双筒棱镜望远镜设计
双筒望远镜参数说明
望远镜参数说明望远镜参数说明倍率:指将景物拉近的能力。
例:一台10x42的望远镜,望远镜的倍率是10或者10x10倍就是说可将1000米外景物“拉近”到100米处。
其实际观察大小等于我们走近到100米外观景。
放大率越高,所见景物越大。
倍率较高会使背景较黑,高倍率会令影像变得较朦亦会将手震幅度放大,使影像摇动不已。
一般来说10倍乃是一般人之极限。
低倍率情况下影像较光,亦较清晰锐利,色差及其他像差亦较少。
物镜口径:物镜的直径大小例:一台10x42的望远镜,物镜是42MM。
口径越大,集光力越高,所见暗星越多,影像越亮,解像度越高越锐利。
但一阔三大,重量也更大,而且大镜较难研磨。
4cm级较轻便,但所见暗星不及5cm级。
3cm级集光力比较弱,但较轻巧,日间观鸟比较方便。
比5cm大的机型都较重,而且较难保持平衡,需用脚架支撑。
总的来说,8x40/10x40等机型较方便,适合一般用途。
8x30机型最适合观鸟。
视场(Field of View)视场即是我们观景的范圉,视场越大,观测范圉越大。
如下图所示,表示看1000米以外的景物,能看到的宽度是120米。
视距(Eye Relief)视距指在能够清晰看到整个视场下,眼睛和目镜之间最短距离。
视距长度以mm 表示,取决於目镜设计。
视距太短时,若眼睛不是贴近目镜玻璃便导致视野边缘失光,不合戴眼镜人仕使用;视距太长,影像容易有黑影出现,但只要将眼杯拉长问题即可解决。
戴眼镜人仕请选视距14mm以上之型号(详见下图):计算:物镜口径(mm) /倍率当你手持双筒望远镜,你会见目镜中央有一个圆形光点,其余地方为黑色,这光点就是出射光瞳。
优质的望远镜出射光瞳为一个完美清晰的圆形光点,位处中央,周围呈黑色。
出射光瞳越大,代表影像亮度越亮,清晰度越高,而且眼球较易看到影像,此种望远镜适合海事、环境不断晃动场合下使用。
出射光瞳太细会使影像难于对准观测,但是出射光瞳超过7mm后,一部分光线便会散失掉,造成浪费。
光学课程设计--双筒棱镜望远镜设计-精品
光学课程设计报告目录设计任务与要求 (2)设计步骤 (3)一、外形尺寸计算 (3)二、光学系统选型 (6)三、物镜的设计 (7)1、用PW法计算双胶合物镜初始结构: (7)(1)求h,z h,J (7)(2)求平板像差 (7)(3)求物镜像差 (7)(4)计算P,W (7)(5)归一化处理 (8)(6)选玻璃 (8)(7)求形状系数Q (8)(8)求归一化条件下透镜各面的曲率 (9)(9)求薄透镜各面的球面半径 (9)(10)求厚透镜各面的球面半径 (9)2、物镜像差容限的计算 (10)3、物镜像差校正 (10)4、物镜像差曲线 (13)四、目镜的设计 (13)1、用PW法计算凯涅尔目镜初始结构 (13)(1)接目镜的相关参数计算 (13)(2)场镜的相关参数计算 (15)2、目镜像差容限的计算 (16)3、目镜像差校正 (17)4、目镜像差曲线 (19)五、光瞳衔接与像质评价 (20)1、光瞳衔接 (20)2、像质评价 (21)3、总体设计评价 (21)学习体会 (21)附:零件图与系统图 (23)设计任务与要求设计题目:双筒棱镜望远镜设计设计技术要求:双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为:1、望远镜的放大率Γ=6倍;2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D=30mm);3、望远镜的视场角2ω=8°;4、仪器总长度在110mm 左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离>=14mm ,棱镜采用K9玻璃,两棱镜间隔为2~5mm 。
6、lz ′>8~10mm设计步骤一、外形尺寸计算由入瞳直径30D mm =及相对孔径'1:4Df=,可得:物镜焦距'14120f D mm =⨯=由6Γ=,知:出瞳直径'5DD mm ==Γ目镜焦距''12120206f f mm ===Γ 由物方视场2ω=8,可得:目镜通光口径'''312[()]222.084D D f f tg mm ω=++⨯= 分划板直径'21216.7824D f tg mm =ω=分划板半径28.39122D = 又由:'64tg tg tg ω=Γω=,可得:像方视场'245.5ω=该望远系统采用普罗I 型棱镜转像,普罗I 型棱镜如下图:将普罗I 型棱镜展开,等效为两块平板,如下图:普罗I 型棱镜由设计要求:视场边缘允许50%的渐晕,可利用分划板拦去透镜下部25%的光,利用平板拦去透镜上部的25%的光,这样仅有透镜中间的50%的光能通过望远系统,使像质较好。
