十年高考真题分类汇编(2010-2019) 数学 专题07 解三角形 Word版含答案解析版

合集下载

理科数学2010-2019高考真题分类训练专题四三角函数与解三角形第十二讲解三角形答案

理科数学2010-2019高考真题分类训练专题四三角函数与解三角形第十二讲解三角形答案

专题四 三角函数与解三角形第十二讲 解三角形答案部分 2019年1.解:(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==. 因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-,()sin 1202sin A C C ︒+-=,1sin 2sin 2C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 60C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 2.解析:由余弦定理有2222cos b a c ac B =+-, 因为6b =,2a c =,π3B =,所以222π36(2)4cos 3c c c =+-,所以212c =,21sin sin 2ABC S ac B c B ===△3.解析(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin 0A ≠,所以sinsin 2A CB +=.由180A B C ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此60B =︒. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===+.由于ABC △为锐角三角形,故090A ︒<<︒,090C ︒<<︒,由(1)知120A C +=︒,所以3090C ︒<<︒,故122a <<ABC S <<△. 因此,ABC △面积的取值范围是82⎛ ⎝⎭.4.解析 设()2AD AB A AO C λλ==+u u u u r u u u u u r u u u rr ,1()(1)3AO AE EO AE EC AE AC AE AE AC AB ACμμμμμμ-=+=+=+-=-+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,所以1232λμλμ-⎧=⎪⎪⎨⎪=⎪⎩,解得1214λμ⎧=⎪⎪⎨⎪=⎪⎩,所以11()24AO AD AB AC ==+u u u r u u u r u u u r u u u r ,13EC AC AE AB AC =-=-+u u u r u u u r u u u r u u ur u u u r ,221131266()()()43233AO EC AB AC AB AC AB AB AC AC ⋅=⨯+⨯-+=-+⋅+=u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r221322AB AB AC AC -+⋅+u u ur u u u r u u u r u u u r , 因为221322AB AC AB AB AC AC ⋅=-+⋅+u u u r u u u r u u u r u u u r u u u r u u u r ,所以221322AB AC =u u ur u u u r ,所以223AB AC=u u u r u u u r,所以AB AC = 5.解析 (1)由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以3c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos B =. 因此π25sin cos 2B B ⎛⎫+== ⎪⎝⎭. 6.解析:在直角三角形ABC 中,4AB =,3BC =,5AC =,4sin 5C =, 在BCD △中,sin sin BD BC C BDC=∠,可得122BD =;135CBD C ∠=-o ,224372sin sin(135)(cos sin )225510CBD C C C ⎛⎫∠=-=+=⨯+=⎪⎝⎭o , 所以()72cos cos 90sin ABD CBD CBD ∠=-∠=∠=o.7.解析:(I )由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯-⎪⎝⎭. 因为2b c =+,所以()222123232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭.解得5c =, 所以7b =.(II )由1cos 2B =-得sin B =.由正弦定理得sin sin c C B b ==.在ABC △中,B ∠是钝角,所以C ∠为锐角.所以11cos 14C ==. 所以()sin sin cos cos sin B C B C B C -=-=8.解析(Ⅰ)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B a a +-+-===-⋅⋅.(Ⅱ)由(Ⅰ)可得sin 4B ==,从而sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故πππ71sin 2sin 2cos cos 2sin 66682B B B ⎛⎫+=+=⨯= ⎪⎝⎭.2010-2018年1.A 【解析】因为213cos 2cos121255=-=⨯-=-C C ,所以由余弦定理, 得22232cos 251251()325=+-⋅=+-⨯⨯⨯-=AB AC BC AC BC C ,所以=AB A .2.C 【解析】根据题意及三角形的面积公式知2221sin 24a b c ab C +-=,所以222sin cos 2a b c C C ab +-==,所以在ABC ∆中,4C π=.故选C . 3.A 【解析】由sin (12cos )2sin cos cos sin B C A C A C +=+,得sin 2sin cos sin cos sin B B C A C B +=+,即2sin cos sin cos B C A C =,所以2sin sin B A =,即2b a =,选A . 4.A 【解析】由余弦定理得213931AC AC AC =++⇒=,选A.5.C 【解析】设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得1sin 34a c π==,则a =.在△ABC 中,由余弦定理可得222222295322b ac c c c c =+-=+-=,则b =.由余弦定理,可得22222259cos 2c c c b c a A bc +-+-===C . 6.B 【解析】11sin 22AB BC B ⋅⋅=,∴sin 2B =,所以45B =o 或135B =o. 当45B =o时,1AC ==,此时1,AB AC BC ===90A =o 与“钝角三角形”矛盾;当135B =o时,AC ==.7.A 【解析】因为A B C π++=,由1sin 2sin()sin()2A ABC C A B +-+=--+得1sin 2sin 2sin 22A B C ++=, 即1sin[()()]sin[()()]sin 22A B A B A B A B C ++-++--+=, 整理得1sin sin sin 8A B C =, 又111sin sin sin 222S ab C bc A ac B ===,因此322222211sin sin sin 864S a b c A B C a b c ==,由12S ≤≤ 得222311264a b c ≤≤,即8abc ≤≤C 、D 不一定成立.又0b c a +>>,因此()8bc b c bc a +>⋅≥,即()8bc b c +>,选项A 一定成立.又0a b c +>>,因此()8ab a b +>,显然不能得出()ab a b +>B 不一定成立.综上所述,选A .8.C 【解析】由22()6c a b =-+可得22226a b c ab +-=-①,由余弦定理及3C π=可得222a b c ab +-=②.所以由①②得6ab =,所以1sin 23ABC S ab π∆==9.C 【解析】∵tan15tan(6045)2=-=o o o∴60tan 6060tan151)BC =-=o o.10.D 【解析】225cos 10A -=,1cos 5A =,由余弦定理解得5b =. 11.A 【解析】边换角后约去sin B ,得1sin()2A C +=,所以1sin 2B =,但B 非最大角,所以6B π=.12.C 【解析】由余弦定理可得AC =sin 10A =. 13.B 【解析】∵cos cos sin bC c B a A +=,∴由正弦定理得2sin cos sin cos sin B C C B A +=,∴2sin()sin B C A +=,∴2sin sin A A =,∴sin 1A =,∴△ABC 是直角三角形.14.B 【解析】由正弦定理得:sin sin sin 60sin 45BC AC ACAC A B ︒︒=⇔=⇔=15.D 【解析】由正弦定理,得22sin sin sin cos A B B A A +=,即22sin (sin cos )B A A A ⋅+=,sin B A =,∴sin sin b B a A==. 16.D 【解析】设AB c =,则AD c =,BD =,BC =ΔABD 中,由余弦定理得2222413cos 23c c c A c +-==,则sin 3A =,在ΔABC 中,由正弦定理得sin sin 3c BC C A ==,解得sin C =.17.A 【解析】因为120C ∠=o,c =,所以2222cos c a b ab C =+-,222122()2a ab ab =+--所以22,0,aba b ab a b a b a b-=-=>>+ 因为0,0a b >>,所以0aba b a b-=>+,所以a b >.故选A .18.9【解析】因为120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,所以60ABD CBD ∠=∠=o,由三角形的面积公式可得111sin120sin 60sin 60222ac a c =+o o o , 化简得ac a c =+,又0a >,0c >,所以111a c+=,则1144(4)()559c a a c a c a c a c +=++=+++=≥, 当且仅当2c a =时取等号,故4a c +的最小值为9. 19.7;3【解析】因为a =2b =,60A =o,所以由正弦定理得2sin sin 7b AB a⨯===.由余弦定理2222cos a b c bc A =+-可得2230c c --=,所以3c =.202222224241cos 22424AB BC AC ABC AB BC +-+-∠===⨯⨯⨯⨯,由22sin cos 1ABC ABC ∠+∠=所以sin4ABC∠===,1sin2BDCS BD BC DBC∆=⨯⨯∠11sin()sin22BD BC ABC BD BC ABCπ=⨯⨯-∠=⨯⨯∠1222=⨯⨯=.C因为BD BC=,所以D BCD∠=∠,所以2ABC D BCD D∠=∠+∠=∠,cos cos24ABCBDC∠∠====.21.2【解析】单位圆内接正六边形是由6个边长为1的正三角形组成,所以61611sin602S=⨯⨯⨯⨯=o.22.2113【解析】∵4cos5A=,5cos13C=,所以3sin5A=,12sin13C=,所以()63sin sin sin cos cos sin65B AC A C A C=+=+=,由正弦定理得:sin sinb aB A=解得2113b=.23.1 【解析】由1sin2B=得6Bπ=或56π,因为6Cπ=,所以56Bπ≠,所以6Bπ=,于是23Aπ=.有正弦定理,得21sin32bπ=,所以1b=.24.7【解析】由已知得ABC ∆的面积为1sin 20sin 2AB AC A A ⋅==所以sin A =,(0,)2A π∈,所以3A π=. 由余弦定理得2222cos BC AB AC AB AC A =+-⋅=49,7BC =. 25.【解析】如图作PBC ∆,使75∠=∠=oB C ,2BC =,作出直线AD 分别交线段PB 、PC 于A 、D 两点(不与端点重合),且使75∠=oBAD ,则四边形ABCD 就是符合题意的四边形,过C 作AD 的平行线交PB 于点Q ,在PBC ∆中,可求得BP =QBC ∆中,可求得BQ =,所以AB 的取值范围为.26.1【解析】∵2223cos 24b c a A bc +-==, 而sin 22sin cos 243cos 21sin sin 64A A A a A C C c ⨯==⨯=⨯⨯=. 27.8 【解析】 因为0A π<<,所以sin A ==,又1sin 28ABC S bc A ∆===,24bc ∴=, 解方程组224b c bc -=⎧⎨=⎩,得6b =,4c =,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.28.ο30=∠BAC ,ο105=∠ABC ,在ABC ∆中,由ο180=∠+∠+∠ACB BAC ABC ,所以ο45=∠ACB ,因为600=AB ,由正弦定理可得οο30sin 45sin 600BC=, 即2300=BC m ,在BCD Rt ∆中,因为ο30=∠CBD ,2300=BC , 所以230030tan CDBC CD ==ο,所以6100=CD m .29.150【解析】在三角形ABC 中,AC =,在三角形MAC 中,sin 60sin 45MA AC=o o,解得MA =在三角形MNA sin 60==o ,故150MN =. 30.2【解析】由b B c C b 2cos cos =+得:sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,sin 2sin A B =,∴2a b =,故2ab=. 31.π32【解析】3sin 5sin A B =, π32212cos 2,53222=⇒-=-+=⇒=+=⇒C ab c b a C a c b b a ,所以π32.32【解析】∵sin sin()cos 2BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD+-∠=•,2223BD ∴==33.①②③【解析】①222221cos 2223a b c ab ab ab c C C ab ab π+-->⇒=>=⇒< ②2222224()()12cos 2823a b c a b a b a b c C C ab ab π+-+-++>⇒=>≥⇒< ③当2C π≥时,22232233c a b c a c b c a b ≥+⇒≥+>+与333a b c +=矛盾④取2,1a b c ===满足()2a b c ab +<得:2C π<⑤取2,1a b c ===满足22222()2a b c a b +<得:3C π<.34.4【解析】根据余弦定理可得2214(7)22(7)()4b b b =+--⨯⨯-⨯-,解得b =4. 35. 在ABC ∆中,根据sin sin sin AB AC BCC B A==,得sin sin 2sin sin ACAB C C C B=⋅==,同理2sin BC A =, 因此22sin 4sin AB BC C A +=+22sin 4sin()3C C π=+-4sin )C C C ϕ=+=+.36【解析】根据sin sin AB ACC B=得5sin sin 7AB C B AC ===11cos 14C ==, 所以sin sin[()]sin cos cos sin A B C B C B C π=-+=+111142-=. 37.4【解析】(方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性.当A =B 或a =b 时满足题意,此时有:1cos 3C =,21cos 1tan 21cos 2C C C -==+,tan22C =,1tan tan tan 2A B C===,tan tan tan tan C CA B+= 4. (方法二)226cos 6cos b aC ab C a b a b+=⇒=+, 2222222236,22a b c c ab a b a b ab +-⋅=++=tan tan sin cos sin sin cos sin sin()tan tan cos sin sin cos sin sin C C C B A B A C A B A B C A B C A B +++=⋅=⋅21sin cos sin sin C C A B =⋅.由正弦定理,得:上式22222214113cos ()662c c c c C ab a b =⋅===+⋅.38.6π【解析】由sin cos 2B B +=得12sin cos 2B B +=,即sin 21B =, 因02B π<<,所以2,24B B ππ==.又因为2,2,a b ==由正弦定理得22sin sin 4A π=,解得1sin 2A =,而,a b <则04A B π<<=,故6a π=. 39.【解析】(1)在ABC ∆中,∵1cos 7B =-,∴(,)2B ππ∈,∴243sin 1cos B B =-=. 由正弦定理得sin sin a b A B=⇒7sin 43A =,∴3sin A =. ∵(,)2B ππ∈,∴(0,)2A π∈,∴π3A ∠=.(2)在ABC ∆中,∵sin sin()sin cos cos sin C A B A B A B =+=+=31143()2727⨯-+⨯=3314. 如图所示,在ABC ∆中,∵sin hC BC=,∴sin h BC C =⋅=33337⨯=, ∴AC 边上的高为33.40.【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以2sin ADB ∠=.由题设知,90ADB ∠<︒,所以cos 5ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯25=. 所以5BC =.41.【解析】(1)在ABC △中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =又因为(0π)B ∈,,可得3B π=.(2)在ABC △中,由余弦定理及2a =,3c =,3B π=,有2222cos 7b a c ac B =+-=,故b =.由πsin cos()6b A a B =-,可得sin A =a c <,故cos A =.因此sin 22sin cos A A A ==21cos 22cos 17A A =-=.所以,sin(2)sin 2cos cos 2sin A B A B A B -=-=11727214-⨯= 42.【解析】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得121cos()cos cos sin sin 632B C B C B C +=-=-=-所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=.故ABC △的周长为3+43.【解析】(1)由已知得tan A =23A π=. 在ABC ∆中,由余弦定理得222844cos 3c c π=+-,即2+224=0c c -.解得6c =-(舍去),4c = (2)有题设可得2CAD π∠=,所以6BAD BAC CAD π∠=∠-∠=.故ABD ∆面积与ACD ∆面积的比值为1sin26112AB AD AC AD π⋅⋅=⋅. 又ABC ∆的面积为142sin 2BAC ⨯⨯∠=,所以ABD ∆.44.【解析】由题设及A B C π++=得2sin 8sin 2B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =. (2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABCS ∆=,则172ac =.由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.45.【解析】(Ⅰ)在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b =.由正弦定理sin sin a bA B=,得sin sin a B A b ==.所以,bsin A的值为13(Ⅱ)由(Ⅰ)及a c <,得cos 13A =,所以12sin 22sin cos 13A A A ==, 25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 44426A A A +=+=. 46.【解析】(Ⅰ)在△ABC 中,因为60A ∠=︒,37c a =,所以由正弦定理得sin 3sin 7c A C a ===. (Ⅱ)因为37c a a =<,所以60C A ∠<∠=o,由7a =,所以3737c =⨯=.由余弦定理2222cos a b c bc A =+-得222173232b b =+-⨯⨯, 解得8b =或5b =-(舍).所以△ABC的面积11sin 8322S bc A ==⨯⨯=47.【解析】(Ⅰ)由tan tan 2(tan tan )cos cos A BA B B A +=+得sin sin sin 2cos cos cos cos cos cos C A BA B A B A B⨯=+,所以C B C sin sin sin +=2,由正弦定理,得c b a 2=+.(Ⅱ)由abc ab b a ab c b a C 22222222--+=-+=)(cos22233311112222()2c c a b ab =--=-=+….所以C cos 的最小值为12.48.【解析】(I )证明:由正弦定理sin sin sin a b cA B C==可知 原式可以化解为cos cos sin 1sin sin sin A B CA B C+==∵A 和B 为三角形内角 , ∴sin sin 0A B ≠则,两边同时乘以sin sin A B ,可得sin cos sin cos sin sin B A A B A B += 由和角公式可知,()()sin cos sin cos sin sin sin B A A B A B C C π+=+=-= 原式得证。

理科数学2010-2019高考真题分类训练解三角形

理科数学2010-2019高考真题分类训练解三角形

专题四 三角函数与解三角形第十二讲 解三角形2019年1.(2019全国Ⅰ理17)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(2)若22a b c +=,求sin C .2.(2019全国Ⅱ理15)ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.3.(2019全国Ⅲ理18)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.4.(2019江苏12)如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r ,则ABAC的值是 .5.(2019江苏15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b 2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 6.(2019浙江14)在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____,cos ABD ∠=________.7.(2019北京15)在ABC △中,a =3,b -c =2 ,1cos 2B =- . (Ⅰ)求b ,c 的值; (Ⅱ)求sin(B -C ) 的值.8.(2019天津理15)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值. 2010-2018年一、选择题1.(2018全国卷Ⅱ)在△ABC 中,cos25=C ,1=BC ,5=AC ,则=ABA .BCD .2.(2018全国卷Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =A .2πB .3π C .4π D .6π 3.(2017山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .2a b = B .2b a = C .2A B = D .2B A = 4.(2016年天津)在ABC ∆中,若AB BC =3,120C ∠=o ,则AC =A .1B .2C .3D .45.(2016年全国III )在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =A B C .- D .-6.(2014新课标Ⅱ)钝角三角形ABC 的面积是12,1AB =,BC =AC =A .5 BC .2D .17.(2014重庆)已知ABC ∆的内角A ,B ,C 满足sin 2sin()A A B C +-+=sin()C A B --12+,面积S 满足12S ≤≤,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是A .8)(>+c b bc B.()ab a b +> C .126≤≤abc D .1224abc ≤≤ 8.(2014江西)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长,若22()6c a b =-+,3C π=,则ABC ∆的面积是A .3B .239 C .233 D .33 9.(2014四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75o,30o,此时气球的高是60cm ,则河流的宽度BC 等于A.1)m B.1)mC .1)mD .1)m 10.(2013新课标Ⅰ)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos A +cos20A =,7a =,6c =,则b =A .10B .9C .8D .511.(2013辽宁)在ABC ∆,内角,,A B C 所对的边长分别为,,a b c .若sin cos a B C +1sin cos 2c B A b =,且a b >,则B ∠=A .6πB .3πC .23πD .56π12.(2013天津)在△ABC 中,,3,4AB BC ABC π∠===则sin BAC ∠=A B C D 13. (2013陕西)设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=,则△ABC 的形状为 A .锐角三角形B .直角三角形C .钝角三角形D .不确定14.(2012广东)在ABC ∆中,若60,45,A B BC ︒︒∠=∠==AC =A .B .CD 15.(2011辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,2sin cos cos a A B b A +=,则=abA .B .C D16.(2011天津)如图,在△ABC 中,D 是边AC 上的点,且,2AB AD AB ==,2BC BD =,则sin C 的值为CA .3 B .6 C .3 D .616.(2010湖南)在ABC ∆中,角,,A B C 所对的边长分别为,,a b c .若120C ∠=o,c =,则A .a b >B .a b <C .a b =D .a 与b 的大小关系不能确定 二、填空题18.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .19.(2018浙江)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2b =,60A =o ,则sin B =___________,c =___________.20.(2017浙江)已知ABC ∆,4AB AC ==,2BC =. 点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是___________,cos BDC ∠=__________.21.(2017浙江)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度。

十年真题(2010-2019)高考数学(文)分类汇编专题07 数列(新课标Ⅰ卷)(原卷版)

十年真题(2010-2019)高考数学(文)分类汇编专题07 数列(新课标Ⅰ卷)(原卷版)

专题07数列历年考题细目表历年高考真题汇编1.【2015年新课标1文科07】已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10 D.122.【2013年新课标1文科06】设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n﹣1 B.S n=3a n﹣2 C.S n=4﹣3a n D.S n=3﹣2a n3.【2012年新课标1文科12】数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690 B.3660 C.1845 D.18304.【2019年新课标1文科14】记S n为等比数列{a n}的前n项和.若a1=1,S3,则S4=.5.【2015年新课标1文科13】在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n =.6.【2012年新课标1文科14】等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=.7.【2019年新课标1文科18】记S n为等差数列{a n}的前n项和.已知S9=﹣a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.8.【2018年新课标1文科17】已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n.(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.9.【2017年新课标1文科17】记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.10.【2016年新课标1文科17】已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.11.【2014年新课标1文科17】已知{a n}是递增的等差数列,a2,a4是方程2﹣5+6=0的根.(1)求{a n }的通项公式; (2)求数列{}的前n 项和.12.【2013年新课标1文科17】已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=﹣5. (Ⅰ)求{a n }的通项公式; (Ⅱ)求数列{}的前n 项和.13.【2011年新课标1文科17】已知等比数列{a n }中,a 1,公比q .(Ⅰ)S n 为{a n }的前n 项和,证明:S n(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式. 14.【2010年新课标1文科17】设等差数列{a n }满足a 3=5,a 10=﹣9. (Ⅰ)求{a n }的通项公式;(Ⅱ)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值. 考题分析与复习建议本专题考查的知识点为:数列的概念与简单表示法,等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.历年考题主要以选择填空或解答题题型出现.重点考查的知识点为:等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.预测明年本考点题目会比较稳定,备考方向以知识点等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项为重点较佳.最新高考模拟试题1.等差数列{}n a ,等比数列{}n b ,满足111a b ==,53a b =,则9a 能取到的最小整数是( ) A .1-B .0C .2D .32.中国古代数学名著《九章算术》中有这样一个问題今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰“我羊食半马、“马主曰“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟、羊主人说“我羊所吃的禾苗只有马的一半,”马主人说“我马所吃的禾苗只有牛的一半,“打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还( )升粟? A .253B .503C .507D .10073.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9填入33⨯的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数21,2,3,,n L 填入n n ⨯个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记n 阶幻方的对角线上的数字之和为n N ,如图三阶幻方的315N =,那么 9N 的值为( )A .41B .45C .369D .3214.设数列{}n a 的前n 项和为n S ,且11a = 2(1)()n n S a n n N n *=+-∈,则数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和是( ) A .290B .920C .511D .10115.意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,L L ,即()()()()()121,12F F F n F n F n ===-+-()3,n n N*≥∈,此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{}n a ,则数列{}n a 的前2019项的和为( ) A .672B .673C .1346D .20196.已知数列{}n a 是等比数列,数列{}n b 是等差数列,若261033a a a ⋅⋅=16117b b b π++=,则21039tan1b b a a +-⋅的值是( )A .1B.2C.2-D.7.已知数列{}n a 满足2*123111()23n a a a a n n n N n ++++=+∈L ,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T,若*()1n n N T n nλ<∈+恒成立,则实数λ的取值范围为( ) A .1[,)4+∞B .1(,)4+∞C .3[,)8+∞D .3(,)8+∞8.已知函数()y f x =的定义域为R ,当0x <时()1f x >,且对任意的实数,x y R ∈,等式()()()f x f y f x y =+成立,若数列{}n a 满足()()1111n n f a f n N a *+⎛⎫=∈ ⎪+⎝⎭,且()10a f =,则下列结论成立的是( ) A .()()20162018f a f a > B .()()20172020f a f a > C .()()20182019f a f a > D .()()20162019f a f a >9.在数列{}n a 中,1111,,(*)2019(1)n n a a a n N n n +==+∈+,则2019a 的值为______. 10.已知正项等比数列{}n a 满足5432a a a +=,若存在两项m a ,n a,使得1a =,则91m n+的最小值为__________. 11.已知数列{}n a 满足对*,m n N ∀∈,都有m n m n a a a ++=成立,72a π=,函数()f x =2sin 24cos2xx +,记()n n y f a =,则数列{}n y 的前13项和为______.12.已知数列{}n a 的前n 项和为n S ,满足22()n n S a n n N *=+∈,则n a =_____.13.等差数列{}n a 中,410a =且3a ,6a ,10a 成等比数列,数列{}n a 前20项的和20S =____ 14.已知正项等比数列{}n a 的前n 项和为n S .若9362S S S =+,则631S S +取得最小值时,9S 的值为_______.15.设数列{}n a 的前n 项和为n S ,且满足11222n n a a a n -++⋯+=,则5S =____.16.已知数列{}n a 满足112(1)0,4n n n a na a ++-==,则数列(1)(2)na n n ⎧⎫⎨⎬++⎩⎭的前n 项和为___________.17.定义:从数列{}n a 中抽取(,3)m m N m ∈≥项按其在{}n a 中的次序排列形成一个新数列{}n b ,则称{}n b 为{}n a 的子数列;若{}n b 成等差(或等比),则称{}n b 为{}n a 的等差(或等比)子数列. (1)记数列{}n a 的前n 项和为n S ,已知21n n S =-. ①求数列{}n a 的通项公式;②数列{}n a 是否存在等差子数列,若存在,求出等差子数列;若不存在,请说明理由. (2)已知数列{}n a 的通项公式为()n a n a a Q +=+∈,证明:{}n a 存在等比子数列. 18.在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项 (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足3122331313131n n n b b b ba =++++++++L ,求数列{}nb 的通项公式; (3)令()*4n nn a b c n N =∈,数列{}n c 的前n 项和为n T . 19.已知等差数列{}n a 满足32421,7a a a =-=,等比数列{}n b 满足()35242b b b b +=+,且()2*22n n b b n =∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)记数列{}n a 的前n 项和为n S ,若数列{}n c 满足()*1212n n nc c c S n b b b ++⋯+=∈N ,求{}n c 的前n 项和为n T .20.等差数列{}n a 前n 项和为n S ,且432S =,13221S =. (1)求{}n a 的通项公式n a ;(2)数列{}n b 满足()*1n n n b b a n N+-=∈且13b =,求1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 21.设{}n a 是单调递增的等比数列,n S 为数列{}n a 的前n 项和.已知313S =,且13a +,23a ,35a +构成等差数列. (1)求n a 及n S ;(2)是否存在常数λ.使得数列{}n S λ+是等比数列?若存在,求λ的值;若不存在,请说明理由. 22.对于无穷数列{}n a ,{}n b ,若{}{}1212max ,,,min ,,,k k k b a a a a a a =-L L ,1,2,3,k =L ,则称{}n b 是{}n a 的“收缩数列”.其中{}12max ,,,k a a a L ,{}12min ,,,k a a a L 分别表示12,,,k a a a L 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”. (1)若21n a n =+,求{}n b 的前n 项和; (2)证明:{}n b 的“收缩数列”仍是{}n b ;(3)若121(1)(1)(1,2,3,)22n n n n n n S S S a b n +-+++=+=L L 且11a =,22a =,求所有满足该条件的{}n a .。

