周期信号的频谱分析
周期信号的频域分析
周期信号的频域分析周期信号是指在一定时间间隔内,信号的波形和幅度重复的一种信号。
频域分析是指将一个信号从时域(时间域)转换到频域(频率域),以便更好地理解信号的频率特性和频谱分布。
f(t) = a0 + ∑(an*cos(nω0t) + bn*sin(nω0t))其中,a0为直流分量,an和bn分别为傅里叶级数的系数,ω0 =2π/T为基础角频率。
要进行频域分析,首先需要计算出信号的傅里叶系数an和bn。
计算步骤如下:1.计算直流分量a0,即信号f(t)在一个周期内的平均值。
2. 计算余弦项的系数an,使用公式:an = (2/T) * ∫(f(t)*cos(nω0t)dt)其中,∫表示对t从0到T的积分。
3. 计算正弦项的系数bn,使用公式:bn = (2/T) * ∫(f(t)*sin(nω0t)dt)同样,∫表示对t从0到T的积分。
计算出所有的an和bn之后,可以得到信号f(t)的频谱分布。
频谱是指信号在频率域上的幅度分布,可以用幅度谱和相位谱来表示。
1. 幅度谱表示信号各个频率分量的幅度大小。
幅度谱可以通过计算an和bn的幅度来得到,即幅度谱A(f) = sqrt(an^2 + bn^2)。
2. 相位谱表示信号各个频率分量的相位差。
相位谱可以通过计算an 和bn的相位差来得到,即相位谱ϕ(f) = atan(bn/an)。
通过这些计算,我们可以获得信号在频域上的频谱分布,进一步分析信号的频率特性。
频域分析的应用十分广泛。
在通信系统中,频域分析可以用于分析信号的频率偏移、频率响应等问题,为系统的调试和优化提供依据。
在音频和视频信号处理中,频域分析可以用于音频信号的均衡和滤波,视频信号的去噪和增强等。
此外,频域分析还在图像处理、生物医学信号处理等领域得到广泛应用。
总之,周期信号的频域分析是一种将信号从时域转换到频域的方法,可以帮助我们更好地理解信号的频率特性和频谱分布。
通过计算傅里叶系数,可以得到信号的幅度谱和相位谱,从而分析信号在频域上的特性。
§3-1 周期信号的频谱分析
E Edt T 1(V )
2
2
2 T x(t ) cosk1tdt T
2 2
2
E cosk tdt
1
2
2E T
2E 1 2 cos k1tdt T k1 sin k1t | 2
2
2E T
2 sin(k1 k1
) 2
2E k 8 k sin( ) sin( ) k T k 4
bk
2 T
T 2
x(t ) sin k1tdt
T 2
2 T
2
E sin k tdt 0
1
2
求得傅里叶级数展开式:
8 1 k x(t ) a0 ak cos k1t 1 sin( ) cos k1t k 1 k 4 k 1
6
4 0 2 3 4 5 6 7 8 9
c0
c2
k1
0 1 2131415161718191
ห้องสมุดไป่ตู้
k
0 2 3 4 5 6 7 8 9
k
k1
7 5
2 3 4 5 6 7 8 9
三、周期信号展开为三角函数式的傅里叶级数 高等数学中学过,周期信号x(t)当满足狄利赫里条件, 即在一个周期中: ⑴ 只有有限个一类间断点;
⑵ 只有有限个极值点,或称有限次振荡;
⑶ 绝对可积
T 2
T 2
x(t ) dt
于是,信号可展开为以下傅里叶级数
x(t ) a0 [ak cosk1t bk sin 1t ]
周期信号频谱分析
实验名称:周期信号的频谱分析教材名称:电工电子实验技术(下册)页码:P142 实验目的:1、了解和掌握周期信号频谱分析的基本概念;2、掌握Multisim软件用于频谱分析的基本方法;3、加深理解周期信号时域参数变化对其谐波分量的影响及变化趋势。
实验任务:1、根据9-1给定的波形和参数测量各谐波分量的幅度值。
2、根据所测数据绘制每一波形的谱线图。
设计提示:实验电路图:图一、分析用电路及信号发生器调整窗口实验结果:表9-1数据:周期信号的频谱分析(Multisim)0 10 20 30 40 50 60 70 80 90 100 矩形波10%-4.023 1.923 1.833 1.689 1.499 1.273 1.024 0.763 0.506 0.263 0.047 矩形波30%-2.023 5.123 3.040 0.699 0.897 1.271 0.659 0.236 0.739 0.595 0.046 矩形波50%-0.022 6.366 0.045 2.121 0.045 1.271 0.045 0.906 0.045 0.703 0.045 正弦波0 4.999 0 0 0 0 0 0 0 0 0三角波50%0 4.053 0 0.451 0 0.162 0 0.083 0 0.050 0三角波70%0 3.903 1.147 0.166 0.177 0.193 0.079 0.030 0.072 0.048 0三角波90%0 3.479 1.654 1.012 0.669 0.450 0.298 0.186 0.103 0.043 0N 0 1 2 3 4 5 6 7 8 9 10 注:谱线数取10+直流。