双目望远镜
军用双目望远镜以开普勒望远光学系统为基础,加入转像系统(一般用棱镜转像)而构成。在镜筒内可以装有 能侦察具有红外源目标的光敏元件。一般目距调整范围为54mm一74mm,手持式的视放大率为6x一15x,架装式的 为20x一40x。双目望远镜的光学性能往往以两组数字 ×D表示。
科学建议
天文景观战神傍月亮,双筒望远镜观测会更佳。
双目望远镜
天文学望远镜
01 使用介绍
03 工作原理
目录
02 结构性能 04 效果
基本信息
双目望远镜(Binoculars),又称“双筒望远镜”。由两个单筒望远镜并列组成的望远镜。两目镜间的距离 可以调节,以便两眼同时观察,从而获得立体感。如果所用的是两个伽利略望远镜,则称“观剧镜”。它的镜筒 较短,视野和放大倍数较小。如果所用的是两个开普勒望远镜,则镜简较长,携带不便;故往往各在物镜和目镜 间加装一对全反射棱镜,使入射光线在镜筒中经过多次全反射,以减短筒的长度,同时可以将物镜所成的倒像再 倒转过来而成为正像。这种装置称为“棱镜双目望远镜”或简称“棱镜望远镜”,它的视野较大,常用于航海、 军事窥测和野外观察等。
使用介绍
使用介绍
又称双筒望远镜。由两个性能相同的望远镜组成的、符合于人们双眼观察要求的观察仪器。是军用基本观察 仪器,用于观察地形,侦察敌情,概略测量目标距离方向角、高低角、弹着点偏差。非军事用途也较广泛。两镜 筒一般由作为基准的铰链轴联结而成,镜筒绕铰链轴转动以改变两目镜的距离使与观察者两眼瞳孔间隔相适应。 目镜可以调整“光度(视度),备有滤光镜附件。
结构ቤተ መጻሕፍቲ ባይዱ能
结构性能
野外双筒望远镜和棱镜式双筒望远镜较小,是可以拿在手中使用的双目望远镜。它们可以放大远处的目标, 因此通过它们,远方的景物能看得更清楚。与单目望远镜不同,双目望远镜还能让使用者有纵深感,也就是具有 透视效果。之所以会如此,是因为当人的两眼从稍微不同的角度观看同一映像时,会产生立体效果。
双筒棱镜望远镜设计
双筒棱镜望远镜设计
首先是目镜。
目镜是用于观察天体的光学组件。
它通常由一组透镜组成,可以放大通过物镜收集到的光线。
目镜的放大倍数可以通过更改透镜的焦距来调节。
较高的放大倍数可以提供更详细的天体图像,但对望远镜的稳定性和视野大小要求更高。
接下来是物镜。
物镜是双筒棱镜望远镜的主要光学组件之一、它由两个凸透镜组成,负责收集和聚焦天体的光线。
物镜的焦距确定了望远镜的放大倍数。
较长的焦距提供更大的放大倍数,但也会导致视野更狭窄。
同样,较短的焦距提供更大的视野,但放大倍数较低。
然后是眼镜。
眼镜是用于观察物体的光学组件。
它由一组透镜组成,放置在目镜的后方。
眼镜的作用是调整视野和放大倍数,以提供更舒适的观察体验。
它还可以调节光线的对焦,使图像更清晰。
最后是支撑结构。
支撑结构是望远镜的骨架,用于支撑和固定各个光学组件。
它通常由金属材料制成,以提供良好的稳定性和耐用性。
支撑结构还包括一个可调节的三脚架,以便将望远镜固定在适当的高度上。
除了上述主要组件外,双筒棱镜望远镜还可能包括其他附件,如经纬仪、红点指示器和相机适配器等。
这些附件可以提供更准确的观察定位和更多的应用选择。
总结起来,双筒棱镜望远镜设计非常简单,但其原理和功能强大。
通过优化各个光学组件的参数和选择合适的材料,可以获得高质量的观察体验。
尽管双筒棱镜望远镜在放大倍数和视野之间存在一定的取舍,但它仍是一种广泛使用的望远镜类型,适用于观察各种天体和地面景象。
10倍的双目望远镜_光学设计-
设计一个8倍得双目望远镜设计题目要求:设计一个8倍得双目望远镜,其设计要求如下:全视场:2ω=5º; 出瞳直径:D ´=5mm; 出瞳距离:l z ´=20mm; 分辨率:α=6";(R=5") 渐晕系数:K =0、64;棱镜得出射面与分划板之间得距离:a =10mm; 棱镜:屋脊棱镜;L=2、646D 材料:K10; 目镜:235一、目镜得计算目镜就是显微系统与望远系统非常重要得一个组成部分,但目镜本身一般并不需要设计,当系统需要使用目镜时,只要根据技术要求进行相应类型得选取即可。
1、首先根据已知得视觉放大倍数Γ及视场2,求出22、因为目镜有负畸变(3%~5%),所以实际应取:'962%5)(2)(22︒=⨯⨯Γ+⨯Γ='ωωωtg arctg tg arctg3、根据实际所需要得2数值。
出瞳直径值及镜目距值等,来选择合适得目镜类型。
在本次设计中所需得目镜得结构形式应该作为已知条件给出,如:目镜235。
图21目镜235(结构图见21)此外设计手册中还提供有相关得结构数据参数表21及主要得系统数据; 表21等。
从图22中我们不难发现该目镜得出瞳位于整个系统得左侧,而在目镜得实际运用中,出瞳应位于系统右侧。