理科数学2010-2019高考真题分类训练解三角形

理科数学2010-2019高考真题分类训练解三角形

专题四 三角函数与解三角形 第十讲 三角函数的图象与性质2019年1.解析:因为21cos411sin 2cos 422x f x x x -===-()(), 所以f x ()的最小正周期2π4T ==2.解析 当[0,2]x ∈π时,,2555x ωωπππ⎡⎤+∈π+⎢⎥⎣⎦, 因为()f x 在[0,2]π有且仅有5个零点,所以5265ωπππ+<π„, 所以1229510ω<„,故④正确, 因此由选项可知只需判断③是否正确即可得到答案, 下面判断③是否正确, 当(0,)10x π∈时,(2),5510x ωωππ+π⎡⎤+∈⎢⎥⎣⎦,若()f x 在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ω+ππ<,即3ω<,因为1229510ω<„,故③正确. 故选D .3.解析 因为()f x 是奇函数,所以0ϕ=,()sin f x A x ω=.将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x ,即()1sin 2g x A x ω⎛⎫= ⎪⎝⎭, 因为()g x 的最小正周期为2π,所以2212ωπ=π,得2ω=, 所以()sin g x A x =,()sin 2f x A x=.若4g π⎛⎫=⎪⎝⎭sin 442g A A ππ⎛⎫=== ⎪⎝⎭2A =,所以()2sin 2f x x =,332sin 22sin 2884f ππ3π⎛⎫⎛⎫=⨯=== ⎪ ⎪⎝⎭⎝⎭故选C .2010-2018年一、选择题1.(2018全国卷Ⅱ)若()cos sin =-f x x x 在[,]-a a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π2.(2018天津)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间35[,]44ππ上单调递增B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 3.(2018北京)在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 A .1B .2C .3D .44.(2017新课标Ⅰ)已知曲线1C :cos y x =,2C :2sin(2)3y x π=+,则下面结论正确的是A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移12π 个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移6π错误!未找到引用源。

十年高考真题分类汇编(2010-2019) 数学 专题07 解三角形 Word版无答案原卷版

十年高考真题分类汇编(2010-2019)  数学 专题07 解三角形  Word版无答案原卷版

十年高考真题分类汇编(2010—2019)数学专题07 解三角形一、选择题1.(2019·全国1·文T11)△ABC 的内角A,B,C 的对边分别为a,b,c.已知asin A-bsin B=4csin C,cos A=-14,则b c=( ) A.6B.5C.4D.32.(2018·全国2·理T6文T7)在△ABC 中,cos C 2=√55,BC=1,AC=5,则AB=( ) A.4√2B.√30C.√29D.2√53.(2018·全国3·理T 9文T 11)△ABC 的内角A,B,C 的对边分别为a,b,c.若△ABC 的面积为a 2+b 2-c 24,则C=( ) A.π2 B.π3C.πD.π4.(2017·山东·理T9)在△ABC 中,角A,B,C 的对边分别为a,b,c,若△ABC 为锐角三角形,且满足sin B(1+2cos C)=2sin AcosC+cosAsinC,则下列等式成立的是( ) A.a=2b B.b=2a C.A=2B D.B=2A5.(2017·全国1·文T11)△ABC 的内角A,B,C 的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=√2,则C=( ) A.π12B.π6C.π4D.π36.(2016·全国3·理T8)在△ABC 中,B=π4,BC 边上的高等于13BC,则cos A=( ) A.3√1010B.√1010C.-√1010D.-3√10107.(2016·全国3·文T9)在△ABC 中,B=π4,BC 边上的高等于13BC,则sin A=( ) A.3B.√1010C.√55D.3√10108.(2016·全国1·文T4)△ABC 的内角A,B,C 的对边分别为a,b,c.已知a=√5,c=2,cos A=23,则b= ( ) A.√2B.√3C.2D.39.(2016·天津·理T3)在△ABC 中,若AB=√13,BC=3,∠C=120°,则AC=( ) A.1 B.2 C.3 D.410.(2016·山东·文T8)△ABC 中,角A,B,C 的对边分别是a,b,c.已知b=c,a 2=2b 2(1-sin A),则A=( ) A.3π4B.π3C.π4D.π611.(2015·广东·文T5)设△ABC 的内角A,B,C 的对边分别为a,b,c.若a=2,c=2√3,cos A=√32且b<c,则b=( ) A.3B.2√2C.2D.√312.(2014·全国2·理T 4)钝角三角形ABC 的面积是12,AB=1,BC=√2,则AC=( )A.5B.√5C.2D.113.(2014·四川·文T8)如图,从气球A 上测得正前方的河流的两岸B,C 的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC 等于( )A.240(√3-1) mB.180(√2-1) mC.120(√3-1) mD.30(√3+1) m14.(2013·全国1·文T10)已知锐角△ABC 的内角A,B,C 的对边分别为a,b,c,23cos 2A+cos 2A=0,a=7,c=6,则b=( ) A.10B.9C.8D.515.(2013·全国2·文T 4)△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=π6,C=π4,则△ABC 的面积为( ) A.2√3+2 B.√3+1 C.2√3-2 D.√3-1二、填空题1.(2019·全国2·理T15)△ABC 的内角A,B,C 的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC 的面积为___________.2.(2019·全国2·文T15)△ABC 的内角A,B,C 的对边分别为a,b,c.已知bsinA+acosB=0,则B= .3.(2019·浙江·T14)在△ABC 中,∠ABC=90°,AB=4,BC=3,点D 在线段AC 上.若∠BDC=45°,则 BD= ,cos ∠ABD= .4.(2018·浙江·T13)在△ABC 中,角A,B,C 所对的边分别为a,b,c.若a=√7,b=2,A=60°,则sin B=___________,c=___________.5.(2018·北京·文T 14)若△ABC 的面积为√3(a 2+c 2-b 2),且∠C 为钝角,则∠B= ________;ca 的取值范围是.6.(2018·全国1·文T16)△ABC 的内角A,B,C 的对边分别为a,b,c,已知bsinC+csinB=4asin BsinC,b 2+c 2-a 2=8,则△ABC 的面积为 .7.(2017·浙江·T14)已知△ABC,AB=AC=4,BC=2.点D 为AB 延长线上一点,BD=2,连接CD,则△BDC 的面积 是 ,cos ∠BDC= .8.(2017·全国3·文T15)△ABC 的内角A,B,C 的对边分别为a,b,c.已知C=60°,b=√6,c=3,则A= . 9.(2017·全国2·文T16)△ABC 的内角A,B,C 的对边分别为a,b,c,若2bcos B=acosC+ccosA,则B= . 10.(2016·全国2·理T13文T15)△ABC 的内角A,B,C 的对边分别为a,b,c,若cos A=45,cos C=513,a=1,则b=___________.11.(2016·北京·文T13)在△ABC 中,A=2π3,a=√3c,则bc=.12.(2015·全国1·理T16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 13.(2015·重庆·理T13)在△ABC 中,B=120°,AB=√2,A 的角平分线AD=√3,则AC=___________. 14.(2015·湖北·理T13文T15)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m.15.(2015·福建·理T12)若锐角△ABC 的面积为10√3,且AB=5,AC=8,则BC 等于 .16.(2015·天津·理T13)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知△ABC 的面积为3√15,b-c=2,cos A=-14,则a 的值为.17.(2015·安徽·文T12)在△ABC中,AB=√6,∠A=75°,∠B=45°,则AC= .18.(2015·福建·文T14)若△ABC中,AC=√3,A=45°,C=75°,则BC=___________.,3sin A=2sin B,则19.(2015·重庆·文T13)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cos C=−14c= .=.20.(2015·北京·理T 12)在△ABC中,a=4,b=5,c=6,则sin2AsinC21.(2014·全国1·理T 16)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sinB)=(c-b)sin C,则△ABC面积的最大值为.22.(2014·全国1·理T16)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=___________m.23.(2011·全国·理T16)在△ABC中,B=60°,AC=√3,则AB+2BC的最大值为___________.24.(2011·全国·文T 15)△ABC中,B=120°,AC=7,AB=5,则△ABC的面积为.25.(2010·全国·理T16)在△ABC中,D为边BC上一点,BD=1DC,∠ADB=120°,AD=2.若△ADC的面积为3-√3,2则∠BAC= .26.(2010·全国·文T16)在△ABC中,D为BC边上一点,BC=3BD,AD=√2,∠ADB=135°.若AC=√2AB,则BD=___________.三、计算题1.(2019·全国1·理T17)△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin Bsin C.(1)求A;(2)若√2a+b=2c,求sin C.2.(2019·全国3·T18)△ABC 的内角A,B,C 的对边分别为a,b,c.已知asin A+C2=bsin A. (1)求B;(2)若△ABC 为锐角三角形,且c=1,求△ABC 面积的取值范围.3.(2019·天津·理T15文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知b+c=2a,3csin B=4asin C.(1)求cosB 的值; (2)求sin (2B+π6)的值.4.(2019·江苏·T15)在△ABC 中,角A,B,C 的对边分别为a,b,c. (1)若a=3c,b=√2,cos B=23,求c 的值; (2)若sinA a=cosB2b,求sin (B +π2)的值.5.(2018·全国1·理T17)在平面四边形ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5. (1)求cos ∠ADB; (2)若DC=2√2 ,求BC.6.(2018·北京·理T15)在△ABC 中,a=7,b=8,cos B=-17. (1)求∠A;(2)求AC 边上的高.7.(2018·天津·理T15文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知bsin A=acos (B -π6). (1)求角B 的大小;(2)设a=2,c=3,求b 和sin(2A-B)的值.8.(2017·天津·理T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c,已知a>b,a=5,c=6,sin B=35. (1)求b 和sin A 的值; (2)求sin (2A +π4)的值.9.(2017·天津·文T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c,已知asin A=4bsin B,ac=√5(a 2-b 2-c 2).(1)求cosA 的值; (2)求sin(2B-A)的值.10.(2017·全国1·理T 17)△ABC 的内角A,B,C 的对边分别为a,b,c.已知△ABC 的面积为a 23sinA.(1)求sin BsinC;(2)若6cos BcosC=1,a=3,求△ABC 的周长.11.(2017·全国2·理T17)△ABC 的内角A,B,C 的对边分别为a,b,c.已知sin(A+C)=8sin 2B 2. (1)求cos B;(2)若a+c=6,△ABC 的面积为2,求b.12.(2017·全国3·理T17)△ABC 的内角A,B,C 的对边分别为a,b,c.已知sin A+√3cos A=0,a=2√7,b=2. (1)求c;(2)设D 为BC 边上一点,且AD ⊥AC,求△ABD 的面积. 13.(2017·北京·理T15)在△ABC 中,∠A=60°,c=37a. (1)求sin C 的值; (2)若a=7,求△ABC 的面积.14.(2017·山东·文T17)在△ABC 中,角A,B,C 的对边分别为a,b,c.已知b=3,AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-6,S △ABC =3,求A 和a. 15.(2016·北京·T5)在△ABC 中,a 2+c 2=b 2+√2ac. (1)求B 的大小;(2)求√2cos A+cosC 的最大值.16.(2016·山东·理T16)在△ABC 中,角A,B,C 的对边分 别为a,b,c,已知2(tan A+tan B)=tanA cosB +tanBcosA. (1)证明:a+b=2c; (2)求cosC 的最小值.17.(2016·天津·文T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知asin 2B=√3bsin A. (1)求B;(2)若cosA=13,求sin C 的值.18.(2016·四川·文T 18)在△ABC 中,角A,B,C 所对的边分别是a,b,c,且cosA a+cosB b =sinCc .(1)证明:sinAsin B=sin C;(2)若b2+c2-a2=65bc,求tan B.19.(2016·浙江·文T16)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2acos B.(1)证明:A=2B;(2)若cos B=23,求cos C的值.20.(2016·全国1·理T17)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求C;(2)若c=√7,△ABC的面积为3√32,求△ABC的周长.21.(2016·浙江·理T16)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acos B.(1)证明:A=2B;(2)若△ABC的面积S=a 24,求角A的大小.22.(2015·全国2·理T17)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求sinBsinC;(2)若AD=1,DC=√22,求BD和AC的长.23.(2015·全国1·文T17)已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sin AsinC.(1)若a=b,求cosB;(2)设B=90°,且a=√2,求△ABC的面积.24.(2015·浙江·理T16)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知A=π4,b2-a2=12c2.(1)求tan C的值;(2)若△ABC的面积为3,求b的值.25.(2015·山东·理T16)设f(x)=sin xcos x-cos2(x+π4).(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f(A2)=0,a=1,求△ABC面积的最大值.26.(2015·陕西·理T17)△ABC的内角A,B,C所对的边分别为a,b,c,向量m=(a,√3b)与n=(cosA,sinB)平行.(1)求A;(2)若a=√7,b=2,求△ABC的面积.27.(2015·江苏·理T15)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC 的长; (2)求sin 2C 的值.28.(2015·浙江·文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知tan (π4+A)=2. (1)求sin2Asin2A+cos 2A的值;(2)若B=π4,a=3,求△ABC 的面积.29.(2015·天津·文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知△ABC 的面积为3√15,b-c=2,cos A=-14. (1)求a 和sin C 的值; (2)求cos (2A +π6)的值.30.(2015·全国2·文T17)△ABC 中,D 是BC 上的点,AD 平分∠BAC,BD=2DC.(1)求sinBsinC; (2)若∠BAC=60°,求∠B.31.(2015·安徽·理T16)在△ABC 中,∠A=3π4,AB=6,AC=3√2,点D 在BC 边上,AD=BD,求AD 的长.32.(2014·全国2·文T17)四边形ABCD 的内角A 与C 互补,AB=1,BC=3,CD=DA=2. (1)求角C 和BD;(2)求四边形ABCD 的面积.33.(2014·浙江·理T18)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a≠b,c=√3,cos 2A-cos 2B=√3sinAcos A-√3sin Bcos B. (1)求角C 的大小;(2)若sin A=45,求△ABC 的面积.34.(2014·辽宁·理T17)在△ABC 中,内角A,B,C 的对边 分别为a,b,c,且a>c.已知BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =2,cos B=13,b=3.求: (1)a 和c 的值; (2)cos(B-C)的值.35.(2014·天津·文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a-c=√66b,sin B=√6sin C.(1)求cos A 的值; (2)求cos (2A -π6)的值.36.(2014·北京·理T15)如图,在△ABC 中,∠B=π3,AB=8,点D 在BC 边上,且CD=2,cos ∠ADC=17. (1)求sin ∠BAD; (2)求BD,AC 的长.37.(2014·湖南·理T18)如图,在平面四边形ABCD 中,AD=1,CD=2,AC=√7. (1)求cos ∠CAD 的值;(2)若cos ∠BAD=-√714,sin ∠CBA=√216,求BC 的长.38.(2014·湖南·文T19)如图,在平面四边形ABCD 中,DA ⊥AB,DE=1,EC=√7,EA=2,∠ADC=2π3,∠BEC=π3.(1)求sin ∠CED 的值; (2)求BE 的长.39.(2013·全国2·理T17)△ABC 的内角A,B,C 的对边分别为a,b,c,已知a=bcosC+csinB. (1)求B;(2)若b=2,求△ABC 面积的最大值.40.(2013·全国1·理T17)如图,在△ABC 中,∠ABC=90°,AB=√3,BC=1,P 为△ABC 内一点,∠BPC=90°. (1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA.41.(2012·全国·文T 7)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=√3asin C-ccosA.(1)求A;(2)若a=2,△ABC的面积为√3,求b,c.42.(2012·全国·理T17)已知a,b,c分别为△ABC三个内角A,B,C的对边,acos C+√3 asin C-b-c=0.(1)求A;(2)若a=2,△ABC的面积为√3,求b,c.43.(2010·陕西·理T17)如图,A,B是海面上位于东西方向相距5(3+√3)海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20√3海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D点需要多长时间?。

(新课标全国I卷)2010_2019学年高考数学真题分类汇编专题07立体几何(2)文(含解析)

(新课标全国I卷)2010_2019学年高考数学真题分类汇编专题07立体几何(2)文(含解析)

专题7 立体几何(2)立体几何大题:10年10考,每年1题.第1小题多为证明垂直问题,第2小题多为体积计算问题(2014年是求高).1.(2019年)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【解析】(1)连结B1C,ME,∵M,E分别是BB1,BC的中点,∴ME∥B1C,又N为A1D的中点,∴ND=12A1D,由题设知A1B1//DC,∴B1C//A1D,∴ME//ND,∴四边形MNDE是平行四边形,∴MN∥ED,又MN⊄平面C1DE,∴MN∥平面C1DE.(2)过C作C1E的垂线,垂足为H,由已知可得DE⊥BC,DE⊥C1C,∴DE⊥平面C1CE,故DE⊥CH,∴CH⊥平面C1DE,故CH的长即为C到时平面C1DE的距离,由已知可得CE=1,CC1=4,∴C1E,故CH,∴点C 到平面C 1DE . 2.(2018年)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA . (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q ﹣ABP 的体积.【解析】(1)∵在平行四边形ABCM 中,∠ACM =90°,∴AB ⊥AC , 又AB ⊥DA .且AD ∩AC =A , ∴AB ⊥面ADC ,∵AB ⊂面ABC , ∴平面ACD ⊥平面ABC ;(2)∵AB =AC =3,∠ACM =90°,∴AD =AM =∴BP =DQ =23DA = 由(1)得DC ⊥AB ,又DC ⊥CA ,∴DC ⊥面ABC ,∴三棱锥Q ﹣ABP 的体积V =11DC 33S ∆ABP ⨯ =C 121DC 333S ∆AB ⨯⨯=12113333323⨯⨯⨯⨯⨯⨯=1. 3.(2017年)如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P ﹣ABCD 的体积为83,求该四棱锥的侧面积.【解析】(1)∵在四棱锥P ﹣ABCD 中,∠BAP =∠CDP =90°, ∴AB ⊥PA ,CD ⊥PD , 又AB ∥CD ,∴AB ⊥PD , ∵PA ∩PD =P ,∴AB ⊥平面PAD , ∵AB ⊂平面PAB ,∴平面PAB ⊥平面PAD .(2)设PA =PD =AB =DC =a ,取AD 中点O ,连结PO , ∵PA =PD =AB =DC ,∠APD =90°,平面PAB ⊥平面PAD ,∴PO ⊥底面ABCD ,且AD ,PO =2a , ∵四棱锥P ﹣ABCD 的体积为83, 由AB ⊥平面PAD ,得AB ⊥AD ,∴V P ﹣ABCD =CD 13S AB ⨯⨯PO 四边形=1D 3⨯AB⨯A ⨯PO =132a a ⨯⨯=313a =83, 解得a =2,∴PA =PD =AB =DC =2,AD =BC =PO ,∴PB =PC∴该四棱锥的侧面积:S 侧=S △PAD +S △PAB +S △PDC +S △PBC=1D 2⨯PA⨯P +12⨯PA⨯AB +1D DC 2⨯P ⨯+1C 2⨯B=11112222222222⨯⨯+⨯⨯+⨯⨯+⨯=6+4.(2016年)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【解析】(1)∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(2)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG . 由题设可得PC ⊥平面PAB ,DE ⊥平面PAB ,所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且PA =6,可得DE =2,PG =PE = 在等腰直角三角形EFP 中,可得EF =PF =2. 所以四面体PDEF 的体积V =13×DE ×S △PEF =13×2×12×2×2=43.5.(2015年)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ﹣ACD【解析】(1)∵四边形ABCD 为菱形, ∴AC ⊥BD , ∵BE ⊥平面ABCD , ∴AC ⊥BE , 则AC ⊥平面BED , ∵AC ⊂平面AEC , ∴平面AEC ⊥平面BED ;(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,得AG =GC ,GB =GD =2x,∵BE ⊥平面ABCD ,∴BE ⊥BG ,则△EBG 为直角三角形,∴EG =12AC =AG =2x ,则BE x ,∵三棱锥E ﹣ACD 的体积V =11C GD 32⨯A ⨯⨯BE 3x 解得x =2,即AB =2, ∵∠ABC =120°,∴AC 2=AB 2+BC 2﹣2AB •BC cos ABC =4+4﹣2×1222⎛⎫⨯⨯-⎪⎝⎭=12,即AC =在三个直角三角形EBA ,EBD ,EBC 中,斜边AE =EC =ED , ∵AE ⊥EC ,∴△EAC 为等腰三角形, 则AE 2+EC 2=AC 2=12, 即2AE 2=12, ∴AE 2=6,则AE ,∴从而得AE =EC =ED ,∴△EAC 的面积S =11C 22⨯EA⨯E =3, 在等腰三角形EAD 中,过E 作EF ⊥AD 于F ,则AE ,AF =1D 2A =1212⨯=,则EF =∴△EAD 的面积和△ECD 的面积均为S =122⨯故该三棱锥的侧面积为3+6.(2014年)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.【解析】(1)连接BC1,则O为B1C与BC1的交点,∵侧面BB1C1C为菱形,∴BC1⊥B1C,∵AO⊥平面BB1C1C,∴AO⊥B1C,∵AO∩BC1=O,∴B1C⊥平面ABO,∵AB⊂平面ABO,∴B1C⊥AB;(2)作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,∵BC⊥AO,BC⊥OD,AO∩OD=O,∴BC⊥平面AOD,∴OH⊥BC,∵OH⊥AD,BC∩AD=D,∴OH⊥平面ABC,∵∠CBB1=60°,∴△CBB1为等边三角形,∵BC=1,∴OD∵AC ⊥AB 1,∴OA =12B 1C =12,由OH •AD =OD •OA ,可得AD ,∴OH =14,∵O 为B 1C 的中点,∴B 1到平面ABC ,∴三棱柱ABC ﹣A 1B 1C 1的高7.7.(2013年)如图,三棱柱ABC ﹣A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60° (1)证明:AB ⊥A 1C ; (2)若AB =CB =2,A 1C =,求三棱柱ABC ﹣A 1B 1C 1的体积.【解析】(1)如图,取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,160∠BAA =,故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C ;(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以1C O =OA =.又1C A =,则22211C C A =O +OA ,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC ﹣A 1B 1C 1的高.又△ABC 的面积C S ∆AB故三棱柱ABC ﹣A 1B 1C 1的体积C 1V 3S ∆AB =⨯OA ==.8.(2012年)如图,三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【解析】(1)由题意知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C , ∴BC ⊥平面ACC 1A 1,又DC 1⊂平面ACC 1A 1, ∴DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,∴∠CDC 1=90°,即DC 1⊥DC ,又DC ∩BC =C , ∴DC 1⊥平面BDC ,又DC 1⊂平面BDC 1, ∴平面BDC 1⊥平面BDC ;(2)设棱锥B ﹣DACC 1的体积为V 1,AC =1,由题意得V 1=1121132+⨯⨯⨯=12,又三棱柱ABC ﹣A 1B 1C 1的体积V =1, ∴(V ﹣V 1):V 1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.9.(2011年)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)设PD=AD=1,求棱锥D﹣PBC的高.【解析】(1)因为∠DAB=60°,AB=2AD,由余弦定理得BD D,从而BD2+AD2=AB2,故BD⊥AD,又PD⊥底面ABCD,可得BD⊥PD,所以BD⊥平面PAD.故PA⊥BD.(2)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(1)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD,PB=2.根据DE•PB=PD•BD,得DE即棱锥D﹣PBC10.(2010年)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(1)证明:平面PAC⊥平面PBD;(2)若AB,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.。