矩形波10%:矩形波30%:矩形波50%:正弦波50%:三角波50%:三角波70%:三角波90%:实验中注意事项:1、仿真过程中要在Simulate/Fourier Analysis/Output Variables中添加要进行分析的节点。
典型周期信号的频谱
2
T
证:an
T
8 T
4 0
f
(t) cosntdt
22
20
f (t) f (t) f (t) f (t T )
2
an T T f (t) cosntdt T T f (t) cosntdt
2
2
T
由复振幅cn 的表达式可知,频谱谱线顶点的联线所
sin x
构成的包络是 x 的形式----称为抽样函数。
1. 找出谐波次数为零的点(即包络与横轴的交点)
包络线方程为
cn
2E
T
sin 2
2
与横轴的交点由下式决定:
sin
2
0
即: ,2 ,3
2
2
0
2
4
6
2m
2f
f
f0
1, 2, 3
T
2 T
2
f (t)e jn1t dt
b.这样定义能确切的反映信号的频谱分布特性。 各个频率分量振幅之间的相对比例关系是固定不 变的。
2.几点说明
a.F ( j) 代表了信号中各频率分量振幅的相对
大小。
|
b.各频率分量的实际振幅为
F ( )
|
d
是无穷
小量。
C. F ( j )具有单位角频率振幅的量纲。
| f (t) | dt 存在。
六.周期和非周期矩形脉冲信号频谱的对比
1.它们都具有抽样函数 sin x 的形式。
2.
Cn
2E
T1
sin n1
2
n1
x
实验四、周期信号的傅里叶级数和频谱分析
实验四、周期信号的傅里叶级数和频谱分析1实验目的1)学会利用MATLAB 分析傅里叶级数展开,并理解傅里叶级数的物理含义; 2)学会利用MATLAB 分析周期信号的频谱特性。
2实验原理及实例分析2.1 周期信号的傅里叶级数(基本原理请参阅教材第四章的4.1节和4.2节。
)例1:周期方波信号)(t f 如图1所示,试求出该信号的傅里叶级数,利用MATLAB 编程实现其各次谐波的叠加,并验证Gibbs 现象。
f(t)t(sec)图1 周期方波信号)(t f 的波形图解:从理论分析可知,周期方波信号)(t f 的傅里叶级数展开式为)9sin 917sin 715sin 513sin 31(sin 4)(00000 +++++=t t t t t t f ωωωωωπ其中,ππω220==T。
则可分别求出1、3、5、9、19、39、79、159项傅里叶级数求和的结果,其MATLAB 程序如下,产生的图形如图2所示。
close all;clear all; clct = -2:0.0001:2; omega = 2 * pi;y = square(2 * pi * t,50); n_max = [1 3 5 9 19 39 79 159]; N = length(n_max); for k = 1:Nfk = zeros(1,length(t)); for n = 1:2:n_max(k) bn = 4 / (pi * n);fk = fk + bn * sin(n * omega * t); endfigure; plot(t,y,t,fk,'Linewidth',2); xlabel('t(sec)');ylabel('部分和的波形'); String = ['最大谐波数=',num2str(n_max(k))];axis([-2 2 -3 3]);grid; title(String);disp([String,'时,在信号跳变点附近的过冲幅度(%)']);f_max = (max(fk) - max(y)) / (max(y) - min(y)) * 100 endt(sec)部分和的波形最大谐波数=1t(sec)部分和的波形最大谐波数=3t(sec)部分和的波形最大谐波数=5t(sec)部分和的波形最大谐波数=9t(sec)部分和的波形最大谐波数=19t(sec)部分和的波形最大谐波数=39t(sec)部分和的波形最大谐波数=79t(sec)部分和的波形最大谐波数=159图2 例1程序产生的图形程序输出的用于验证Gibbs 现象的数值分别为:13.6620 10.0211 9.4178 9.1164 8.9907 8.9594 8.9484 8.94642.2周期信号的频谱分析(基本原理请参阅教材第四章的4.3节。
信号分析3.01 周期信号的频谱分析——傅里叶级数
时域信号分解 频域信号分解
X
三角傅立叶级数 指数傅立叶级数
频域分析概念
第 第 8 8 页 页
提出以正弦信号或虚指数函数为基本信号进行信号 分解,从而引出信号的频域分析. 其思想:任意复杂的激励信号可分解为一系列不同幅 值、不同频率的正弦信号或虚指数信号的线性组合. 引出傅立叶变换概念 对周期信号
三维空间矢量 类 比
正交矢量集
C
2
A C1 A1 C2 A2 C3 A3
分解 正交函数集
A3
A2
A
C C
3 1
A1
2.信号空间
f (t )
c
j 1 j
j
(t )
n维空间
X
3.正交函数集
n个函数i(t) (i=1,…,n),若在区间( t1,t2)上满足:
1 t 0 T 积分限为-T/2 直流分量 a0 f (t ) d t 到T/2行吗? t0 T 2 t 0 T 余弦分量的幅度 an t f (t ) cosn 1t d t T 0 2 t 0 T 正弦分量的幅度 bn f (t ) sinn1t d t T t0
