中考数学方程与方程组知识点精讲

合集下载

北师大版中考数学方程部分知识点总结

北师大版中考数学方程部分知识点总结

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 北师大版中考数学方程部分知识点总结第二章方程一、基础知识点 1、一元一次方程(1)概念:只含有一个(即次方程。

(2)标准形式:是 ax+b=0(a,项;bx 叫做;c 叫做。

(3)求根公式:x= ??? 2、一元二次方程(1)概念:只含有一个未知数(2)标准形式:是 ax+bx+c=0(3)求根公式:x ????? ? ???(4)一元二次方程有四种解法(5)直接开平方法适用于一次(6)配方法的方法一般不唯一(7)公式法即用求根公式求解程都可以用。

(8)因式分解法有两种情况:化为 x(ax+b)?0;二是方【(9)一元二次方程根的判别式当时,方程有的实数根;当时,方程有的实数当时,方程实数根。

(10)韦达定理? ? ? ? ? ? ??? ,程(组)和不等式(第一节整式方程元),并且未知数的为 1(即次)的,b 为常数,x 为未知数,且 a0)。

其中数,并且未知数的最高次数是 2 的整式方程0(a,b,c 为常数,x 为未知数,且 a0??? :1、直接开平方法;2、配方法;3、公式次项系数为零的情况。

1 / 11一,要具体问题具体分析,看题找到最合理,公式法适用范围广,只要有解(? ? ? 4a一是常数项为零的情况,此时方程a? ? ?方程各项系数都不为零的情况,此时方】将方程分解因式。

式(△=b-4ac)判断方程的根的情况:根; ? ? ? ? ??? (其中? ? 、? ? 为方程的两个实数(组)的整式方程叫做一元一ax2 叫做,a 叫做二次程叫做一元二次方程。

0)。

式法;4、因式分解法。

理的配法。

ac ? 0)的一元二次方bx ? 0(a ? 0),可方程要用十字相乘法数根) 3、方程的解(根)的意义:能使方程左右两边相等的未知数的值是方程的解(即能使方程等式成立的未知数的值)。

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

2023年中考数学----二元一次方程组之解二元一次方程组知识点及专项练习题(含答案解析)

2023年中考数学----二元一次方程组之解二元一次方程组知识点及专项练习题(含答案解析)

2023年中考数学----二元一次方程组之解二元一次方程组知识点及专项练习题(含答案解析)知识点1. 解二元一次方程组的思想:消元思想:将方程组中的未知数由多化少,逐一解决的思想。

2. 解二元一次方程组的方法:①代入消元法:将其中一个方程的其中一个未知数用另一个未知数表示出来代入另一个方程中,实现消元,进而求出方程组的解的方法叫做代入消元法。

(通常适用于有未知数的系数是±1的方程组)②加减消元法:当方程组中的两个方程的同一个未知数的系数相同或相反时,则可以利用将两个方程相减或相加的方法消掉这个未知数的方法叫做加减消元法。

专项练习题1、.(2022•株洲)对于二元一次方程组⎩⎨⎧=+−=721y x x y ,将①式代入②式,消去y 可以得到( ) A .x +2x ﹣1=7 B .x +2x ﹣2=7C .x +x ﹣1=7D .x +2x +2=7 【分析】将①式代入②式,得x +2(x ﹣1)=7,去括号即可.【解答】解:,将①式代入②式,得x +2(x ﹣1)=7,∴x +2x ﹣2=7,故选:B .2、(2022•潍坊)方程组⎩⎨⎧=−=+0231332y x y x 的解为 . 【分析】由第一个方程得4x +6y =26,由第二个方程得9x ﹣6y =0,两个方程相加消去y ,解出x ,再进一步解出y 即可.【解答】解:,由①×2得4x +6y =26③,由②×3得9x ﹣6y =0④,由③+④得13x =26,解得x =2,将x =2代入②得3×2﹣2y =0,解得y =3,所以原方程组的解为. 故答案为:. 3、(2022•沈阳)二元一次方程组⎩⎨⎧==+x y y x 252的解是 . 【分析】用代入消元法解二元一次方程组即可.【解答】解:,将②代入①,得x +4x =5,解得x =1,将x =1代入②,得y =2,∴方程组的解为,故答案为:. 4、(2022•无锡)二元一次方程组⎩⎨⎧=−=+121223y x y x 的解为 .【分析】根据代入消元法求解即可得出答案.【解答】解:,由②得:y =2x ﹣1③,将③代入①得:3x +2(2x ﹣1)=12,解得:x =2,将x =2代入③得:y =3,∴原方程组的解为. 故答案为:. 5、(2022•随州)已知二元一次方程组⎩⎨⎧=+=+5242y x y x ,则x ﹣y 的值为 . 【分析】将第一个方程化为x =4﹣2y ,并代入第二个方程中,可得2(4﹣2y )+y =5,解得y =1,将y =1代入第一个方程中,可得x =2,即可求解.【解答】解:解法一:由x +2y =4可得:x =4﹣2y ,代入第二个方程中,可得:2(4﹣2y )+y =5,解得:y =1,将y =1代入第一个方程中,可得x +2×1=4,解得:x =2,∴x ﹣y =2﹣1=1,故答案为:1;解法二:∵,由②﹣①可得:x﹣y=1,故答案为:1.6、(2022•安顺)若a+2b=8,3a+4b=18,则a+b的值为.【分析】直接利用已知解方程组进而得出答案.【解答】解:方法一、∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.方法二、∵a+2b=8,3a+4b=18,∴2a+2b=10,∴a+b=5,故答案为:5.本课结束。