此种情况相当于将目镜倒置,故而它所给出得我们不能直接加以运用,这里就是指与目镜最后一面之间得距离。
4、将手册中给得目镜倒置:由于将目镜倒置,则目镜得数据将发生一定得变化,以目镜235为例,原来得第一个折射面变为第八个面,原来得第二个折射面变为第七个折射面……,以此类推。
值得注意得就是:不但折射面得次序发生变化,与此同时其半径得符号也将发生相应得改变,原来为正,则现在为负。
倒置后得新得数据如下表22所示:5、进行追迹光线,求出倒置后得:追迹过程:用MATLAB编写程序如下l=1;u=0;y=5;r=[33、310 24、910 24、910 41、72 21、810 108、650 33、310 108、650];d=[2、5 13、5 0、2 11、5 2 0、2 6];n=[1 1、6199 1、5163 1 1、5163 1、6199 1 1、5163 1];len=length(r);for j=1:lenfprintf('%d surface :\n',j);if l>=10000000000u=0;if r(j)==0continue;elsei=y/r(j);i2=i*n(j)/n(j+1);u2=i+ui2;l2=i2*r(j)/u2+r(j);endelseif r(j)==0i=u;i2=i*n(j)/n(j+1);u2=i2;l2=l*u/u2;elsei=u*(lr(j))/r(j);i2=i*n(j)/n(j+1);u2=i+ui2;l2=i2*r(j)/u2+r(j);endendfprintf('l=%f,u=%f,i=%f,i2=%f,u2=%f,l2=%f\n',l,u,i,i2,u2,l2);if length(d)>=jl=l2d(j);elsel=l2;fprintf('finished:Sf=%f',l);endu=u2;end追迹结果:1 surface :l=1、000000,u=0、000000,i=0、300210,i2=0、185326,u2=0、114884,l2=87、044473 2 surface :l=89、544473,u=0、114884,i=0、527859,i2=0、563924,u2=0、150949,l2=68、150078 3 surface :l=81、650078,u=0、150949,i=0、343833,i2=0、521354,u2=0、026572,l2=463、842376 4 surface :l=463、642376,u=0、026572,i=0、268724,i2=0、177223,u2=0、118072,l2=104、340746 5 surface :l=92、840746,u=0、118072,i=0、620680,i2=0、580985,u2=0、078377,l2=139、861723 6 surface :l=137、861723,u=0、078377,i=0、177826,i2=0、288060,u2=0、188611,l2=57、288022 7 surface :l=57、088022,u=0、188611,i=0、134638,i2=0、088794,u2=0、234455,l2=45、925301 8 surface :l=39、925301,u=0、234455,i=0、320609,i2=0、486140,u2=0、399985,l2=23、402553 finished:Lf=23、402553得到目镜倒置后得值为(指焦点F 与目镜最后一面得距离,也即指当平行光入射目镜系统就是追迹光路中得最后一个面得像距值)。
双筒望远镜原理
双筒望远镜文章简介望远镜一般分类上说可以分为双筒望远镜,单筒望远镜和天文望远镜。
我们平时一般指的望远镜都是双筒望远镜。
双筒望远镜的价格相差很大,效果也相差很大,如何进行选择呢?文章详细内容一. 理解双筒望远镜的基本概念1. 棱镜结构:有保罗式PORRO和屋脊式ROOF. 从理论上来说,屋脊式的结构相对复杂,如果使用同样的镜片,同样的镀膜,同样工艺,保罗式效果会优于屋脊式。
但是屋脊式望远镜的优点是外观小巧,做工精致,所以一般高档的双筒望远镜都是采用屋脊式的。
保罗式双筒望远镜是双筒望远镜的鼻祖,早期双筒望远镜都采用保罗式,所以保罗式双筒望远镜深受广大户外运动爱好者的喜爱。
随着屋脊式双筒望远镜的流行,保罗式双筒望远镜成为了低端望远镜的代名词。
但是实际上国际知名的品牌,包括美国博士能,视得乐,尼康依然在生产高清级别的保罗式双筒望远镜。
其中最为知名的是博士能LEGACY 经典系列的120150和120842,这两款是全球高清保罗式双筒望远镜冠军。
具有非常高的性价比。
