高中数学:三角函数全章课件

合集下载

2024年度高中数学必修四三角函数PPT课件

2024年度高中数学必修四三角函数PPT课件

建筑设计
在建筑设计中,利用三角函数计算建筑物的角度、高度和距离等 参数,确保设计的准确性和美观性。
机械设计
在机械设计中,三角函数用于计算齿轮、轴承等机械元件的尺寸和 角度,保证机械传动的精确性和稳定性。
航空航天工程
在航空航天工程中,利用三角函数分析飞行器的姿态、航向和速度 等参数,确保飞行安全。
21
2024/3/24
32
THANKS
感谢观看
2024/3/24
33
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
29
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
2024/3/24
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
04
三角恒等变换的应用: 证明等式、化简表达式 等
30
解三角形问题:利用正 弦定理、余弦定理求解 边或角
易错知识点剖析及防范措施
混淆三角函数定义域和值域
注意定义域和值域的区别,避免混淆
忽视三角函数的周期性
在解题时要考虑周期性,避免漏解或 多解
2024/3/24
错误使用三角恒等变换公式
注意公式的适用条件和变形方式,避 免误用
忽视解三角形的限制条件
在解三角形时要注意边和角的限制条 件,避免得出不符合题意的解
第三象限
正弦、余弦均为负、正切为正 。
第四象限
正弦为负、余弦为正、正切为 负。
2024/3/24
7
02 三角函数诱导公 式与变换
2024/3/24
8
诱导公式及其应用
2024/3/24
诱导公式的基本形式

高中数学第一章三角函数1.3三角函数的诱导公式课件新人教A版必修4

高中数学第一章三角函数1.3三角函数的诱导公式课件新人教A版必修4

sin
2
cos
,
cos
2
sin .
sin
2
cos
,
cos
2
sin
.
cos180 cos
原式=
cos
sin
sin cos
1
练习 利用公式求下列三角函数值:
1 cos 420 cos60 cos 60 1 2
2 sin
7 6
sin
5 6
sin
6
1 2
3sin 1300
4
cos
79 6
cos
5 6
cos
6
3 2
练习
化简 1sin 180 cos sin 180
4 tan 324 32 __ta_n__3_5_2_8_;
化简11scio原ns式52=cs2ions•22sin•2sin •c•osco2s
;
= sin • sin • cos
cos
= sin2
化简
2 cos2
tan 360
sin .
原式=cos2 tan sin
1.思考
给定一个角α (1)终边与角α的终边关于原点对称的角 与α有什么关系?它们的三角函数之间有 什么关系?
公式二
y
P(x,y)
sin(π+α)=-sinα cos(π+α)=-cosα
π +α α
O
x
tan(π+α)=tanα
P(-x,-y)
(2)终边与角α的终边关于x轴对称的角与α 有什么关系?它们的三角函数之间有什么 关系?
y
P(-x,y)
π-α P(x,y)

5.2.1三角函数的概念课件高一数学(人教A版必修第一册)

5.2.1三角函数的概念课件高一数学(人教A版必修第一册)
【解析】射线 = − 3 < 0 经过第二象限,
在射线上的取点 −1, 3 ,
即角 的终边经过点 −1, 3 ,
则 =
−1
2
+
3
2
= 2,
利用三角函数定义可得
sin =


=
3
,cos
2
tan =


=
3
−1
3
2
所以sin =
=


=
−1
2
1
=− ,
2
= − 3;
1
, cos = − 2 , tan = − 3.

(3)在角− 的终边上取一点 , − ,即 = , = −, = ,



= − , −




(4)在角 的终边上取一点

则 −
则 =



,


=−
=

,




= −;
−, ,即 = −, = , = ,


当 = 或



时,点的坐标是(, )和(− , )



一般地,任意给定一个角,它的终边与单位圆交点的坐标能唯一确定吗?
∀ ∈ , 其终边与单位圆交点的横坐标, 纵坐标唯一确定.
新知1:三角函数的定义
(1)把点的纵坐标叫做的正弦函数,记作 ,
即 = .
π

转 3 弧度,滚珠 按顺时针方向每秒钟转 6 弧度,相遇后发生碰撞,各自按照原来的速度大小反向运动.
(1)求滚珠 , 第一次相遇时所用的时间及相遇点的坐标;