2025年湖南中考数学一轮复习考点研析第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用

2025年湖南中考数学一轮复习考点研析第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用
(1)该超市采购员发现,购进2盒甲品牌月饼和1盒乙品牌月饼共需120元,购进
1盒甲品牌月饼和3盒乙品牌月饼共需185元.求甲、乙两种品牌月饼每盒的
进价分别为多少元;
(2)该超市购进甲、乙两种品牌月饼若干盒进行销售,若乙品牌月饼每盒的
售价比甲品牌月饼每盒的售价的2倍少40元,且4盒甲品牌月饼和3盒乙品牌
性质2
同一个数(或式)(除数
或除式不能为0),所得
结果仍是等式
拓展
公式表达
如果a=b,那么ac=
______
bc

如果a=b,那么 =


(d≠0)
___________

对称性:如果a=b,那么b=a.
传递性:如果a=b,b=c,那么a=c
在解方程中的应用
去分母(此时c≠0)
系数化为1
根据等式的性质2变形时,需考虑等式两边同乘的数为0时,该等式是否仍成
共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数
为( B )
A.25
B.75
C.81
D.90
答案
1.[学科融合]在物理学中,导体中的电流I跟导体两端的电压U、导体的电阻

R之间有以下关系:I= ,去分母得IR=U,那么其变形的依据是(

B )
A.等式的性质1
B.等式的性质2
C.分式的基本性质
解:(1)设参加此次研学活动的师生人数是x,原计划租用y辆45座客车.
= 600,
45+15 = ,
根据题意,得ቊ
解得ቊ
= 13.
60(-3) = ,
答:参加此次研学活动的师生人数是600,原计划租用13辆45座客车.

二元一次方程组【四大题型】—2024年中考数学高频考点精讲(全国通用)(解析版)

二元一次方程组【四大题型】—2024年中考数学高频考点精讲(全国通用)(解析版)

二元一次方程组【四大题型】一、解二元一次方程组【高频考点精讲】1.用“代入法”解二元一次方程组的一般步骤(1)从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来; (2)将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求出x (或y )的值;(4)将求得未知数的值代入变形后的关系式,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。

2.用“加减法”解二元一次方程组的一般步骤(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求得x (或y )的值;(4)将求得未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。