2. 口径:保罗式比较经典的口径是50mm和42MM,屋脊式是42mm.对于迷你便携望远镜,口径一般是30mm以内购买时必须理解一下几点:<1>. 影响双筒望远镜的体积的关键是口径,口径越大,理论上体积就越大。
<2>. 并不是口径越大视野就宽。
口径只是影响视野大小的一个因素,视野大小还取决于望远镜内部的结构。
同样口径大小的望远镜,视野会相差很大的。
比如博士能知名的奖杯8X32,32mm 的口径,其视野范围却达到130多米,原宽于普通10X50的传统望远镜。
3. 双筒望远镜的倍率:从手能拿稳的角度说,一般选择7-10倍的就足够。
如果您总观察几百米内的小目标,如车牌号,建议选择7-8倍的。
如果观察距离需要更远的目标,建议选择10倍的。
只是您需要观测很远目标时,才建议选择10倍以上的。
经典倍率:屋脊8X42,10X42 ,保罗 8X40,10X50 迷你望远镜 10X28,10X25,8X30,8X26等。
关于双筒棱镜望远镜设计
关于双筒棱镜望远镜设计双筒棱镜望远镜是一种常见的望远镜设计,在观测天体和观察远处的物体时很常用。
它的设计原理是利用两个平行放置的棱镜将光线反射并聚焦到观察者的眼睛上,提供清晰的放大视野。
双筒棱镜望远镜的核心部件包括目镜、物镜、二次反光镜和棱镜。
物镜是最重要的部件,它主要负责将远处物体的光线聚焦到二次反光镜上。
二次反光镜将光线反射到平行的棱镜上,通过棱镜的反射和折射,光线最终汇集到观察者的眼睛上。
进入观察者的眼睛的光线会在视网膜上形成一个清晰的图像。
由于双筒棱镜望远镜的设计基于双目观察,观察者可以同时观察到两个独立但相互平行的图像。
这种设计的优势是可以提供更真实的立体感和更广阔的视野。
双筒棱镜望远镜的物镜和目镜有不同的焦距,这样可以将物体的光线聚焦到观察者的眼睛上,并放大物体的图像。
不同的物镜可以提供不同的放大倍数和视场角。
通过更换物镜和目镜,观察者可以根据目标的大小和距离选择合适的配件,以获得最佳的观测效果。
在双筒棱镜望远镜中,二次反光镜和棱镜的质量和精确度非常重要。
二次反光镜需要具有高反射率,并且需要被镀上特殊的金属镀层以增强反射效果。
棱镜则需要具有高折射率和准确的角度,以确保光线的正常传输和聚焦。
双筒棱镜望远镜采用双目观察的设计,除了提供更真实的立体感之外,还可以减轻观察者的眼睛疲劳。
当观察者用一个眼睛观察时,另一个眼睛可以放松,这样可以避免长时间的眼睛疲劳和不适。
双筒棱镜望远镜还有一些额外的设计特点,以提高观测体验。
例如,它可以配备调焦机构来调整焦距和清晰度。
此外,还可以安装红点指示器、手机适配器等附件,以便更轻松地找到并记录观测目标。
总的来说,双筒棱镜望远镜是一种广泛应用于天文学、野外观测等领域的望远镜设计。
它通过利用双目观察和精确的光学元件,可以为观察者提供清晰、真实的视野,较少眼睛疲劳的同时也方便使用和操作。
在选择和使用双筒棱镜望远镜时,应着重考虑光学元件的质量和精确度,以确保最佳的观测效果和体验。
双筒棱镜望远镜设计
双筒棱镜望远镜设计双筒棱镜望远镜(binocular prism telescope)是一种常见且受欢迎的望远镜设计,它具有两个独立的光路系统,可以同时观测物体,并提供具有立体效应和广阔视野的观测体验。
以下是一个关于双筒棱镜望远镜的设计方案,包括其结构组成、原理、性能优势和应用领域等。
1.结构组成:双筒棱镜望远镜由两个相同的光路系统组成,每个光路系统包括目镜、物镜、棱镜和准直器等组件。
两个光路系统通常通过主轴连接在一起,并可以通过调节机构进行调焦。
双筒望远镜通常具有可调节的眼距,以适应不同的眼睛间距。
2.原理:双筒望远镜的工作原理与单筒折射望远镜相似,但由于其两个独立的光路系统,可以同时观测物体,从而提供更好的观测体验。
在光路系统中,目标通过物镜聚焦到棱镜上,棱镜将光线折射,使其通过目镜进入观察者的眼睛。
由于双目同时观察,观察者可以获得立体感,并提供更广阔的观测视野。
3.性能优势:a.立体感:双筒望远镜可以同时观察目标,观察者能够获得更好的物体立体感和深度感。
b.视野广阔:由于两个独立的光路系统,双筒望远镜具有更广阔的视野,使观察者能够观察更大范围的物体。
c.稳定性:双筒望远镜相比于单筒望远镜更稳定,由于重量分散在两个光路系统上,减少了镜身抖动的可能性。
d.眼睛舒适度:双筒望远镜通常具有可调节的眼距,以适应观察者的眼睛间距,提供更舒适的观测体验。
4.应用领域:双筒望远镜广泛应用于天文观测、自然观察、旅游观光、体育赛事观看等领域。
在天文观测中,双筒望远镜可以帮助观察者同时观测到更多的天体,并提供更好的观测体验。
自然观察中,双筒望远镜可以帮助观察者观测野生动物、鸟类等,并提供更好的立体感。