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版
2024/1/26
单调性
在各象限内,正弦、余弦 函数的单调性及其变化规 律。
最值问题
利用三角函数的性质求最 值,如振幅、周期等参导公式与恒等 式
REPORTING
2024/1/26
7
诱导公式及其应用
01
诱导公式的基本形式
通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基
8
恒等式及其证明方法
2024/1/26
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变 量取何值,等式都成立。
恒等式的证明方法
通常采用代数法、几何法或三角法等方法进行证明。其中,代数法是通过代数运算和变换 来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函 数的性质和关系来证明恒等式。
化简为简单的形式。
12
三角函数的乘除运算规则
乘积化和差公式
通过乘积化和差公式,可以将两 个三角函数的乘积转化为和差的
形式,从而简化运算。
商的化简
利用同角三角函数的基本关系, 可以将三角函数的商转化为简单
的三角函数运算。
倍角公式
通过倍角公式,可以将三角函数 的乘方运算转化为简单的三角函
数运算。
2024/1/26
建立三角函数与数列、概率统计相关 的数学模型
结合计算机编程和数学软件,实现模 型的数值模拟和可视化
2024/1/26
利用数学分析、高等代数等方法求解 模型
22
PART 06
总结回顾与拓展延伸
REPORTING
2024/1/26
23
本章节知识点总结回顾
三角函数图像
正弦、余弦、正切函数的图像 及其周期性、奇偶性等性质。

三角函数的概念 完整版PPT课件

三角函数的概念 完整版PPT课件
通常将它们记为: 正弦函数 y sin x, x R
余弦函数 y cosx, x R
正切函数 y tanx, x k (k Z )
2
注意:
y
的终边
(1)正弦就是交点的纵坐标, 余弦就是交点的横坐标 正切就是交点的纵坐标与横坐标的比值.
(x, y)
x o
(2) 正弦函数、余弦函数总有意义.当α 的终边在y 轴上时,点P 的
单位圆半径不变,点P的横、纵坐标只与α的大小有关, α确定时,p的坐标能唯一确定。
任意角的三角函数定义
设 α是一个任意角, R ,它的终边与单位圆交于点 P(x, y)
那么:(1) y 叫做 α的正弦函数,记作 sin α 即 y = sin α
(2) x 叫做 α的余弦函数,记作 cos α 即 x = cos α
.
证明:如图,设角 的终边与单位圆交于点 P0 (x0 , y0 )
分别过点P, P0 作 x 轴的垂线PM , P0M 0 ,垂足分别为 M , M0
则 | P0M0 || y0 |,| PM || y |,| OM0 || x0 |,| OM || x |,
OMP ∽ OM0P0
于是,| P0M 0 | | PM
P c
b
O
a
M
b
sin c
a
cos c
b
tan a
问题引入
问题:匀速圆周运动是现实生活中周期现象的代表,在前面的 学习中,我们知道函数是描述客观世界变化规律的重要数学模 型,那么匀速圆周运动的运动规律该用什么函数模型刻画呢?
新课学习
如图,以单位圆的圆心O 为坐标原点,以射线OA为 x轴的非负半轴,建立直角坐标系 xOy,点 A的坐标是

人教A版必修第一册第五章三角函数5.2三角函数的概念-课件

人教A版必修第一册第五章三角函数5.2三角函数的概念-课件
研究:变量 x, y 与 的关系.
M
问题 2: 如何求角 终边与单位圆的交点P的坐标呢?
追问1:如何研究一般性问题?
不妨设 ,此时点P在第一象限, 过点 P作 PM x轴于M ,
3
在RtOMP中,可得OM 1 ,PM 3 ,
2
2
即x 1,y 3,
2
2
M
所以点
P的坐标为
1 2
,
3 2
三角函数的概念
问题引入
问题:匀速圆周运动是现实生活中周期现象的代表,在前面的 学习中,我们知道函数是描述客观世界变化规律的重要数学模 型,那么匀速圆周运动的运动规律该用什么函数模型刻画呢?
任务:建立一个函数模型,刻画点 P 的位置变化情况
新课学习
如图,以单位圆的圆心O 为坐标原点,以射线OA为 x轴的非负半轴,建立直角坐标系 xOy,点 A的坐标是
正切函数的定义域为 x
x
2
k, k
Z.
追问3: 这个定义相对于锐角三角函数的定义有什么不同呢?
任意角的三角函数是通过角与单位圆交点的坐标定义的,锐角三角函 数是通过直角三角形边长的比值定义的,在单位圆中直角三角形斜边 为1,所以锐角三角函数也可用角的终边与单位圆交点的坐标定义. 此 时终边上的点都在第一象限,因此锐角三角函数值都是正数,而任意 角的三角函数值可以是负数.
把点 P的纵坐标与横坐标的比值 y 叫做 的正切函数,
x
记做tan ,即 y tan x 0.
x
问题3: 正弦函数、余弦函数、正切函数的对应关系各是什么?
实数 (弧度)对应于点P的纵坐标 y——正弦函数; 实数 (弧度)对应于点P的横坐标 x——余弦函数;
当 kk Z 时,角 的终边在 y轴上,这时点P的