【热点题型精练】1.(2023•无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( ) A .{x =1y =2B .{x =2y =0C .{x =0.5y =3D .{x =−2y =4解:A 、把x =1,y =2代入方程,左边=2+2=右边,所以是方程的解; B 、把x =2,y =0代入方程,左边=右边=4,所以是方程的解; C 、把x =0.5,y =3代入方程,左边=4=右边,所以是方程的解; D 、把x =﹣2,y =4代入方程,左边=0≠右边,所以不是方程的解. 答案:D .2.(2023•南通)若实数x ,y ,m 满足x +y +m =6,3x ﹣y +m =4,则代数式﹣2xy +1的值可以是( ) A .3B .52C .2D .32解:由题意可得{x +y =6−m 3x −y =4−m,解得:{x =5−m 2y =7−m 2, 则﹣2xy +1=﹣2×5−m 2×7−m2+1=−(5−m)(7−m)2+1 =−m 2−12m+352+1=−(m 2−12m+36)−12+1=−(m−6)22+32≤32,∵3>52>2>32,∴A ,B ,C 不符合题意,D 符合题意, 答案:D .3.(2023•眉山)已知关于x ,y 的二元一次方程组{3x −y =4m +1x +y =2m −5的解满足x ﹣y =4,则m 的值为( )A .0B .1C .2D .3解:∵关于x 、y 的二元一次方程组为{3x −y =4m +1①x +y =2m −5②,①﹣②,得:2x ﹣2y =2m +6, ∴x ﹣y =m +3, ∵x ﹣y =4, ∴m +3=4, ∴m =1. 答案:B .4.(2022•株洲)对于二元一次方程组{y =x −1①x +2y =7②,将①式代入②式,消去y 可以得到( )A .x +2x ﹣1=7B .x +2x ﹣2=7C .x +x ﹣1=7D .x +2x +2=7解:{y =x −1①x +2y =7②,将①式代入②式,得x +2(x ﹣1)=7, ∴x +2x ﹣2=7, 答案:B .5.(2022•雅安)已知{x =1y =2是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 .解:把{x =1y =2代入ax +by =3得:a +2b =3,则原式=2(a +2b )﹣5=2×3﹣5=6﹣5=1. 答案:1.6.(2023•杭州二模)已知二元一次方程x +3y =14,请写出该方程的一组整数解 . 解:x +3y =14, x =14﹣3y , 当y =1时,x =11,则方程的一组整数解为{x =11y =1.答案:{x =11y =1(答案不唯一).7.(2023•苏州一模)若一个二元一次方程的一个解为{x =2y =−1,则这个方程可能是 .解:这个方程可能是:x +y =1,答案不唯一. 答案:x +y =1,答案不唯一. 8.(2023•连云港)解方程组{3x +y =8①2x −y =7②.解:{3x +y =8①2x −y =7②,①+②得:5x =15, 解得:x =3,将x =3代入①得:3×3+y =8, 解得:y =﹣1,故原方程组的解为:{x =3y =−1.二、由实际问题抽象出二元一次方程组【高频考点精讲】1.由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系;2.一般来说,有几个未知量就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相符。

中考数学一轮复习课件一次方程与方程组

中考数学一轮复习课件一次方程与方程组

二元一次方程的解与二元一次方程组的解是不同的概念,前者一般有无数个,后者一般只有唯一一个,不能混为一谈.另外,在验证或作结论时,一定要正确把握关键词,往往一词之差,意义就大不相同了,如“一个解”与“唯一解”的区别等.
202X
CIICK HERE TO ADD A TITLE
单击添加副标题
第6课 一次方程与方程组 主讲:吴倩
等式及其性质 用等号“=”来表示相等关系的式子,叫做等式.
考点一 等式及方程的有关概念
等式的性质:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.
温馨提示: 在等式两边都除以同一个代数式时,一定要保证这个代数式的值__不为0
要点梳理
1.定义: (1)含有未知数的 叫做方程; (2)只含有 未知数,且未知数的次数是 ,这样的 整式方程叫做一元一次方程; (3)将两个或两个以上的方程合在一起,就构成了一个方程 组.总共含有 ,且未知数的次数是 , 这样的方程组叫做二元一次方程组.
B
3.(2011·江津)已知3是关于x的方程2x-a=1的解,则a的值是( ) A.-5 B.5 C.7 D.2 解析:∵x=3是方程的解,∴2×3-a=1,a=5.
B
4.(2011·肇庆)方程组 的解是( ) A. B. C. D. 解析:当 时,x-y=2-0=2,2x+y=2×2+0=4, 可知是方程组的公共解.
2.灵活选用代入法或加减法解二元一次方程组
衬底1
基础自测
1.(2011·邵阳)请写出一个解为x=2的一元一次方程:________. 答案:x=2,x-2=0 ,2x-3=1……,答案不唯一. 2.(2011·益阳)二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是( ) A. B. C. D. 解析:当 时,左边x-2y=1-2×1=-1≠右边.

中考数学知识点之方程

中考数学知识点之方程

中考数学知识点之方程
参与中考的考生需求了解所学习的科目的知识点都有哪些,下面是学习方法网的小编为大家总结归结中考数学实数知识点汇总,希望对行将参与中考考生有所协助。

方程(组)
★重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关运用题(特别是行程、工程效果)
☆内容提要☆
一、基本概念
1.方程、方程的解(根)、方程组的解、解方程(组)
2.分类:
二、解方程的依据等式性质
1.a=ba+c=b+c
2.a=bac=bc(c0)
三、解法
1.一元一次方程的解法:去分母去括号移项兼并同类项
系数化成1解。

2.元一次方程组的解法:⑴基本思想:〝消元〞⑵方法:①代入法
②加减法
四、一元二次方程
1.定义及普通方式:
2.解法:⑴直接开平方法(留意特征)
⑵配方法(留意步骤推倒求根公式)
⑶公式法:
⑷因式分解法(特征:左边=0)
3.根的判别式:
4.根与系数顶的关系:
逆定理:假定,那么以为根的一元二次方程是:。