(2010-2019)十年高考数学真题分类汇编:三角函数(含解析)

(2010-2019)十年高考数学真题分类汇编:三角函数(含解析)

(2010-2019)十年高考数学真题分类汇编:三角函数(含解析)1.(2019·全国2·理T10文T11)已知α∈0,π2,2sin 2α=cos 2α+1,则sin α=()A.15B.√55C.√33D.2√55【答案】B【解析】∵2sin 2α=cos 2α+1,∴4sin αcos α=2cos2α.∵α∈(0,π2),∴cos α>0,sin α>0,∴2sin α=cos α.又sin2α+cos2α=1,∴5sin2α=1,即sin2α=15.∵sin α>0,∴sin α=√55.故选B.2.(2019·全国2·文T8)若x1=π4,x2=3π4是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω=()A.2B.32C.1 D.12【答案】A【解析】由题意,得f(x)=sin ωx的周期T=2πω=23π4−π4=π,解得ω=2,故选A.3.(2019·全国2·理T9)下列函数中,以π2为周期且在区间π4,π2单调递增的是()A.f(x)=|cos 2x|B.f(x)=|sin 2x|C.f(x)=cos|x|D.f(x)=sin|x|【答案】A【解析】y=|cos 2x|的图象为,由图知y=|cos 2x|的周期为π2,且在区间(π4,π2)内单调递增,符合题意;y=|sin 2x|的图象为,由图知它的周期为π2,但在区间(π4,π2)内单调递减,不符合题意;因为y=cos|x|=cos x,所以它的周期为2π,不符合题意;y=sin |x|的图象为,由图知其不是周期函数,不符合题意.故选A.4.(2019·天津·理T7)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g(π4)=√2,则f(3π8)=()A.-2B.-√2C.√2D.2【答案】C【解析】已知函数为奇函数,且|φ|<π,故φ=0. f(x)=Asin ωx.∴g(x)=Asin x.∵g(x)的最小正周期为2π,∴2πω=2π,∴ω=1. ∴g(x)=Asin x.由g(π4)=√2,得Asin π4=√2,∴A=2.∴f(x)=2sin 2x.∴f(3π8)=2sin 3π4=√2.故选C.5.(2019·北京·文T8)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β.图中阴影区域的面积的最大值为( )A.4β+4cos βB.4β+4sin βC.2β+2cos βD.2β+2sin β【答案】B【解析】(方法一)如图,设圆心为O ,连接OA ,OB ,半径r=2,∠AOB=2∠APB=2β,阴影部分Ⅰ(扇形)的面积S 1=βr 2=4β为定值,S △OAB =12|OA||OB|sin 2β=2sin 2β为定值,全部阴影部分的面积S=S △PAB +S 1-S △OAB .当P 为弧AB 的中点时S △PAB 最大,最大值为12(2|OA|sin β)(OP+|OA|cosβ)=2sin β(2+2cos β)=4sin β+2sin 2β,所以全部阴影部分的面积S 的最大值为4β+4sin β,故选B.(方法二)观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP=∠AOP=π-β,面积S的最大值为βr 2+S △POB +S △POA =4β+12|OP||OB|sin(π-β)+12|OP||OA|sin(π-β)=4β+2sin β+2sinβ=4β+4sin β,故选B.6.(2019·全国3·理T12)设函数f(x)=sin (ωx +π5)(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点 ②f(x)在(0,2π)有且仅有2个极小值点 ③f(x)在(0,π10)单调递增 ④ω的取值范围是[125,2910) 其中所有正确结论的编号是( )A.①④B.②③C.①②③D.①③④ 【答案】D【解析】∵f(x)=sin (ωx +π5)(ω>0)在区间[0,2π]上有且仅有5个零点, ∴5π≤2πω+π5<6π, 解得125≤ω<2910,故④正确.画出f(x)的图像(图略),由图易知①正确,②不正确. 当0<x<π10时,π5<ωx+π5<ωπ10+π5, 又125≤ω<2910,∴ωπ10+π5<29π100+20π100=49π100<π2,∴③正确.综上可知①③④正确.故选D.7.(2018·北京·文T7)在平面直角坐标系中,AB ⏜,CD ⏜,EF ⏜,GH ⏜是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( ) A.AB⏜ B.CD⏜C.EF ⏜ D.GH ⏜【答案】C【解析】若P 在AB⏜上,则由角α的三角函数线知,cos α>sin α,排除A;若P 在CD ⏜上,则tan α>sin α,排除B;若P 在GH⏜上,则tan α>0,cos α<0,sin α<0,排除D;故选C. 8.(2018·全国1·文T11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2α=23,则|a-b|=( ) A.15 B.√55C.2√55D.1【答案】B。

2010-2019历年高考数学《三角函数》真题汇总(含答案)

2010-2019历年高考数学《三角函数》真题汇总(含答案)

2010-2019历年高考数学《三角函数》真题汇总(含答案)专题四 三角函数与解三角形第九讲 三角函数的概念、诱导公式与三角恒等变换2019年1.(2019北京文8)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠ 是锐角,大小为β.图中阴影区域的面积的最大值为(A )4β+4cos β (B )4β+4sin β (C )2β+2cos β (D )2β+2sin β2.(全国Ⅱ文11)已知a ∈(0,π2),2sin2α=cos2α+1,则sinα= A .15B 5C 3D 253.(2019江苏13)已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 .2010-2018年一、选择题1.(2018全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos 23α=,则a b -= A .15B 5C 25D .12.(2018全国卷Ⅲ)若1sin 3α=,则cos2α= A .89B .79C .79-D .89-3.(2018北京)在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是A .AB B .CDC .EFD .GH4.(2017新课标Ⅲ)已知4sin cos 3αα-=,则sin 2α= A .79- B .29- C .29 D .795.(2017山东)已知3cos 4x =,则cos2x =A .14-B .14C .18-D .186.(2016年全国III 卷)若1tan 3θ=-,则cos2θ=A .45-B .15-C .15D .457.(2015重庆)若1tan 3α=,1tan()2αβ+=,则tan β= A .17 B .16 C .57 D .568.(2015福建)若5sin 13α=-,且α为第四象限角,则tan α的值等于A .125B .125-C .512D .512-9.(2014新课标1)若0tan >α,则A .0sin >αB .0cos >αC .02sin >αD .02cos >α 10.(2014新课标1)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=11.(2014江西)在ABC ∆中,内角A ,B ,C 所对应的边分别为,,,c b a 若32a b =,则2222sin sin sin B AA-的值为A .19- B .13 C .1 D .7212.(2013新课标2)已知2sin 23α=,则2cos ()4πα+=A .16B .13C .12D .2313.(2013浙江)已知210cos 2sin ,=+∈αααR ,则=α2tan A .34 B .43 C .43- D .34-14.(2012山东)若⎥⎦⎤⎢⎣⎡∈2,4ππθ,8732sin =θ,则=θsin A .53 B .54 C .47 D .4315.(2012江西)若sin cos 1sin cos 2αααα+=-,则tan2α=A .−34B .34C .−43D .4316.(2011新课标)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .4517.(2011浙江)若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=,则 cos()2βα+=A.3 B.3- C.9 D.9- 18.(2010新课标)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- A .12-B .12C .2D .-2二、填空题19.(2017新课标Ⅰ)已知(0,)2πα∈,tan 2α=,则cos()4πα- =__________.20.(2017北京)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=_________. 21.(2017江苏)若1tan()46πα-=,则tan α= .22.(2016年全国Ⅰ卷)已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= . 23.(2015四川)已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是________. 24.(2015江苏)已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 25.(2014新课标2)函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_______. 26.(2013新课标2)设θ为第二象限角,若1tan 42πθ⎛⎫+= ⎪⎝⎭ ,则sin cos θθ+=_____. 27.(2013四川)设sin 2sin αα=-,(,)2παπ∈,则tan2α的值是____________.28.(2012江苏)设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛⎫+ ⎪⎝⎭的值为 .三、解答题29.(2018浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34(,)55P --. (1)求sin()απ+的值; (2)若角β满足5sin()13αβ+=,求cos β的值.30.(2018江苏)已知,αβ为锐角,4tan 3α=,cos()5αβ+=-.(1)求cos2α的值; (2)求tan()αβ-的值. 31.(2015广东)已知tan 2α=.(Ⅰ)求tan()4πα+的值;(Ⅱ)求2sin 2sin sin cos cos 21ααααα+--的值.32.(2014江苏)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值. 33.(2014江西)已知函数()()()θ++=x x a x f 2cos cos 22为奇函数,且04=⎪⎭⎫⎝⎛πf ,其中()πθ,,0∈∈R a . (1)求θ,a 的值; (2)若⎪⎭⎫ ⎝⎛∈-=⎪⎭⎫⎝⎛ππαα,,2524f ,求⎪⎭⎫ ⎝⎛+3sin πα的值.34.(2013广东)已知函数(),12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.35.(2013北京)已知函数21()(2cos 1)sin 2cos 42f x x x x =-+(1)求()f x 的最小正周期及最大值.(2)若(,)2παπ∈,且()2f α=,求α的值. 36.(2012广东)已知函数()2cos()6f x x πω=+,(其中0ω>,x R ∈)的最小正周期为10π. (1)求ω的值; (2)设,[0,]2παβ∈,56(5)35f απ+=-,516(5)617f βπ-=,求cos()αβ+的值.2019年1.解析 由题意和题图可知,当P 为优弧AB 的中点时,阴影部分的面积取最大值,如图所示,设圆心为O ,2AOB β∠=,()1222BOP AOP ββ∠=∠=π-=π-.此时阴影部分面积211222222AOP BOP AOB S S S S β=++=⨯⨯+⨯⨯⨯△△扇形()sin 44sin βββπ-=+.故选B.2.解析 由2sin 2cos21αα=+,得24sin cos 2cosααα=.因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos 2sin αα=.由22cos 2sin sin cos 1αααα=⎧⎨+=⎩,得sin 5α=.故选B. 3.解析 由tan 23tan()4αα=-π+,得tan 23tan tan 41tan tan 4ααα=-π+π-,所以tan (1tan )21tan 3ααα-=-+,解得tan 2α=或1tan 3α=-. 当tan 2α=时,22tan 4sin21tan 5ααα==+,221tan 3cos21tan 5ααα-==-+,43sin(2)sin2cos cos2sin 444525210αααπππ+=+=⨯-⨯=.当1tan 3α=-时,22tan 3sin21tan 5ααα==-+,221tan 4cos21tan 5ααα-==+,所以34sin(2)sin2cos cos2sin 444525210αααπππ+=+=-⨯+⨯=. 综上,sin(2)4απ+的值是10. 2010-2018年1.B 【解析】由题意知cos 0α>,因为22cos 22cos 13αα=-=,所以cos α=,sin α=|tan |α=,由题意知|||tan |12a b α-=-,所以||a b -=.故选B .2.B 【解析】2217cos 212cos 12()39αα=-=-⨯=.故选B . 3.C 【解析】设点P 的坐标为(,)x y ,利用三角函数可得yx yx <<,所以0x <,0y >.所以P 所在的圆弧是EF ,故选C .4.A 【解析】由4sin cos 3αα-=,两边平方得161sin 29α-=,所以7sin 29α=-,选A .5.D 【解析】由3cos 4x =得2231cos22cos 12()148x x =-=⨯-=,故选D . 6.D 【解析】由1tan 3θ=-,得sin θ=,cos θ=或sin θ=,cos 10θ=-,所以224cos2cos sin 5θθθ=-=,故选D .7.A 【解析】71312113121tan )tan(1tan )tan(])tan[(tan =⨯+-=++-+=-+=ab a a b a a b a b .8.D 【解析】由5sin 13α=-,且α为第四象限角,则12cos 13α==,则sin tan cos ααα=512=-,故选D .9.C 【解析】tan 0α>知α的终边在第一象限或第三象限,此时sin α与cos α同号, 故sin 22sin cos 0ααα=>,选C .10.B 【解析】由条件得sin 1sin cos cos αβαβ+=,即sin cos cos (1sin )αβαβ=+, 得sin()cos sin()2παβαα-==-,又因为22ππαβ-<-<,022ππα<-<, 所以2παβα-=-,所以22παβ-=.11.D 【解析】2222sin sin sin B A A -=22sin 2()12()1sin B b A a -=-,∵32a b =,∴上式=72.12.A 【解析】因为21cos 2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===,所以2211sin 213cos ()4226παα--+===,选A. 13.C【解析】由22(sin 2cos )αα+=,可得2222sin 4cos 4sin cos 10sin cos 4αααααα++=+,进一步整理可得23tan 8tan 30αα--=,解得tan 3α=或1tan 3α=-,于是22tan 3tan 21tan 4ααα==--.14.D 【解析】由42ππθ⎡⎤∈⎢⎥⎣⎦,可得],2[2ππθ∈,812sin 12cos 2-=--=θθ,4322cos 1sin =-=θθ,答案应选D 。

十年高考真题分类汇编(2010-2019) 数学 解三角形(含答案)

十年高考真题分类汇编(2010-2019)  数学 解三角形(含答案)

十年高考真题分类汇编(2010—2019)数学专题07 解三角形一、选择题1.(2019·全国1·文T11)△ABC 的内角A,B,C 的对边分别为a,b,c.已知asin A-bsin B=4csin C,cos A=-14,则b c=( ) A.6B.5C.4D.32.(2018·全国2·理T6文T7)在△ABC 中,cos C 2=√55,BC=1,AC=5,则AB=( ) A.4√2B.√30C.√29D.2√53.(2018·全国3·理T 9文T 11)△ABC 的内角A,B,C 的对边分别为a,b,c.若△ABC 的面积为a 2+b 2-c 24,则C=( ) A.π2 B.π3C.πD.π4.(2017·山东·理T9)在△ABC 中,角A,B,C 的对边分别为a,b,c,若△ABC 为锐角三角形,且满足sin B(1+2cos C)=2sin AcosC+cosAsinC,则下列等式成立的是( ) A.a=2b B.b=2a C.A=2B D.B=2A5.(2017·全国1·文T11)△ABC 的内角A,B,C 的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=√2,则C=( ) A.π12B.π6C.π4D.π36.(2016·全国3·理T8)在△ABC 中,B=π4,BC 边上的高等于13BC,则cos A=( ) A.3√1010B.√1010C.-√1010D.-3√10107.(2016·全国3·文T9)在△ABC 中,B=π4,BC 边上的高等于13BC,则sin A=( ) A.3B.√1010C.√55D.3√10108.(2016·全国1·文T4)△ABC 的内角A,B,C 的对边分别为a,b,c.已知a=√5,c=2,cos A=23,则b= ( ) A.√2B.√3C.2D.39.(2016·天津·理T3)在△ABC 中,若AB=√13,BC=3,∠C=120°,则AC=( ) A.1 B.2 C.3 D.410.(2016·山东·文T8)△ABC 中,角A,B,C 的对边分别是a,b,c.已知b=c,a 2=2b 2(1-sin A),则A=( ) A.3π4B.π3C.π4D.π611.(2015·广东·文T5)设△ABC 的内角A,B,C 的对边分别为a,b,c.若a=2,c=2√3,cos A=√32且b<c,则b=( ) A.3B.2√2C.2D.√312.(2014·全国2·理T 4)钝角三角形ABC 的面积是12,AB=1,BC=√2,则AC=( )A.5B.√5C.2D.113.(2014·四川·文T8)如图,从气球A 上测得正前方的河流的两岸B,C 的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC 等于( )A.240(√3-1) mB.180(√2-1) mC.120(√3-1) mD.30(√3+1) m14.(2013·全国1·文T10)已知锐角△ABC 的内角A,B,C 的对边分别为a,b,c,23cos 2A+cos 2A=0,a=7,c=6,则b=( ) A.10B.9C.8D.515.(2013·全国2·文T 4)△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=π6,C=π4,则△ABC 的面积为( ) A.2√3+2 B.√3+1 C.2√3-2 D.√3-1二、填空题1.(2019·全国2·理T15)△ABC 的内角A,B,C 的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC 的面积为___________.2.(2019·全国2·文T15)△ABC 的内角A,B,C 的对边分别为a,b,c.已知bsinA+acosB=0,则B= .3.(2019·浙江·T14)在△ABC 中,∠ABC=90°,AB=4,BC=3,点D 在线段AC 上.若∠BDC=45°,则 BD= ,cos ∠ABD= .4.(2018·浙江·T13)在△ABC 中,角A,B,C 所对的边分别为a,b,c.若a=√7,b=2,A=60°,则sin B=___________,c=___________.5.(2018·北京·文T 14)若△ABC 的面积为√3(a 2+c 2-b 2),且∠C 为钝角,则∠B= ________;ca 的取值范围是.6.(2018·全国1·文T16)△ABC 的内角A,B,C 的对边分别为a,b,c,已知bsinC+csinB=4asin BsinC,b 2+c 2-a 2=8,则△ABC 的面积为 .7.(2017·浙江·T14)已知△ABC,AB=AC=4,BC=2.点D 为AB 延长线上一点,BD=2,连接CD,则△BDC 的面积 是 ,cos ∠BDC= .8.(2017·全国3·文T15)△ABC 的内角A,B,C 的对边分别为a,b,c.已知C=60°,b=√6,c=3,则A= . 9.(2017·全国2·文T16)△ABC 的内角A,B,C 的对边分别为a,b,c,若2bcos B=acosC+ccosA,则B= . 10.(2016·全国2·理T13文T15)△ABC 的内角A,B,C 的对边分别为a,b,c,若cos A=45,cos C=513,a=1,则b=___________.11.(2016·北京·文T13)在△ABC 中,A=2π3,a=√3c,则bc=.12.(2015·全国1·理T16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 13.(2015·重庆·理T13)在△ABC 中,B=120°,AB=√2,A 的角平分线AD=√3,则AC=___________. 14.(2015·湖北·理T13文T15)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m.15.(2015·福建·理T12)若锐角△ABC 的面积为10√3,且AB=5,AC=8,则BC 等于 .16.(2015·天津·理T13)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知△ABC 的面积为3√15,b-c=2,cos A=-14,则a 的值为.17.(2015·安徽·文T12)在△ABC中,AB=√6,∠A=75°,∠B=45°,则AC= .18.(2015·福建·文T14)若△ABC中,AC=√3,A=45°,C=75°,则BC=___________.,3sin A=2sin B,则19.(2015·重庆·文T13)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cos C=−14c= .=.20.(2015·北京·理T 12)在△ABC中,a=4,b=5,c=6,则sin2AsinC21.(2014·全国1·理T 16)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sinB)=(c-b)sin C,则△ABC面积的最大值为.22.(2014·全国1·理T16)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=___________m.23.(2011·全国·理T16)在△ABC中,B=60°,AC=√3,则AB+2BC的最大值为___________.24.(2011·全国·文T 15)△ABC中,B=120°,AC=7,AB=5,则△ABC的面积为.25.(2010·全国·理T16)在△ABC中,D为边BC上一点,BD=1DC,∠ADB=120°,AD=2.若△ADC的面积为3-√3,2则∠BAC= .26.(2010·全国·文T16)在△ABC中,D为BC边上一点,BC=3BD,AD=√2,∠ADB=135°.若AC=√2AB,则BD=___________.三、计算题1.(2019·全国1·理T17)△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin Bsin C.(1)求A;(2)若√2a+b=2c,求sin C.2.(2019·全国3·T18)△ABC 的内角A,B,C 的对边分别为a,b,c.已知asin A+C2=bsin A. (1)求B;(2)若△ABC 为锐角三角形,且c=1,求△ABC 面积的取值范围.3.(2019·天津·理T15文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知b+c=2a,3csin B=4asin C.(1)求cosB 的值; (2)求sin (2B+π6)的值.4.(2019·江苏·T15)在△ABC 中,角A,B,C 的对边分别为a,b,c. (1)若a=3c,b=√2,cos B=23,求c 的值; (2)若sinA a=cosB2b,求sin (B +π2)的值.5.(2018·全国1·理T17)在平面四边形ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5. (1)求cos ∠ADB; (2)若DC=2√2 ,求BC.6.(2018·北京·理T15)在△ABC 中,a=7,b=8,cos B=-17. (1)求∠A;(2)求AC 边上的高.7.(2018·天津·理T15文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知bsin A=acos (B -π6). (1)求角B 的大小;(2)设a=2,c=3,求b 和sin(2A-B)的值.8.(2017·天津·理T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c,已知a>b,a=5,c=6,sin B=35. (1)求b 和sin A 的值; (2)求sin (2A +π4)的值.9.(2017·天津·文T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c,已知asin A=4bsin B,ac=√5(a 2-b 2-c 2).(1)求cosA 的值; (2)求sin(2B-A)的值.10.(2017·全国1·理T 17)△ABC 的内角A,B,C 的对边分别为a,b,c.已知△ABC 的面积为a 23sinA.(1)求sin BsinC;(2)若6cos BcosC=1,a=3,求△ABC 的周长.11.(2017·全国2·理T17)△ABC 的内角A,B,C 的对边分别为a,b,c.已知sin(A+C)=8sin 2B 2. (1)求cos B;(2)若a+c=6,△ABC 的面积为2,求b.12.(2017·全国3·理T17)△ABC 的内角A,B,C 的对边分别为a,b,c.已知sin A+√3cos A=0,a=2√7,b=2. (1)求c;(2)设D 为BC 边上一点,且AD ⊥AC,求△ABD 的面积. 13.(2017·北京·理T15)在△ABC 中,∠A=60°,c=37a. (1)求sin C 的值; (2)若a=7,求△ABC 的面积.14.(2017·山东·文T17)在△ABC 中,角A,B,C 的对边分别为a,b,c.已知b=3,AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-6,S △ABC =3,求A 和a. 15.(2016·北京·T5)在△ABC 中,a 2+c 2=b 2+√2ac. (1)求B 的大小;(2)求√2cos A+cosC 的最大值.16.(2016·山东·理T16)在△ABC 中,角A,B,C 的对边分 别为a,b,c,已知2(tan A+tan B)=tanA cosB +tanBcosA. (1)证明:a+b=2c; (2)求cosC 的最小值.17.(2016·天津·文T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知asin 2B=√3bsin A. (1)求B;(2)若cosA=13,求sin C 的值.18.(2016·四川·文T 18)在△ABC 中,角A,B,C 所对的边分别是a,b,c,且cosA a+cosB b =sinCc .(1)证明:sinAsin B=sin C;(2)若b2+c2-a2=65bc,求tan B.19.(2016·浙江·文T16)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2acos B.(1)证明:A=2B;(2)若cos B=23,求cos C的值.20.(2016·全国1·理T17)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求C;(2)若c=√7,△ABC的面积为3√32,求△ABC的周长.21.(2016·浙江·理T16)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acos B.(1)证明:A=2B;(2)若△ABC的面积S=a 24,求角A的大小.22.(2015·全国2·理T17)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求sinBsinC;(2)若AD=1,DC=√22,求BD和AC的长.23.(2015·全国1·文T17)已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sin AsinC.(1)若a=b,求cosB;(2)设B=90°,且a=√2,求△ABC的面积.24.(2015·浙江·理T16)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知A=π4,b2-a2=12c2.(1)求tan C的值;(2)若△ABC的面积为3,求b的值.25.(2015·山东·理T16)设f(x)=sin xcos x-cos2(x+π4).(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f(A2)=0,a=1,求△ABC面积的最大值.26.(2015·陕西·理T17)△ABC的内角A,B,C所对的边分别为a,b,c,向量m=(a,√3b)与n=(cosA,sinB)平行.(1)求A;(2)若a=√7,b=2,求△ABC的面积.27.(2015·江苏·理T15)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC 的长; (2)求sin 2C 的值.28.(2015·浙江·文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知tan (π4+A)=2. (1)求sin2Asin2A+cos 2A的值;(2)若B=π4,a=3,求△ABC 的面积.29.(2015·天津·文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知△ABC 的面积为3√15,b-c=2,cos A=-14. (1)求a 和sin C 的值; (2)求cos (2A +π6)的值.30.(2015·全国2·文T17)△ABC 中,D 是BC 上的点,AD 平分∠BAC,BD=2DC.(1)求sinBsinC; (2)若∠BAC=60°,求∠B.31.(2015·安徽·理T16)在△ABC 中,∠A=3π4,AB=6,AC=3√2,点D 在BC 边上,AD=BD,求AD 的长.32.(2014·全国2·文T17)四边形ABCD 的内角A 与C 互补,AB=1,BC=3,CD=DA=2. (1)求角C 和BD;(2)求四边形ABCD 的面积.33.(2014·浙江·理T18)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a≠b,c=√3,cos 2A-cos 2B=√3sinAcos A-√3sin Bcos B. (1)求角C 的大小;(2)若sin A=45,求△ABC 的面积.34.(2014·辽宁·理T17)在△ABC 中,内角A,B,C 的对边 分别为a,b,c,且a>c.已知BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =2,cos B=13,b=3.求: (1)a 和c 的值; (2)cos(B-C)的值.35.(2014·天津·文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a-c=√66b,sin B=√6sin C.(1)求cos A 的值; (2)求cos (2A -π6)的值.36.(2014·北京·理T15)如图,在△ABC 中,∠B=π3,AB=8,点D 在BC 边上,且CD=2,cos ∠ADC=17. (1)求sin ∠BAD; (2)求BD,AC 的长.37.(2014·湖南·理T18)如图,在平面四边形ABCD 中,AD=1,CD=2,AC=√7. (1)求cos ∠CAD 的值;(2)若cos ∠BAD=-√714,sin ∠CBA=√216,求BC 的长.38.(2014·湖南·文T19)如图,在平面四边形ABCD 中,DA ⊥AB,DE=1,EC=√7,EA=2,∠ADC=2π3,∠BEC=π3.(1)求sin ∠CED 的值; (2)求BE 的长.39.(2013·全国2·理T17)△ABC 的内角A,B,C 的对边分别为a,b,c,已知a=bcosC+csinB. (1)求B;(2)若b=2,求△ABC 面积的最大值.40.(2013·全国1·理T17)如图,在△ABC 中,∠ABC=90°,AB=√3,BC=1,P 为△ABC 内一点,∠BPC=90°. (1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA.41.(2012·全国·文T 7)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=√3asin C-ccosA.(1)求A;(2)若a=2,△ABC的面积为√3,求b,c.42.(2012·全国·理T17)已知a,b,c分别为△ABC三个内角A,B,C的对边,acos C+√3 asin C-b-c=0.(1)求A;(2)若a=2,△ABC的面积为√3,求b,c.43.(2010·陕西·理T17)如图,A,B是海面上位于东西方向相距5(3+√3)海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20√3海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D点需要多长时间?十年高考真题分类汇编(2010—2019)数学专题07 解三角形一、选择题, 1.(2019·全国1·文T11)△ABC的内角A,B,C的对边分别为a,b,c.已知asin A-bsin B=4csin C,cos A=-14则b=()cA.6B.5C.4D.3【答案】A。

