零件间的热流量由接触热通量 q定义:
( ) q = TCC ⋅ Ttarget − Tcontact
这里,Tcontact 是位于接触法向上某接触“节点”的温度,Ttarget 是相应的目标“节点”的温度。 – 缺省时,TCC根据设定的模型中的最大KXX值和装配体总体
• 当一侧为接触面而另一侧为目标面时,称为反对称接触。另一方
面,如果两侧都被指定成接触面或目标面,则称为对称接触。 但是,在热分析中,指定哪一侧是接触面,哪一侧是目标面并不 重要。 • 缺省时,DS对实体装配体使用对称接触。 对ANSYS Professional 及更高级licenses ,用户可在需要时改 为反对称接触。
Availability
x x
x
… 装配体 – 热传导
• 理想的零件间的接触传热系数假定在接触界面上没有 温度降。
• 但人们有可能想知道界面上的有限热传导。
– 接触的两个表面 (处于不同温度)在穿过界面上有温度降。 这种下降是由于两表面间的不良接触产生的。这种不良接 触,以及由此产生的有限热传导, 受到如下一些因素的影 响:
中用不到。
ANSYS License DesignSpace Entra De si gnS pa ce P rofe ssi ona l S tru ctu ra l M e cha nica l/M ulti physics
Availability x x x
x
如果存在任何温度相关的材料属性,都将导致非线性求解。这是因为,温 度是要求解的量,而材料又取决于温度,因此求解不再是线性。
– 在稳态热分析中不考虑任何瞬态效应; – [K] 可以是常量或是温度的函数;
• 每种材料属性中都可输入温度相关的热传导率; – {Q} 也可是常量或是温度的函数;
• 在对流边界条件中可以输入温度相关的对流传热膜系数
稳态传热基础
• 上述方程的基础是傅立叶定律(Fourier’s Law):
– 这意味在DS中求解的热分析是基于传导方程。
– 这只对“Environment” 和 “Solution”级别的选项有用. – 如果要进行热应力分析就不能关闭physics filters 中的任何选
项因为结构和热的选项都需要。
ANSYS License DesignSpace Entra De signS pa ce P rofe ssiona l S tructura l M e cha ni ca l /M ultiphysi cs
Availability
x x
x
In the figure on the left, the solid green double-arrows indicate heat flow within the contact region. Heat flow only occurs if a target surface is normal to a contact surface.