5.常用等式:
五、可化为一元二次方程的方程
1.分式方程
⑴定义
⑵基本思想:
⑶基本解法:①去分母法②换元法(如,)
⑷验根及方法
2.在理方程
⑴定义
⑵基本思想:
⑶基本解法:①乘方法(留意技巧!!)②换元法(例,)⑷验根及方法
3.复杂的二元二次方程组
由一个二元一次方程和一个二元二次方程组成的二元二次
方程组都可用代入法解。

中考数学中的函数与方程组解题技巧总结

中考数学中的函数与方程组解题技巧总结

中考数学中的函数与方程组解题技巧总结中考数学中,函数与方程组是较为重要的考点,掌握相应的解题技巧对于取得好成绩至关重要。

本文将对中考数学中的函数与方程组解题技巧进行总结,希望能够帮助同学们提高解题能力。

一、函数的解题技巧在解题过程中,有时需要对函数的图象进行分析,进而求解一些相关问题。

下面是几个常见的函数解题技巧:1. 确定定义域和值域:对于给定的函数,首先要明确函数的定义域和值域,这是理解和分析函数的关键。

可以通过观察函数的图象、查看函数的表达式或者进行变量的替换等方式来确定。

2. 确定函数的性质:了解函数的基本性质有助于解题。

例如,判断函数的奇偶性、单调性、周期性等,可以通过求导、分析函数的对称性等方法来确定。

3. 利用函数的图象解题:函数的图象可以提供一些有用的信息。

可以根据图象对函数值、函数的最大值最小值、函数的增减区间等进行分析,从而解决与函数相关的问题。

4. 运用函数的性质求解方程:有时可以利用函数的性质将方程转化为易于解决的形式。

比如,利用奇偶性判断方程有几个实数解,或者通过函数之间的关系将方程组化简为一个方程等。

二、方程组的解题技巧方程组的解题过程中,也有一些常见的技巧可以帮助我们解决问题。

下面是几个常见的方程组解题技巧:1. 利用加减消元法:对于含有两个未知数的线性方程组,可以通过加减消元法将其化简为一个方程,从而求解未知数的值。

这需要灵活运用加减法与倍数运算,将方程组转化为更简单的形式。

2. 利用替换法:有时,可以通过将一个未知数用另一个未知数表示,进而化简方程组的求解过程。

这需要适当选择合适的替换关系,并将其代入方程组中,从而得到更简单的方程。

3. 运用两个方程的关系求解:有时,可以利用方程组中两个方程的关系,从而得到一个更简单的方程。

比如,通过两个方程的相减或相加,消去一个未知数,从而求解另一个未知数。

4. 运用方程组的特殊性质求解:有些特殊的方程组可以通过运用其特殊性质来求解。

2025年中考数学总复习第一部分考点精讲第二章方程(组)与不等式(组)第三节分式方程及其应用

2025年中考数学总复习第一部分考点精讲第二章方程(组)与不等式(组)第三节分式方程及其应用
(1)两人要去距离学校10 km的图书批发市场购买图书,出发时,张老师因有事
耽搁,故李老师骑自行车先行出发,20 min后,张老师乘坐汽车出发,结果
两人同时到达①.已知汽车的平均速度是自行车平均速度的2倍,求李老师骑自
行车的平均速度;
2025版
数学
甘肃专版
解:设自行车的平均速度为x km/h,则汽车的平均速度为2x km/h,根据题意,
2025版
第三节
数学
甘肃专版
分式方程及其应用
2025版
数学
甘肃专版
2025版












数学
甘肃专版
2025版








数学
甘肃专版
2025版

















数学
甘肃专版
2025版

















数学
甘肃专版
2025版
数学
甘肃专版
2025版


- = ,解得x=15,


经检验,x=15是原分式方程的解,且符合题意.
答:李老师骑自行车的平均速度为15 km/h.
2025版
数学
甘肃专版
【分层分析】
第一步:设自行车的平均速度为x km/h;

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。

中考数学复习重要知识点专项总结—方程和方程组

中考数学复习重要知识点专项总结—方程和方程组

中考数学复习重要知识点专项总结—方程和方程组一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

(4)一元一次方程有唯一的一个解。

2、一元二次方程(1)一元二次方程的一般形式:(其中x是未知数,a、b、c 是已知数,a≠0)(2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:当Δ>0时方程有两个不相等的实数根;当Δ=0时方程有两个相等的实数根;当Δ<0时方程没有实数根,无解;当Δ≥0时方程有两个实数根(5)一元二次方程根与系数的关系:若是一元二次方程的两个根,那么:,(6)以两个数为根的一元二次方程(二次项系数为1)是:三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。

(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

四、方程组1、方程组的解:方程组中各方程的公共解叫做方程组的解。

2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组3、一次方程组:(1)二元一次方程组:一般形式:(不全为0)解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。