bn An sin n
bn n arctan a n
f (t ) a0 [ An cos n cos( n1t ) An sin n sin( n1t )]
余弦形式
, bn , An , n随变量nw1变化,是nw1n的函数 信号的频域分析 n an
f (t )
画波形
A
O
T t
A
f (t ) A(sin t 1 sin 3t 1 sin 5t ) 3 5
4-2 信号的频域分析-周期信号频域分析
分析问题使用的数学工具为傅里叶级数 最重要概念:频谱函数 要点
1. 频谱的定义、物理意义 2. 频谱的特点 (离散,衰减) 3. 频谱的性质,应用性质分析复杂信号的频谱 4. 功率谱的概念及在工程中的应用
17
离散Fourier级数(DFS)
DFS的定义 常用离散周期序列的频谱分析 周期单位脉冲序列d N[k] 正弦型序列 周期矩形波序列 DFS的性质
0 2π / T
n 0
3
例2 已知连续周期信号的频谱如图,试写出 信号的Fourier级数表示式。
Cn
4 3 2 1 3 2 1 1 3 2
0
1
2
3
n
解: 由图可知 C 0 4
f (t ) C n e jn 0 t
n
C 1 3
C 2 1
三、周期信号的频谱及其特点
1. 频谱的概念
周期信号f(t)可以分解为不同频率虚指数信号之和
f (t ) C n e j n 0 t
n =
不同的时域信号,只是傅里叶级数的系数Cn不同, 因此通过研究傅里叶级数的系数来研究信号的特性。 Cn是频率的函数,它反映了组成信号各次谐波 的幅度和相位随频率变化的规律,称频谱函数。
10
例3 试求周期矩形脉冲信号在其有效带宽(0~2 /)内
谐波分量所具有的平均功率占整个信号平均功率 的百分比。其中A=1,T=1/4,=1/20。
f (t )
A
T
2
2
T
t
解: 周期矩形脉冲的傅里叶系数为
Cn A T Sa ( n 0 2 )
将A=1,T=1/4, = 1/20,0= 2/T = 8 代入上式
实验5 周期信号的傅里叶级数及频谱分析
N = length(n_max) ;
for k=1:N
n = 1:2:n_max(k) ;
b = 4./(pi*n) ;
x = b*sin(omega*n'*t) ;
figure
plot(t,y) ;
hold on
plot(t,x) ;
hold off ;
xlabel('t') ;
ylabel(' 部分和的波形') ;
f (t) A0 An cos(nw0t n ) n1
A0 a0
An an2 bn2
n
arctg
bn an
(n 1, 2, )
a0 A0
bann
Acosn Asinn
(n 1, 2, )
从物理概念上来说,A0是信号f (t)的直流分量, A1 cos(w0t 1)
f (t)e jnw0t , n 0, 1, 2,
2
例1:周期方波信号如图6-1所示,是求出 该信号的傅里叶级数,利用MATLAB编程 实现其各次谐波的叠加,并验证其收敛性
ex6_1.m
理论分析,周期方波信号的傅里叶级数展 开式子为:
4A
1
1
1
f (t) (sin w0t 3 sin 3w0t 5 sin 5w0t 7 sin 7w0t )
Fne jnw0t与Fne jnw0t成对出现
傅里叶系数的幅度 Fn 或随An角频率 的n变w0化关系绘制 成的图形称为信号的幅度谱,而相位 随角n或频n率 变化关系nw绘0 制成图形,称为信号的相位谱。幅度谱 和相位谱统称为信号的频谱,信号频谱是信号的另 一种形式的表示,它提供了从另一个角度来观察和 分析信号的途径。利用MATLAB命令可以对周期 信号的频谱及其特点进行观察验证分析
实验三-周期信号的频谱分析-实验报告
实验三-周期信号的频谱分析-实验报告信号与系统实验报告实验三周期信号的频谱分析学院专业班级姓名学号指导教师实验报告评分:_______实验三周期信号的频谱分析一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征。
二、实验内容实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。
实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。
并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。
实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。
Q3-1 编写程序Q3_1,绘制下面的信号的波形图:-+-=)5cos(51)3cos(31)cos()(000t t t t x ωωω∑∞==10)cos()2sin(1n t n n n ωπ其中,ω0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(ω0t)、cos(3ω0t)、cos(5ω0t) 和x(t) 的波形图,给图形加title ,网格线和x 坐标标签,并且程序能够接受从键盘输入的和式中的项数。
