金属塑性变形与轧制原理ppt2011.3
合集下载
(轧制理论)轧制原理PPT
❖ 轧件端部在轧制中温度氧化铁皮对摩擦影响:端部温度温 降快,温度低使摩擦系数增大,其他部分温度较高摩擦系数小.
❖ 氧化铁皮在咬入时端部与轧辊冲击易脱落,露出金属表面使 摩擦系数增大,而其他部分摩擦系数较低.
二者作用的结果使 kx项数值较小
αy =kx*α=(1.5—1.7)α 实际生产中端部咬入出现打滑现象不能建立稳定轧制
Δh/2
式中 R ---- 轧辊半径。
h R RCos
2
h D(1 COS )
cos 1 h D
sin =1 h
2 2R
sin
22
h
R
上式在 100 150 适用
α
A B
D C
Δb/2
变形区任意断面高度hx
hx hx h D(1 co形的表示方法
❖ 变形程度的意义
矩形件变形前后的尺寸
1)轧制时绝对变形量(压下,延伸,宽展)表示
❖ 绝对压下量:Δh=H-h ❖ 绝对延伸量:Δl=l -L ❖ 绝对宽展量:Δb=b -B
❖ 式中 h ,H —— 轧件轧后、轧前高度; l,L—— 轧件轧后、轧前长度;
b,B—— 轧件轧后、轧前宽度;
2 1
)
E1
E1
2
2q
1- E
2 2
2
西奇柯可公式
轧制过程的三阶段
一 咬入阶段
1 咬入阶段:轧件前端与轧辊接触的瞬间起到前 端达到变形区的出口断面(轧辊中心连线)称为咬入 阶段。
2 特点:
(1)轧件的前端在变形区有三个自由端(面),仅后 面有不参与变形的外端(或称刚端) (2)变形区的长度由零连续地增加到最大值。 (3)变形区内的合力作用点、力矩皆不断的变化。 (4)轧件对轧辊的压力由零值逐渐增加到该轧制条件 下的最大值。 (5)变形区内各断面的应力状态不断变化。
❖ 氧化铁皮在咬入时端部与轧辊冲击易脱落,露出金属表面使 摩擦系数增大,而其他部分摩擦系数较低.
二者作用的结果使 kx项数值较小
αy =kx*α=(1.5—1.7)α 实际生产中端部咬入出现打滑现象不能建立稳定轧制
Δh/2
式中 R ---- 轧辊半径。
h R RCos
2
h D(1 COS )
cos 1 h D
sin =1 h
2 2R
sin
22
h
R
上式在 100 150 适用
α
A B
D C
Δb/2
变形区任意断面高度hx
hx hx h D(1 co形的表示方法
❖ 变形程度的意义
矩形件变形前后的尺寸
1)轧制时绝对变形量(压下,延伸,宽展)表示
❖ 绝对压下量:Δh=H-h ❖ 绝对延伸量:Δl=l -L ❖ 绝对宽展量:Δb=b -B
❖ 式中 h ,H —— 轧件轧后、轧前高度; l,L—— 轧件轧后、轧前长度;
b,B—— 轧件轧后、轧前宽度;
2 1
)
E1
E1
2
2q
1- E
2 2
2
西奇柯可公式
轧制过程的三阶段
一 咬入阶段
1 咬入阶段:轧件前端与轧辊接触的瞬间起到前 端达到变形区的出口断面(轧辊中心连线)称为咬入 阶段。
2 特点:
(1)轧件的前端在变形区有三个自由端(面),仅后 面有不参与变形的外端(或称刚端) (2)变形区的长度由零连续地增加到最大值。 (3)变形区内的合力作用点、力矩皆不断的变化。 (4)轧件对轧辊的压力由零值逐渐增加到该轧制条件 下的最大值。 (5)变形区内各断面的应力状态不断变化。
轧制理论)轧制原理PPT
数值模拟软件
开发专门的数值模拟软件,如MSC.Marc、ABAQUS等,可实现轧制过程的可视化模拟, 提高模拟的准确性和效率。
模拟结果验证
通过与实际轧制实验数据的对比,验证计算机模拟结果的准确性和可靠性,为实际生产 提供指导。
人工智能技术在轧制理论中的应用
神经网络模型
应用神经网络模型对轧制过程进行建模和预测,可以实现轧制参数 的优化和自适应控制,提高产品质量和生产效率。
制压力和力矩。
05 轧制过程中的温度场和应力场分析
CHAPTER
温度场分析的基本原理和方法
热传导方程
描述物体内部温度分布随时间变 化的偏微分方程,是温度场分析 的基础。
初始条件和边界条
件
确定热传导方程的解,初始条件 为物体初始时刻的温度分布,边 界条件为物体表面与周围环境之 间的热交换情况。
有限差分法
02 轧制变形基本原理
CHAPTER