中考数学复习考点知识与题型专题讲解3--- 一元一次方程(解析版)

中考数学复习考点知识与题型专题讲解3--- 一元一次方程(解析版)

中考数学复习考点知识与题型专题讲解专题03一元一次方程【思维导图】【知识要点】知识点一一元一次方程的基础等式的概念:用等号表示相等关系的式子。

注意:1.等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等。

2.不能将等式和代数式概念混淆,等式含有等号,表示两个式子相等关系,而代数式不含等号,你只能作为等式的一边。

方程的概念:含有未知数的等式叫做方程。

特征:它含有未知数,同时又是—个等式。

一元一次方程的概念:只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

标准形式:ax+b=0(x为未知数,a、b是已知数且a≠0)【特征】1. 只含有一个未知数x2. 未知数x的次数都是13. 等式两边都是整式,分母中不含未知数。

方程的解的概念:能使方程中等号左右两边相等的未知数的值叫方程的解。

一元方程的解又叫根。

知识点二等式的性质(解一元一次方程的基础)等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。

表示为:如果a=b,则a±c=b±c等式的性质2:等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。

表示为:如果 a=b,那么ac = bc如果 a=b(c≠0),那么 =【注意事项】1.等式两边都要参加运算,并且是同一种运算。

2.等式两边加或减,乘或除以的数一定是同一个数或同一个式子。

3.等式两边不能都除以0,即0不能作除数或分母.4.等式左右两边互换,所得结果仍是等式。

知识点三解一元一次方程合并同类项把若干能合并的式子的系数相加,字母和字母的指数不变,起到化简的作用。

移项把等式一边的某项变号后移到另一边,叫做移项。

(依据:等式的性质1)去括号括号前负号时,去掉括号时里面各项应变号。

去分母在方程的两边都乘以各自分母的最小公倍数。

去分母时不要漏乘不含分母的项。

当分母中含有小数时,先将小数化成整数。

解一元一次方程的基本步骤:知识点四实际问题与一元一次方程用方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解;验:考虑求出的解是否具有实际意义;答:实际问题的答案.【考查题型】考查题型一 一元一次方程概念的应用【解题思路】关键是根据一元一次方程的概念和其解的概念解答.典例1.(2021·四川中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8 C .5 D .4【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1, 可得:a-2=1,2+m=4, 解得:a=3,m=2, 所以a+m=3+2=5, 故选:C .变式1-1.(2021·内蒙古中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____. 【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,2m 11∴﹣=,即m 1=或m 0=,方程为x 20﹣=或x 20--=, 解得:x 2=或x 2=-, 当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3,故答案为:x=2或x=-2或x=-3.变式1-2.(2021·四川南充市·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为() A .9 B .8C .5D .4【答案】C【分析】根据一元一次方程的概念和其解的概念解答即可.【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选C . 考查题型二 解一元一次方程【解题思路】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.典例2.(2021·重庆中考真题)解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-【答案】D【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .变式2-1.(2021·湖北恩施土家族苗族自治州·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是(). A .1- B .1 C .0 D .2【答案】C【分析】根据题目中给出的新定义运算规则进行运算即可求解. 【详解】解:由题意知:2211☆=+-=+x x x , 又21x =☆, ∴11x +=, ∴0x =. 故选:C .变式2-2.(2021·四川凉山彝族自治州·中考真题)解方程:221123x x x ---=- 【答案】27x =【分析】去分母、去括号、移项、合并同类项、系数化为1,依此即可求解. 【详解】解:221123x x x ---=- ()()6326221x x x --=--636642x x x -+=-+ 634662x x x -+=-+ 72x =27x =考查题型三 配套问题和工程问题【配套问题解题关键】配套问题的物品之间具有一定的数量关系,依次作为列方程的依据.【工程问题解题关键】常把总工作量看做1,并利用“工作量=人均效率×人数×时间”的关系考虑问题典例3.(2021·哈尔滨市模拟)某车间有27名工人,每个工人每天生产64个螺母或者22个螺栓,每个螺栓配套两个螺母,若分配x个工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程中正确的是()A.22x=64(27﹣x)B.2×22x=64(27﹣x)C.64x=22(27﹣x)D.2×64x=22(27﹣x)【答案】B【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺母数量=2倍的螺栓数量,可得出方程.【详解】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母64个或螺栓22个,∴可得2×22x=64(27﹣x).故选:B.变式3-1.