在旅游观光和体育赛事观看中,双筒望远镜可以提供更广阔的视野,并使观察者更好地观察到目标。
总结:双筒棱镜望远镜是一种非常实用且广泛应用的望远镜设计。
它有助于提供立体观测体验、广阔的视野、稳定性和眼睛舒适度等优势。
应用于天文观测、自然观察、旅游观光及体育赛事观看等领域。
望远镜的常见参数介绍
Kenko 肯高双筒望远镜 New SG 7*18 DH FF WP•分享•转发•收藏••••••••••••••••产品型号:New SG 7*18 DH FF WP库存情况:有货新蛋价:¥降价通知| 价格举报•免运费!购买数量5加入收藏夹•申请分期付款•产品描述•规格参数•包装信息•保修条款•品牌信息注:如有不匹配的商品信息,请点击[纠错]Kenko 肯高双筒望远镜New SG 7*18 DH FF WP比赛,外出旅游,观赏景色……怎能让距离限制了你的双眸?肯高NewSG7*18DH FFWP 双筒望远镜助您放大视觉盛宴,洞察天下精彩!它采用屋脊棱多层镀膜和高精度的棱镜,提高了光的透射率和反射率,让您获得更锐利的图象。
9.3°的超宽视野,让您看到更清晰更精彩的世界;轻便的人体工学设计让内或是室外都得到轻便舒适的使用享受。
肯高望远镜,做工精致,效果好,人见人爱!主要参数特性一览屋脊式棱镜结构肯高New SG 7*18 DH FF WP 双筒望远镜采用了屋脊式棱镜结构,轻便紧凑的设计,更适合户外携带。
多层镀膜(Multi-Coated)肯高New SG 7*18 DH FF WP 双筒望远镜使用多层镀膜和高精度的棱镜,提高了光的透射率和反射率,因而可以获得更锐利明亮的图象。
防水抗冲击设计肯高New SG 7*18 DH FF WP 双筒望远镜采用防水抗冲击的设计,不必担心因湿气入侵或是不经意的泼溅而对其造成的损害,让你的望远镜适应各种恶劣环境。
内附望远镜包肯高New SG 7*18 DH FF WP 双筒望远镜附带的便携包装袋能让您方便的收纳望远镜,同时可以避免随意放置带来的意外损害,让您的望远镜亮丽如新。
品牌介绍:肯高(KENKO)日本肯高集团是一家专业生产照相器材和光学器材的公司,公司产品覆盖了除相机机身外的所有照相器材。
公司商品有1万5千多个品种可供用户选择。
其中以肯高(KENKO)的滤光镜系列,图丽(TOKINA)的照相机镜头系列,竖力(SLIK)的三脚架系列等品牌最为有名。
双筒棱镜望远镜简介
物镜口径即望远镜的通光口径,是外界光线进入望远镜的通道。一 般而言,在倍数、棱镜材质、镀膜、加工装配精度等条件相同的前提 下,望远镜的物镜口径越大,成像亮度就越高,分辨率也越高,光学 性能越好。
视场。望远镜的视场一般用***/****或度表示,如“114M/1000M”表示在
出瞳距离(适眼距)是指能看清整个视场时眼睛离目镜的最远距离,如 果出瞳距离太短,则眼睛必须贴近目镜才能看见整个视场,眼睛会非 常累,而如果出瞳距离过长且目镜罩太短,则观测时容易出现黑影。 长出瞳距离的望远镜适合戴眼睛的人使用。有的长出瞳望远镜目镜罩 设计成可伸缩型,这样既适用于视力正常的人,也适用于戴眼睛的人。
1000米远的地方,通过这个望远镜可以看见的范围是一个直径114米的圆, 换算成角度就是 6.5 度。还有的望远镜是用 xx ft at 1000yds 来表示视场的 大小,ft代表英尺,yds代表码,都是英制单位。一般情况下,大视场的望远 镜边缘成像都不如视场小的望远镜,这基本上是无法调和的矛盾。
镜身标识的含义
LOGO
以10X40望远镜镜为例:在镜肩上印有“10X40”字样,10表示通 过望远镜观测目标,比肉眼直接观测放大了10倍,距离1000米远的 物体,相当于距离只有100米;
40表示物镜的直径是40毫米。 物镜口径越大,通光量越大,成像 越明亮,观测效果越好,放大倍率也能提高一点。一般来说,50 mm用7-10倍比较好。
镜的像方焦面之后,距离为x1
。由牛顿公式,位移量
x1
f12 x1
望远系统的调焦方式
LOGO
物体距望远镜越近,则像面的位移量 x1 越大,在保持望 远系统和正常眼调节于无限远的条件下,自目镜出射的不 再是平行光束,而是发散光束,因此在正常的视网膜上不 能成清晰像。
双筒棱镜望远镜课件设计
30 ~60
6 0
KT
'
'
0 . 8
1 . 6
2 . 4
xts
'
0 . 8
1 . 6
2 . 4
xt
q
5 %
7 %
1 2 %
yFC
'
2.选型
(1)物镜选型
望远镜物镜视场较小, 需要校正球差、色差和正弦差等轴上色差。
依照物镜特点和要求选择:双胶合物镜。双胶合物镜结构简单,
制造装置方便,光能损失小,玻璃选择适合,可以同时校正球差、色
出瞳距离(lz')
近轴像高(y')
放大率(_)
入瞳直径(D)
出瞳直径(D')