抄写程序Q3_1如下:clear,%Clear all variablesclose all,%Close all figure windowsdt = 0.00001; %Specify the step of time variablet = -2:dt:4; %Specify the interval of timew0=0.5*pi;x1=cos(w0.*t);x2=cos(3*w0.*t);x3=cos(5*w0.*t);N=input('Type in the number of the harmonic components N=');x=0;for q=1:N;x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q;endsubplot(221)plot(t,x1)%Plot x1axis([-2 4 -2 2]);grid on,title('signal cos(w0.*t)')subplot(222)plot(t,x2)%Plot x2axis([-2 4 -2 2]);grid on,title('signal cos(3*w0.*t))')subplot(223)plot(t,x3)%Plot x3axis([-2 4 -2 2])grid on,title('signal cos(5*w0.*t))')执行程序Q3_1所得到的图形如下:Q3-2 给程序Program3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。
周期信号的频谱分析
周期信号的频谱分析周期信号是指在一定时间内重复出现的信号,其频谱分析是对周期信号在频域上的描述和分析。
频谱分析是信号处理领域中的重要内容,它能够揭示周期信号的频率成分以及它们在信号中的相对强度。
周期信号可以用正弦函数来表示,即一个频率为f的正弦波。
频谱分析的目的就是要确定这个周期信号中包含的各个频率成分。
为了进行频谱分析,我们通常使用傅里叶变换。
傅里叶变换可以将一个周期信号转换为一系列频率成分的复数表示。
傅里叶变换将一个周期信号分解成一系列复振幅和相位分量。
复振幅表示了信号中每个频率分量的强度,而相位则表示了每个频率分量的相对位置。
通过傅里叶变换,我们可以得到一个频谱图,它显示了信号中各个频率成分的幅度和相位信息。
在频谱图中,横轴表示频率,纵轴表示振幅。
每个频率成分对应的幅度可以通过幅度谱来表示,而相位信息则可以通过相位谱来表示。
通过分析频谱图,我们可以得到周期信号中的主要频率成分、频率分量的强度以及它们在信号中的相对位置。
频谱分析在信号处理领域中有着广泛的应用。
例如,它可以用于音频信号的处理与分析。
在音频信号中,不同的频率成分对应着不同的音调和音色。
通过频谱分析,我们可以识别音频信号中的主要频率分量,从而实现对音频信号的合成、去噪等处理操作。
另外,频谱分析也可以用于振动信号和通信信号的分析。
在振动信号分析中,频谱分析可以帮助我们了解结构的固有频率以及存在的振动模态。
而在通信信号分析中,频谱分析可以帮助我们了解信号的带宽和调制方式,从而实现信号的解调和解码。
总之,周期信号的频谱分析是对周期信号在频域上的描述和分析。
通过傅里叶变换,我们可以将周期信号分解成一系列频率成分,并通过频谱图来展示这些成分的幅度和相位信息。
频谱分析在信号处理领域中有着广泛的应用,对于理解和处理周期信号具有重要作用。
周期信号的频谱
例题:O tf (t )T /31-TT如右图所示的周期性矩形脉冲信号(周期为T )经过一个低通滤波器,求其响应及响应的平均功率。
已知该滤波器的传递函数为()()⎪⎪⎩⎪⎪⎨⎧<≤<-≤=--时时时T T e T T e j H j j ωππωππωπωωωτωτ6,063,3/23,分析:周期信号可以分解成直流、基波、高次谐波等分量每个分量经过滤波器 复数解法解:求傅立叶系数:⎰-=3/001T tjn n dt eTC ωO tf (t )T /31-TT令ω0=2π/T3/0001T t jn eTjn ωω--=3/3sin 31ππjn e n c -⎪⎭⎫ ⎝⎛=3100==C A 2nj n n A eC ϕ=~基波和n 次谐波的复数表示低通滤波器只通过低于3ω0的信号,因此信号中只有直流、基波和二次谐波分量通过。
输出信号中的直流分量为:()3100==ωωj H A解:输出信号中的基波分量的复数表示为:()()τωπωωφπω0013/13sin 32+-=⎪⎭⎫ ⎝⎛=j j e c j H eA 输出信号中的二次谐波分量的复数表示为:()()τωπωωφπω00223/22232sin 94+-=⎪⎭⎫⎝⎛=j j e c j H e A 输出信号的时域表达式为:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+τωπωπτωπωπ00002322cos 32sin 943cos 3sin 3231t c t c 输出信号的平均功率为:280.02sin 41sin 211222≈⎥⎤⎢⎡⎪⎫⎛+⎥⎤⎢⎡⎪⎫ ⎛+⎪⎫ ⎛=ππc c P out第三章:信号的频谱§3-1 周期信号的频谱§3-2 非周期信号的频谱密度 傅立叶变换与频谱密度信号的频谱分布与带宽基本信号的频谱密度§3-3 频谱分析的基本定理§3-4 采样定理傅立叶变换的引出如何从频域描述一个非周期信号?tf (t )傅立叶级数?