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

,解
得 ω=32 .
法二:由题意,得 f(x)max=fπ3
2.(必修 4P35 例 2 改编)若函数 y=2sin 2x-1 的最小正周期为 T,最大
值为 A,则( )
A.T=π,A=1
B.T=2π,A=1
C.T=π,A=2
D.T=2π,A=2
A [T=22π =π,A=2-1=1.]
3.(必修 4P40 练习 T4 改编)下列关于函数 y=4cos x,x∈[-π,π]的单 调性的叙述,正确的是( )
求三角函数单调区间的两种方法 (1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个 角 u(或 t),利用复合函数的单调性列不等式求解.(如本例(1)) (2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间. [注意] 要注意求函数 y=A sin (ωx+φ)的单调区间时 ω 的符号,若 ω<0, 那么一定先借助诱导公式将 ω 化为正数.同时切莫漏掉考虑函数自身的定义 域.
又当 x∈[0,π2
]时,f(x)∈[-
2 2
,1],所以π2
≤ω2π
-π4
≤5π4
,解得
3 2
≤ω≤3,故选 B.
π
π
π
优解:当 ω=2 时,f(x)=sin (2x- 4 ).因为 x∈[0,2 ],所以 2x- 4 ∈
π [- 4
,3π4
π ],所以 sin (2x- 4
)∈[-
2 2
,1],满足题意,故排除 A,C,
B.[kπ,kπ+π2 ](k∈Z)
C.[kπ+π6 ,kπ+23π ](k∈Z)
D.[kπ-π2 ,kπ](k∈Z)
(2)函数 y=tan x 在-π2,32π 上的单调减区间为__________.

1 5.2.1三角函数的概念(共46张PPT)

1 5.2.1三角函数的概念(共46张PPT)

A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析:选 B.由-π2<α<0 知 α 为第四象限角,
则 tan α<0,cos α>0,点在第二象限.
()
2.已知 sin θcos θ<0,且|cos θ|=cos θ,则角 θ 是 A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角
解得 b=3(b=-3 舍去).
4.sin 780°=________,cos94π=________.
答案:
3 2
2 2
探究点 1 求任意角的三角函数值 (1)已知角 α 的终边与单位圆的交点为 P35,y(y<0),求 tan α 的值.
(2)已知角 α 的终边落在射线 y=2x(x≥0)上,求 sin α,cos α 的值.
第五章 三角函数
5.2 三角函数的概念 5.2.1 三角函数的概念
数学
01
预习案 自主学习
02
探究案 讲练互动
03
测评案 达标反馈
04
应用案 巩固提升
教材考点
学习目标
三角函数的概念
理解三角函数的概念,会求 给定角的三角函数值
掌握各象限角的三角函数值 三角函数值的符号判断
的符号规律
诱导公式一及应用
正弦、余弦、正切都是以角为自变量,以单位圆上点的纵 三角
坐标与横坐标的比值为函数值的函数,将正弦函数、余弦 函数
函数和正切函数统称为三角函数
■微思考 1 (1)初中学习的锐角三角函数的定义是什么? 提示:如图,在 Rt△ABC 中,∠A,∠B,∠C 的对边分别为 a,b,c,则: sin B=bc=对 斜边 边, cos B=ac=斜 邻边 边, tan B=ba=邻 对边 边.