十年真题(2010_2019)高考数学真题分类汇编专题07数列文(含解析)

十年真题(2010_2019)高考数学真题分类汇编专题07数列文(含解析)

专题07数列历年考题细目表历年高考真题汇编1.【2015年新课标1文科07】已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10 D.12【解答】解:∵{a n}是公差为1的等差数列,S8=4S4,∴8a11=4×(4a1),解得a1.则a109×1.故选:B.2.【2013年新课标1文科06】设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n﹣1 B.S n=3a n﹣2 C.S n=4﹣3a n D.S n=3﹣2a n【解答】解:由题意可得a n=1,∴S n33﹣23﹣2a n,故选:D.3.【2012年新课标1文科12】数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690 B.3660 C.1845 D.1830【解答】解:由于数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a11+a9=2,a12+a10=40,a15+a13=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为 15×2+(15×8)=1830,故选:D.4.【2019年新课标1文科14】记S n为等比数列{a n}的前n项和.若a1=1,S3,则S4=.【解答】解:∵等比数列{a n}的前n项和,a1=1,S3,∴q≠1,,整理可得,,解可得,q,则S4.故答案为:【2015年新课标1文科13】在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=.5.【解答】解:∵a n+1=2a n,∴,∵a1=2,∴数列{a n}是a1=2为首项,以2为公比的等比数列,∴S n2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:66.【2012年新课标1文科14】等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=.【解答】解:由题意可得,q≠1∵S3+3S2=0∴∴q3+3q2﹣4=0∴(q﹣1)(q+2)2=0∵q≠1∴q=﹣2故答案为:﹣27.【2019年新课标1文科18】记S n为等差数列{a n}的前n项和.已知S9=﹣a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.【解答】解:(1)根据题意,等差数列{a n}中,设其公差为d,若S9=﹣a5,则S99a5=﹣a5,变形可得a5=0,即a1+4d=0,若a3=4,则d2,则a n=a3+(n﹣3)d=﹣2n+10,(2)若S n≥a n,则na1d≥a1+(n﹣1)d,当n=1时,不等式成立,当n≥2时,有d﹣a1,变形可得(n﹣2)d≥﹣a1,又由S9=﹣a5,即S99a5=﹣a5,则有a5=0,即a1+4d=0,则有(n﹣2)a1,又由a1>0,则有n≤10,则有2≤n≤10,综合可得:n的取值范围是{n|1≤n≤10,n∈N}.8.【2018年新课标1文科17】已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n.(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.【解答】解:(1)数列{a n}满足a1=1,na n+1=2(n+1)a n,则:(常数),由于,故:,数列{b n}是以b1为首项,2为公比的等比数列.整理得:,所以:b1=1,b2=2,b3=4.(2)数列{b n}是为等比数列,由于(常数);(3)由(1)得:,根据,所以:.9.【2017年新课标1文科17】记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【解答】解:(1)设等比数列{a n}首项为a1,公比为q,则a3=S3﹣S2=﹣6﹣2=﹣8,则a1,a2,由a1+a2=2,2,整理得:q2+4q+4=0,解得:q=﹣2,则a1=﹣2,a n=(﹣2)(﹣2)n﹣1=(﹣2)n,∴{a n}的通项公式a n=(﹣2)n;(2)由(1)可知:S n [2+(﹣2)n+1],则S n+1[2+(﹣2)n+2],S n+2[2+(﹣2)n+3],由S n+1+S n+2[2+(﹣2)n+2][2+(﹣2)n+3],[4+(﹣2)×(﹣2)n+1+(﹣2)2×(﹣2)n+1],[4+2(﹣2)n+1]=2×[(2+(﹣2)n+1)],=2S n,即S n+1+S n+2=2S n,∴S n+1,S n,S n+2成等差数列.10.【2016年新课标1文科17】已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n(1﹣3﹣n).11.【2014年新课标1文科17】已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【解答】解:(1)方程x2﹣5x+6=0的根为2,3.又{a n}是递增的等差数列,故a2=2,a4=3,可得2d=1,d,故a n=2+(n﹣2)n+1,(2)设数列{}的前n项和为S n,S n,①S n,②①﹣②得S n,解得S n2.12.【2013年新课标1文科17】已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和.【解答】解:(Ⅰ)设数列{a n}的首项为a1,公差为d,则.由已知可得,即,解得a1=1,d=﹣1,故{a n}的通项公式为a n=a1+(n﹣1)d=1+(n﹣1)•(﹣1)=2﹣n;(Ⅱ)由(Ⅰ)知.从而数列{}的前n项和S n.13.【2011年新课标1文科17】已知等比数列{a n}中,a1,公比q.(Ⅰ)S n为{a n}的前n项和,证明:S n(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【解答】证明:(I)∵数列{a n}为等比数列,a1,q∴a n,S n又∵S n∴S n(II)∵a n∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣n log33)=﹣(1+2+…+n)∴数列{b n}的通项公式为:b n14.【2010年新课标1文科17】设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n =na 1d =10n ﹣n 2.因为S n =﹣(n ﹣5)2+25.所以n =5时,S n 取得最大值.考题分析与复习建议本专题考查的知识点为:数列的概念与简单表示法,等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.历年考题主要以选择填空或解答题题型出现.重点考查的知识点为:等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.预测明年本考点题目会比较稳定,备考方向以知识点等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项为重点较佳.最新高考模拟试题1.等差数列{}n a ,等比数列{}n b ,满足111a b ==,53a b =,则9a 能取到的最小整数是( )A .1-B .0C .2D .3【答案】B【解析】等差数列{}n a 的公差设为d ,等比数列{}n b 的公比设为q ,0q ≠,由111a b ==,53a b =,可得214d q +=,则,可得9a 能取到的最小整数是0.故选:B . 2.中国古代数学名著《九章算术》中有这样一个问題:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马、“马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟、羊主人说:“我羊所吃的禾苗只有马的一半,”马主人说:“我马所吃的禾苗只有牛的一半,“打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还( )升粟?A .253B .503C .507D .1007【答案】D【解析】因为5斗=50升,设羊、马、牛的主人应偿还的量分别为123,,a a a ,由题意可知其构成了公比为2的等比数列,且350S =则,解得1507a =, 所以马主人要偿还的量为:, 故选D.3.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9填入33⨯的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数21,2,3,,n 填入n n ⨯个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记n 阶幻方的对角线上的数字之和为n N ,如图三阶幻方的315N =,那么 9N 的值为( )A .41B .45C .369D .321【答案】C【解析】 根据题意可知,幻方对角线上的数成等差数列,,,,….故.故选:C4.设数列{}n a 的前n 项和为n S ,且11a =,则数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和是( ) A .290 B .920C .511D .1011【答案】C 【解析】由得,当2n ≥时,,整理得,所以{}n a 是公差为4的等差数列,又11a =, 所以,从而,所以,数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和.故选C .5.意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”:,即,此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{}n a ,则数列{}n a 的前2019项的和为( ) A .672 B .673C .1346D .2019【答案】C由数列各项除以2的余数, 可得{}n a 为,所以{}n a 是周期为3的周期数列, 一个周期中三项和为1102++=, 因为,所以数列{}n a 的前2019项的和为,故选C.6.已知数列{}n a 是等比数列,数列{}n b 是等差数列,若,,则的值是( )A .1 B.2C.2-D.【答案】D 【解析】{}n a 是等比数列6a ∴={}n b 是等差数列673b π∴=本题正确选项:D 7.已知数列{}n a 满足,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为nT,若恒成立,则实数λ的取值范围为( )A .1[,)4+∞B .1(,)4+∞C .3[,)8+∞D .3(,)8+∞【解析】 解:数列{}n a 满足,①当2n ≥时,,②①﹣②得:12n a n n=, 故:22n a n =,数列{}n b 满足:,则:,由于恒成立,故:,整理得:244n n λ+>+,因为在*n N ∈上单调递减,故当1n =时,所以38λ>. 故选:D .8.已知函数()y f x =的定义域为R ,当0x <时()1f x >,且对任意的实数,x y R ∈,等式成立,若数列{}n a 满足,且()10a f =,则下列结论成立的是( ) A . B . C .D .【答案】A 【解析】由,令0x =,1y =-,则0x <时,()1f x > ()11f ∴-> ()01f ∴= 11a ∴=当0x >时,令y x =-,则,即又()1f x -> ∴当0x >时,令21x x >,则21>0-x x,即()f x ∴在R 上单调递减又令1n =,212a =-;令2n =,32a =-;令3n =,41a = ∴数列{}n a 是以3为周期的周期数列,,,,()f x 在R 上单调递减,,,本题正确选项:A9.在数列{}n a中,,则2019a的值为______.【答案】1【解析】因为所以,...,,各式相加,可得,,所以,20191a=,故答案为1.10.已知正项等比数列{}n a满足,若存在两项m a,n a,使得,则91m n+的最小值为__________.【答案】2【解析】正项等比数列{}n a满足,,整理,得210+2q q -=,又0q >,解得,2q =,存在两项m a ,n a 使得1a ,,整理,得8m n +=,∴,则91m n+的最小值为2. 当且仅当9m n n m=取等号,但此时m ,*n N ∉.又8m n +=, 所以只有当6m =,2n =时,取得最小值是2. 故答案为:211.已知数列{}n a 满足对,都有成立,72a π=,函数()f x =,记()n n y f a =,则数列{}n y 的前13项和为______. 【答案】26 【解析】 解:对,都有成立,可令1m =即有,为常数,可得数列{}n a 为等差数列,函数,由,可得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,∴,∴可得数列{}n y 的前13项和为.故答案为:26.12.已知数列{}n a 的前n 项和为n S ,满足,则n a =_____.【答案】122n +- 【解析】由题意,数列{}n a 满足,则,两式相减可得,即整理得,即,即,当1n =时,1122S a =+,即1122a a =+,解得12a =-, 所以数列{}2n a -表示首项为124a -=-,公比为2的等比数列, 所以,所以122n n a +=-.13.等差数列{}n a 中,410a =且3a ,6a ,10a 成等比数列,数列{}n a 前20项的和20S =____ 【答案】200或330 【解析】设数列{}n a 的公差为d ,则,,由3610,,a a a 成等比数列,得23106a a a =,即,整理得,解得0d =或1d =,当0d =时,;当1d =时,,于是,故答案为200或330.14.已知正项等比数列{}n a 的前n 项和为n S .若,则631S S +取得最小值时,9S 的值为_______.【解析】由,得:q≠1,所以,化简得:,即,即,得32q =,化简得631S S +==,当11311a q q a -=-,即1a =时,631S S +取得最小值,所以=3故答案为:315.设数列{}n a 的前n 项和为n S ,且满足,则5S =____.【答案】3116【解析】 解:,可得1n =时,11a = ,2n ≥时,,又,两式相减可得121n n a -=,即112n n a -⎛⎫= ⎪⎝⎭,上式对1n =也成立,可得数列{}n a 是首项为1,公比为12的等比数列, 可得.故答案为:3116.16.已知数列{}n a 满足,则数列的前n 项和为___________.【答案】2222n n +-+【解析】由,得,所以数列n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的等比数列,于是,所以12n n a n +=⋅,因为,所以的前n 项和2222n n +=-+. 17.定义:从数列{}n a 中抽取项按其在{}n a 中的次序排列形成一个新数列{}n b ,则称{}n b 为{}n a 的子数列;若{}n b 成等差(或等比),则称{}n b 为{}n a 的等差(或等比)子数列. (1)记数列{}n a 的前n 项和为n S ,已知21n n S =-. ①求数列{}n a 的通项公式;②数列{}n a 是否存在等差子数列,若存在,求出等差子数列;若不存在,请说明理由. (2)已知数列{}n a 的通项公式为,证明:{}n a 存在等比子数列.【答案】(1)①12n n a -=;②见解析;(2)见证明【解析】解:(1)①因为21n n S =-,所以当1n =时,,当2n ≥时,,所以.综上可知:12n n a -=.②假设从数列{}n a 中抽3项成等差,则,即,化简得:.因为k l m <<,所以0l k ->,0m k ->,且l k -,m k -都是整数, 所以22l k -⨯为偶数,12m k -+为奇数,所以不成立.因此,数列{}n a 不存在三项等差子数列. 若从数列{}n a 中抽项,其前三项必成等差数列,不成立.综上可知,数列{}n a 不存在等差子数列.(2)假设数列{}n a 中存在3项0n a +,0n a k ++,成等比.设0n a b +=,则b Q +∈,故可设qb p=(p 与q 是互质的正整数). 则需满足,即需满足,则需满足.取k q =,则2l k pq =+.此时,.故此时成立.因此数列{}n a 中存在3项0n a +,0n a k ++,成等比,所以数列{}n a 存在等比子数列.18.在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项 (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足,求数列{}n b 的通项公式;(3)令,数列{}n c 的前n 项和为n T .【答案】(1)2n a n =;(2);(3).【解析】(1)因为2a 是1a 与4a 的等比中项,所以,∴数列{}n a 的通项公式为2n a n =. (2)∵①∴②②-①得:,,故。