拉赫不变量(J)
像方孔径角(U')
2.像差
***零视场像差***
1H
0H
球差L '
弥散园LR '
F光球差LF '
C光球差LC
轴向色差LFC '
***D光各视场像差***
相对视场Lz1Lz2Yz'Xt'Xs'
Xts'
1
Yz'Yz' FYzC'yFC 'LT 'LS '
0415
系统面数色光数本质入瞳上光渐晕下光
渐晕
7301-1
理想面焦距理想面距离
0
0
面序号
半径
厚度
玻璃
STO
1
2
BAK2
3
ZF2
4
1
5
K9
6
1
7
K9
应用光学课程设计---双筒棱镜望远镜设计
应用光学课程设计一、设计题目双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)二、本课程设计的目的和要求1、综合运用课程的基本理论知识,进一步培养理论联系实际的能力和独立工作的能力。
2、初步掌握简单的、典型的、与新型系统设计的基本技能,熟练掌握光线光路计算技能,了解并熟悉光学设计中所有例行工作,如数据结果处理、像差曲线绘制、光学零件技术要求等。
3、巩固和消化课程中所学的知识,初步了解新型光学系统的特点,为学习专业课与进行毕业设计打下好的基础。
三、设计技术要求双筒棱镜望远镜设计,采用普罗I 型棱镜转像,系统要求为:1、望远镜的放大率r= 6倍;2、物镜的相对孔径D/f丄1: 4(D为入瞳直径,D = 30mm);3、望远镜的视场角2宀=8°4、仪器总长度在110mm 左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离14mm,棱镜采用K9玻璃,两棱镜间隔为2〜5mm。
& lz '〜810mm四、设计报告撰写内容本课程设计要求以设计报告形式完成以下工作:1 、认真学习相关像差理论和光学设计知识,做好笔记,完成例题作业并上交;2、根据所讲内容进行本设计具体参数以及结构形式的选择,说明选择理论依据;3、进行本设计的外形尺寸计算,要求写明计算过程;4、使用PW 法进行初始结构参数r、d、n 的求解,要求写明计算过程;5、计算本设计的像差容限,使用Tcos软件完成设计的模拟和计算,手工修改结构参数进行像差的校正;6、绘制相应的像差曲线图和计算数据报表;7、写出本次课程设计的心得体会。
第5章望远系统设计范例题目:双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)要求:双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为:1、望远镜的放大率6倍;2、物镜的相对孔径D/f丄1: 4 (D为入瞳直径,D = 30mm);3、望远镜的视场角2宀=8°4、仪器总长度在110mm左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离14mm,棱镜采用K9玻璃,两棱镜间隔为2〜5mm。
5.5 跨学科实践:制作望远镜(教学设计)八年级物理上册(人教版2024)
5.5 跨学科实践:制作望远镜(教学设计)学习新课一、制作望远镜望远镜种类很多,其中一种是由两组凸透镜(开普勒望远镜)组成。
1. 探究望远镜的原理【实验器材】两个焦距不同的凸透镜。
【实验步骤】①先用一个凸透镜(焦距大的)观察窗外远处的物体,注意成像情况。
②再用另一个凸透镜(焦距小的)观察上面得到的物体的像,注意成像情况。
③将两凸透镜的位置对调,再观察远处的物体,对比两次成像的大小。
【分析论证,归纳结论】①将焦距较大的透镜放在焦距较小的透镜前面,观察物体,物体成倒立、放大的像,远处的物体看上去放大了。
②将两凸透镜的位置对调,将焦距较小的透镜放在焦距较大的透镜前面,再观察远处的物体,物体成倒立、缩小的像。
【演示实验】——《模拟望远镜》2. 望远镜的构造【播放ppt进行讲解】望远镜由两组透镜组成,每组透镜相当于一个凸透镜。
靠近被观察物体的凸透镜,焦距比较长,叫物镜。
靠近眼睛的凸透镜,焦距比较短,叫做目镜。
望远镜示意图双筒望远镜我们见到的普通望远镜和军事望远镜都是双筒的,是双筒望远镜。
它的两个镜筒都是拐了弯的,在拐弯处分别安装了两个“全反射棱镜”。
这种设计一方面缩短了镜筒的长度,另一方面经过那两块棱镜的两次反射也能使本来倒立的像正立过来。
3. 望远镜的原理【边画光路图边讲解】(1)物镜与目镜物镜相当于照相机的镜头,使远处的物体在焦点附近成倒立、缩小的实像。
目镜相当于一个放大镜,成正立、放大的虚像。
两次成像,先缩小,后放大。
(2)望远镜的成像光路图注意:①目镜把物镜所成的像进行放大。
目镜所成的像正倒和大小是相对于物镜所成的像而言的。
最后成像与物体本身比,是倒立、缩小的虚像。