——显然不行怎么办?退而求其次,先考虑描述函数在有限区间[a,b)上的一段吧tf a,b (t )a btf T (t )a b考虑有限区间周期扩展再扩展成周期T =b -a 的函数f T (t )f T (t ):周期函数~可以用傅立叶级数表示在区间[a,b)上与f (t ) 相同傅立叶变换的引出tf T (t )a b()(),1100dt et f Tdte tf T C tjn bat jn ba T n ωω--⎰⎰==()()()⎪⎪⎩⎪⎪⎨⎧=-++∈-++=∑∞-∞=b a t b f a f b a t t f t f eC n tjn n或,2)0(0,,2)0(00ω傅立叶级数只在区间(a,b ) 上收敛于f (t ),因此C n 并不是f (t ) 的复频谱如果f T (t ) 满足狄利克雷条件,则可以展开成傅立叶级数:定义:则:ω0=2π/T傅立叶变换的引出进一步,选取对称区间[-T /2,T /2)。
3.2.1 周期信号的频谱周期信号的频谱分析——傅里叶级数
4
狄利克雷(Dirichlet)条件 条件1:在一周期内,如果有间断点存在,则间断点的 数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有 限个;
条件3:在一周期内,信号绝对可积;
5
狄利克雷(Dirichlet)条件1:例1 不满足条件1的例子如下图所示,这个信号的周期 为8,它是这样组成的:后一个阶梯的高度和宽度是前一 个阶梯的一半。可见在一个周期内它的面积不会超过8, 但不连续点的数目是无穷多个。
0
1
1
0
1
2 1
2 1
指数形式的频谱图
F n 1
0.15
n
0.5
1.12
1
1.12
0.5
2 1
0.15 2 1
1
0.25
2 1 1
0
1
1
0
0.15
2 1
0.25
21
四.总结
(1)周期信号f(t)的傅里叶级数有两种形式
满足离散性,谐波性不满足收敛性,频带无限宽
26
一.频谱结构
f (t ) E
/ 2
脉宽为 脉冲高度为E 周期为T1
T1
/2
T1
t
1. 指数函数形式的谱系数
2. 频谱特点
27
1.指数形式的谱系数
1 F ( n 1 ) T1
1 = T1
jn 1 t
T1
T1
2 2
f ( t )e jn1t d t
bn n tg a n
1
关于的偶函数(实际 n 取正值) 关于的奇函数(实际 n 取正值) 关于的偶函数 关于 的奇函数
周期信号频谱分析
周期信号频谱分析作者:王慧申志平程晨来源:《科技与创新》2014年第14期摘要:周期信号频谱分析在信号与系统这一学科中占有极其重要的地位。
满足狄里赫利条件的非正弦周期函数可以展开为傅里叶级数,基于此事实,以傅里叶变化作为信号分析的理论基础,可以将非正弦周期信号视为一个直流分量与若干个不同频率的正弦分量之和。
通过对频谱宽带的理解,研究了矩形脉冲波形的变化对其频谱的影响。
关键词:周期信号;频谱;矩形脉冲;波形中图分类号:TN911.6 文献标识码:A 文章编号:2095-6835(2014)14-0139-011 实验原理与说明为了直观、方便地表达信号分解后所包含的频率分量和各分量所占的“比重”,将长度与各频率分量的振幅大小相对应的线段按频率高低依次排列,就得到了周期信号的振幅频谱图。
与此类似,将长度与各频率分量的初相相对应的线段按频率高低依次排列起来,就得到了周期信号的相位频谱图。
对周期信号进行傅里叶展开,基波的频率即为原周期信号的频率。
而频谱图中的谱线间隔为基波频率,所以,随着周期信号周期的增大,频谱的谱线将渐趋密集。
进一步分析可知,随着周期信号周期的增大,频谱的幅度将渐趋减小。
从理论上讲,周期信号的谐波分量是无限多的,所取的谐波分量越多,叠加后的波形越接近原信号的波形。
谐波振幅具有收敛性,这类信号能量的主要部分集中在低频分量中,所以可以忽略谐波次数过高的频率分量。
对于一个信号,自零频率开始到需要考虑的最高频率之间的频率范围是信号所占有的频带宽度。
对于一般的频谱,也常把自零频率开始到频谱振幅降为包络线最大值的101倍时的频率之间的频率范围定义为信号的频带宽度。
可以证明,对于矩形脉冲信号而言,频谱频带宽度与脉冲时间宽度成反比。
2 实验内容与方法2.1 单频正弦量的频谱观察单频正弦量的频谱观察的步骤主要有:①设置信号发生器为正弦波,频率为500 Hz,幅值为2 V。
②启动仿真开关,通过示波器观测波形。
「实验三_周期信号的频谱分析」
「实验三_周期信号的频谱分析」实验三:周期信号的频谱分析一、实验目的掌握周期信号的频谱分析方法;通过实验了解正弦信号、方波信号和三角波信号的频谱特性。
二、实验原理周期信号是指在一定时间内重复出现的信号。
常见的周期信号有正弦信号、方波信号和三角波信号等。
频谱分析是将一个信号分解为一系列频率不同的正弦波的过程,通过频谱分析可以得到信号的频谱特性。
三、实验仪器和材料示波器、函数发生器。
四、实验步骤1.将示波器接通电源,调整示波器的触发源和扫描范围。