高中数学新人教A版必修一三角函数的概念课件34张

高中数学新人教A版必修一三角函数的概念课件34张

【跟踪训练 3】 若角α的终边与直线 y=3x 重合,且 sin α<0,又 P(m,n)是角α终边
上一点,且|OP|= 10 ,则 m-n=
.
解析:由题,所以n=3m, 又m2+n2=10, 所以m2=1. 又sin α<0,所以m=-1,所以n=-3. 故m-n=2.
答案:2
考查角度2:三角函数值的符号 【例4】 (2018·石家庄质检)已知sin α<0,tan α>0. (1)求角α的集合;
(A) 4 5
(B)- 4 (C) 3
5
5
(D)- 3 5
解析:因为点 A 的纵坐标 yA= 4 ,且点 A 在第二象限,又因为圆 O 为单位圆,所以 A 5
点的横坐标 xA=- 3 ,由三角函数的定义可得 cos α=- 3 .故选 D.
5
5
【例2】 若角θ的终边过点P(-4a,3a)(a≠0). (1)求sin θ+cos θ的值;
(A)1 (B)-1 (C)±1 (D)±2
解析:sin α= 2 = 2 ,x=2,tan α= y = 2 =1.故选 A.
x2 22 x
x2
4.(教材改编题)若sin α<0且tan α<0,则α是( D ) (A)第一象限角 (B)第二象限角 (C)第三象限角 (D)第四象限角
解析:由sin α<0,得α在第三或第四象限;由tan α<0,得α在第二或第四象 限,故α在第四象限.故选D.
2.弧度制
(1)定义 长度等于 (2)公式
半径长
角α的弧度数公式
角度与弧度的换算 弧长公式
扇形面积公式
的弧所对的圆心角叫做1弧度的角.弧度记作rad.
|α|= ①1°=

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件
第一章 三角函数
§1.2 任意角的三函数
明目标、知重点
内容 索引
01 明目标
知重点
填要点 记疑缺
04
明目标、知重点
明目标、知重点 1.通过借助单位圆理解并掌握任意角的三角函数定义, 了解三角函数是以实数为自变量的函数. 2.借助任意角的三角函数的定义理解并掌握正弦、余弦、 正切函数在各象限内的符号. 3.通过对任意角的三角函数定义的理解,掌握终边相同 角的同一三角函数值相等.
明目标、知重点
(2)sin(-1 320°)cos 1 110°+cos(-1 020°)sin 750°+tan 495°. 解 原式=sin(-4×360°+120°)cos(3×360°+30°)+ cos (-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin 120°cos 30°+cos 60°sin 30°+tan 135°
明目标、知重点
(2)cos α=xr(r>0),因此cos α的符号与x的符号相同,当α的终边 在第一、四象限时,cos α>0;当α的终边在第二、三象限时, cos α<0. (3)tan α=yx,因此tan α的符号由x、y确定,当α终边在第一、三 象限时,xy>0,tan α>0;当α终边在第二、四象限时,xy<0, tan α<0.
明目标、知重点
当堂测·查疑缺
1234
1.已知角α的终边经过点(-4,3),则cos α等于( D )
4
3
A.5
B.5
C.-35
D.-45
解析 因为角 α 的终边经过点(-4,3),所以 x=-4,y=3,r=5,
所以 cos α=xr=-45.

高中数学 第一章 三角函数 1.2.三角函数的定义课件

高中数学 第一章 三角函数 1.2.三角函数的定义课件

12/12/2021
第二十页,共五十页。
(2)因为角 α 的终边过点(a,2a)(a≠0), 所以 r= 5|a|,x=a,y=2a.

a>0
时,sinα=yr=
2a =2 5a
5 5,cosα=xr=
a= 5a
55,tanα
=yx=2aa=2;

a<0
时,sinα=yr=-2a5a=-2 5
5,cosα=xr=- a
原点的距离为 r,则 sinα=
y r ,cosα=
x r ,tanα=
y x.
12/12/2021
第八页,共五十页。
[答一答] 1.三角函数值的大小与点 P 在终边上的位置是否有关?
提示:三角函数值是比值,是一个实数,这个实数的大小与 点 P(x,y)在终边上的位置无关,只与角 α 的终边位置有关,即 三角函数值的大小只与角有关.
12/12/2021
第六页,共五十页。
12/12/2021
第七页,共五十页。
知识点一 三角函数的定义
[填一填] (1)单位圆:圆心是 原点 ,半径长为
单位长度 .
(2)定义:设任意角 α 的终边与单位圆交于点 P(x,y),则 sinα

y ,cosα=
x ,tanα= yx(x≠0) .
(3)一般地,设角 α 终边上任意一点 P 的坐标为(x,y),它与
12/12/2021
第二十三页,共五十页。
[变式训练 1] (1)如果角 α 的终边经过点 P- 23,12,则 sinα