十年高考真题分类汇编(2010-2019) 数学 专题07 解三角形 无答案原卷版

十年高考真题分类汇编(2010-2019)  数学 专题07 解三角形  无答案原卷版

十年高考真题分类汇编(2010—2019)数学专题07 解三角形一、选择题1.(2019·全国1·文T11)△ABC的内角A,B,C的对边分别为a,b,c.已知asin A-bsin B=4csin C,cos A=-,则=()A.6B.5C.4D.32.(2018·全国2·理T6文T7)在△ABC中,cos,BC=1,AC=5,则AB=()A.4B.C.D.23.(2018·全国3·理T 9文T 11)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A. B.C. D.4.(2017·山东·理T9)在△ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin AcosC+cosAsinC,则下列等式成立的是( )A.a=2bB.b=2aC.A=2BD.B=2A5.(2017·全国1·文T11)△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cosC)=0,a=2,c=,则C=()A. B. C. D.6.(2016·全国3·理T8)在△ABC中,B=,BC边上的高等于BC,则cos A=()A. B. C.- D.-7.(2016·全国3·文T9)在△ABC中,B=,BC边上的高等于BC,则sin A=()A. B. C. D.8.(2016·全国1·文T4)△ABC的内角A,B,C的对边分别为a,b,c.已知a=,c=2,cos A=,则b= ()A. B. C.2 D.39.(2016·天津·理T3)在△ABC中,若AB=,BC=3,∠C=120°,则AC=( )A.1B.2C.3D.410.(2016·山东·文T8)△ABC中,角A,B,C的对边分别是a,b,c.已知b=c,a2=2b2(1-sin A),则A=( )A. B. C. D.11.(2015·广东·文T5)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cos A=且b<c,则b=()A.3B.2C.2D.12.(2014·全国2·理T 4)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.113.(2014·四川·文T8)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC等于( )A.240(-1) mB.180(-1) mC.120(-1) mD.30(+1) m14.(2013·全国1·文T10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos 2A=0,a=7,c=6,则b=( )A.10B.9C.8D.515.(2013·全国2·文T 4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为()A.2+2B.+1C.2-2D.-1二、填空题1.(2019·全国2·理T15)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=,则△ABC的面积为___________.2.(2019·全国2·文T15)△ABC的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B= .3.(2019·浙江·T14)在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上.若∠BDC=45°,则BD= ,cos∠ABD= .4.(2018·浙江·T13)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B=___________,c=___________.5.(2018·北京·文T 14)若△ABC的面积为(a2+c2-b2),且∠C为钝角,则∠B= ________;的取值范围是.6.(2018·全国1·文T16)△ABC的内角A,B,C的对边分别为a,b,c,已知bsinC+csinB=4asin BsinC,b2+c2-a2=8,则△ABC的面积为.7.(2017·浙江·T14)已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连接CD,则△BDC的面积是,cos∠BDC= .8.(2017·全国3·文T15)△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=,c=3,则A= .9.(2017·全国2·文T16)△ABC的内角A,B,C的对边分别为a,b,c,若2bcos B=acosC+ccosA,则B= .10.(2016·全国2·理T13文T15)△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=___________.11.(2016·北京·文T13)在△ABC中,A=,a=c,则=.12.(2015·全国1·理T16)在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是.13.(2015·重庆·理T13)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=___________.14.(2015·湖北·理T13文T15)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m.15.(2015·福建·理T12)若锐角△ABC的面积为,且AB=5,AC=8,则BC等于.16.(2015·天津·理T13)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b-c=2,cos A=-,则a的值为.17.(2015·安徽·文T12)在△ABC中,AB=,∠A=75°,∠B=45°,则AC= .18.(2015·福建·文T14)若△ABC中,AC=,A=45°,C=75°,则BC=___________.19.(2015·重庆·文T13)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cos C=,3sin A=2sin B,则c= .20.(2015·北京·理T 12)在△ABC中,a=4,b=5,c=6,则=.21.(2014·全国1·理T 16)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sinB)=(c-b)sin C,则△ABC面积的最大值为.22.(2014·全国1·理T16)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=___________m.23.(2011·全国·理T16)在△ABC中,B=60°,AC=,则AB+2BC的最大值为___________.24.(2011·全国·文T 15)△ABC中,B=120°,AC=7,AB=5,则△ABC的面积为.25.(2010·全国·理T16)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2.若△ADC的面积为3-,则∠BAC= .26.(2010·全国·文T16)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=___________.三、计算题1.(2019·全国1·理T17)△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin Bsin C.(1)求A;(2)若a+b=2c,求sin C.2.(2019·全国3·T18)△ABC的内角A,B,C的对边分别为a,b,c.已知asin =bsin A.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.3.(2019·天津·理T15文T16)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3csin B=4asinC.(1)求cosB的值;(2)求sin(2B+)的值.4.(2019·江苏·T15)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若,求sin的值.5.(2018·全国1·理T17)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2 ,求BC.6.(2018·北京·理T15)在△ABC中,a=7,b=8,cos B=-.(1)求∠A;(2)求AC边上的高.7.(2018·天津·理T15文T16)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsin A=acos .(1)求角B的大小;(2)设a=2,c=3,求b和sin(2A-B)的值.8.(2017·天津·理T15)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a>b,a=5,c=6,sin B=.(1)求b和sin A的值;(2)求sin的值.9.(2017·天津·文T15)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin A=4bsin B,ac=(a2-b2-c2).(1)求cosA的值;(2)求sin(2B-A)的值.10.(2017·全国1·理T 17)△ABC的内角A,B,C的对边分别为a,b,c.已知△ABC的面积为.(1)求sin BsinC;(2)若6cos BcosC=1,a=3,求△ABC的周长.11.(2017·全国2·理T17)△ABC的内角A,B,C的对边分别为a,b,c.已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.12.(2017·全国3·理T17)△ABC的内角A,B,C的对边分别为a,b,c.已知sin A+cos A=0,a=2,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.13.(2017·北京·理T15)在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.14.(2017·山东·文T17)在△ABC中,角A,B,C的对边分别为a,b,c.已知b=3,=-6,S△ABC=3,求A和a.15.(2016·北京·T5)在△ABC中,a2+c2=b2+ac.(1)求B的大小;(2)求cos A+cosC的最大值.16.(2016·山东·理T16)在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tan A+tan B)=.(1)证明:a+b=2c;(2)求cosC的最小值.17.(2016·天津·文T15)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asin 2B=bsin A.(1)求B;(2)若cosA=,求sin C的值.18.(2016·四川·文T 18)在△ABC中,角A,B,C所对的边分别是a,b,c,且.(1)证明:sinAsin B=sin C;(2)若b2+c2-a2=bc,求tan B.19.(2016·浙江·文T16)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2acos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.20.(2016·全国1·理T17)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求C;(2)若c=,△ABC的面积为,求△ABC的周长.21.(2016·浙江·理T16)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acos B.(1)证明:A=2B;(2)若△ABC的面积S=,求角A的大小.22.(2015·全国2·理T17)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.23.(2015·全国1·文T17)已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sin AsinC.(1)若a=b,求cosB;(2)设B=90°,且a=,求△ABC的面积.24.(2015·浙江·理T16)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知A=,b2-a2=c2.(1)求tan C的值;(2)若△ABC的面积为3,求b的值.25.(2015·山东·理T16)设f(x)=sin xcos x-cos2.(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值.26.(2015·陕西·理T17)△ABC的内角A,B,C所对的边分别为a,b,c,向量m=(a,b)与n=(cosA,sinB)平行.(1)求A;(2)若a=,b=2,求△ABC的面积.27.(2015·江苏·理T15)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin 2C的值.28.(2015·浙江·文T16)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知tan=2.(1)求的值;(2)若B=,a=3,求△ABC的面积.29.(2015·天津·文T16)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b-c=2,cos A=-.(1)求a和sin C的值;(2)求cos的值.30.(2015·全国2·文T17)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC.(1)求;(2)若∠BAC=60°,求∠B.31.(2015·安徽·理T16)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.32.(2014·全国2·文T17)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求角C和BD;(2)求四边形ABCD的面积.33.(2014·浙江·理T18)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A-cos2B=sin Acos A-sin Bcos B.(1)求角C的大小;(2)若sin A=,求△ABC的面积.34.(2014·辽宁·理T17)在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c.已知=2,cos B=,b=3.求:(1)a和c的值;(2)cos(B-C)的值.35.(2014·天津·文T16)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a-c=b,sin B=sin C.(1)求cos A的值;(2)求cos的值.36.(2014·北京·理T15)如图,在△ABC中,∠B=,AB=8,点D在BC边上,且CD=2,cos ∠ADC=.(1)求sin ∠BAD;(2)求BD,AC的长.37.(2014·湖南·理T18)如图,在平面四边形ABCD中,AD=1,CD=2,AC=.(1)求cos ∠CAD的值;(2)若cos∠BAD=-,sin ∠CBA=,求BC的长.38.(2014·湖南·文T19)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(1)求sin ∠CED的值;(2)求BE的长.39.(2013·全国2·理T17)△ABC的内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB.(1)求B;(2)若b=2,求△ABC面积的最大值.40.(2013·全国1·理T17)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.41.(2012·全国·文T 7)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asin C-ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.42.(2012·全国·理T17)已知a,b,c分别为△ABC三个内角A,B,C的对边,acos C+ asin C-b-c=0.(1)求A;(2)若a=2,△ABC的面积为,求b,c.43.(2010·陕西·理T17)如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里名师精心整理助您一臂之力的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D点需要多长时间?名师精心整理助您一臂之力11。

十年真题(2010-2019)高考数学(理)分类汇编专题07 数列(新课标Ⅰ卷)(解析版)

十年真题(2010-2019)高考数学(理)分类汇编专题07 数列(新课标Ⅰ卷)(解析版)

专题07数列历年考题细目表历年高考真题汇编1.【2019年新课标1理科09】记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10 C.S n=2n2﹣8n D.S n n2﹣2n【解答】解:设等差数列{a n}的公差为d,由S4=0,a5=5,得,∴,∴a n=2n﹣5,,故选:A.2.【2018年新课标1理科04】记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴a1+a1+d+4a1d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.3.【2017年新课标1理科04】记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.8【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.4.【2017年新课标1理科12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下的两项是20,21,再接下的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110【解答】解:设该数列为{a n},设b n2n+1﹣1,(n∈N+),则a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A项符合题意.B项,仿上可知325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有5=440,满足N>100,∴该款软件的激活码440.故选:A.5.【2016年新课标1理科03】已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97【解答】解:∵等差数列{a n}前9项的和为27,S99a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.6.【2013年新课标1理科07】设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m+1﹣a m=1,S m0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•,即有0,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+10,解得m=5.故选:C.7.【2013年新课标1理科12】设△A n B n∁n的三边长分别为a n,b n,c n,△A n B n∁n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,a n,∴b n+1+c n+1﹣2a n(b n+c n﹣2a n),∵b1+c1=2a1,∴b1+c1﹣2a1=0,∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、c n为焦点的椭圆上,又由题意,b n+1﹣c n+1,∴a1﹣b n,∴b n+1﹣a1,∴b n﹣a1,∴,c n=2a1﹣b n,∴[][] []单调递增(可证当n=1时0)故选:B.8.【2012年新课标1理科05】已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣7【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.9.【2019年新课标1理科14】记S n为等比数列{a n}的前n项和.若a1,a42=a6,则S5=.【解答】解:在等比数列中,由a42=a6,得q6a12=q5a1>0,即q>0,q=3,则S5,故答案为:10.【2018年新课标1理科14】记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,当n≥2时,S n﹣1=2a n﹣1+1,②,由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S663,故答案为:﹣6311.【2016年新课标1理科15】设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•,当n=3或4时,表达式取得最大值:26=64.故答案为:64.12.【2013年新课标1理科14】若数列{a n}的前n项和为S n a n,则数列{a n}的通项公式是a n=.【解答】解:当n=1时,a1=S1,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣(),整理可得,即2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣113.【2012年新课标1理科16】数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8)=183014.【2015年新课标1理科17】S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n,求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n(),∴数列{b n}的前n项和T n()().15.【2014年新课标1理科17】已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n+1(a n+2﹣a n)=λa n+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λS n=1,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.也可以先考虑前3项成等差数列,得出λ,再进一步验证即可.16.【2011年新课标1理科17】等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.【解答】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2.由条件可知各项均为正数,故q.由2a1+3a2=1得2a1+3a1q=1,所以a1.故数列{a n}的通项式为a n.(Ⅱ)b n(1+2+…+n),故2()则2[(1)+()+…+()],所以数列{}的前n项和为.17.【2010年新课标1理科17】设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n ﹣1+22n ﹣3+…+2)+2=32=22(n +1)﹣1.而a 1=2,所以数列{a n }的通项公式为a n =22n ﹣1.(Ⅱ)由b n =na n =n •22n﹣1知S n =1•2+2•23+3•25+…+n •22n ﹣1①从而22S n =1•23+2•25+…+n •22n +1②①﹣②得(1﹣22)•S n =2+23+25+…+22n ﹣1﹣n •22n +1.即.考题分析与复习建议本专题考查的知识点为:数列的概念与简单表示法,等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.历年考题主要以选择填空或解答题题型出现.重点考查的知识点为:等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.预测明年本考点题目会比较稳定,备考方向以知识点等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项为重点较佳.最新高考模拟试题1.等差数列{}n a ,等比数列{}n b ,满足111a b ==,53a b =,则9a 能取到的最小整数是( ) A .1- B .0C .2D .3【答案】B 【解析】等差数列{}n a 的公差设为d ,等比数列{}n b 的公比设为q ,0q ≠,由111a b ==,53a b =,可得214d q +=,则2291812(1)211a d q q =+=+-=->-,可得9a 能取到的最小整数是0. 故选:B .2.中国古代数学名著《九章算术》中有这样一个问題今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰“我羊食半马、“马主曰“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟、羊主人说“我羊所吃的禾苗只有马的一半,”马主人说“我马所吃的禾苗只有牛的一半,“打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还( )升粟? A .253B .503C .507D .1007【答案】D 【解析】因为5斗=50升,设羊、马、牛的主人应偿还的量分别为123,,a a a , 由题意可知其构成了公比为2的等比数列,且350S =则31(21)5021a -=-,解得1507a =, 所以马主人要偿还的量为:2110027a a ==, 故选D.3.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9填入33⨯的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数21,2,3,,n L 填入n n ⨯个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记n 阶幻方的对角线上的数字之和为n N ,如图三阶幻方的315N =,那么 9N 的值为( )A .41B .45C .369D .321【答案】C【解析】根据题意可知,幻方对角线上的数成等差数列, 31(123456789)153N =++++++++=,41(12345678910111213141516)344N =+++++++++++++++=,51(12345678910111213141516171819202122232425)655N =++++++++++++++++++++++++=,222211(1)(1)(12345)22n n n n n N n n n ++∴=+++++⋯+=⨯=.故299(91)9413692N +==⨯=.故选:C4.设数列{}n a 的前n 项和为n S ,且11a = 2(1)()n n S a n n N n *=+-∈,则数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和是( ) A .290 B .920C .511D .1011【答案】C 【解析】 由()2(1)nn S a n n N n*=+-∈得2(1)n n S na n n =--, 当2n ≥时,11(1)4(1)n n n n n a S S na n a n --=-=----,整理得14n n a a --=, 所以{}n a 是公差为4的等差数列,又11a =, 所以()43n a n n N*=-∈,从而()2133222(1)2n n n a a S n n n n n n ++=+=+=+, 所以1111132(1)21n S n n n n n ⎛⎫==- ⎪+++⎝⎭,数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和115121111S ⎛⎫=-= ⎪⎝⎭.故选C .5.意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,L L ,即()()()()()121,12F F F n F n F n ===-+-()3,n n N*≥∈,此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{}n a ,则数列{}n a 的前2019项的和为( ) A .672 B .673C .1346D .2019【答案】C 【解析】由数列1,1,2,3,5,8,13,21,34,55,...各项除以2的余数, 可得{}n a 为1,1,0,1,1,0,1,1,0,1,1,0,..., 所以{}n a 是周期为3的周期数列, 一个周期中三项和为1102++=, 因为20196733=⨯,所以数列{}n a 的前2019项的和为67321346⨯=, 故选C.6.已知数列{}n a 是等比数列,数列{}n b是等差数列,若2610a a a ⋅⋅=16117b b b π++=,则21039tan1b b a a +-⋅的值是( )A .1 B.2C.2-D.【答案】D 【解析】{}n a Q 是等比数列326106a a a a ∴⋅⋅==6a ∴={}n b Q 是等差数列 1611637b b b b π∴++== 673b π∴=2106239614273tan tan tan tan tan 111333b b b a a a πππ+∴===-=-=-⋅--本题正确选项:D7.已知数列{}n a 满足2*123111()23n a a a a n n n N n ++++=+∈L ,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若*()1n n N T n nλ<∈+恒成立,则实数λ的取值范围为( ) A .1[,)4+∞ B .1(,)4+∞ C .3[,)8+∞ D .3(,)8+∞【答案】D 【解析】解:数列{}n a 满足212311123n a a a a n n n ++++=+L ,① 当2n ≥时,21231111(1)(1)231n a a a a n n n -+++⋯+=-+--,② ①﹣②得:12n a n n=,故:22n a n =,数列{}n b 满足:22121214(1)n n n n n b a a n n +++==+221114(1)n n ⎡⎤=-⎢⎥+⎣⎦, 则:2222211111114223(1)n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L21114(1)n ⎛⎫=- ⎪+⎝⎭, 由于*()1n n N T n nλ<∈+恒成立, 故:21114(1)1n n n λ⎛⎫-< ⎪++⎝⎭, 整理得:244n n λ+>+,因为211(1)4441n y n n +==+++在*n N ∈上单调递减, 故当1n =时,max213448n n +⎛⎫= ⎪+⎝⎭ 所以38λ>. 故选:D .8.已知函数()y f x =的定义域为R ,当0x <时()1f x >,且对任意的实数,x y R ∈,等式()()()f x f y f x y =+成立,若数列{}n a 满足()()1111n n f a f n N a *+⎛⎫=∈ ⎪+⎝⎭,且()10a f =,则下列结论成立的是( ) A .()()20162018f a f a > B .()()20172020f a f a > C .()()20182019f a f a > D .()()20162019f a f a >【答案】A 【解析】由()()()f x f y f x y =+,令0x =,1y =-,则()()()011f f f -=-0x <Q 时,()1f x > ()11f ∴-> ()01f ∴= 11a ∴=当0x >时,令y x =-,则()()()01f x f x f -==,即()()1f x f x =-又()1f x -> 当0x >时,()01f x << 令21x x >,则21>0-x x()()()1212f x f x x f x ∴-=,即()()()()22110,1f x f x x f x =-∈ ()f x ∴在R 上单调递减又()()11111011n n n n f a f f a f a a ++⎛⎫⎛⎫=+==⎪ ⎪++⎝⎭⎝⎭111n na a +∴=-+ 令1n =,212a =-;令2n =,32a =-;令3n =,41a = 数列{}n a 是以3为周期的周期数列201632a a ∴==-,201711a a ==,2018212a a ==-,201932a a ==-,202011a a ==()f x Q 在R 上单调递减 ()()1212f f f ⎛⎫∴->-> ⎪⎝⎭()()20162018f a f a ∴>,()()20172020f a f a =,()()20182019f a f a <,()()20162019f a f a =本题正确选项:A 9.在数列{}n a 中,1111,,(*)2019(1)n n a a a n N n n +==+∈+,则2019a 的值为______. 【答案】1 【解析】 因为11,(*)(1)n n a a n N n n +=+∈+所以1111(1)1n n a a n n n n +-==-++,2111,2a a -=-3211,23a a -=-,201920181120182019a a -=-, 各式相加,可得20191112019a a -=-, 201911120192019a -=-,所以,20191a =,故答案为1.10.已知正项等比数列{}n a 满足5432a a a +=,若存在两项m a ,n a ,使得1a =,则91m n+的最小值为__________. 【答案】2 【解析】Q 正项等比数列{}n a 满足5432a a a +=,432111=+2a q a q a q ∴,整理,得210+2q q -=,又0q >,解得,12q =, Q存在两项m a ,n a 使得1a ,2221164m n a q a +-∴=, 整理,得8m n +=,9119119()()(10)88m n m n m n m n n m+=++=++1(1028+=…, 则91m n+的最小值为2. 当且仅当9m n n m=取等号,但此时m ,*n N ∉.又8m n +=, 所以只有当6m =,2n =时,取得最小值是2. 故答案为:211.已知数列{}n a 满足对*,m n N ∀∈,都有m n m n a a a ++=成立,72a π=,函数()f x =2sin 24cos2xx +,记()n n y f a =,则数列{}n y 的前13项和为______. 【答案】26 【解析】 解:对*,m n ∀∈N ,都有m n m n a a a ++=成立,可令1m =即有11n n a a a +-=,为常数, 可得数列{}n a 为等差数列, 函数2()sin 24cos 2xf x x =+sin 22(1cos )x x =++, 由()()()sin 221cos f x fx x x π+-=++()()()sin 221cos 4x x ππ+-++-=,可得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称, Q 113212a a a a +=+=L 6872a a a π=+==,()()()()113212f a f a f a f a +=+=()()()6874,2f a f a f a =+==L ,可得数列{}n y 的前13项和为46226⨯+=. 故答案为:26.12.已知数列{}n a 的前n 项和为n S ,满足22()n n S a n n N *=+∈,则n a =_____.【答案】122n +- 【解析】由题意,数列{}n a 满足22()n n S a n n N *=+∈, 则1122(1)(2,)n n S a n n n N *--=+-≥∈,两式相减可得11222,(2,)n n n n S S a a n n N *--+≥∈-=-, 即1222,(2,)n n n a a a n n N *-=+≥∈-整理得122,(2)n n a a n -=-≥,即12(2),(22)n n a a n -=-≥-,即12,(2)22n n a n a -=≥--,当1n =时,1122S a =+,即1122a a =+,解得12a =-,所以数列{}2n a -表示首项为124a -=-,公比为2的等比数列,所以112422n n n a -+-=-⨯=-,所以122n n a +=-.13.等差数列{}n a 中,410a =且3a ,6a ,10a 成等比数列,数列{}n a 前20项的和20S =____ 【答案】200或330 【解析】设数列{}n a 的公差为d ,则3410a a d d =-=-,641042102,6106a a d d a a d d =+=+=+=+,由3610,,a a a 成等比数列,得23106a a a =,即()()()210106102d d d -+=+,整理得210100d d -=,解得0d =或1d =, 当0d =时,20420200S a ==;当1d =时,14310317a a d =-=-⨯=,于是2012019202071903302S a d ⨯=+=⨯+=, 故答案为200或330.14.已知正项等比数列{}n a 的前n 项和为n S .若9362S S S =+,则631S S +取得最小值时,9S 的值为_______.【答案】 【解析】由9362S S S =+,得:q≠1,所以936111(1)(1)(1)2111a q a q a q q q q---=+---,化简得:936112(1)q q q -=-+-,即963220q q q --+=,即63(1)(2)0q q --=,得32q =,化简得631S S +=6131(1)11(1)a q qq a q --+--=11311a q q a -+≥-, 当11311a q q a -=-,即1a =时,631S S +取得最小值, 所以919(1)1a q S q -==-9(1)1q q --=3故答案为:315.设数列{}n a 的前n 项和为n S ,且满足11222n n a a a n -++⋯+=,则5S =____.【答案】3116【解析】解:11222n n a a a n -+++=L ,可得1n =时,11a = ,2n ≥时,2121221n n a a a n --++⋯+=-,又11222n n a a a n -++⋯+=,两式相减可得121n n a -=,即112n n a -⎛⎫= ⎪⎝⎭,上式对1n =也成立,可得数列{}n a 是首项为1,公比为12的等比数列, 可得551131211612S -==-. 故答案为:3116.16.已知数列{}n a 满足112(1)0,4n n n a na a ++-==,则数列(1)(2)na n n ⎧⎫⎨⎬++⎩⎭的前n 项和为___________.【答案】2222n n +-+【解析】由12(1)0n n n a na ++-=,得121n n a an n+=⨯+, 所以数列n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的等比数列,于是11422n n na n-+=⨯=, 所以12n n a n +=⋅,因为12(1)(2)(1)(2)n n a n n n n n +⋅=++++212221n n n n ++=-++, 所以(1)(2)na n n ⎧⎫⎨⎬++⎩⎭的前n 项和324321222222324321n n n S n n ++⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭L 2222n n +=-+. 17.定义:从数列{}n a 中抽取(,3)m m N m ∈≥项按其在{}n a 中的次序排列形成一个新数列{}n b ,则称{}n b为{}n a 的子数列;若{}n b 成等差(或等比),则称{}n b 为{}n a 的等差(或等比)子数列. (1)记数列{}n a 的前n 项和为n S ,已知21n n S =-. ①求数列{}n a 的通项公式;②数列{}n a 是否存在等差子数列,若存在,求出等差子数列;若不存在,请说明理由. (2)已知数列{}n a 的通项公式为()n a n a a Q +=+∈,证明:{}n a 存在等比子数列.【答案】(1)①12n n a -=;②见解析;(2)见证明【解析】解:(1)①因为21n n S =-,所以当1n =时,11211a =-=, 当2n ≥时,1121n n S --=-,所以()()1121212nn n n a --=---=.综上可知:12n n a -=.②假设从数列{}n a 中抽3项,,()k l m a a a k l m <<成等差, 则2l k m a a a =+,即1112222l k m ---⨯=+, 化简得:2212l k m k --⨯=+.因为k l m <<,所以0l k ->,0m k ->,且l k -,m k -都是整数, 所以22l k -⨯为偶数,12m k -+为奇数,所以2212l k m k --⨯=+不成立. 因此,数列{}n a 不存在三项等差子数列.若从数列{}n a 中抽(,4)m m N m ∈≥项,其前三项必成等差数列,不成立. 综上可知,数列{}n a 不存在等差子数列.(2)假设数列{}n a 中存在3项0n a +,0n a k ++,0()n a l k l ++<成等比. 设0n a b +=,则b Q +∈,故可设qb p=(p 与q 是互质的正整数). 则需满足()()()2000n a k n a n a l ++=+++,即需满足2()()b k b b l +=+,则需满足2222k pk l k k b q=+=+.取k q =,则2l k pq =+.此时222222()2q q q b q q q p p p ⎛⎫+=+=++ ⎪⎝⎭,2222()22q q q q b b l q pq q p p pp ⎛⎫+=++=++ ⎪⎝⎭.故此时2()()b k b b l +=+成立.因此数列{}n a 中存在3项0n a +,0n a k ++,0()n a l k l ++<成等比, 所以数列{}n a 存在等比子数列.18.在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项 (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足3122331313131n n n b b b ba =++++++++L ,求数列{}nb 的通项公式; (3)令()*4n nn a b c n N =∈,数列{}n c 的前n 项和为n T . 【答案】(1)2n a n =;(2)2(31)nn b =+;(3)()()12133142n n n n n T +-⨯++=+. 【解析】(1)因为2a 是1a 与4a 的等比中项,所以21111(2)(6)2a a a a +=+∴=,∴数列{}n a 的通项公式为2n a n =.(2)∵()31223131313131n n n b b b ba n =+++++≥++++L ① ∴311212313131313131n n n n n b b b b ba +++=+++++++++++L ② ②-①得:111231n n n n b a a +++=-=+,()11231n n b ++=+,故()()*231n n b n N =+∈。

十年真题(2010-2019)高考数学(理)分类汇编专题05 三角函数与解三角形(新课标Ⅰ卷)(原卷版)

十年真题(2010-2019)高考数学(理)分类汇编专题05 三角函数与解三角形(新课标Ⅰ卷)(原卷版)