2.将函数发生器接通电源,调整相应的频率和幅度。
3.将函数发生器的输出端和示波器的输入端连接。
4.观察示波器上显示的波形,并记录下相应的频率和幅度。
5.通过示波器的操作界面,进行频谱分析,得到信号的频谱特性。
五、实验结果和分析结果显示,正弦信号的频谱特性为单频信号,频率为1000Hz,幅度为2V。
结果显示,方波信号的频谱特性为含有多个奇次谐波的信号,相邻谐波之间的幅度逐渐减小。
结果显示,三角波信号的频谱特性为包含有一系列奇次和偶次谐波的信号,谐波的幅度逐渐减小。
六、实验结论通过实验,我们了解了正弦信号、方波信号和三角波信号的频谱特性。
正弦信号的频谱特性为单频信号,方波信号的频谱特性为含有多个奇次谐波的信号,三角波信号的频谱特性为包含有一系列奇次和偶次谐波的信号。
七、实验总结通过本次实验,我们对周期信号的频谱分析有了更深入的了解。
频谱分析是了解一个周期信号频率特征的重要手段,通过分析信号的频谱可以得到信号的频率分量和相应的幅度。
实验中我们主要观察了正弦信号、方波信号和三角波信号的频谱特性,并通过示波器进行了频谱分析。
通过实验可以直观地观察到不同类型信号的频谱特性,加深对周期信号的认识。
第四章周期信号的频谱分析
第四章周期信号的频谱分析
4.1一个周期信号的频谱分析简介
频谱分析是一种多用途的工具,用于研究和分析周期信号的特性。
它
可以提取出信号的峰值、频率和其他特性,因此可以帮助您更好地了解和
控制信号变化。
频谱分析是一种时域到频域的过程,即将信号从时域量化为频谱量化。
频谱分析可以有效地提取信号中的特性信息,例如频率和峰值等,而这些
信息是不受时域离散程度影响的。
一个周期信号的频谱分析由三个步骤组成。
首先,周期信号需要被采样,这样才能得到有限的数字序列。
其次,在采样的基础上,频谱分析得
到不同频率分量的参数,以及沿着特定频率偏移的相位信息。
最后,所有
这些参数和信息都通过频谱图和频谱曲线等形式进行可视化。
4.2频谱分析的基础
要进行周期信号的频谱分析,首先需要考虑一些基础知识。
首先,需
要理解如何在时域量化信号,以及在信号时域量化以后如何进行频域量化。
时域量化的过程是指将连续的模拟信号离散化为一系列数字值,以便
更容易处理。
当量化信号时,通常使用正弦来表示,而此正弦的参数包括
幅值、频率和相位。
在频域量化过程中。
MATLAB周期信号的频谱分析解读
MATLAB周期信号的频谱分析解读频谱分析是一种用于研究信号在频域上的特性的方法,对于周期信号的频谱分析尤为重要。
周期信号是在时间上有规律地重复出现的信号,例如正弦信号和方波信号。
在MATLAB中,我们可以使用傅里叶变换来进行周期信号的频谱分析。
首先,我们需要了解一些基本的概念。
频谱表示一个信号在不同频率上的能量分布,其单位通常是幅度或功率。
频谱分析可以通过计算信号的傅里叶变换来获得,傅里叶变换可以将一个信号从时间域转换到频域。
首先,我们需要生成一个周期信号。
例如,我们可以使用sin函数生成一个具有特定频率和幅度的正弦信号。
下面的代码生成了一个频率为f 的正弦信号:```matlabf=1;%信号的频率t=0:0.01:10;%时间范围x = sin(2*pi*f*t); % 生成正弦信号```接下来,我们可以使用fft函数进行信号的傅里叶变换。
傅里叶变换将信号从时域转换到频域,得到的结果是一个复数向量,其中包含了信号在不同频率上的能量信息。
我们可以使用abs函数计算傅里叶变换结果的幅度,得到频谱图。
```matlabfs = 100; % 信号的采样频率N = length(x); % 信号的长度X = fft(x); % 进行傅里叶变换X = abs(X/N); % 计算频域幅度f = (0:N-1)*(fs/N); % 计算频率轴plot(f,X) % 绘制频谱图```在上述代码中,变量fs表示信号的采样频率,N表示信号的长度。
我们需要将傅里叶变换结果除以N,以归一化频域幅度。
在频谱图中,横轴表示频率,纵轴表示信号在相应频率上的幅度。
频谱图的形状和峰值反映了信号在不同频率上的能量分布情况。
对于上述代码生成的正弦信号,频谱图应该呈现出一个峰值在f处的单个峰。
然而,由于傅里叶变换的性质,频谱图通常具有对称性。
这是由于信号的周期性导致的,正弦信号的频谱图在负频率处也有一个对称的峰。
为了更好地展示频谱图,我们可以使用fftshift函数将频谱图进行平移,将负频率部分移到频谱图的中心。
第三章§3.2 周期信号的频谱分析——傅里叶级数
T
2 T 2
T , cos n 1 t cos m 1 t dt 2 0, T , sin n 1 t sin m 1 t dt 2 0,
m n m n m n m n
X
T
2 T 2
请画出其幅度谱和相位谱。
化为余弦形式
f (t ) 1 π 5 cos( 1 t 0 . 15 π ) cos 2 1 t 4
c0 1
三角函数形式的傅里叶级数的谱系数
三角函数形式的频谱图
cn
c1
0 0
5 2 . 236
n
2 . 24 c2
a n
j bn
T
T 0
f ( t ) co s n 1t d t j
T
1 T
T 0
f ( t ) sin n 1t d t
1 T
f ( t )e
0