1 2
,cosα=

3 2
,tanα=

3 3

人教A版高中数学必修一课件《三角函数的图象与性质》三角函数(第一课时正弦函数、余弦函数的图象)

人教A版高中数学必修一课件《三角函数的图象与性质》三角函数(第一课时正弦函数、余弦函数的图象)
33
观察图象可知,在[0,2π]上,当π6<x≤π3或23π≤x<56π时,不等式12<sin
x≤ 23成立,
所以12<sin x≤ 23的解集为
xπ6+2kπ<x≤π3+2kπ

23π+2kπ≤x<56π+2kπ,k∈Z
.
34
1.用三角函数的图象解sin x>a(或cos x>a)的方法 (1)作出y=a,y=sin x(或y=cos x)的图象. (2)确定sin x=a(或cos x=a)的x值. (3)确定sin x>a(或cos x>a)的解集. 2.利用三角函数线解sin x>a(或cos x>a)的方法 (1)找出使sin x=a(或cos x=a)的两个x值的终边所在的位置. (2)根据变化趋势,确定不等式的解集.
6
思考:y=cos x(x∈R)的图象可由 y=sin x(x∈R)的图象平移得到的原 因是什么?
提示:因为 cos x=sinx+π2,所以 y=sin x(x∈R)的图象向左平移π2个 单位可得 y=cos x(x∈R)的图象.
7
A [五个关键点的横坐标依次
1.用五点法画 y=3sin x, x∈[0,2π]的图象时,下列哪个点不是
[0,2π]上简图的步骤
(1)列表:
x
0
π 2
π
3π 2

sin x (或cos x)
0(或1)
-1 1(或0) 0(或-1)
(或0)
0(或1)
b
A+b
b
-A+b
b
y
(或A+b) (或b) (或-A+b) (或b) (或A+b)
23
(2)描点:在平面直角坐标系中描出五个点(0,y1),π2,y2,(π, y3),32π,y4,(2π,y5),这里的yi(i=1,2,3,4,5)值是通过函数解析式计算 得到的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内容分析
1.弧度制和角的概念的推广是三角函数的基 础,弧度制的引入,也简化了弧长公式、面 积公式等. 2.三角函数同二次函数、幂函数、指数函数 、对数函数一样,其图象、性质和应用是考 查的重点,其中y=Asin(ωx+φ)的图象是研 究函数图象变换的代表. 3.三角恒等式的化简、求值和证明,是培养 学生分析问题、解决问题能力和提升学生思 维品质的良好载体.公式的逆用和变形都需 要较强的应变能力. 4.解三角形进一步体现了数学的应用性,正 弦定理和余弦定理的推导和应用,有利于培 养学生的建模、解模能力. 5.本章概念多、公式多(如同角三角函数关 系式、诱导公式、两角和与差的正余弦、正 切、正余弦定理等)、符号变化多,这几多决 定了学习本章要加强记忆.本章与其他章节 联系也很密切,是综合应用所学知识的一章.
第三章 三角函数、解三角形
高考目标定位
目标了然于胸,让讲台见证您的高瞻远瞩
命题热点
近几年的高考中,对本章内容的考查多以选 择题和填空题的形式出现,解答题独立命题 的情形也有,主要是三角与其他知识的综合 渗透,如与数列、不等式综合;独立命题, 考查三角函数性质及图象变换.从高考试题 分析,高考对本章考查侧重于: 1.三角函数的性质、图象及其变换,主要是 y=Asin(ωx+φ)的性质、图象及变换. 2.已知三角函数值求角. 3.灵活运用公式,通过简单的三角恒等变换 解决三角函数的化简、求值或证明问题,借 助三角变换解与三角形有关的问题. 根据高考的最新动态,我们预测今后有关三 角函数高考命题的趋势是:①试题的题型、 题量及难度将基本保持稳定.②三角函数是 重要的基本初等函数,是研究其他知识的重 要工具,高考将注重基础知识、基本技能、 基本思想和方法的考查.③考查的重点仍是 三角函数的定义、图象和性质.④新教材更 加突出了应用问题的地位,这也是今后的命 题方向.
知 识 梳 理
1.终边相同的角 (1)所有与角α终边相同的角,连同角α在内,可构成一个集合
____________________________ 或____________________________ . {β|β=α+k·360°,k∈Z} {β|β=α+2kπ,k∈Z}
(2)终边相同的角的同一三角函数的值 __________ ,即 相等 sinα (其中k∈Z); sin(α+k·2π)= __________ cosα (其中k∈Z); cos(α+k·2π)= __________ tan(α+k·2π)= __________ tanα (其中k∈Z).
2.弧长及扇形的面积公式
1 1 l=|α|· r,S= lr= |α|r2,其中l为扇形弧长,α为圆心角,r为扇形半径. 2 2
3.三角函数的定义 已知P(x,y)是角α终边上任一点,|OP|=r,则
三角函数 正弦函数 余弦函数 正切函数
定义式
y sinα= _______ r
x r cosα= _______ y tanα= _______ x
课 前 自 测
1.点P(tan2007°,cos2007°)位于( A.第一象限 C.第三象限 ) B.第二象限 D.第四象限
解析:∵2007°=360°×6-153°, ∴2007°与-153°的终边相同, ∴2007°是第三象限角,∴tan2007°>0,cos2007°<0.
∴P点在第四象限,故选D.
sinα- cosα>0 解析:由已知得 tanα>0