轧制变形的基本概念
轧制变形
指金属坯料在两个旋转轧辊的缝 隙中受到压缩,产生塑性变形, 获得所需断面形状和尺寸的加工
方法。
轧制产品
通过轧制变形得到的产品,如板材、 带材、线材、棒材等。
轧制方向
金属在轧辊作用下变形的方向,通 常与轧辊轴线平行。
轧制变形的力学基础
利用塑性变形区的滑移线 场,通过数学解析计算轧 制压力。
上限法
基于塑性变形理论的上限 定理,通过构建速度场计 算轧制压力的上限值。
轧制力矩的计算方法
能量法
根据轧制过程中的能量守恒原理,通过计算变形 功来计算轧制力矩。
解析法
基于弹性力学和塑性力学理论,通过数学解析计 算轧制力矩。
有限元法
利用有限元分析软件,对轧制过程进行数值模拟, 从而计算轧制力矩。
开发专门的数值模拟软件,如MSC.Marc、ABAQUS等,可实现轧制过程的可视化模拟, 提高模拟的准确性和效率。
模拟结果验证
通过与实际轧制实验数据的对比,验证计算机模拟结果的准确性和可靠性,为实际生产 提供指导。
人工智能技术在轧制理论中的应用
神经网络模型
应用神经网络模型对轧制过程进行建模和预测,可以实现轧制参数 的优化和自适应控制,提高产品质量和生产效率。
制压力和力矩。
05 轧制过程中的温度场和应力场分析
CHAPTER
温度场分析的基本原理和方法
热传导方程
描述物体内部温度分布随时间变 化的偏微分方程,是温度场分析 的基础。
初始条件和边界条
件
确定热传导方程的解,初始条件 为物体初始时刻的温度分布,边 界条件为物体表面与周围环境之 间的热交换情况。
有限差分法
02 轧制变形基本原理
CHAPTER
轧制变形的基本概念
轧制变形
指金属坯料在两个旋转轧辊的缝 隙中受到压缩,产生塑性变形, 获得所需断面形状和尺寸的加工
方法。
轧制产品
通过轧制变形得到的产品,如板材、 带材、线材、棒材等。
轧制方向
金属在轧辊作用下变形的方向,通 常与轧辊轴线平行。
轧制变形的力学基础
利用塑性变形区的滑移线 场,通过数学解析计算轧 制压力。
上限法
基于塑性变形理论的上限 定理,通过构建速度场计 算轧制压力的上限值。
轧制力矩的计算方法
能量法
根据轧制过程中的能量守恒原理,通过计算变形 功来计算轧制力矩。
解析法
基于弹性力学和塑性力学理论,通过数学解析计 算轧制力矩。
有限元法
利用有限元分析软件,对轧制过程进行数值模拟, 从而计算轧制力矩。
[工学]金属塑性变形与轧制原理ppt20113
0.2 金属塑性成形方法的分类 0.2.1按温度特征分类 1.热加工: 在充分再结晶温度以上的温度范围内所完成的加工过 程,T=0.75∽0.95T熔 。 2.冷加工: 在不产生回复和再结晶温度以下进行的加工T=0.25T熔 以下。 3.温加工 :介于冷热加工之间的温度进行的加工. 0.2.2按受力和变形方式分类 由压力的作用使金属产生变形的方式有锻造、轧制和挤压 1.锻造:用锻锤的往复冲击力或压力机的压力使金属进行塑性变 形的过程。 分类: 自由锻造:即无模锻造,指金属在锻造过程的流动不受工具限制 (摩擦力除外)的一种加工方法。 模锻:锻造过程中的金属流动受模具内腔轮廓或模具内壁的严格 控制的一种工艺方法。
m 1 2 3
3
B
1.7变形速度 变形速度:变形程度对时间的变化率,或者说是应变对时间的变化率。
d dt
s
1
一般用最大主变形方向的变形速度来表示各种变形过程的变形速度。 如轧制和锻压时用高向变形速度表示 v y hx
锻压
2vy H h H v y ln h H h
4.拉拔 金属通过固定的具有一定形状的模孔中拉拔出来,从而使金属断面缩小 长度增加的一种加工方法。 拉拔法具有以下特点: ①拉拔方法可以生产长度较大、直径极小的产品,并且可以保证沿整个长 度上横断面完全一致; ②拉拔制品形状和尺寸精确,表面质量好; ③拉拔制品的机械强度高; ④拉拔方法的缺点是每道加工率较小,拉拔道次较多,能量消耗较大。 5.冲压 (拉延) 压力机的冲头把板料顶入凹模中进行拉延,加工方法如图,用来生产薄 壁空心制品,如子弹壳,各种仪表器件、器皿及锅碗盆勺等。
轧制
2v
H h R H h
课件塑性加工原理塑性与变形总课件参考.ppt
1.镦粗时组合件的变形特点 2.基本应力的分布特点 3.第一类附加应力的分布特点