(2021·黑哈尔滨市二模)某车间有22名工人,每人每天可生产1200个螺钉或2000个螺母,1个螺钉需配2个螺母,为使生产的螺钉和螺母刚好配套,若设x名工人生产螺钉,依题意列方程为()A.1200x=2000(22﹣x)B.1200x=2×2000(22﹣x)C.1200(22﹣x)=2000x D.2×1200x=2000(22﹣x)【答案】D【分析】首先根据题目中已经设出每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,由1个螺钉需要配2个螺母,可知螺母的个数是螺钉个数的2倍,从而得出等量关系,就可以列出方程.【详解】解:设每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x),即2×1200x=2000(22-x),故选D.变式3-2.(2021·山西阳泉市模拟)在中国数学名著《九章算术》中,有这样一个问题:“今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十. 问家数、牛价各几何?”大意是:几家人凑钱合伙买牛,如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱. 问共有多少人家,每头牛的价钱是多少元?若设有x户人家,则可列方程为()A.1902703303079x x+=-B.1902703303079x x-=+C.7190927033030x x⨯⨯+=-D.7190927033030x x⨯⨯-=+【答案】A【分析】根据“如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱”,可得每头牛的价钱是1903307x+或270309x-,即可得出关于x的方程.【详解】解:∵如果每7家共出190元,那么还缺少330元钱,∴每头牛的价钱是1903307x+;∵如果每9家共出270元,又多了30元钱,∴每头牛的价钱又可以表示为270309x-,∴可列方程为:19027033030 79x x+=-,故选A.变式3-3.(2021·广西南宁市一模)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.120350506x x+-=+B.350506x x-=+C.120350506x x+-=+D.120350650x x+-=+【答案】C【分析】关系式为:零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3,把相关数值代入即可求解. 【详解】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:12035050+6x x +-= 故选C .变式3-4.(2021·浙江杭州市·中考真题)已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x xB .327230x xB .C .233072x xD .323072x x【答案】D【分析】先设男生x 人,根据题意可得323072x x .【详解】男生x 人,则女生有(30-x)人,由题意得:323072x x,故选D.变式3-5.(2021·哈尔滨市模拟)甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x 人到甲队,列出的方程正确的是() A .1(96)723x x -=-B .196723x x ⨯-=-C .1(96)723x x +=-D .196(72)3x x +=-【答案】C【分析】根据等量关系:乙队调动后的人数=13甲队调动后的人数,列出一元一次方程即可. 【详解】设应从乙队调x 人到甲队,此时甲队有(96+x )人,乙队有(72-x )人, 根据题意可得:13(96+x )=72-x .故选C . 考查题型四 销售盈亏问题 销售金额=售价×数量利润= 商品售价-商品进价利润率=(利润÷商品进价)×100%现售价 = 标价×折扣售价 = 进价×(1+利润率)典例4.(2021·长沙市一模)随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180 B.170 C.160 D.150【答案】A【分析】设该超市该品牌粽子的标价为x元,则售价为80%x元,根据等量关系:利润=售价﹣进价列出方程,解出即可.【详解】解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.变式4-1.(2021·广东深圳市模拟)某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元【答案】C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C变式4-2.(2021·长沙市二模)中国总理李克强2021年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40% B.20% C.60% D.30%【答案】B【分析】设该小商品的利润率为x,根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设该小商品的利润率为x,依题意,得:10×(1+100%)×0.6﹣10=10x,解得:x=0.2=20%.故选:B.考查题型五比赛积分问题比赛总场数=胜场数+负场数+平场数比赛总积分=胜场积分+负场积分+平场积分典例5.(2021·大庆市模拟)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【答案】B【分析】解答此题可设该队获胜x场,则负了(6-x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【详解】设该队获胜x场,则负了(6-x)场.根据题意得3x+(6-x)=12,解得x=3.经检验x=3符合题意.故该队获胜3场.故选B.变式5-1.(2021·武汉市模拟)一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道B.18道C.19道D.20道【答案】C【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.变式5-2.(2021·广东深圳市模拟)在2018﹣2021赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74【答案】C【分析】根据题意分析,可以设曼城队一共胜了x场,则平了(30-x-4)场,找出等量关系:总积分=3×获胜场数+1×踢平场数,即可得出关于x的一元一次方程,此题得解.【详解】设曼城队一共胜了x场,则平了(30﹣x﹣4)场,依题意,得:3x+(30﹣x﹣4)=74,即3x+(26﹣x)=74.故选:C.考查题型六方案选择问题结合实际,分情况讨论,给出合理建议。