专题05三角函数与解三角形历年考题细目表解答题2018 解三角形2018年新课标1理科17解答题2017 解三角形2017年新课标1理科17解答题2016 解三角形2016年新课标1理科17解答题2013 解三角形2013年新课标1理科17解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f()=sin||+|sin|有下述四个结论:①f()是偶函数②f()在区间(,π)单调递增③f()在[﹣π,π]有4个零点④f()的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③2.【2017年新课标1理科09】已知曲线C1:y=cos,C2:y=sin(2),则下面结论正确的是()A.把C1上各点的横坐标伸长到原的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C23.【2016年新课标1理科12】已知函数f()=sin(ω+φ)(ω>0,|φ|),为f()的零点,为y=f()图象的对称轴,且f()在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.54.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A. B.C.D.5.【2015年新课标1理科08】函数f()=cos(ω+φ)的部分图象如图所示,则f()的单调递减区间为()A.(π,π),∈B.(2π,2π),∈C.(,),∈D.(,2),∈6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣β D.2α+β7.【2012年新课标1理科09】已知ω>0,函数f()=sin(ω)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与轴的正半轴重合,终边在直线y=2上,则cos2θ=()A.B.C.D.9.【2011年新课标1理科11】设函数f()=sin(ω+φ)+cos(ω+φ)的最小正周期为π,且f(﹣)=f(),则()A.f()在单调递减B.f()在(,)单调递减C.f()在(0,)单调递增D.f()在(,)单调递增10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣211.【2018年新课标1理科16】已知函数f()=2sin+sin2,则f()的最小值是.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.14.【2013年新课标1理科15】设当=θ时,函数f()=sin﹣2cos取得最大值,则cosθ=.15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.16.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b ﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题专题05三角函数与解三角形1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈ B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( )A .4912π B .356π C .256π D .174π 3.将函数222()2cos 4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( )A .sin 34x π⎛⎫+⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭5.已知函数()cos f x x x =,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1B .2C .3D .46.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -+=,b =则ABC △的面积为A .B C .D7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3π B .23π C .34π D .56π9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______.10.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________11.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______15.在锐角ABC ∆中,角A B C ,,的对边分别为a b c ,,.且cos cos A B a b +=33Ca,23b =则a c +的取值范围为_____.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,360,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积.18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称. (1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域; (2)若7a =且133sin sin B C +=,求ABC ∆的面积. 19.在ABC ∆中,已知2AB =,2cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos 2sin 22A b b aB =+. (1)求cos A ;(2)若25a =5c =,求b .22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小; (Ⅱ)求cos cos A C +的最大值.。

十年真题(2010-2019)高考数学(文)分类汇编专题05 三角函数与解三角形(新课标Ⅰ卷)(原卷版)

十年真题(2010-2019)高考数学(文)分类汇编专题05 三角函数与解三角形(新课标Ⅰ卷)(原卷版)

专题05三角函数与解三角形历年考题细目表7填空题2016 三角函数2016年新课标1文科14填空题2014 解三角形2014年新课标1文科16填空题2013 三角函数2013年新课标1文科16填空题2011 解三角形2011年新课标1文科15填空题2010 解三角形2010年新课标1文科16解答题2015 解三角形2015年新课标1文科17解答题2012 解三角形2012年新课标1文科17历年高考真题汇编1.【2019年新课标1文科07】tan255°=()A.﹣2B.﹣2C.2D.22.【2019年新课标1文科11】△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A,则()A.6 B.5 C.4 D.33.【2018年新课标1文科08】已知函数f()=2cos2﹣sin2+2,则()A.f()的最小正周期为π,最大值为3B.f()的最小正周期为π,最大值为4C.f()的最小正周期为2π,最大值为3D.f()的最小正周期为2π,最大值为44.【2018年新课标1文科11】已知角α的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α,则|a﹣b|=()A.B.C.D.15.【2017年新课标1文科11】△ABC的内角A,B,C的对边分别为a,b,c,已知sin B+sin A(sin C﹣cos C)=0,a=2,c,则C=()A.B.C.D.6.【2016年新课标1文科04】△ABC的内角A、B、C的对边分别为a、b、c.已知a,c=2,cos A,则b=()A.B.C.2 D.37.【2016年新课标1文科06】将函数y=2sin(2)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2)B.y=2sin(2)C.y=2sin(2)D.y=2sin(2)8.【2015年新课标1文科08】函数f()=cos(ω+φ)的部分图象如图所示,则f()的单调递减区间为()A.(π,π),∈B.(2π,2π),∈C.(,),∈D.(,2),∈9.【2014年新课标1文科02】若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>010.【2014年新课标1文科07】在函数①y=cos|2|,②y=|cos|,③y=cos(2),④y=tan(2)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③11.【2013年新课标1文科10】已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()A.10 B.9 C.8 D.512.【2012年新课标1文科09】已知ω>0,0<φ<π,直线和是函数f()=sin(ω+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.13.【2011年新课标1文科07】已知角θ的顶点与原点重合,始边与轴的正半轴重合,终边在直线y=2上,则cos2θ=()A.B.C.D.14.【2011年新课标1文科11】设函数,则f()=sin(2)+cos(2),则()A.y=f()在(0,)单调递增,其图象关于直线对称B.y=f()在(0,)单调递增,其图象关于直线对称C.y=f()在(0,)单调递减,其图象关于直线对称D.y=f()在(0,)单调递减,其图象关于直线对称15.【2010年新课标1文科10】若cos α,α是第三象限的角,则sin(α)=()A.B.C. D.16.【2019年新课标1文科15】函数f()=sin(2)﹣3cos的最小值为.17.【2018年新课标1文科16】△ABC的内角A,B,C的对边分别为a,b,c.已知b sin C+c sin B=4a sin B sin C,b2+c2﹣a2=8,则△ABC的面积为.18.【2017年新课标1文科15】已知α∈(0,),tanα=2,则cos(α)=.19.【2016年新课标1文科14】已知θ是第四象限角,且sin(θ),则tan(θ)=.20.【2014年新课标1文科16】如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.21.【2013年新课标1文科16】设当=θ时,函数f()=sin﹣2cos取得最大值,则cosθ=.22.【2011年新课标1文科15】△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.23.【2010年新课标1文科16】在△ABC中,D为BC边上一点,BC=3BD,AD,∠ADB=135°.若AC AB,则BD=.24.【2015年新课标1文科17】已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sin A sin C.(Ⅰ)若a=b,求cos B;(Ⅱ)设B=90°,且a,求△ABC的面积.25.【2012年新课标1文科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,c a sin C﹣c cos A.(1)求A;(2)若a=2,△ABC的面积为,求b,c.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈ B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( )A .4912π B .356π C .256πD .174π 3.将函数222()2cos 4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( )A .sin 34x π⎛⎫+⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭5.已知函数()cos f x x x =,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1B .2C .3D .46.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -+=,b =则ABC △的面积为A .B C .D7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ).A .3π B .23π C .34π D .56π9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______.10.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________11.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______15.在锐角ABC ∆中,角A B C ,,的对边分别为a b c ,,.且cos cos A B a b +=33Ca,23b =则a c +的取值范围为_____.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,360,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积.18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称. (1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域; (2)若7a =且133sin sin B C +=,求ABC ∆的面积. 19.在ABC ∆中,已知2AB =,2cos B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos 2sin 22A b b aB =+. (1)求cos A ;(2)若25a =5c =,求b .22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小; (Ⅱ)求cos cos A C +的最大值.。

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):三角函数

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):三角函数

A.sinα>0 B.cosα>0
C.sin 2α>0 D.cos 2α>0
43.(2014·大纲全国·文 T2)已知角 α 的终边经过点(-4,3),则 cosα=( )
4
3
3
4
A.5
B.5
C.-5
D.-5
44.(2014·全国 1·理 T8)设 α∈
0,
π 2
,β∈
0,
π 2
,且 tan
1+sin2
段上,角 α 以 Ox 为始边,OP 为终边.若 tan α<cosα<sin α,则 P 所在的圆弧是( )
A.
B. C. D.
8.(2018·全国 1·文 T11)已知角 α 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点
2
A(1,a),B(2,b),且 cos 2α=3,则|a-b|=( )
A.1 B.2 C.3 D.4
1
1
37.(2015·重庆·文 T6)若 tan α=3,tan(α+β)=2,则 tan β=( )
1
1
5
5
A.7
B.6
C.7
D.6

38.(2015·安徽·理 T10)已知函数 f(x)=Asin(ωx+φ)(A,ω,φ 均为正的常数)的最小正周期为 π,当 x= 3

11π
18.(2017·天津·T7)设函数 f(x)=2sin(ωx+φ),x∈R,其中 ω>0,|φ|<π,若 f 8 =2,f 8 =0,且 f(x)
的最小正周期大于 2π,则( )
2
π
2

理科数学2010-2019高考真题分类训练解三角形答案

理科数学2010-2019高考真题分类训练解三角形答案

专题四 三角函数与解三角形第十二讲 解三角形答案部分 2019年1.解:(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==. 因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-,()sin 1202sin A C C ︒+-=,1sin 2sin 2C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 60C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 2.解析:由余弦定理有2222cos b a c ac B =+-, 因为6b =,2a c =,π3B =,所以222π36(2)4cos 3c c c =+-,所以212c =,21sin sin 2ABC S ac B c B ===△3.解析(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin 0A ≠,所以sinsin 2A CB +=.由180A B C ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此60B =︒. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===.由于ABC △为锐角三角形,故090A ︒<<︒,090C ︒<<︒,由(1)知120A C +=︒,所以3090C ︒<<︒,故122a <<ABC S <<△. 因此,ABC △面积的取值范围是,82⎛⎫⎪ ⎪⎝⎭.4.解析 设()2AD AB A AO C λλ==+u u u u r u u u u u r u u u rr ,1()(1)3AO AE EO AE EC AE AC AE AE AC AB ACμμμμμμ-=+=+=+-=-+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,所以1232λμλμ-⎧=⎪⎪⎨⎪=⎪⎩,解得1214λμ⎧=⎪⎪⎨⎪=⎪⎩,所以11()24AO AD AB AC ==+u u u r u u u r u u u r u u u r ,13EC AC AE AB AC =-=-+u u u r u u u r u u u r u u ur u u u r ,221131266()()()43233AO EC AB AC AB AC AB AB AC AC ⋅=⨯+⨯-+=-+⋅+=u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r221322AB AB AC AC -+⋅+u u ur u u u r u u u r u u u r , 因为221322AB AC AB AB AC AC ⋅=-+⋅+u u u r u u u r u u u r u u u r u u u r u u u r ,所以221322AB AC =u u ur u u u r ,所以223AB AC=u u u r u u u r,所以AB AC =. 5.解析 (1)由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以3c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos B =. 因此π25sin cos 2B B ⎛⎫+== ⎪⎝⎭. 6.解析:在直角三角形ABC 中,4AB =,3BC =,5AC =,4sin 5C =, 在BCD △中,sin sin BD BC C BDC=∠,可得122BD =;135CBD C ∠=-o ,224372sin sin(135)(cos sin )225510CBD C C C ⎛⎫∠=-=+=⨯+=⎪⎝⎭o , 所以()72cos cos 90sin ABD CBD CBD ∠=-∠=∠=o.7.解析:(I )由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯-⎪⎝⎭. 因为2b c =+,所以()222123232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭.解得5c =, 所以7b =.(II )由1cos 2B =-得sin B =.由正弦定理得sin sin c C B b ==在ABC △中,B ∠是钝角,所以C ∠为锐角.所以11cos 14C ==. 所以()sin sin cos cos sin B C B C B C -=-=. 8.解析(Ⅰ)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B a a +-+-===-⋅⋅.(Ⅱ)由(Ⅰ)可得sin 4B ==,从而sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故πππ71sin 2sin 2cos cos 2sin 66682B B B ⎛⎫+=+=-⨯= ⎪⎝⎭.2010-2018年1.A 【解析】因为213cos 2cos121255=-=⨯-=-C C ,所以由余弦定理, 得22232cos 251251()325=+-⋅=+-⨯⨯⨯-=AB AC BC AC BC C ,所以=AB A .2.C 【解析】根据题意及三角形的面积公式知2221sin 24a b c ab C +-=,所以222sin cos 2a b c C C ab +-==,所以在ABC ∆中,4C π=.故选C . 3.A 【解析】由sin (12cos )2sin cos cos sin B C A C A C +=+,得sin 2sin cos sin cos sin B B C A C B +=+,即2sin cos sin cos B C A C =,所以2sin sin B A =,即2b a =,选A . 4.A 【解析】由余弦定理得213931AC AC AC =++⇒=,选A.5.C 【解析】设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得1sin 34a c π==,则a =.在△ABC 中,由余弦定理可得222222295322b ac c c c c =+-=+-=,则b =.由余弦定理,可得22222259cos 2c c c b c a A bc +-+-===C . 6.B 【解析】11sin 22AB BC B ⋅⋅=,∴sin 2B =,所以45B =o 或135B =o. 当45B =o时,1AC ==,此时1,AB AC BC ===90A =o 与“钝角三角形”矛盾;当135B =o时,AC ==.7.A 【解析】因为A B C π++=,由1sin 2sin()sin()2A ABC C A B +-+=--+得1sin 2sin 2sin 22A B C ++=, 即1sin[()()]sin[()()]sin 22A B A B A B A B C ++-++--+=, 整理得1sin sin sin 8A B C =, 又111sin sin sin 222S ab C bc A ac B ===,因此322222211sin sin sin 864S a b c A B C a b c ==,由12S ≤≤ 得222311264a b c ≤≤,即8abc ≤≤C 、D 不一定成立.又0b c a +>>,因此()8bc b c bc a +>⋅≥,即()8bc b c +>,选项A 一定成立.又0a b c +>>,因此()8ab a b +>,显然不能得出()ab a b +>B 不一定成立.综上所述,选A .8.C 【解析】由22()6c a b =-+可得22226a b c ab +-=-①,由余弦定理及3C π=可得222a b c ab +-=②.所以由①②得6ab =,所以1sin 23ABC S ab π∆==9.C 【解析】∵tan15tan(6045)2=-=o o o∴60tan 6060tan151)BC =-=o o.10.D 【解析】225cos 10A -=,1cos 5A =,由余弦定理解得5b =. 11.A 【解析】边换角后约去sin B ,得1sin()2A C +=,所以1sin 2B =,但B 非最大角,所以6B π=.12.C 【解析】由余弦定理可得AC =sin 10A =. 13.B 【解析】∵cos cos sin bC c B a A +=,∴由正弦定理得2sin cos sin cos sin B C C B A +=,∴2sin()sin B C A +=,∴2sin sin A A =,∴sin 1A =,∴△ABC 是直角三角形.14.B 【解析】由正弦定理得:sin sin sin 60sin 45BC AC ACAC A B ︒︒=⇔=⇔=15.D 【解析】由正弦定理,得22sin sin sin cos A B B A A +=,即22sin (sin cos )B A A A ⋅+=,sin B A =,∴sin sin b B a A== 16.D 【解析】设AB c =,则AD c =,BD =,BC =ΔABD 中,由余弦定理得2222413cos 23c c c A c +-==,则sin 3A =,在ΔABC 中,由正弦定理得sin sin 3c BC C A ==,解得sin C =.17.A 【解析】因为120C ∠=o,c =,所以2222cos c a b ab C =+-,222122()2a ab ab =+--所以22,0,aba b ab a b a b a b-=-=>>+ 因为0,0a b >>,所以0aba b a b-=>+,所以a b >.故选A .18.9【解析】因为120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,所以60ABD CBD ∠=∠=o,由三角形的面积公式可得111sin120sin 60sin 60222ac a c =+o o o , 化简得ac a c =+,又0a >,0c >,所以111a c+=,则1144(4)()559c a a c a c a c a c +=++=+++=≥, 当且仅当2c a =时取等号,故4a c +的最小值为9. 19.7;3【解析】因为a =2b =,60A =o,所以由正弦定理得2sin sin 7b AB a⨯===.由余弦定理2222cos a b c bc A =+-可得2230c c --=,所以3c =.202222224241cos 22424AB BC AC ABC AB BC +-+-∠===⨯⨯⨯⨯,由22sin cos 1ABC ABC ∠+∠=所以sin4ABC∠===,1sin2BDCS BD BC DBC∆=⨯⨯∠11sin()sin22BD BC ABC BD BC ABCπ=⨯⨯-∠=⨯⨯∠1222=⨯⨯=.C因为BD BC=,所以D BCD∠=∠,所以2ABC D BCD D∠=∠+∠=∠,cos cos24ABCBDC∠∠====.21.2【解析】单位圆内接正六边形是由6个边长为1的正三角形组成,所以61611sin602S=⨯⨯⨯⨯=o.22.2113【解析】∵4cos5A=,5cos13C=,所以3sin5A=,12sin13C=,所以()63sin sin sin cos cos sin65B AC A C A C=+=+=,由正弦定理得:sin sinb aB A=解得2113b=.23.1 【解析】由1sin2B=得6Bπ=或56π,因为6Cπ=,所以56Bπ≠,所以6Bπ=,于是23Aπ=.有正弦定理,得21sin32bπ=,所以1b=.24.7【解析】由已知得ABC ∆的面积为1sin 20sin 2AB AC A A ⋅==所以sin A =,(0,)2A π∈,所以3A π=. 由余弦定理得2222cos BC AB AC AB AC A =+-⋅=49,7BC =. 25.【解析】如图作PBC ∆,使75∠=∠=oB C ,2BC =,作出直线AD 分别交线段PB 、PC 于A 、D 两点(不与端点重合),且使75∠=oBAD ,则四边形ABCD 就是符合题意的四边形,过C 作AD 的平行线交PB 于点Q ,在PBC ∆中,可求得BP =QBC ∆中,可求得BQ =,所以AB 的取值范围为.26.1【解析】∵2223cos 24b c a A bc +-==, 而sin 22sin cos 243cos 21sin sin 64A A A a A C C c ⨯==⨯=⨯⨯=. 27.8 【解析】 因为0A π<<,所以sin A ==又1sin 28ABC S bc A ∆===24bc ∴=, 解方程组224b c bc -=⎧⎨=⎩,得6b =,4c =,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.28.ο30=∠BAC ,ο105=∠ABC ,在ABC ∆中,由ο180=∠+∠+∠ACB BAC ABC ,所以ο45=∠ACB ,因为600=AB ,由正弦定理可得οο30sin 45sin 600BC=, 即2300=BC m ,在BCD Rt ∆中,因为ο30=∠CBD ,2300=BC , 所以230030tan CDBC CD ==ο,所以6100=CD m .29.150【解析】在三角形ABC 中,AC =,在三角形MAC 中,sin 60sin 45MA AC=o o,解得MA =在三角形MNA sin 60==o ,故150MN =. 30.2【解析】由b B c C b 2cos cos =+得:sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,sin 2sin A B =,∴2a b =,故2ab=. 31.π32【解析】3sin 5sin A B =, π32212cos 2,53222=⇒-=-+=⇒=+=⇒C ab c b a C a c b b a ,所以π32.32sin sin()cos 2BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD+-∠=•,2223BD ∴==33.①②③【解析】①222221cos 2223a b c ab ab ab c C C ab ab π+-->⇒=>=⇒< ②2222224()()12cos 2823a b c a b a b a b c C C ab ab π+-+-++>⇒=>≥⇒< ③当2C π≥时,22232233c a b c a c b c a b ≥+⇒≥+>+与333a b c +=矛盾④取2,1a b c ===满足()2a b c ab +<得:2C π<⑤取2,1a b c ===满足22222()2a b c a b +<得:3C π<.34.4【解析】根据余弦定理可得2214(7)22(7)()4b b b =+--⨯⨯-⨯-,解得b =4. 35. 在ABC ∆中,根据sin sin sin AB AC BCC B A==,得sin sin 2sin sin ACAB C C C B=⋅==,同理2sin BC A =, 因此22sin 4sin AB BC C A +=+22sin 4sin()3C C π=+-4sin )C C C ϕ=+=+.36【解析】根据sin sin AB ACC B=得5sin sin 7AB C B AC ===11cos 14C ==, 所以sin sin[()]sin cos cos sin A B C B C B C π=-+=+111142-= 37.4【解析】(方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性.当A =B 或a =b 时满足题意,此时有:1cos 3C =,21cos 1tan 21cos 2C C C -==+,tan22C =,1tan tan tan 2A B C===,tan tan tan tan C CA B+= 4. (方法二)226cos 6cos b aC ab C a b a b+=⇒=+, 2222222236,22a b c c ab a b a b ab +-⋅=++=tan tan sin cos sin sin cos sin sin()tan tan cos sin sin cos sin sin C C C B A B A C A B A B C A B C A B +++=⋅=⋅21sin cos sin sin C C A B =⋅.由正弦定理,得:上式22222214113cos()662c c ccC ab a b=⋅===+⋅.38.6π【解析】由sin cos2B B+=得12sin cos2B B+=,即sin21B=,因02Bπ<<,所以2,24B Bππ==.又因为2,2,a b==由正弦定理得22sin sin4Aπ=,解得1sin2A=,而,a b<则04A Bπ<<=,故6aπ=.39.【解析】(1)在ABC∆中,∵1cos7B=-,∴(,)2Bππ∈,∴243sin1cosB B=-=.由正弦定理得sin sina bA B=⇒7sin43A=,∴3sin A=.∵(,)2Bππ∈,∴(0,)2Aπ∈,∴π3A∠=.(2)在ABC∆中,∵sin sin()sin cos cos sinC A B A B A B=+=+=31143()2727⨯-+⨯=3314.如图所示,在ABC∆中,∵sinhCBC=,∴sinh BC C=⋅=33337⨯=,∴AC边上的高为33.40.【解析】(1)在ABD△中,由正弦定理得sin sinBD ABA ADB=∠∠.由题设知,52sin45sin ADB=︒∠,所以2sin ADB∠=.由题设知,90ADB ∠<︒,所以cos 5ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯25=. 所以5BC =.41.【解析】(1)在ABC △中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =又因为(0π)B ∈,,可得3B π=.(2)在ABC △中,由余弦定理及2a =,3c =,3B π=,有2222cos 7b a c ac B =+-=,故b =.由πsin cos()6b A a B =-,可得sin A =a c <,故cos A =.因此sin 22sin cos A A A ==21cos 22cos 17A A =-=.所以,sin(2)sin 2cos cos 2sin A B A B A B -=-=11727214-⨯= 42.【解析】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得121cos()cos cos sin sin 632B C B C B C +=-=-=-所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=.故ABC △的周长为343.【解析】(1)由已知得tan A =,所以23A π=. 在ABC ∆中,由余弦定理得222844cos 3c c π=+-,即2+224=0c c -.解得6c =-(舍去),4c = (2)有题设可得2CAD π∠=,所以6BAD BAC CAD π∠=∠-∠=.故ABD ∆面积与ACD ∆面积的比值为1sin26112AB AD AC AD π⋅⋅=⋅. 又ABC ∆的面积为142sin 2BAC ⨯⨯∠=ABD ∆44.【解析】由题设及A B C π++=得2sin 8sin 2B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =. (2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABCS ∆=,则172ac =.由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.45.【解析】(Ⅰ)在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b =.由正弦定理sin sin a bA B=,得sin sin a B A b ==.所以,bsin A的值为13. (Ⅱ)由(Ⅰ)及a c <,得cos 13A =,所以12sin 22sin cos 13A A A ==, 25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 44426A A A +=+=. 46.【解析】(Ⅰ)在△ABC 中,因为60A ∠=︒,37c a =,所以由正弦定理得sin 3sin 7c A C a ==. (Ⅱ)因为37c a a =<,所以60C A ∠<∠=o,由7a =,所以3737c =⨯=.由余弦定理2222cos a b c bc A =+-得222173232b b =+-⨯⨯, 解得8b =或5b =-(舍).所以△ABC的面积11sin 8322S bc A ==⨯⨯=47.【解析】(Ⅰ)由tan tan 2(tan tan )cos cos A BA B B A +=+得sin sin sin 2cos cos cos cos cos cos C A BA B A B A B⨯=+,所以C B C sin sin sin +=2,由正弦定理,得c b a 2=+.(Ⅱ)由abc ab b a ab c b a C 22222222--+=-+=)(cos22233311112222()2c c a b ab =--=-=+….所以C cos 的最小值为12.48.【解析】(I )证明:由正弦定理sin sin sin a b cA B C==可知 原式可以化解为cos cos sin 1sin sin sin A B CA B C+==∵A 和B 为三角形内角 , ∴sin sin 0A B ≠则,两边同时乘以sin sin A B ,可得sin cos sin cos sin sin B A A B A B += 由和角公式可知,()()sin cos sin cos sin sin sin B A A B A B C C π+=+=-= 原式得证。