*
上课课件
3. 4. 2 平辊轧制时金属的应力及变形特点
1.基本应力特点 2.变形区内金属质点流动特点 3.平辊轧制时,第一类附加应力的分布特点
*
上课课件
3. 4. 3 棒材挤压时的应力及变形特点
1.棒材挤压时的基本应力状态 2 .棒材挤压时的金属流动规律 3 .棒材挤压时的附加应力
变形程度ε
应力σ
σsb
σsn
图3-25 拉伸时真应力与变形程度的关系 1)无缺口试样拉伸时的真应力的曲线 2)有缺口样拉伸的真应力曲线
*
上课课件
3. 3. 4 残余应力
1.残余应力的来源 2.变形条件对残余应力的影响 3.残余应力所引起的后果 4.减小或消除残余应力的措施 5.研究残余应力的主要方法
*
上课课件
2.最大摩擦条件 当接触表面没有相对滑动,完全处于粘合状 态时,单位摩擦力( )等于变形金属流动 时的临界切应力k,即: = k 3.摩擦力不变条件 认为接触面间的摩擦力,不随正压力大小而变。其单位摩擦力是常数,即常摩擦力定律,其表达式为: =m·k 式中,m为摩擦因子
第3章 金属塑性加工的宏观规律
§3. 1 塑性流动规律(最小阻力定律) §3. 2 影响金属塑性流动和变形的因素 §3. 3 不均匀变形、附加应力和残余应力 §3. 4 金属塑性加工诸方法的应力与变形特点 §3. 5 塑性加工过程的断裂与可加工性
*
上课课件
§3.1 塑性流动规律(最小阻力定律)
上课课件
3. 2. 2 变形区的几何因素的影响
变形区的几何因子(如H/D、H/L、H/B等)是影响变形和应力分布很重要的因素。
轧制过程之塑性变形与轧制技术介绍课件
智能优化技 术:利用优 化算法、仿 真技术实现 轧制工艺的 优化和改进
01
02
03
04
轧制技术的绿色环保趋势
节能降耗: 提高能源利 用率,降低 生产成本
01
循环利用:提 高废料回收利 用率,实现资 源循环利用
03
02
04
减少污染:采 用环保工艺, 减少废气、废 水、废渣排放
智能化:采用 智能控制系统, 提高生产效率, 降低能耗
和动态再结晶
轧制技术介绍
轧制技术的分类
热轧:在高温下进行轧制,适用于 塑性较好的材料
冷轧:在常温下进行轧制,适用于 塑性较差的材料
温轧:在温度介于热轧和冷轧之间的 条件下进行轧制,适用于塑性适中的 材料
特种轧制:包括连续铸轧、粉末轧制、 等离子体轧制等,适用于特殊材料和 特殊工艺要求
轧制技术的特点
采用智能化控制系统:如 自动控制系统、专家系统 等,以提高轧制过程的稳 定性和准确性
采用先进的轧制设备:如 高速轧机、连续轧机等, 以提高生产效率和降低能 耗
优化轧制工艺流程:如采 用连续轧制、热轧冷轧相 结合等,以提高生产效率 和产品质量
轧制技术的发展趋势
轧制技术的创新方向
智能化:利用人工智能、大数据等技术,实 现轧制过程的自动化、智能化 绿色化:采用节能、环保的轧制工艺和技术, 降低能耗和污染
演讲人
轧制过程之塑性变形与 轧制技术介绍课件
目录
01. 塑性变形原理 02. 轧制技术介绍 03. 轧制过程控制 04. 轧制技术的发展趋势
塑性变形原理
塑性变形的定义
塑性变形是指材料在 1 外力作用下产生永久
变形的现象。
塑性变形过程中,材 2 料的内部结构发生变 化,产生位错滑移、 孪生等微观机制。
金属的超塑性变形PPT课件
金属的超塑性变形PPT 课件
目 录
• 引言 • 金属的超塑性变形概述 • 金属的超塑性变形机理 • 超塑性变形工艺 • 超塑性变形的影响因素 • 超塑性变形的应用实例 • 未来展望与研究方向
引言
01
主题简介
金属的超塑性变形是一种特殊的 材料行为,指金属在特定条件下
展现出极高的塑性变形能力。
这种能力使得金属在变形过程中 不会引发断裂或过多的能量耗散。
超塑性变形在金属加工、制造和 材料科学等领域具有广泛的应用
前景。
目的和意义
了解超塑性变形的原理和机制,有助于更好地应用这种材料行为,优化金属制品的 性能。
研究超塑性变形有助于推动材料科学的发展,为新材料的研发和应用提供理论支持。
通过深入探讨超塑性变形的机理,可以揭示金属材料的内在特性,为金属加工和制 造提供新的思路和方法。
织结构和性能。
应用