j n 1t
dt
t 0 T1 t0
因 此 F n 1
1 T
f (t ) e
j n 1t
n
j n 1t
n 0 , 1, 2
jn 1t
f (t )
F (n 1 ) e
4
a
n 1
n
co s n 1t b n sin n 1t
利用欧拉公式
sin n 1 t
co s n 1 t
周期信号
周期信号: 定义在区间 ( , ) ,每隔一定时间 T ,按相同规律重 复变化的信号,如图所示 。它可表示为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统实验报告实验三周期信号的频谱分析实验报告评分:_______实验三周期信号的频谱分析实验目的:1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征。
实验内容:(1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图:其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t)和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。
程序如下:clear,%Clear all variablesclose all,%Close all figure windowsdt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of timew0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t);x3=cos(5*w0.*t);N=input('Type in the number of the harmonic components N=');x=0;for q=1:N;x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q;endsubplot(221)plot(t,x1)%Plot x1axis([-2 4 -2 2]);grid on,title('signal cos(w0.*t)')subplot(222)plot(t,x2)%Plot x2axis([-2 4 -2 2]); grid on,title('signal cos(3*w0.*t))')subplot(223)plot(t,x3)%Plot x3axis([-2 4 -2 2])grid on,title('signal cos(5*w0.*t))')subplot(224)plot(t,x)%Plot xtaxis([-2 4 -2 2])grid on,title('signal xt')(2)给程序3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。
程序如下:% Program3_1 clear, close allT = 2;dt = 0.00001;t = -2:dt:2;x1 = ut(t) - ut(t-1-dt);x = 0;for m = -1:1x = x + ut(t-m*T) - ut(t-1-m*T-dt);endw0 = 2*pi/T;N = 10;L = 2*N+1;for k = -N: N;ak(N+1+k) = (1/T)*x1*exp(-j*k*w0*t')*dt; endphi = angle(ak);subplot(211)'k = -10:10;stem (k,abs(ak),'k');axis([-10,10,0,0.6]);grid on;title('fudupu');subplot(212);k = -10:10stem(k,angle(ak),'k');axis([-10,10,-2,2]);grid on;titie('xiangweipu');xlabel('Frequency index x');(3)反复执行程序Program3_2,每次执行该程序时,输入不同的N值,并观察所合成的周期方波信号。
通过观察,你了解的吉伯斯现象的特点是:程序如下:clear,close allT = 2;dt = 0.00001;t = -2:dt:2;x1 = ut(t)-ut(t-1-dt);x = 0; for m = -1:1x = x + ut(t-m*T) - ut(t-1-m*T-dt);endw0 = 2*pi/T;N = input('Type in the number of the harmonic components N = :');L = 2*N+1;for k = -N:1:N;ak(N+1+k) = (1/T)*x1*exp(-j*k*w0*t')*dt; endphi = angle(ak);y=0;for q = 1:L;y = y+ak(q)*exp(j*(-(L-1)/2+q-1)*2*pi*t/T); end;subplot(221),plot(t,x),title('The original signal