十年高考(2010-2019)数学之大数据分析与预测 解三角形【解析版】

十年高考(2010-2019)数学之大数据分析与预测 解三角形【解析版】

专题14 解三角形一、年大数据二、大数据分析考点44已知边角关系利用正余弦定理解三角形【试题分类与归纳】1.(2019•新课标Ⅰ,文11)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则(bc= )A .6B .5C .4D .3【答案】A【解析】∵sin sin 4sin a A b B c C -=,1cos 4A =-,∴22222241cos 24a b c b c a A bc ⎧-=⎪⎨+-==-⎪⎩,解得2132c bc =,∴6b c =,故选A .2.(2018•新课标Ⅲ,理9文11)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆的面积为2224a b c +-,则(C = ) A .2π B .3π C .4π D .6π 【答案】C【解析】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .ABC ∆的面积为2224a b c +-,2221sin 24ABCa b c S ab C ∆+-∴==,222sin cos 2a b c C C ab +-∴==,0C π<<,4C π∴=,故选C .3.(2016•新课标Ⅰ,文4)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c .已知a ,2c =,2cos 3A =,则(b = )A B C .2D .3【答案】D【解析】5a =,2c =,2cos 3A =,∴由余弦定理可得:2222245cos 3222b c a b A bc b +-+-===⨯⨯,整理可得:23830b b --=,∴解得:3b =或13-(舍去),故选D .4.(2014新课标Ⅱ,理4)钝角三角形ABC 的面积是12,AB=1, ,则AC=( )A. 5B.C. 2D. 1【答案】B.【解析】∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:111sin 22B =⋅,∴sin 2B =, 即45B =或135.又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅∴2||1AC =或5,又∵ABC ∆为钝角三角形,∴2||5AC =,即:AC = B.5.(2013新课标Ⅰ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,223cos cos 20A A +=,a =7,6c =,则b =A .10B .9C .8D .5【答案】D【解析】由223cos cos 20A A +=及△ABC 是锐角三角形得cos A =15,∵a =7,6c =,∴222176265b b =+-⨯⨯,即2512650b b --=,解得5b =或b =135-(舍),故选D .6.(2014江西)在ABC ∆中,内角A ,B ,C 所对应的边分别为,,,c b a ,若32a b =,则2222sin sin sin B AA-的值为( ) A .19- B .13 C .1 D .72【答案】D。

2010-2019年十年高考数学真题分类汇编.docx

2010-2019年十年高考数学真题分类汇编.docx

A.1
B.2
C.3
D.4
31(. 2017Ⅲ理 1)已知集合 A = (x, y) x2 + y2 = 1 ,B = (x, y) y = x ,则 A I B 中元素的个数为( )
A.3
B.2
C.1
D.0
32.(2018Ⅰ文 1)已知集合 A = 0,2 , B = -2,-1,0,1,2 ,则 A I B = ( )
A.(-14,16)
B.(-14,20)
C.(-12,18)
D.(-12,20)
x-3 2.(2010Ⅱ文 2)不等式 0 的解集为( )
x+2
A.{x|-2< x<3} B.{ x|x<-2}
C.{ x|x<-2,或 x>3} D.{ x∣x>3}
x -1
3.(2010Ⅱ文
5

3)若变量
x,y
1.集合
1.(2010Ⅰ文理 1)已知集合 A = x | x 2,x R,B = x | x 4,x Z ,则 A I B =( )
A.(0,2)
B.[0,2]
C.{0,2}
D.{0,1,2}
2.(2010Ⅱ文 1)设全集 U= x N * | x 6 ,集合 A={1,3},B={3,5},则 CU A U B =( )
A.{-1,0}
B.{0,1}
C.{-1,0,1}
D.{0,1,2}
20.(2016Ⅰ文 1)设集合 A={1,3,5,7},B={x| 2 x 5},则 A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
21.(2016Ⅰ理 1)设集合 A={x|x2-4x+3<0},B={x|2x-3>0},则 A I B = ( )

全国卷历年高考三角函数及解三角形真题归类分析2019(含答案)

全国卷历年高考三角函数及解三角形真题归类分析2019(含答案)