广泛应用于钛合金、铝合金、镁 合金等轻质合金的加工和性能优
化。
超塑性变形的影响因
05
素
材料成分与组织
材料成分
超塑性变形的性能与金属材料的成分密切相关。例如,某些合金元素可以提高超 塑性变形的稳定性和延伸率。
组织结构
材料的微观组织结构对超塑性变形行为具有显著影响。细晶、孪晶、相变等结构 特征可以增强超塑性变形能力。
应力状态的影响
超塑性变形通常在较低的应力状态下进行,这有助于材料在变形过程中保持较 好的延展性。
温度的影响
超塑性变形的温度范围通常较高,这有助于原子扩散和晶界滑移等过程,从而 促进材料的塑性变形。
超塑性变形工艺
04
热超塑性变形
定义
热超塑性变形是一种在高温下进行的塑性变形过程,金属 在特定的温度范围内表现出良好的延展性和低流变应力, 从而能够实现大塑性变形而不破裂。
目 录
• 引言 • 金属的超塑性变形概述 • 金属的超塑性变形机理 • 超塑性变形工艺 • 超塑性变形的影响因素 • 超塑性变形的应用实例 • 未来展望与研究方向
引言
01
主题简介
金属的超塑性变形是一种特殊的 材料行为,指金属在特定条件下
展现出极高的塑性变形能力。
这种能力使得金属在变形过程中 不会引发断裂或过多的能量耗散。
超塑性变形在金属加工、制造和 材料科学等领域具有广泛的应用
前景。
目的和意义
了解超塑性变形的原理和机制,有助于更好地应用这种材料行为,优化金属制品的 性能。
研究超塑性变形有助于推动材料科学的发展,为新材料的研发和应用提供理论支持。
通过深入探讨超塑性变形的机理,可以揭示金属材料的内在特性,为金属加工和制 造提供新的思路和方法。
织结构和性能。
应用
广泛应用于钛合金、铝合金、镁 合金等轻质合金的加工和性能优
化。
超塑性变形的影响因
05
素
材料成分与组织
材料成分
超塑性变形的性能与金属材料的成分密切相关。例如,某些合金元素可以提高超 塑性变形的稳定性和延伸率。
组织结构
材料的微观组织结构对超塑性变形行为具有显著影响。细晶、孪晶、相变等结构 特征可以增强超塑性变形能力。
应力状态的影响
超塑性变形通常在较低的应力状态下进行,这有助于材料在变形过程中保持较 好的延展性。
温度的影响
超塑性变形的温度范围通常较高,这有助于原子扩散和晶界滑移等过程,从而 促进材料的塑性变形。
超塑性变形工艺
04
热超塑性变形
定义
热超塑性变形是一种在高温下进行的塑性变形过程,金属 在特定的温度范围内表现出良好的延展性和低流变应力, 从而能够实现大塑性变形而不破裂。
《金属的轧制》课件
《金属的轧制》ppt课件
CATALOGUE
目 录
• 轧制技术概述 • 轧制的基本原理 • 轧制工艺流程 • 轧制设备与工具 • 轧制技术的发展趋势与展望
01
CATALOGUE
轧制技术概述
轧制技术的定义
轧制技术是通过旋转轧辊对金属施加压力,使其发生连续塑性变形的工艺过程。
轧制技术的基本原理是利用轧辊与金属之间的摩擦力,使金属产生连续的塑性变形 ,从而获得所需形状和性能的金属制品。
。
通过引入先进的传感器、控制 器和优化算法,实现对轧制过 程的实时监测和控制,提高产
品质量和生产效率。
智能化与自动化的轧制过程可 以减少人工干预和操作误差, 提高生产安全性和稳定性。
未来轧制过程的智能化与自动 化将进一步发展,实现更加智 能化的生产管理和决策支持。
新材料与新工艺的轧制技术探索
01 02 03 04
粗轧机
用于进一步轧制原料,使其接近成品 尺寸,通常具有中等轧制压力和道次 数。
精轧机
用于最终轧制成品,具有较小的轧制 压力和较多的道次数,以确保产品精 度和表面质量。
连轧机
多台轧机连续排列,实现连续轧制, 提高生产效率和产品质量。
轧辊的类型与材料选择
热轧辊
承受高温和较大轧制力,通常选 用高硬度和耐热性好的材料,如
随着新材料和新工艺的不断涌现,轧制技术也在不断探索和创新。
新材料如高强度钢、不锈钢、钛合金等具有更高的强度和耐腐蚀性能 ,需要新的轧制技术和工艺来满足其加工要求。
新工艺如轧制复合技术、轧制变形控制技术等可以显著提高产品质量 和性能,满足更加复杂和多样化的市场需求。
探索新材料与新工艺的轧制技术需要不断投入研发力量,加强产学研 合作和技术交流,推动轧制技术的不断创新和发展。