【聚焦中考】2014中考浙江地区专版数学总复习考点精讲6一次方程与方程组

【聚焦中考】2014中考浙江地区专版数学总复习考点精讲6一次方程与方程组

x 1 y 1
y 0
D. x 2
3x y m x 1, 4.(2012·临沂)关于x的方程组 的解是 x m y n y 1 则|m-n|的值是( D )
A.5
B.3
C.2
D.1
பைடு நூலகம்
x 3 y 4 a 5.(2012·杭州)已知关于x,y的方程组 x y 3a
第6讲 一次方程与方程组
1.定义: (1)含有未知数的______ 等式 叫做方程; (2)只含有_____ 一个 未知数,且未知数的次数是______ 一次 , 这样的整式方程叫做一元一次方程; (3)将两个或两个以上的方程合在一起,就构成了一 个方程组.总共含有__________ 两个未知数,且未知数的次 一次 ,这样的方程组叫做二元一次方程 数是都______ 组. 2.方程的解: 能够使方程左右两边的值________ 相等的 未知数的值,叫做 方程的解.求方程解的过程叫做解方程.
考点1 一元一次方程的解法
2 1 1 (3)7x- x- (x-1) =3(x-1); 2 2 1 3( - 2x-1- =5. 1 2 2x 1 ) (4)3 解 7x- x+ = (x- 1), 2 3 22
1 1 2 2 7x- x- = x- , 4 4 3 3 去分母,得 84x-3x-3=8x-8, 5 2 1 1 84x- 3x- + , 73x 51) , ∴ x=- . x8x -=- (x8 - 13 ) (3)7x - = =- (x- ; 73 2 2 3 2x-1-3(2x-1)=5. (4)3
x 5 其中-3≤a≤1,给出下列结论:① 是方程组的 y 1 解;②当a=-2时,x,y的值互为相反数;

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

5.(数学文化)《九章算术》是中国古代数学著作之一,书中有这样的一 个问题:五只雀、六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问: 每只雀、燕的质量各为多少?设一只雀的质量为 x 斤,一只燕的质量为 y
5x+6y=1, 斤,则可列方程组为__4x+y=5y+__x.
【考情分析】广西近 6 年主要考查解一元一次方程或二元一次方程组, 应用一元一次方程或二元一次方程组解决简单的实际问题,难度小,分 值 3-10 分,常在解答题中与不等式、一次函数的实际应用结合考查.
x=1, 则方程组的解为y=-1.
x-3y=-2, 5.(2020·玉林第 20 题 6 分)解方程组:2x+y=3.
x-3y=-2①, 解:2x+y=3②. ①+②×3 得 x+6x=-2+3×3, 解得 x=1, 将 x=1 代入②得 2+y=3, 解得 y=1.
x=1, 则方程组的解为y=1.
根据题意可列方程组为
y=3x-2, A.y=2x+9
y=3x-2, C.y=2x-9
y=3(x-2), B.y=2x+9
y=3(x-2), D.y=2x-9
( B)
7.(2021·桂林第 24 题 8 分)为了美化环境,建设生态桂林,某社区需 要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天 能完成的绿化改造面积比乙队多 200 m2,甲队与乙队合作一天能完成 800 m2 的绿化改造面积. (1)甲、乙两工程队每天各能完成多少 m2的绿化改造面积? (2)该社区需要进行绿化改造的区域共有 12 000 m2,甲队每天的施工费 用为 600 元,乙队每天的施工费用为 400 元,比较以下三种方案: ①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成. 哪一种方案的施工费用最少?

中考总复习数学第1节 一次方程(组)及其应用

中考总复习数学第1节 一次方程(组)及其应用

【自主作答】(1)x=1;(2)xy==12,.
类型3:列一次方程(组)解实际问题
►例3(2020·绍兴)有两种消费券:A 券,满 60 元减 20
元;B 券,满 90 元减 30 元,即一次购物大于等于 60 元、
90 元,付款时分别减 20 元、30 元.小敏有一张 A 券,
小聪有一张 B 券,他们都购了一件标价相同的商品,各
【自主作答】100 或 85
►例4某一天,蔬菜经营户老李用了 145 元从蔬菜批
发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄
子当天的批发价与零售价如下表所示:
品名
黄瓜
茄子
批发价/(元/千克)
3
4
零售价/(元/千克)
4
7
当天他卖完这些黄瓜和茄子共赚了 90 元,这天他批 发的黄瓜与茄子分别是多少千克?
(1)请求出 A,B 两个品种去年平均亩产量分别是多 少.
(2)今年,科技小组加大了小麦种植的科研力度,在 A,B 种植亩数不变的情况下,预计 A,B 两个品种平均 亩产量将在去年的基础上分别增加 a%和 2a%,由于 B 品种深受市场的欢迎,预计每千克价格将在去年的基础 上上涨 a%,而 A 品种的售价不变.A,B 两个品种全部 售出后总收入将在去年的基础上增加290a%.求 a 的值.
自付款,若能用券时用券,这样两人共付款 150 元,则
所购商品的标价是
元.
分析:设所购商品的标价是 x 元,由题意,得
①所购商品的标价小于 90 元, x-20+x=150 ,
解得 x= 85
;②所购商品的标价大于 90 元,
x-20+x-30=150 ,解得 x= 100 .故所购商品
的标价是 100 或 85 元.