全国卷历年高考三角函数及解三角形真题归类分析(2015年-2019年共14套) 三角函数(共20小题)一、三角恒等变换(6题)1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( )(A )32-(B )32(C )12- (D )12【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin 30=12,故选D.2.(2018年3卷4)若,则A. B. C. D.【解析】,故答案为B.3.(2016年3卷7)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .4.(2016年2卷9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=( )(A )725 (B )15 (C )15- (D )725-【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .5.(2018年2卷15)已知,,则__________.【解析】:因为,,所以,因此6.(2019年2卷10)已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=( ) A.15B.5C.33D.255【解析】2sin 2cos 21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,55B . 【点评】这类题主要考查三角函数中二倍角公式(几乎必考)、两角和与差公式、诱导公式、同角三角函数基本关系式等三角函数公式,难度以容易、中等为主。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十年高考真题分类汇编(2010—2019)数学专题07 解三角形一、选择题1.(2019·全国1·文T11)△ABC 的内角A,B,C 的对边分别为a,b,c.已知asin A-bsin B=4csin C,cos A=-14,则b c=( ) A.6B.5C.4D.32.(2018·全国2·理T6文T7)在△ABC 中,cos C 2=√55,BC=1,AC=5,则AB=( ) A.4√2B.√30C.√29D.2√53.(2018·全国3·理T 9文T 11)△ABC 的内角A,B,C 的对边分别为a,b,c.若△ABC 的面积为a 2+b 2-c 24,则C=( ) A.π2 B.π3C.πD.π4.(2017·山东·理T9)在△ABC 中,角A,B,C 的对边分别为a,b,c,若△ABC 为锐角三角形,且满足sin B(1+2cos C)=2sin AcosC+cosAsinC,则下列等式成立的是( ) A.a=2b B.b=2a C.A=2B D.B=2A5.(2017·全国1·文T11)△ABC 的内角A,B,C 的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=√2,则C=( ) A.π12B.π6C.π4D.π36.(2016·全国3·理T8)在△ABC 中,B=π4,BC 边上的高等于13BC,则cos A=( ) A.3√1010B.√1010C.-√1010D.-3√10107.(2016·全国3·文T9)在△ABC 中,B=π4,BC 边上的高等于13BC,则sin A=( ) A.3B.√1010C.√55D.3√10108.(2016·全国1·文T4)△ABC 的内角A,B,C 的对边分别为a,b,c.已知a=√5,c=2,cos A=23,则b= ( ) A.√2B.√3C.2D.39.(2016·天津·理T3)在△ABC 中,若AB=√13,BC=3,∠C=120°,则AC=( ) A.1 B.2 C.3 D.410.(2016·山东·文T8)△ABC 中,角A,B,C 的对边分别是a,b,c.已知b=c,a 2=2b 2(1-sin A),则A=( ) A.3π4B.π3C.π4D.π611.(2015·广东·文T5)设△ABC 的内角A,B,C 的对边分别为a,b,c.若a=2,c=2√3,cos A=√32且b<c,则b=( ) A.3B.2√2C.2D.√312.(2014·全国2·理T 4)钝角三角形ABC 的面积是12,AB=1,BC=√2,则AC=( )A.5B.√5C.2D.113.(2014·四川·文T8)如图,从气球A 上测得正前方的河流的两岸B,C 的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC 等于( )A.240(√3-1) mB.180(√2-1) mC.120(√3-1) mD.30(√3+1) m14.(2013·全国1·文T10)已知锐角△ABC 的内角A,B,C 的对边分别为a,b,c,23cos 2A+cos 2A=0,a=7,c=6,则b=( ) A.10B.9C.8D.515.(2013·全国2·文T 4)△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=π6,C=π4,则△ABC 的面积为( ) A.2√3+2 B.√3+1 C.2√3-2 D.√3-1二、填空题1.(2019·全国2·理T15)△ABC 的内角A,B,C 的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC 的面积为___________.2.(2019·全国2·文T15)△ABC 的内角A,B,C 的对边分别为a,b,c.已知bsinA+acosB=0,则B= .3.(2019·浙江·T14)在△ABC 中,∠ABC=90°,AB=4,BC=3,点D 在线段AC 上.若∠BDC=45°,则 BD= ,cos ∠ABD= .4.(2018·浙江·T13)在△ABC 中,角A,B,C 所对的边分别为a,b,c.若a=√7,b=2,A=60°,则sin B=___________,c=___________.5.(2018·北京·文T 14)若△ABC 的面积为√3(a 2+c 2-b 2),且∠C 为钝角,则∠B= ________;ca 的取值范围是.6.(2018·全国1·文T16)△ABC 的内角A,B,C 的对边分别为a,b,c,已知bsinC+csinB=4asin BsinC,b 2+c 2-a 2=8,则△ABC 的面积为 .7.(2017·浙江·T14)已知△ABC,AB=AC=4,BC=2.点D 为AB 延长线上一点,BD=2,连接CD,则△BDC 的面积 是 ,cos ∠BDC= .8.(2017·全国3·文T15)△ABC 的内角A,B,C 的对边分别为a,b,c.已知C=60°,b=√6,c=3,则A= . 9.(2017·全国2·文T16)△ABC 的内角A,B,C 的对边分别为a,b,c,若2bcos B=acosC+ccosA,则B= . 10.(2016·全国2·理T13文T15)△ABC 的内角A,B,C 的对边分别为a,b,c,若cos A=45,cos C=513,a=1,则b=___________.11.(2016·北京·文T13)在△ABC 中,A=2π3,a=√3c,则bc=.12.(2015·全国1·理T16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 13.(2015·重庆·理T13)在△ABC 中,B=120°,AB=√2,A 的角平分线AD=√3,则AC=___________. 14.(2015·湖北·理T13文T15)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m.15.(2015·福建·理T12)若锐角△ABC 的面积为10√3,且AB=5,AC=8,则BC 等于 .16.(2015·天津·理T13)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知△ABC 的面积为3√15,b-c=2,cos A=-14,则a 的值为.17.(2015·安徽·文T12)在△ABC中,AB=√6,∠A=75°,∠B=45°,则AC= .18.(2015·福建·文T14)若△ABC中,AC=√3,A=45°,C=75°,则BC=___________.,3sin A=2sin B,则19.(2015·重庆·文T13)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cos C=−14c= .=.20.(2015·北京·理T 12)在△ABC中,a=4,b=5,c=6,则sin2AsinC21.(2014·全国1·理T 16)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sinB)=(c-b)sin C,则△ABC面积的最大值为.22.(2014·全国1·理T16)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=___________m.23.(2011·全国·理T16)在△ABC中,B=60°,AC=√3,则AB+2BC的最大值为___________.24.(2011·全国·文T 15)△ABC中,B=120°,AC=7,AB=5,则△ABC的面积为.25.(2010·全国·理T16)在△ABC中,D为边BC上一点,BD=1DC,∠ADB=120°,AD=2.若△ADC的面积为3-√3,2则∠BAC= .26.(2010·全国·文T16)在△ABC中,D为BC边上一点,BC=3BD,AD=√2,∠ADB=135°.若AC=√2AB,则BD=___________.三、计算题1.(2019·全国1·理T17)△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin Bsin C.(1)求A;(2)若√2a+b=2c,求sin C.2.(2019·全国3·T18)△ABC 的内角A,B,C 的对边分别为a,b,c.已知asin A+C2=bsin A. (1)求B;(2)若△ABC 为锐角三角形,且c=1,求△ABC 面积的取值范围.3.(2019·天津·理T15文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知b+c=2a,3csin B=4asin C.(1)求cosB 的值; (2)求sin (2B+π6)的值.4.(2019·江苏·T15)在△ABC 中,角A,B,C 的对边分别为a,b,c. (1)若a=3c,b=√2,cos B=23,求c 的值; (2)若sinA a=cosB2b,求sin (B +π2)的值.5.(2018·全国1·理T17)在平面四边形ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5. (1)求cos ∠ADB; (2)若DC=2√2 ,求BC.6.(2018·北京·理T15)在△ABC 中,a=7,b=8,cos B=-17. (1)求∠A;(2)求AC 边上的高.7.(2018·天津·理T15文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知bsin A=acos (B -π6). (1)求角B 的大小;(2)设a=2,c=3,求b 和sin(2A-B)的值.8.(2017·天津·理T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c,已知a>b,a=5,c=6,sin B=35. (1)求b 和sin A 的值; (2)求sin (2A +π4)的值.9.(2017·天津·文T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c,已知asin A=4bsin B,ac=√5(a 2-b 2-c 2).(1)求cosA 的值; (2)求sin(2B-A)的值.10.(2017·全国1·理T 17)△ABC 的内角A,B,C 的对边分别为a,b,c.已知△ABC 的面积为a 23sinA.(1)求sin BsinC;(2)若6cos BcosC=1,a=3,求△ABC 的周长.11.(2017·全国2·理T17)△ABC 的内角A,B,C 的对边分别为a,b,c.已知sin(A+C)=8sin 2B 2. (1)求cos B;(2)若a+c=6,△ABC 的面积为2,求b.12.(2017·全国3·理T17)△ABC 的内角A,B,C 的对边分别为a,b,c.已知sin A+√3cos A=0,a=2√7,b=2. (1)求c;(2)设D 为BC 边上一点,且AD ⊥AC,求△ABD 的面积. 13.(2017·北京·理T15)在△ABC 中,∠A=60°,c=37a. (1)求sin C 的值; (2)若a=7,求△ABC 的面积.14.(2017·山东·文T17)在△ABC 中,角A,B,C 的对边分别为a,b,c.已知b=3,AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-6,S △ABC =3,求A 和a. 15.(2016·北京·T5)在△ABC 中,a 2+c 2=b 2+√2ac. (1)求B 的大小;(2)求√2cos A+cosC 的最大值.16.(2016·山东·理T16)在△ABC 中,角A,B,C 的对边分 别为a,b,c,已知2(tan A+tan B)=tanA cosB +tanBcosA. (1)证明:a+b=2c; (2)求cosC 的最小值.17.(2016·天津·文T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知asin 2B=√3bsin A. (1)求B;(2)若cosA=13,求sin C 的值.18.(2016·四川·文T 18)在△ABC 中,角A,B,C 所对的边分别是a,b,c,且cosA a+cosB b =sinCc .(1)证明:sinAsin B=sin C;(2)若b2+c2-a2=65bc,求tan B.19.(2016·浙江·文T16)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2acos B.(1)证明:A=2B;(2)若cos B=23,求cos C的值.20.(2016·全国1·理T17)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求C;(2)若c=√7,△ABC的面积为3√32,求△ABC的周长.21.(2016·浙江·理T16)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acos B.(1)证明:A=2B;(2)若△ABC的面积S=a 24,求角A的大小.22.(2015·全国2·理T17)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求sinBsinC;(2)若AD=1,DC=√22,求BD和AC的长.23.(2015·全国1·文T17)已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sin AsinC.(1)若a=b,求cosB;(2)设B=90°,且a=√2,求△ABC的面积.24.(2015·浙江·理T16)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知A=π4,b2-a2=12c2.(1)求tan C的值;(2)若△ABC的面积为3,求b的值.25.(2015·山东·理T16)设f(x)=sin xcos x-cos2(x+π4).(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f(A2)=0,a=1,求△ABC面积的最大值.26.(2015·陕西·理T17)△ABC的内角A,B,C所对的边分别为a,b,c,向量m=(a,√3b)与n=(cosA,sinB)平行.(1)求A;(2)若a=√7,b=2,求△ABC的面积.27.(2015·江苏·理T15)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC 的长; (2)求sin 2C 的值.28.(2015·浙江·文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知tan (π4+A)=2. (1)求sin2Asin2A+cos 2A的值;(2)若B=π4,a=3,求△ABC 的面积.29.(2015·天津·文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知△ABC 的面积为3√15,b-c=2,cos A=-14. (1)求a 和sin C 的值; (2)求cos (2A +π6)的值.30.(2015·全国2·文T17)△ABC 中,D 是BC 上的点,AD 平分∠BAC,BD=2DC.(1)求sinBsinC; (2)若∠BAC=60°,求∠B.31.(2015·安徽·理T16)在△ABC 中,∠A=3π4,AB=6,AC=3√2,点D 在BC 边上,AD=BD,求AD 的长.32.(2014·全国2·文T17)四边形ABCD 的内角A 与C 互补,AB=1,BC=3,CD=DA=2. (1)求角C 和BD;(2)求四边形ABCD 的面积.33.(2014·浙江·理T18)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a≠b,c=√3,cos 2A-cos 2B=√3sinAcos A-√3sin Bcos B. (1)求角C 的大小;(2)若sin A=45,求△ABC 的面积.34.(2014·辽宁·理T17)在△ABC 中,内角A,B,C 的对边 分别为a,b,c,且a>c.已知BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =2,cos B=13,b=3.求: (1)a 和c 的值; (2)cos(B-C)的值.35.(2014·天津·文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a-c=√66b,sin B=√6sin C.(1)求cos A 的值; (2)求cos (2A -π6)的值.36.(2014·北京·理T15)如图,在△ABC 中,∠B=π3,AB=8,点D 在BC 边上,且CD=2,cos ∠ADC=17. (1)求sin ∠BAD; (2)求BD,AC 的长.37.(2014·湖南·理T18)如图,在平面四边形ABCD 中,AD=1,CD=2,AC=√7. (1)求cos ∠CAD 的值;(2)若cos ∠BAD=-√714,sin ∠CBA=√216,求BC 的长.38.(2014·湖南·文T19)如图,在平面四边形ABCD 中,DA ⊥AB,DE=1,EC=√7,EA=2,∠ADC=2π3,∠BEC=π3.(1)求sin ∠CED 的值; (2)求BE 的长.39.(2013·全国2·理T17)△ABC 的内角A,B,C 的对边分别为a,b,c,已知a=bcosC+csinB. (1)求B;(2)若b=2,求△ABC 面积的最大值.40.(2013·全国1·理T17)如图,在△ABC 中,∠ABC=90°,AB=√3,BC=1,P 为△ABC 内一点,∠BPC=90°. (1)若PB=12,求PA;(2)若∠APB=150°,求tan ∠PBA.41.(2012·全国·文T 7)已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,c=√3asin C-ccosA. (1)求A;(2)若a=2,△ABC 的面积为√3,求b,c.42.(2012·全国·理T17)已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,acos C+√3 asin C-b-c=0. (1)求A;(2)若a=2,△ABC 的面积为√3,求b,c.43.(2010·陕西·理T17)如图,A,B 是海面上位于东西方向相距5(3+√3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20√3海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D 点需要多长时间?十年高考真题分类汇编(2010—2019)数学专题07 解三角形一、选择题1.(2019·全国1·文T11)△ABC 的内角A,B,C 的对边分别为a,b,c.已知asin A-bsin B=4csin C,cos A=-14,则b c=( ) A.6 B.5 C.4 D.3【答案】A【解析】由已知及正弦定理,得a 2-b 2=4c 2,由余弦定理的推论,得-14=cos A=b 2+c 2-a 22bc,∴c 2-4c 22bc =-14,∴-3c 2b =-14,∴b c =32×4=6,故选A. 2.(2018·全国2·理T6文T7)在△ABC 中,cos C 2=√55,BC=1,AC=5,则AB=( )A.4√2B.√30C.√29D.2√5【答案】A【解析】∵cos C=2cos 2C2-1=-35,∴AB 2=BC 2+AC 2-2BC·ACcos C=1+25+2×1×5×35=32.∴AB=4√2.3.(2018·全国3·理T 9文T 11)△ABC 的内角A,B,C 的对 边分别为a,b,c.若△ABC 的面积为a 2+b 2-c 24,则C=( )A.π2B.π3C.π4 D.π6【答案】C【解析】由S=a 2+b 2-c 24=12absin C,得c 2=a 2+b 2-2absin C.又由余弦定理c 2=a 2+b 2-2abcos C,∴sin C=cos C,即C=π4.4.(2017·山东·理T9)在△ABC 中,角A,B,C 的对边分别为a,b,c,若△ABC 为锐角三角形,且满足sin B(1+2cos C)=2sin Acos C+cos Asin C,则下列等式成立的是( ) A.a=2b B.b=2a C.A=2B D.B=2A 【答案】A【解析】∵sin B(1+2cos C)=2sin Acos C+cos Asin C, ∴sin B+2sin Bcos C=(sin Acos C+cos Asin C)+sin Acos C, ∴sin B+2sin Bcos C=sin B+sin Acos C, ∴2sin Bcos C=sin Acos C,又△ABC 为锐角三角形,∴2sin B=sin A, 由正弦定理,得a=2b.故选A.5.(2017·全国1·文T11)△ABC 的内角A,B,C 的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=√2,则C=( ) A.π12B.π6C.π4D.π3【答案】B【解析】由题意结合三角形的内角和,可得sin(A+C)+sin A(sin C-cos C)=0,整理得sin Acos C+cos Asin C+sin Asin C-sin Acos C=0,则sin C(sin A+cos A)=0,因为sin C>0,所以sin A+cos A=0,即tan A=-1,因为A ∈(0,π),所以A=3π4.由正弦定理asinA =csinC ,得2sin 3π4=√2sinC ,即sin C=12,所以C=π6,故选B.6.(2016·全国3·理T8)在△ABC 中,B=π4,BC 边上的高等于13BC,则cos A=( ) A.3√1010B.√1010C.-√1010D.-3√1010【答案】C【解析】设BC 边上的高为AD,则BC=3AD. 结合题意知BD=AD,DC=2AD,所以AC=√AD 2+DC 2=√5AD,AB=√2AD.由余弦定理,得cos A=AB 2+AC 2-BC 22AB ·AC=22-22×√2AD×√5AD=-√1010,故选C.7.(2016·全国3·文T9)在△ABC 中,B=π4,BC 边上的高等于1BC,则sin A=( ) A.310B.√1010C.√55D.3√1010【答案】D【解析】记角A,B,C 的对边分别为a,b,c, 则由题意,得S △ABC =12a·a 3=12acsin B,∴c=√23a.∴b 2=a 2+(√23a)2-2a·√2a3·√22=5a 29,即b=√5a3.由正弦定理asinA =bsinB ,得sin A=asinBb=a×√225a3=3√1010.故选D.8.(2016·全国1·文T4)△ABC 的内角A,B,C 的对边分别为a,b,c.已知a=√5,c=2,cos A=23,则b= ( ) A.√2 B.√3C.2D.3【答案】D【解析】由余弦定理得a 2=b 2+c 2-2bccos A, 即5=b 2+4-4b ×23,即3b 2-8b-3=0, 又b>0,解得b=3,故选D.9.(2016·天津·理T3)在△ABC 中,若AB=√13,BC=3,∠C=120°,则AC=( ) A.1 B.2 C.3 D.4 【答案】A【解析】由余弦定理得13=9+AC 2+3AC,∴AC=1.故选A.10.(2016·山东·文T8)△ABC 中,角A,B,C 的对边分别是a,b,c.已知b=c,a 2=2b 2(1-sin A),则A=( ) A.3π4B.π3C.π4D.π6【答案】C【解析】由余弦定理可得a 2=b 2+c 2-2bccos A, 又因为b=c,所以a 2=b 2+b 2-2b×b cos A=2b 2(1-cos A). 由已知a 2=2b 2(1-sin A),所以sin A=cos A. 因为A ∈(0,π),所以A=π4.11.(2015·广东·文T5)设△ABC 的内角A,B,C 的对边分别为a,b,c.若a=2,c=2√3,cos A=√32且b<c,则b=( ) A.3 B.2√2C.2D.√3【答案】C【解析】由余弦定理a 2=b 2+c 2-2bccos A,得b 2-6b+8=0,解得b=2或4.因为b<c,所以b=2. 12.(2014·全国2·理T 4)钝角三角形ABC 的面积是12,AB=1,BC=√2,则AC=( )A.5B.√5C.2D.1【答案】B【解析】由题意知S △ABC =12AB·BC·sin B, 即12=12×1×√2sin B,解得sin B=√22. 则B=45°或B=135°.当B=45°时,AC 2=AB 2+BC 2-2AB·BC·cos B=12+(√2)2-2×1×√2×√22=1,此时AC 2+AB 2=BC 2,△ABC 为直角三角形,不符合题意;当B=135°时,AC 2=AB 2+BC 2-2AB·BC·cos B=12+(√2)2-2×1×√2×(-√22)=5,解得AC=√5,符合题意.故选B.13.(2014·四川·文T8)如图,从气球A 上测得正前方的河流的两岸B,C 的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC 等于( )A.240(√3-1) mB.180(√2-1) mC.120(√3-1) mD.30(√3+1) m 【答案】C【解析】如图,作AD ⊥BC,垂足为D.由题意,得DC=60×tan 60°=60√3(m), DB=60×tan 15°=60×tan(45°-30°) =60×tan45°-tan30°1+tan45°tan30°=60×1-√331+√33=(120-60√3) m.所以BC=DC-DB=60√3-(120-60√3)=120√3-120=120(√3-1)(m),故选C.14.(2013·全国1·文T10)已知锐角△ABC 的内角A,B,C 的对边分别为a,b,c,23cos 2A+cos 2A=0,a=7,c=6,则b=( ) A.10B.9C.8D.5【答案】D【解析】由23cos 2A+cos 2A=0,得cos 2A=125. ∴cos A=±15.∵A ∈(0,π2),∴cos A=15. ∵cos A=36+b 2-492×6b,∴b=5或b=-13(舍).15.(2013·全国2·文T 4)△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=π6,C=π4,则△ABC 的面积为( )A.2√3+2B.√3+1C.2√3-2D.√3-1【答案】B【解析】A=π-(B+C)=7π12, 由正弦定理得a sinA =bsinB , 则a=bsinA sinB=2sin 7π12sin π6=√6+√2,∴S △ABC =12absin C=12×2×(√6+√2)×√22=√3+1.二、填空题1.(2019·全国2·理T15)△ABC 的内角A,B,C 的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC 的面积为___________. 【答案】6√3【解析】∵b 2=a 2+c 2-2accos B, ∴(2c)2+c 2-2×2c×c×1=62,即3c 2=36,解得c=2√3或c=-2√3(舍去). ∴a=2c=4√3.∴S △ABC =1acsin B=1×4√3×2√3×√32=6√3. 2.(2019·全国2·文T15)△ABC 的内角A,B,C 的对边分别为a,b,c.已知bsin A+acos B=0,则B= . 【答案】3π4【解析】由正弦定理,得sin Bsin A+sin Acos B=0.∵A ∈(0,π),B ∈(0,π),∴sin A ≠0,∴sin B+cos B=0,即tan B=-1,∴B=3π4.3.(2019·浙江·T14)在△ABC 中,∠ABC=90°,AB=4,BC=3,点D 在线段AC 上.若∠BDC=45°,则 BD= ,cos ∠ABD= . 【解析】如图所示,设CD=x,∠DBC=α,则AD=5-x,∠ABD=π-α,在△BDC 中,由正弦定理得3sin π4=xsinα=3√2⇒sin α=3√2.在△ABD中,由正弦定理得5-xsin(π2-α)=4sin 3π4=4√2⇒cos -42由sin 2α+cos 2α=x 218+(5-x )232=1,解得x 1=-35(舍去),x 2=215⇒BD=12√25.在△ABD 中,由正弦定理得0.8sin∠ABD =4sin(π-π4)⇒sin ∠ABD=√210⇒cos ∠ABD=7√210.4.(2018·浙江·T13)在△ABC 中,角A,B,C 所对的边分别为a,b,c.若a=√7,b=2,A=60°,则sin B=___________,c=___________. 【答案】√2173【解析】由正弦定理asinA=b sinB, 可知sin B=√217.∵a=√7>b=2,∴B 为锐角. ∴cos B=√1-sin 2B =2√77. ∴cos C=-cos(A+B)=sin Asin B-cos Acos B=√714.由余弦定理,得c 2=a 2+b 2-2abcos C=7+4-2×2×√7×√714=7+4-2=9.∴c=3.5.(2018·北京·文T 14)若△ABC 的面积为√34(a 2+c 2-b 2),且∠C 为钝角,则∠B= ________;ca 的取值范围是 . 【答案】π3(2,+∞)【解析】由余弦定理得cos B=a 2+c 2-b 22ac,∴a 2+c 2-b 2=2accos B.又∵S=√34(a 2+c 2-b 2),∴12acsin B=√34×2accos B,∴tan B=√3,∴∠B=π.又∵∠C 为钝角, ∴∠C=2π3-∠A>π2,∴0<∠A<π6. 由正弦定理得ca=sin(2π3-∠A)sinA=√32cosA+12sinAsinA=12+√32·1tanA .∵0<tan A<√33,∴1tanA>√3,∴c a>12+√32×√3=2,即ca >2.6.(2018·全国1·文T16)△ABC 的内角A,B,C 的对边分别为a,b,c,已知bsin C+csin B=4asin BsinC,b 2+c 2-a 2=8,则△ABC 的 面积为 . 【答案】2√33【解析】∵bsin C+csin B=4asin Bsin C, ∴sin Bsin C+sin Csin B=4sin Asin Bsin C. 又sin Bsin C>0,∴sin A=12.由余弦定理得cos A=b 2+c 2-a 22bc =82bc =4bc>0,∴cos A=√32,bc=4cosA =8√33,∴S △ABC =12bcsin A=12×8√33×12=2√33. 7.(2017·浙江·T14)已知△ABC,AB=AC=4,BC=2.点D 为AB 延长线上一点,BD=2,连接CD,则△BDC 的面积 是 ,cos ∠BDC= .【解析】依题意作出图形,如图所示,则sin ∠DBC=sin ∠ABC. 由题意知AB=AC=4,BC=BD=2, 则sin ∠ABC=√154,cos ∠ABC=14.所以S △BDC =12BC·BD·sin ∠DBC=12×2×2×√154=√152.因为cos ∠DBC=-cos ∠ABC=-14=BD 2+BC 2-CD 22BD ·BC=8-CD 28,所以CD=√10.由余弦定理,得cos∠BDC=-2×2×√10=√104.8.(2017·全国3·文T15)△ABC 的内角A,B,C 的对边分别为a,b,c.已知C=60°,b=√6,c=3,则A= . 【答案】75° 【解析】由正弦定理得b sinB=csinC ,即sin B=bsinC c=√6×√323=√22.因为b<c,所以B<C,所以B=45°,故A=180°-B-C=75°.9.(2017·全国2·文T 16)△ABC 的内角A,B,C 的对边分别为a,b,c,若2bcos B=acos C+ccos A,则B= . 【答案】π3【解析】由题意和正弦定理,可得2sin Bcos B=sin Acos C+sin Ccos A=sin(A+C)=sin B,即cos B=12.又因为B ∈(0,π),所以B=π3.10.(2016·全国2·理T13文T15)△ABC 的内角A,B,C 的对边分别为a,b,c,若cos A=45,cos C=5,a=1,则b=___________. 【答案】2113【解析】因为cos A=45,cos C=513,且A,C 为△ABC 的内角,所以sin A=35,sin C=1213,sinB=sin[π-(A+C)]=sin(A+C)=sin Acos C+cos Asin C=6365. 又因为a sinA=bsinB,所以b=asinB sinA=2113. 11.(2016·北京·文T 13)在△ABC 中,A=2π,a=√3c,则bc = .【答案】1【解析】由正弦定理知sinAsinC=a c=√3,即sin C=sin 2π3√3=12,又a>c,可得C=π6,∴B=π-2π3−π6=π6,∴b=c,即b c=1.12.(2015·全国1·理T16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 【解析】如图.作CE ∥AD 交AB 于E,则∠CEB=75°,∠ECB=30°. 在△CBE 中,由正弦定理得,EB=√6−√2. 延长CD 交BA 的延长线于F,则∠F=30°. 在△BCF 中,由正弦定理得,BF=√6+√2, 所以AB 的取值范围为(√6−√2,√6+√2).13.(2015·重庆·理T13)在△ABC 中,B=120°,AB=√2,A 的角平分线AD=√3,则AC=___________. 【答案】√6【解析】如图所示,在△ABD 中,由正弦定理,得AD sinB=AB sin∠ADB ,即√3sin120°=√2sin∠ADB ,所以sin ∠ADB=√22,可得∠ADB=45°,则∠BAD=∠DAC=15°.所以∠ACB=30°,∠BAC=30°. 所以△BAC 是等腰三角形,BC=AB=√2. 由余弦定理,得AC=√AB 2+BC 2-2·AB ·BC ·cos120° =√(√2)2+(√2)2-2×√2×√2×(-12)=√6.14.(2015·湖北·理T13文T15)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m.【答案】100【解析】如图所示,由已知得∠BAC=30°,AB=600 m,∠EBC=75°,∠CBD=30°. 在△ABC 中,∠ACB=∠EBC-∠BAC=45°, 由BC sin∠BAC=ABsin∠ACB ,得BC=AB ·sin∠BAC sin∠ACB=600×1222=300√2(m).在Rt △BCD 中,CD=BC·tan∠CBD =300√2×√33=100√6(m).15.(2015·福建·理T12)若锐角△ABC 的面积为10√3,且AB=5,AC=8,则BC 等于 . 【答案】7【解析】由S △ABC =12|AB|·|AC|·sin A=12×5×8·sin A=10√3,得sin A=√32.∵△ABC 为锐角三角形,∴A=60°.由余弦定理,得BC 2=AB 2+AC 2-2·AB·AC·cos 60°=25+64-2×5×8×12=49,∴BC=7.16.(2015·天津·理T13)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知△ABC 的面积为3√15,b-c=2,cos A=-14,则a 的值为 . 【答案】8【解析】∵S △ABC =12bcsin A=12bc √1-cos 2A =12bc×√154=3√15,∴bc=24.又b-c=2,∴a 2=b 2+c 2-2bccos A=(b-c)2+2bc-2bc×(-14)=4+2×24+12×24=64.∵a 为△ABC 的边,∴a=8.17.(2015·安徽·文T12)在△ABC 中,AB=√6,∠A=75°,∠B=45°,则AC= . 【答案】2【解析】∠C=60°,根据正弦定理,得AB =AC,所以AC=√22×√632=2.18.(2015·福建·文T14)若△ABC 中,AC=√3,A=45°,C=75°,则BC=___________. 【答案】√2【解析】B=60°,由正弦定理,得√3sin60°=BCsin45°,得BC=√2.19.(2015·重庆·文T13)设△ABC 的内角A,B,C 的对边分别为a,b,c,且a=2,cos C=−14,3sin A=2sin B,则c= . 【答案】4【解析】由于3sin A=2sin B,根据正弦定理可得3a=2b, 又a=2,所以b=3.由余弦定理可得c=√a 2+b 2-2abcosC =√22+32-2×2×3×(-14)=4.20.(2015·北京·理T 12)在△ABC 中,a=4,b=5,c=6,则sin2AsinC= .【答案】1【解析】在△ABC 中,由正弦定理,得sin2A sinC =2sinAcosA sinC =2cos A·a c =2cos A×46=43cos A,再根据余弦定理,得cos A=36+25-162×6×5=34,所以sin2A sinC=43×34=1.21.(2014·全国1·理T 16)已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,a=2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC 面积的最大值为 .【答案】√3【解析】由正弦定理,可得(2+b)(a-b)=(c-b)·c. ∵a=2,∴a2-b2=c2-bc,即b2+c2-a2=bc.由余弦定理,得cos A=b 2+c2-a22bc=12.∴sin A=√32.由b2+c2-bc=4,得b2+c2=4+bc.∵b2+c2≥2bc,即4+bc≥2bc,∴bc≤4.∴S△ABC=12bc·sin A≤√3,即(S△ABC)max=√3.22.(2014·全国1·理T16)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=___________m.【答案】150【解析】在Rt△ABC中,由于∠CAB=45°,BC=100 m,所以AC=100√2 m.在△MAC中,∠AMC=180°-75°-60°=45°,由正弦定理可得ACsin∠AMC =MAsin∠MCA,于是MA=100√2×√3222=100√3(m).在Rt△MNA中,∠MAN=60°,于是MN=MA·sin∠MAN=100√3×√32=150(m),即山高MN=150 m.23.(2011·全国·理T16)在△ABC中,B=60°,AC=√3,则AB+2BC的最大值为___________. 【答案】2√7【解析】令AB=c,BC=a,则由正弦定理得asinA =csinC=ACsinB=√3√32=2,则c=2sin C,a=2sin A,且A+C=120°,AB+2BC=c+2a=2sin C+4sin A=2sin C+4sin(120°-C)=2sin C+4(√32cosC+12sinC)=4sin C+2√3cos C=2√7sin(C+φ)(其中tanφ=√3).故当C+φ=90°时,AB+2BC 取最大值2√7.24.(2011·全国·文T 15)△ABC 中,B=120°,AC=7,AB=5,则△ABC 的面积为 . 【答案】15√34【解析】在△ABC 中,由余弦定理知AC 2=AB 2+BC 2-2AB ·BC ·cos B,即BC 2+5BC-24=0, 解得BC=3或BC=-8(舍去).S △ABC =12·AB·BC·sin 120°=12×5×3×√32=15√34.25.(2010·全国·理T16)在△ABC 中,D 为边BC 上一点,BD=12DC,∠ADB=120°,AD=2.若△ADC 的面积为3-√3,则∠BAC= . 【答案】60°【解析】由S △ADC =12×2×DC×√32=3-√3,解得DC=2(√3-1),则BD=√3-1,BC=3(√3-1).∵在△ABD 中,AB 2=4+(√3-1)2-2×2×(√3-1)×cos 120°=6,∴AB=√6.在△ACD 中,AC 2=4+[2(√3-1)]2-2×2×2(√3-1)×cos 60°=24-12√3,∴AC=√6(√3-1).则cos ∠BAC=AB 2+AC 2-BC 22AB ·AC=-√3-(-√3)2×√6×√6×√31=12,∴∠BAC=60°.26.(2010·全国·文T16)在△ABC 中,D 为BC 边上一点,BC=3BD,AD=√2,∠ADB=135°.若AC=√2AB,则BD=___________. 【答案】2+√5【解析】依据题意作出图形,如图,设AB=a,AC=√2a,BD=k,DC=2k,在三角形ABD 与三角形ADC 中由余弦定理,有{a 2=k 2+2+2k ,2a 2=4k 2+2-4k ,所以k 2-4k-1=0,所以k=2+√5.三、计算题1.(2019·全国1·理T17)△ABC 的内角A,B,C 的对边分别为a,b,c.设(sin B-sin C)2=sin 2A-sin Bsin C. (1)求A;(2)若√2a+b=2c,求sin C.【解析】(1)由已知得sin 2B+sin 2C-sin 2A=sin Bsin C, 故由正弦定理得b 2+c 2-a 2=bc.由余弦定理得cos A=b 2+c 2-a 22bc =12.因为0°<A<180°,所以A=60°.(2)由(1)知B=120°-C,由题设及正弦定理得√2sin A+sin(120°-C)=2sin C, 即√62+√32cos C+12sin C=2sin C, 可得cos(C+60°)=-√22.由于0°<C<120°,所以sin(C+60°)=√22,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60° =√6+√24.2.(2019·全国3·T18)△ABC 的内角A,B,C 的对边分别为a,b,c.已知asin A+C2=bsin A. (1)求B;(2)若△ABC 为锐角三角形,且c=1,求△ABC 面积的取值范围. 【解析】(1)由题设及正弦定理得sin Asin A+C2=sin Bsin A. 因为sin A≠0,所以sinA+C2=sin B. 由A+B+C=180°,可得sin A+C =cos B, 故cos B 2=2sin B 2cos B 2.因为cos B 2≠0,故sin B 2=12,因此B=60°.(2)由题设及(1)知△ABC 的面积S △ABC =√34a.由正弦定理得a=csinA sinC=sin (120°-C )sinC=√32tanC +12.由于△ABC 为锐角三角形,故0°<A<90°,0°<C<90°. 由(1)知A+C=120°,所以30°<C<90°, 故12<a<2,从而√38<S △ABC <√32.因此,△ABC 面积的取值范围是(√38,√32). 3.(2019·天津·理T15文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知b+c=2a,3csin B=4asin C.(1)求cos B 的值; (2)求sin (2B+π6)的值.【解析】(1)在△ABC 中,由正弦定理b =c,得bsin C=csin B,又由3csin B=4asin C,得3bsin C=4asinC,即3b=4a.又因为b+c=2a,得到b=43a,c=23a.由余弦定理可得cos B=a 2+c 2-b22ac =a 2+49a 2-169a 22·a ·23a=-14.(2)由(1)可得sin B=√1-cos 2B =√154,从而sin 2B=2sin Bcos B=-√158,cos 2B=cos 2B-sin 2B=-78,故sin (2B+π6)=sin 2Bcos π6+cos 2Bsin π6=-√158×√32−78×12=-3√5+716.4.(2019·江苏·T15)在△ABC 中,角A,B,C 的对边分别为a,b,c. (1)若a=3c,b=√2,cos B=23,求c 的值; (2)若sinAa=cosB2b,求sin (B +π)的值.【解析】(1)因为a=3c,b=√2,cos B=23,由余弦定理cos B=a 2+c 2-b 22ac,得2=(3c )2+c 2-(√2)2,即c 2=13.所以c=√3.(2)因为sinA a=cosB2b , 由正弦定理a sinA=bsinB ,得cosB 2b=sinBb ,所以cos B=2sin B.从而cos 2B=(2sin B)2,即cos 2B=4(1-cos 2B),故cos 2B=45. 因为sin B>0,所以cos B=2sin B>0, 从而cos B=2√55.因此sin (B +π2)=cos B=2√55.5.(2018·全国1·理T17)在平面四边形ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5. (1)求cos ∠ADB; (2)若DC=2√2 ,求BC.【解析】(1)在△ABD 中,由正弦定理得BD sin∠A=ABsin∠ADB .由题设知,5sin45°=2sin∠ADB,所以sin ∠ADB=√25.由题设知,∠ADB<90°,所以cos ∠ADB=√1-225=√235.(2)由题设及(1)知,cos ∠BDC=sin ∠ADB=√25.在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2·BD·DC·cos∠BDC=25+8-2×5×2√2×√25=25.所以BC=5.6.(2018·北京·理T15)在△ABC 中,a=7,b=8,cos B=-17. (1)求∠A;(2)求AC 边上的高.【解析】(1)在△ABC 中,∵cos B=-17,∴B ∈(π2,π), ∴sin B=√1-cos 2B =4√37. 由正弦定理,得asinA=bsinB ⇒7sinA =437, ∴sin A=√32.∵B ∈(π2,π),∴A ∈(0,π2),∴A=π3.(2)在△ABC 中,sin C=sin(A+B)=sin Acos B+sin Bcos A=√32×(-17)+12×4√37=3√314. 如图所示,在△ABC 中,过点B 作BD ⊥AC 于点D. ∵sin C=h BC,∴h=BC·sin C=7×3√314=3√32,∴AC 边上的高为3√32.7.(2018·天津·理T15文T16)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知bsin A=acos (B -π6). (1)求角B 的大小;(2)设a=2,c=3,求b 和sin(2A-B)的值. 【解析】(1)在△ABC 中,由正弦定理a sinA=bsinB ,可得bsin A=asin B.又由bsin A=acos (B -π6),得asin B=acos (B -π6),即sin B=cos (B -π6),可得tan B=√3.又因为B ∈(0,π),所以B=π.(2)在△ABC 中,由余弦定理及a=2,c=3,B=π3,有b 2=a 2+c 2-2accos B=7,故b=√7. 由bsin A=acos (B -π6),可得sin A=√3√7.因为a<c,故cos A=√7.因此sin 2A=2sin Acos A=4√37,cos 2A=2cos 2A-1=17.所以,sin(2A-B)=sin 2Acos B-cos 2Asin B=4√37×12−17×√32=3√314.8.(2017·天津·理T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c,已知a>b,a=5,c=6,sin B=35. (1)求b 和sin A 的值; (2)求sin (2A +π4)的值.【解析】(1)在△ABC 中,因为a>b, 故由sin B=35,可得cos B=45.由已知及余弦定理,有b 2=a 2+c 2-2accos B=13, 所以b=√13.由正弦定理asinA=bsinB ,得sin A=asinB b=3√1313. 所以,b 的值为√13,sin A 的值为3√1313.(2)由(1)及a<c,得cos A=2√1313,所以sin 2A=2sin Acos A=1213,cos 2A=1-2sin 2A=-513.故sin (2A +π4)=sin 2Acos π4+cos 2Asin π4=7√226.9.(2017·天津·文T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c,已知asin A=4bsinB,ac=√5(a 2-b 2-c 2).(1)求cos A 的值; (2)求sin(2B-A)的值.【解析】(1)由asin A=4bsin B,及a sinA=bsinB,得a=2b.由ac=√5(a 2-b 2-c 2),及余弦定理,得cos A=b 2+c 2-a 22bc =-√55ac ac=-√55.(2)由(1),可得sin A=2√55,代入asin A=4bsin B,得sin B=asinA 4b=√55.由(1)知,A 为钝角,所以cos B=√1-sin 2B =2√55.于是sin 2B=2sin Bcos B=45, cos 2B=1-2sin 2B=35,故sin(2B-A)=sin 2Bcos A-cos 2Bsin A=45×(-√55)−35×2√55=-2√55.10.(2017·全国1·理T 17)△ABC 的内角A,B,C 的对边分别为a,b,c.已知△ABC 的面积为a 23sinA.(1)求sin Bsin C;(2)若6cos Bcos C=1,a=3,求△ABC 的周长. 【解析】(1)由题设得12acsin B=a 23sinA,即12csin B=a 3sinA . 由正弦定理得12sin Csin B=sinA3sinA. 故sin Bsin C=23.(2)由题设及(1)得cos Bcos C-sin Bsin C=-12,即cos(B+C)=-12.所以B+C=2π3,故A=π3.由题设得12bcsin A=a 23sinA,即bc=8.由余弦定理得b 2+c 2-bc=9,即(b+c)2-3bc=9,得b+c=√33.故△ABC 的周长为3+√33.11.(2017·全国2·理T17)△ABC 的内角A,B,C 的对边分别为a,b,c.已知sin(A+C)=8sin 2B 2. (1)求cos B;(2)若a+c=6,△ABC 的面积为2,求b.。

相关文档
最新文档