CATALOGUE
目 录
• 轧制技术概述 • 轧制的基本原理 • 轧制工艺流程 • 轧制设备与工具 • 轧制技术的发展趋势与展望
01
CATALOGUE
轧制技术概述
轧制技术的定义
轧制技术是通过旋转轧辊对金属施加压力,使其发生连续塑性变形的工艺过程。
轧制技术的基本原理是利用轧辊与金属之间的摩擦力,使金属产生连续的塑性变形 ,从而获得所需形状和性能的金属制品。
。
通过引入先进的传感器、控制 器和优化算法,实现对轧制过 程的实时监测和控制,提高产
品质量和生产效率。
智能化与自动化的轧制过程可 以减少人工干预和操作误差, 提高生产安全性和稳定性。
未来轧制过程的智能化与自动 化将进一步发展,实现更加智 能化的生产管理和决策支持。
新材料与新工艺的轧制技术探索
01 02 03 04
粗轧机
用于进一步轧制原料,使其接近成品 尺寸,通常具有中等轧制压力和道次 数。
精轧机
用于最终轧制成品,具有较小的轧制 压力和较多的道次数,以确保产品精 度和表面质量。
连轧机
多台轧机连续排列,实现连续轧制, 提高生产效率和产品质量。
轧辊的类型与材料选择
热轧辊
承受高温和较大轧制力,通常选 用高硬度和耐热性好的材料,如
随着新材料和新工艺的不断涌现,轧制技术也在不断探索和创新。
新材料如高强度钢、不锈钢、钛合金等具有更高的强度和耐腐蚀性能 ,需要新的轧制技术和工艺来满足其加工要求。
新工艺如轧制复合技术、轧制变形控制技术等可以显著提高产品质量 和性能,满足更加复杂和多样化的市场需求。
探索新材料与新工艺的轧制技术需要不断投入研发力量,加强产学研 合作和技术交流,推动轧制技术的不断创新和发展。
金属塑性变形与轧制原理ppt2011.3
x x m , y m , z z m y
1.9应力与应变的关系 弹性变形时应力与应变的关系:由材料力学知,单向应力状态时的应力与应变 关系是虎克定律,一般应力状态的各向同性材料,应力与应变关系服从广义虎克定律:
1 [ x ( y z )] E 1 y [ y ( z x )] E 1 z [ z ( x y )] E
1.2直角坐标系中一点的应力状态
应力状态:过一点所有不同方位的截面上的应力集合称为该点的应力状态。 取六面体中三个相互垂直的表面作为微分面,如果这三个微分面上的应力为已知, 则该单元体任意方向上的应力分量都可以定出。这就是说,可以用质点在三个相互 垂直的微分面上的应力完整地描述该质点的应力状态。 三个相互垂直微分面上的应力都可以按坐标轴的方向分成三个分量。三个应力 分量中有一个是正应力分量另外两个则是剪应力分量 ABCD面叫x面,CDEF面叫y面,CFGB面叫z面。 每个应力分量的符号都带有两个下角标。第一个角标表示该应力分量的作用面, 第二个角标则表示它的作用方向
2v H h R H h
hx
轧制
拉伸
l lL L ln
vy
1.8球应力分量与偏差应力分量 一般来说,物体的变形可以看作是体积变形和形状变形的总和.因此,一点的应力状 态可分为两部分: 1.体积变化的应力分量,称之为球应力分量或静水压力分量. 2.物体几何形状变化的应力分量,称之为偏差应力分量. 球应力分量仅引起物体体积变化,偏差应力分量引起物体形状变化. 1 m ( 1 2 3 ) 3
x y z
斜面上的)主应力:没有剪应力的微分面称为过该点的主平面,主平面上的正应力 称为主应力。主平面的法线方向称为该点应力主方向或应力主轴。对应于任一 点的应力状态,一定存在相互垂直的三个主方向、三个主平面和三个主应力。 若选三个相互垂直的主方向作为坐标轴,那么可以使问题大为简化。三个主应 力用σ1 、σ2 、σ3 表示。 (2)主应力图示:表示一点的主应力大小和方向的应力状态图示。主应力 图示有九种。四个为三向主应力图,三个为平面主应力图,二个单向主应力图 示如下图
《金属的塑性变形》课件
疲劳性能:塑性变 形可以提高金属的 疲劳性能,使其更 加耐久使用
金属的硬化现象
硬化现象:金属在塑性变形过程中,其硬度和强度增加的现象
原因:金属在塑性变形过程中,晶粒被拉长、压扁,晶粒内部的位错密度增加,导致硬度和 强度增加
影响:硬化现象对金属的塑性变形和性能产生影响,如提高金属的耐磨性、耐腐蚀性等