π π 5π 解得α∈( , )∪ (π, ). 4 2 4 π π 5π 答案:( , )∪(π, ) 4 2 4
5.设a=sin(-1),b=cos(-1),c=tan(-1),则a,b,c的大小关系为 ________.
解析:∵a=-sin1,b=cos1,c=-tan1, ∴a<0,b>0,c<0. 又∵sin1<tan1,∴-sin1>-tan1,∴c<a<b.
答案:c<a<b
热点分类讲练
点击重点难点 关注热点题型
热点之一
终边相同角的表示
1.角的集合的表示形式不是唯一的,如:终边在y轴的负半轴上的角的集 π 3π 合可以表示为{x|x= 2kπ- ,k∈ Z},也可以表示为{x|x= 2kπ+ ,k∈ Z}. 2 2 2.(1)利用终边相同的角的集合S={β|β= 2kπ+ α, k∈ Z}判断一个角β所在 的象限时,只需把这个角写成[0,2π]范围内的一个角α与 2π的整数倍的和,然后 判断角α的象限. π (2)角度制和弧度制不能混用,如α= 2kπ+ 30° (k∈ Z), β= k· 360° + (k∈ Z)都 2 是不正确的.
答案:D
2.已知角α的余弦线是单位长度的有向线段,那么角α的终边在( A.x轴上 C.直线y=x上 B.y轴上 D.直线y=-x上
)
解析:由角α的余弦线长度为1分析可知,角α的终边与x轴重合. 答案:A
3.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是( A.1或4 C.4 B.1 D.8
第一节 任意角、弧度制及 任意角的三角函数
1.了解任意角的概念. 2.了解弧度制的概念,能进行弧度与角度的互化. 3.理解任意角三角函数(正弦、余弦、正切)的定义,能由 三角函数的定义求其定义域、函数值的符号. 4.理解单位圆、正弦线、余弦线、正切线的概念及意义.
基础自主梳理
梳理基础知识 检测自身能力
)
l+ 2r= 6 l= 4 解析:设扇形的半径和弧长分别为r,l,则易得1 ,解得 或 r = 1 lr = 2 2
l= 2 r= 2
,故扇形的圆心角的弧度数是1或 4.
Байду номын сангаас
答案:A
4.已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内α的取值范围是 ________.
定义域 R R
π { α | α ≠ kπ + ,k∈Z} _________________ 2
4.各象限角的三角函数值的符号 可用口诀:一全正,二正弦,三正切,四余弦来判断.
5.三角函数线
图1 图中有向线段MP、OM、AT分别表示 _________ 正弦线 、 _________ 余弦线 、 _________ 正切线 .
相关文档
最新文档