中考数学方程和方程式基础知识

中考数学方程和方程式基础知识

中考数学方程和方程式基础知识基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)(2)一玩一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

(4)一元一次方程有唯一的一个解。

2、一元二次方程(1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:ac b 42-=∆ 当Δ>0时⇔方程有两个不相等的实数根;当Δ=0时⇔方程有两个相等的实数根;当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根(5)一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a bx x -=+21,a cx x =⋅21(6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。

(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

初中数学中考复习考点知识与题型专题讲解06 二元一次方程组(解析版)

初中数学中考复习考点知识与题型专题讲解06 二元一次方程组(解析版)

初中数学中考复习考点知识与题型专题讲解专题06 二元一次方程组【知识要点】考点知识一二元一次方程(组)有关概念二元一次方程的概念:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

【注意】1)二元:含有两个未知数;2)一次:所含未知数的项的次数都是1。

例如:xy=1,xy的次数是二,属于二元二次方程。

2)方程:方程的左右两边必须都是整式(分母不能出现未知数)。

二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.【注意】1)在二元一次方程中,给定其中一个未知数的值,就可以求出另一个未知数的值。

2)二元一次方程有无数个解,满足二元一次方程使得方程左右相等都是这个方程的解,但并不是说任意一对数值就是它的解。

二元一次方程组的概念:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.【注意】1)二元一次方程组的“二元”和“一次”都是针对整个方程组而言的,组成方程组的各个方程不必同时含有两个未知数,如⎩⎨⎧2x +1=0,x +2y =2也是二元一次方程组。

这两个一次方程不一定都是二元一次方程,但这两个一次方程必须一共含有两个未知数。

3) 方程组中的各个方程中,相同字母必须代表同一未知量。

4)二元一次方程组中的各个方程应是整式方程。

二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

【注意】1)二元一次方程组的解是方程中每个方程的解。

2)一般情况下二元一次方程组的解是唯一的,但是有的方程组有无数个解或无解。

如:⎩⎨⎧x +y =5,4x +4y =20.有的方程组无解,如:⎩⎨⎧x +y =5,x +y =2.考点知识二 解二元一次方程组消元的思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,即可先求出一个未知数,然后再求另一个未知数。

这种将未知数的个数由多化少、逐一解决的思想,叫做消元的思想。

中考数学考点精讲专题05整式方程(组)

中考数学考点精讲专题05整式方程(组)

B. 13cm
C. 14cm
D. 16cm
3cm的小正方形,做成一个无盖的盒子,
考点:一元二次方程的应用. 考点典例五、二元一次方程组
【 例 5】(7 分)(2015?聊城,第 18 题)解方程组

x3
【答案】
y2
【解析】 试题分析:方程组利用加减消元法求出解即可.
试题解析:解:
xy 5①

2x y 4 ②
【举一反三】
( 2015 内江)植树节这天有 20 名同学共种了 52 棵树苗,其中男生每人 种树 3 棵,女生每人种树 2 棵.设
男生有 x 人,女生有 y 人,根据题意,下列方程组正确的是(

x y 52
A.
x y 52
x y 20
B.
C.
x y 20
D.
3x 2 y 20
2x 3y 20
2x 3 y 52
1 的整式方程。
7、三元一次方程组
由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,
叫做三元一次方程组。
名师点睛☆典例分类 考点典例一、一元一次方程
【例 1】(2015 ·辽宁大连)方程 3x+2(1-x)=4 的解是(

2
A.x=
B.x=
5
5
C.x=2 D.x=1
6
【答案】 C
【解析】
专题 05 整式方程(组)
聚焦考点☆温习理解
一、一元一次方程的概念
1、方程
含有未知数的等式叫做方程。
2、方程的解
能使方程两边相等的未知数的值叫做方程的解。
3、等式的性质
( 1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。

(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。

对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。

注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的'各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a
也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
5)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diaota”,而△=b2-4ac,这里可以分为3种情况:
I当△>0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2ห้องสมุดไป่ตู้相同的实数根;
III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)
同学们对上面老师讲解的知识都很好的掌握了吧,希望通过上面对方程与方程组知识的学习,同学们能从中学习的更好。
6.
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
1)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了
2)一元二次方程的解法
大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
(2)分解因式法
中考数学方程与方程组知识点精讲
中考数学方程与方程组知识点精讲
方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
相关文档
最新文档