轧制:通过轧辊将金属材料轧制成所需 的形状和尺寸
拉伸:通过拉伸设备将金属材料拉伸成 所需的形状和尺寸
弯曲:通过弯曲设备将金属材料弯曲成 所需的形状和尺寸
焊接:通过焊接设备将金属材料焊接成 所需的形状和尺寸
切割:通过切割设备将金属材料切割成 所需的形状和尺寸
金属的成形工艺
锻造:通过锤击、压力机等工具将金属材料塑性变形,形 成所需的形状和尺寸
塑性变形的影响因素
应力:应力是引起塑性变形的主要因素, 应力越大,塑性变形越大
温度:温度对塑性变形有重要影响,温 度越高,塑性变形越大
材料性质:材料的塑性、韧性、硬度等 性质对塑性变形有重要影响
变形速度:变形速度越快,塑性变形越 大
变形方式:拉伸、压缩、弯曲、扭转等 不同变形方式对塑性变形的影响不同
金属的强化机制
冷加工强化: 通过塑性变形 提高金属的强
度和硬度
热处理强化: 通过加热和冷 却过程改变金 属的微观结构, 提高强度和硬
度
合金强化:通 过添加其他元 素形成合金, 提高金属的强
度和硬度
复合强化:通 过将两种或多 种材料复合, 提高金属的强
度和硬度
06
金属塑性变形的未来发 展
新材料的开发与应用
塑性变形的定义
塑性变形是指金 属在外力作用下 产生的永久变形
塑性变形可以分 为弹性变形和塑 性变形两种类型
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3应力平衡微分方程 应力平衡微分方程 在外力作用下处于平衡状态的变形物体内,各点的应力分量是不同的,但 是必须满足应力平衡方程式。下面讨论平衡微分方程用直角坐标系表示。 如果忽略体积力,则变形体内任意个体素必须满足以下六个静力平衡方程式: Σx=0,Σy=0 ,Σz=0 ΣMx=0, ΣMy=0 , ΣMz=0 经整理则得以下方程组
S y = τ xy l + σ y m + τ zy n S z = τ xz l + τ yz m + σ z n
2 2 2 S 2 = S X + SY + S Z
作用在斜面上的合力
全应力S向斜面ABC法线N上投影,就是该面上的正应力σ,也等于全应力S的 各分量SX、SY、SZ分别向N方向的投影之和: σ = S l +S m+S n
2.轧制 轧制:金属坯料通过旋转的轧辊缝隙进行塑性变形。 分类: 纵轧:金属在相互平行且旋转方向相反的轧辊缝隙间进行塑性变形,而金 属的行进方向与轧辊轴线垂直。 斜轧:金属在同向旋转且中心线相互成一定角度的轧辊缝隙间进行塑性变 形。 横轧:金属在同向旋转且中心线相互平行的轧辊缝隙间进行塑性变形。
3.挤压 挤压:将金属放入挤压机的挤压筒内,以一端施加压力迫使金属从模孔中挤 出,而得到所需形状的制品的加工方法。 挤压分为正挤压和反挤压。正挤压时,挤压杆的运动方向和从模孔中挤出的 金属方向一致;反挤压时挤压杆的运动方向和从模孔中挤出的金属方向相反。 挤压法具有以下优点: ①具有比轧制、锻造更强的三向压缩应力,避免了拉应力的出现,金属可以 发挥其最大的塑性,使脆性材料的塑性提高; ②挤压不仅能生产简单的管材和型材,更主要的还能生产形状极其复杂的管材 和型材; ③生产上具有较大的灵活性, 非常适用于小批量多品种的生产; ④产品尺寸精确,表面质量较高,精确度、粗糙度的表面特性都好于热轧和锻 造产品。 挤压法也有一些缺点: ①挤压方法所采用的设备较为复杂,生产率比轧制方法低; ②挤压的废料损失一般较大; ③工具的损耗较大; ④制品的组织和性能沿长度和断面上不够均匀一致。
0.2 金属塑性成形方法的分类 0.2.1按温度特征分类 按温度特征分类 1.热加工: 在充分再结晶温度以上的温度范围内所完成的加工过 程,T=0.75∽0.95T熔 。 2.冷加工: 在不产生回复和再结晶温度以下进行的加工T=0.25T熔 以下。 3.温加工 :介于冷热加工之间的温度进行的加工. 0.2.2按受力和变形方式分类 按受力和变形方式分类 由压力的作用使金属产生变形的方式有锻造、轧制和挤压 1.锻造:用锻锤的往复冲击力或压力机的压力使金属进行塑性变 形的过程。 分类: 自由锻造:即无模锻造,指金属在锻造过程的流动不受工具限制 (摩擦力除外)的一种加工方法。 模锻:锻造过程中的金属流动受模具内腔轮廓或模具内壁的严格 控制的一种工艺方法。