②物镜和目镜的距离等于两个透镜的焦距之和。
(由于物体距望远镜的距离很大,第一次成像在物镜的焦点附近且无限靠近焦点,可以近似地认为在焦点处,要使目镜的放大倍数尽可能最大,则这个像要在目镜的一倍焦距以内且尽可能靠近焦点)。
(3)视角【提出问题,引出视角的概念】物体距离物镜很远,它的像却离物镜很近,这样的像应该是缩小的,为什么用望远镜观察物体时会感到像被放大了?原来,我们能不能看清一个物体,它对我们的眼睛所成“视角”的大小十分重要,视角越大,对物体观察越清楚。
学术论文:【毕业论文】双筒棱镜望远镜的物镜和目镜的选型和设计
【毕业论文】双筒棱镜望远镜的物镜和目镜的选型和设计毕业论文(设计)课题名称:双筒棱镜望远镜的物镜和目镜的选型和设计题目类型:毕业设计学生姓名:院(系):物理科学与技术学院专业班级:指导教师:辅导教师:时间:目录毕业设计〔论文〕任务书I毕业设计〔论文〕开题报告Ⅳ毕业设计〔论文〕指导教师审查意见Ⅺ毕业设计〔论文〕评阅教师评语Ⅻ毕业设计〔论文〕辩论会议记录ⅩⅢ中文摘要ⅩⅣAbstract ⅩⅤ1 引言12 目视光学系统成像原理12.1 目视光学系统的特点12.2 望远镜系统成像原理12.3 显微镜系统成像原理23 光学自动设计方法33.1光学设计根本步骤33.2光学自动设计概述44 望远镜系统的选型与设计54.1 设计技术要求54.2 系统外型结构参数的理论计算64.3 望远镜结构元件的选型94.3.1 望远镜物镜的选型94.3.2 望远镜目镜的选型94.3.3 转向棱镜的选型104.4 应用TCOS光学设计软件对结构元件进行设计12 4.4.1 物镜设计过程124.4.2 目镜设计过程154.5 设计图纸184.5.1 系统结构图纸184.5.2 系统元件设计图纸185 显微镜系统的选型和设计185.1 设计技术要求185.2 系统外型结构参数的理论计算195.3 显微镜结构元件的选型205.3.1 显微镜物镜的选型205.3.2 显微镜目镜的选型205.4 应用TCOS光学设计软件对结构元件进行设计215.4.1 物镜设计过程215.4.2 目镜设计过程245.5 设计图纸285.5.1 系统结构图纸285.5.2 系统元件设计图纸286 设计体会28参考文献30致谢31附录32XIVXIII长江大学毕业设计〔论文〕任务书学院〔系〕物理科学与技术学院专业应用物理学班级应物2042学生姓名指导教师/职称 /教授⒈毕业设计(论文)题目双筒棱镜望远镜的物镜和目镜的选型和设计⒉毕业设计(论文)起止时间:2021年1月~2021年6月⒊毕业设计(论文)所需资料及原始数据〔指定教师选定局部〕参考文献:康玉思, 刘伟奇, 冯睿. Cook 结构补偿镜的球面折反型望远系统[J]. 光学精密工程, 2021,3(15):303~307杨荣仙. 变倍目镜的设计[J] . 光学技术 , 1992,6:19~30常军, 翁志成, 姜会林等. 长焦距空间三反光学系统设计[J]. 光学精密工程, 2001,9(4):315~318潘君骅. 成像光学工程面临的光学问题[J]. 中国工程科学. 2000,2(3):32~35姜守信,郭霞, 闫惠民.非共轴反光镜程序的设计[J]. 黑龙江电子技术, 1996,2:7~8赵延仲,宋丰华,孙华燕.高斯光束的激光变焦扩束光学系统设计[J]. 装备指挥技术学院学报, 2021,18(5):85~89涂德华. 共轴光学系统镜框结构设计[J]. 光学仪器, 2021,29(1):52~56袁旭沧. 光学设计[M]. 北京: 科学出版社,1980张楠, 卢振武, 李凤有. 衍射望远镜光学系统设计[J]. 红外与激光工程, 2021.2 36〔1〕:106-108尚华, 刘钧, 高明等. 头盔式单目微光夜视仪中的光学系统设计[J]. 应用光学, 2021.5 28〔3〕:292-296安连生. 应用光学[M]. 北京: 北京理工大学出版社, 1998姚多舜, 梁宏君. 一个可完全自动绘图的光学设计软件——OCAD光学设计软件包[J]. 应用光学, 2004.3 25〔2〕:28-35石顺祥, 张海兴, 刘劲松. 物理光学与应用光学[M]. 西安: 西安电子科技大学出版社,1999杨近松. 光学镜头机械结构参数化设计系统的开发[J] . 光学精密工程, 1999,127〔6〕:6-9高晓斌, 余晓芬. 一种并行共焦显微镜的设计与研制[J]. 光学仪器, 2021.12 27〔6〕:72-76赵丽萍, 赵子英, 邬敏贤等. 折射混合望远镜的设计制作及实验[J]. 光学技术, 1999.5 3:28-31郁道银, 谈恒英. 工程光学[M]. 北京: 机械工业出版社, 1999魏英智, 张琳. 光圈性能测试系统的总体设计[N]. 科技导报, 2021.5 25[5]:53-55姚启钧. 光学教程[M]. 北京: 高等教育出版社, 2002刘钧, 高明. 光学设计[M]. 西安: 西安电子科技大学出版社,2021⒋毕业设计(论文)应完成的主要内容望远镜是重要的光学仪器之一,随着科学技术的飞速开展,望远镜逐步由简单的单筒望远镜开展到双筒望远镜、天文望远镜、射电望远镜。