x(t)'),axis([-2,2,-0.2,1.2]),subplot(223),plot(t,y),title('The synthesis signal y(t)'),axis([-2,2,-0.2,1.2]),xlabel('Time t'),subplot(222)k=-N:N;stem(k,abs(ak),'k.'),title('The amplitude |ak| of x(t)'),axis([-N,N,-0.1,0.6])subplot(224)stem(k,phi,'r.'),title('The phase phi(k) of x(t)'),axis([-N,N,-2,2]),xlabel('Index k')N=1N=3通过观察我们了解到:如果一个周期信号在一个周期有内断点存在,那么,引入的误差将除了产生纹波之外,还将在断点处产生幅度大约为9%的过冲(Overshot),这种现象被称为吉伯斯现象(Gibbs phenomenon)。
即信号在不连续点附近存在一个幅度大约为9%的过冲,且所选谐波次数越多,过冲点越向不连续点靠近。
(4)计算如图的傅里叶级数的系数程序如下:clc,clear,close allT=2;dt=0.00001;t=-3:dt:3;x=(t+1).*(u(t+1)-u(t))-(t-1).*(u(t)-u(t-1));x1=0; for m=-2:2x1=x1+(t+1-m*T).*(u(t+1-m*T)-u(t-m*T))-(t-1-m*T).*(u(t-m *T)-u(t-1-m*T));endw0=2*pi/T;N=10;L=2*N+1;for k=-N:N;ak(N+1+k)=(1/T)*x*exp(-j*k*w0*t')*dt;endphi=angle(ak);plot(t,x1);axis([-4 4 0 1.2]);grid on;title('The signal x1(t)'); xlabel('Time t (sec)'); ylabel('signal x1(t)');(5)仿照程序3_1,编写程序Q3_5,以计算x2(t) 的傅里叶级数的系数(不绘图)。
程序如下:clc,clear,close allT=2;dt=0.00001;t=-3:dt:3;x=ut(t+0.2)-ut(t-0.2-dt);x2=0;for m=-1:1x2=x2+ut(t+0.2-m*T)-ut(t-0.2-m*T)-ut(t-0.2-m*t-dt); endw0=2*pi/T;N=10;L=2*N+1for k=-N:N;ak(N+1+k)=(1/T)*x*exp(-j*k*w0*t')*dt;endphi=angle(ak);plot(t,x2);axis([-2.5 2.5 0 1.2]);grid on;title('The signal x2(t)');xlabel('Time t (sec)');ylabel('signal x2(t)');(6)仿照程序3_2,编写程序Q3_6,计算并绘制出原始信号x1(t) 的波形图,用有限项级数合成的y1(t) 的波形图,以及x1(t) 的幅度频谱和相位频谱的谱线图。
程序如下:clc,clear,close allT=2;dt=0.00001;t=-3:dt:3;x=(t+1).*(ut(t+1)-ut(t))-(t-1).*(ut(t)-ut(t-1));x1=0;for m=-2:2x1=x1+(t+1-m*T).*(ut(t+1-m*T)-ut(t-m*T))-(t-1-m*T).*(ut( t-m*t)-ut(t-1-m*t));endw0=2*pi/T;N=10;L=2*N+1;for k=-N:N;ak(N+1+k)=(1/T)*x*exp(-j*k*w0*t')*dt;endphi=angle(ak);y=0;for q=1:L;y=y+ak(q)*exp(j*(q-1-N)*w0*t);end;subplot(221)plot(t,x)%plot xaxis([-3 3 -0.2 1.2]);grid on;title('The original signal x(t)'); subplot(223)plot(t,y)%Plot yaxis([-3 3 -0.2 1.2]);grid on;title('The synthesis signal y(t)'); subplot(222);xlabel('Time i (sec)');subplot(222);k=-N:N;stem(k,abs(ak),'k');axis([-N N -0.1 0.6]);grid on;title('The amplitude spectrum of x(t)'); subplot(224);k=-N:N;stem(k,phi,'k');axis([-N N -2 2]);grid on;title('The phase spectrum of x(t)');xlabel('Frequency index k');实验心得:在实验的过程中,掌握连续时间周期信号的傅里叶级数的物理意义和分析方法,观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因,掌握各种典型的连续时间非周期信号的频谱特征。