结论:①物体变形后其三个真实相对主变形之代数和等于零; ②当三个主变形同时存在时,则其中之一在数值上等于另外两个 主变形之和,且符号相反。−δ = δ + δ
1 2 3
③当一个主变形为0时,其余两个主变形数值相等符号相反,即 −δ1 =+δ3 l µ = 延伸系数 L H η = 压下系数 h b 宽展系数 ω = 变形图示: 在小立方体素的面上用箭头表示三个主变形是否存在和方向,但不表 示变形大小的图示。变形图示有以下三种: 1.一向缩短两向伸长,如轧制和自由锻压。 2.一向伸长一向缩短,如轧制宽板带钢。 3.两向缩短一向伸长,如挤压和拉拔。 平均应力
1.4斜面上的应力 1.4斜面上的应力 σ ,σ ,σ ,τ =τ ,τ =τ ,τ =τ 现假定,已知物体内任意一点的六个应力分量 x y z xy yx yz zy xz zx 可以证明,过此点所作的任意斜切面上的应力,皆可通过这六个应力分量求 出。也就是说,当已知一点上述六个应力分量时,该点的应力状态即可完全确 定 S x = σ x l + τ yx m + τ zx n
ε1 =
δ 1 = In l L δ 2 = In b B δ 3 = In h H
QV1 = V2
三个主变形间的关系:
H ⋅ B ⋅ L = h ⋅b ⋅l h ⋅b ⋅l =1 H ⋅B⋅L
两边取对数:
h b l + In + In = 0 H B L δ1 + δ 2 + δ 3 = 0 In
1.6 主变形和主变形图示 (1)主变形;主应力方向的变形 绝对主变形: 压下量 宽展量 延伸量 相对主变形: 相对压下量 相对宽展量 相对延伸量 真实相对主变形:
∆h = H − h ∆b = b − B ∆l = l − L
l−L × 100% L b−B ε2 = × 100% B H −h ε3 = × 100% H
4.拉拔 金属通过固定的具有一定形状的模孔中拉拔出来,从而使金属断面缩小 长度增加的一种加工方法。 拉拔法具有以下特点: ①拉拔方法可以生产长度较大、直径极小的产品,并且可以保证沿整个长 度上横断面完全一致; ②拉拔制品形状和尺寸精确,表面质量好; ③拉拔制品的机械强度高; ④拉拔方法的缺点是每道加工率较小,拉拔道次较多,能量消耗较大。 5.冲压 (拉延) 压力机的冲头把板料顶入凹模中进行拉延,加工方法如图,用来生产薄 壁空心制品,如子弹壳,各种仪表器件、器皿及锅碗盆勺等。
5.冲压 (拉延) 压力机的冲头把板料顶入凹模中进行拉延, 加工方法如图,用来生产薄壁空心制品,如子 弹壳,各种仪表器件、器皿及锅碗盆勺等。
0.3金属塑性变形与轧制原理的基本内容 金属塑性变形与轧制原理的基本内容 1.掌握塑性变形时金属流动和变形分布的基本规律,分析影响金属塑性和 变形抗力的各种因素,以寻求最优和加工条件,获得尺寸精度高、性能优良的产 品。 2.研究金属塑性成形过程中的摩擦与润滑,以便正确选用塑性成形时的摩 擦定律来计算变形力和变形功,采用合理的润滑剂改善塑性加工条件,达到高产 低消耗的目的。 3.在研究加工变形中变形物体内部应力及变形分布的基础上,介绍了材料 成形过程中应力应变的分布规律和确定变形力、变形功的主要方法(工程计算法、 滑移线法、上限法、下限法、有限无法等)主要讨论了工程计算法求解锻造、轧 制过程的变形力、变形功及轧制力矩等,以便正确选择压力加工设备和加工工具 的结构和强度。 4.详细讲述了轧制过程的基本概念、金属在轧制过程中的变形律、连轧过 程、轧制时的弹塑性曲线等基础理论。
σm = σ1 + σ 2 + σ 3
3
B
1.7变形速度 1.7变形速度 变形速度:变形程度对时间的变化率,或者说是应变对时间的变化率。
ε =
•
dε dt
s
−1
一般用最大主变形方向的变形速度来表示各种变形过程的变形速度。 如轧制和锻压时用高向变形速度表示 • v ε = y 锻压
2vy ε= H +h − H v y ln • h ε= H −h
1.2直角坐标系中一点的应力状态 直角坐标系中一点的应力状态
应力状态:过一点所有不同方位的截面上的应力集合称为该点的应力状态。 取六面体中三个相互垂直的表面作为微分面,如果这三个微分面上的应力为已知, 则该单元体任意方向上的应力分量都可以定出。这就是说,可以用质点在三个相互 垂直的微分面上的应力完整地描述该质点的应力状态。 三个相互垂直微分面上的应力都可以按坐标轴的方向分成三个分量。三个应力 分量中有一个是正应力分量另外两个则是剪应力分量 ABCD面叫x面,CDEF面叫y面,CFGB面叫z面。 每个应力分量的符号都带有两个下角标。第一个角标表示该应力分量的作用面, 第二个角标则表示它的作用方向
1 应力及变形理论
本章主要研究以下几个问题: 1.应力,应变概念; 2.物体内各点应力分量和应变分量函数之间的关系; 3.物体内的一点沿各个不同方向应力之间和应变之间的关系,即一点的应力状态 和一点的应变状态的分析; 4.塑性变形时,应力与应变之间的关系,标志进入塑性流动的应力条件即屈服条件 或塑性方程等. 1.1外力和应力 外力和应力 外力:受力物体之外的物体施加给受力物体的力。外力可分为两类:接触力和体 力。 接触力分为作用力和约束反力。 体力;作用在物体每个质点上的力,如重力磁力及惯性力。 作用力:塑性加设备的可动工具部分对工件所作用的力也叫主动力。 约束反力:工件在主动力的作用下,其运动将受到工具所阻碍而产生变形的力。 主要有正压力和摩擦力。 内力:物体受外力作用产生变形时,内部各部分因相对位置改变而引起的相互 作用力。分析内力用切面法。 应力(全应力):单位面积上的内力。 全应力可分解成两个分量,正应力σ和剪应力τ
x y z
斜面上的剪应力τ
τ = S2 −σ 2
1.5主应力和应力图示 主应力和应力图示 (1)主应力:没有剪应力的微分面称为过该点的主平面,主平面上的正应力 称为主应力。主平面的法线方向称为该点应力主方向或应力主轴。对应于任一 点的应力状态,一定存在相互垂直的三个主方向、三个主平面和三个主应力。 若选三个相互垂直的主方向作为坐标轴,那么可以使问题大为简化。三个主应 力用σ1 、σ2 、σ3 表示。 (2)主应力图示:表示一点的主应力大小和方向的应力状态图示。主应力 图示有九种。四个为三向主应力图,三个为平面主应力图,二个单向主应力图 示如下图
课程名称
金属塑性变形与轧制原理
课 时 数 64 适用班级 材料081/材料082 授课教师 孙斌 使用时间 2010-2011学年第 2学期
绪
论
0.1金属塑性成形及其特点 金属塑性成形及其特点 金属压力加工:即金属塑性加工, 金属压力加工:即金属塑性加工,对具有塑性的金属施加外力作用使 其产生塑性变形,而不破坏其完整性,改变金属的形状、 其产生塑性变形,而不破坏其完整性,改变金属的形状、尺寸和性能获得所 要求的产品的一种加工方法。 要求的产品的一种加工方法。 金属成型方法分类: 金属成型方法分类: 钻等切削加工; (1)减少质量的成型方法 车、刨、铣、磨、钻等切削加工;冲裁与剪 )减少质量的成型方法:车 气割与电切;蚀刻加工等。 切、气割与电切;蚀刻加工等。 (2)增加质量的成型方法:铸造、焊接、烧结等。 )增加质量的成型方法:铸造、焊接、烧结等。 金属塑性变形): (3)质量保持不变的成型方法 金属塑性变形 :利用金属的塑性,对金 )质量保持不变的成型方法(金属塑性变形 利用金属的塑性, 属施加一定的外力作用使金属产生塑性变形, 属施加一定的外力作用使金属产生塑性变形,改变其形状尺寸和性能而获得 所要求的产品的一种加工方法。 如轧制、锻造、冲压、拉拔、 所要求的产品的一种加工方法。 如轧制、锻造、冲压、拉拔、挤压等金属压 力加工方法。 力加工方法。 金属压力加工方法的优缺点: 金属压力加工方法的优缺点: 优点: )因无废屑,可节约大量金属 可节约大量金属; 优点:1)因无废屑 可节约大量金属; 2)改善金属内部组织及物理、机械性能; )改善金属内部组织及物理、机械性能; 3)产量高,能量消耗少,成本低,适于大量 生产。 生产。 )产量高,能量消耗少,成本低, 缺点: ) 对要求形状复杂,尺寸精确, 缺点:1) 对要求形状复杂,尺寸精确,表面十分光洁的加工产品尚不 及金属切削加工方法; 及金属切削加工方法; 2) 仅用于生产具有塑性的金属; ) 仅用于生产具有塑性的金属;