应用光学课程设计---双筒棱镜望远镜设计
应用光学课程设计一、设计题目双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)二、本课程设计的目的和要求1、综合运用课程的基本理论知识,进一步培养理论联系实际的能力和独立工作的能力。
2、初步掌握简单的、典型的、与新型系统设计的基本技能,熟练掌握光线光路计算技能,了解并熟悉光学设计中所有例行工作,如数据结果处理、像差曲线绘制、光学零件技术要求等。
3、巩固和消化课程中所学的知识,初步了解新型光学系统的特点,为学习专业课与进行毕业设计打下好的基础。
三、设计技术要求双筒棱镜望远镜设计,采用普罗I 型棱镜转像,系统要求为:1、望远镜的放大率r= 6倍;2、物镜的相对孔径D/f丄1: 4(D为入瞳直径,D = 30mm);3、望远镜的视场角2宀=8°4、仪器总长度在110mm 左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离14mm,棱镜采用K9玻璃,两棱镜间隔为2〜5mm。
& lz '〜810mm四、设计报告撰写内容本课程设计要求以设计报告形式完成以下工作:1 、认真学习相关像差理论和光学设计知识,做好笔记,完成例题作业并上交;2、根据所讲内容进行本设计具体参数以及结构形式的选择,说明选择理论依据;3、进行本设计的外形尺寸计算,要求写明计算过程;4、使用PW 法进行初始结构参数r、d、n 的求解,要求写明计算过程;5、计算本设计的像差容限,使用Tcos软件完成设计的模拟和计算,手工修改结构参数进行像差的校正;6、绘制相应的像差曲线图和计算数据报表;7、写出本次课程设计的心得体会。
第5章望远系统设计范例题目:双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)要求:双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为:1、望远镜的放大率6倍;2、物镜的相对孔径D/f丄1: 4 (D为入瞳直径,D = 30mm);3、望远镜的视场角2宀=8°4、仪器总长度在110mm左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离14mm,棱镜采用K9玻璃,两棱镜间隔为2〜5mm。
带你认识望远镜的结构与原理
带你认识望远镜的结构与原理
望远镜基本构造
一般来说,常规的双筒望远镜有以下几个部分组成:目镜,物镜,中间的棱镜,两个镜筒的连接部分,以及聚焦系统。
根据不同的尺寸大小,放大倍率,和用途以及个人喜好,双筒望远镜又可细分为好几种类型(详见双筒望远镜类型一表)。
下图是常规双筒望远镜的基本构
造图:
望远镜常见问题解答
1.望远镜上的两个数字代表什么?
用手拿着使用,便携性较好。
并且由于其视野较广,比较适合用于观看室外的体育比赛。
5.望远镜如何调焦?
人们的左右眼在观看和聚焦方面都会有视差,而望远镜的中央调焦系统很好的解决了这个难题。
基本上来说,我们的望远镜除了有
页眉内容
页脚内容
上图可帮助我们更好的理解望远镜的成像原理。
光进入物镜,到达第一片棱镜,此时影像呈倒立状;再折射到第二片棱镜,此时影像呈正立状,最后进入目镜,到达视线。
这便是我们看到的放大后的物体。
这原理适用于所有的双筒望远镜。
设计题目要求8倍双目望远镜
应用光学课程设计—8 倍双目望远镜设计题目要求:8 倍双目望远镜全视场:62=ω 出瞳直径:mm D 4'= 镜目距:mm p 5.10= 分辨率:"6=ϕ 渐晕系数:5.0=K棱镜出射面与分划板距离:mm a 3.26= 棱镜和材料: 保罗1棱镜(k = 4),材料:K9 目镜:2-28一、目镜的计算目镜是显微系统和望远系统非常重要的一个组成部分,但目镜本身一般并不需要设计,当系统需要使用目镜时,只要根据技术要求进行相应类型的选取即可。
1、在本次设计中所需的目镜的结构形式作为已知条件给出:目镜2-28,查找《光学仪器设计手册》P295,如图1所示。
图1 目镜2-28结构图此外设计手册中还提供有相关的结构数据参数表1及主要的系统数据: 216.20'=f , 572=ω,49.4'=f s ,0.5=d 等。
表1 目镜2-28主要参数从图1中我们不难发现该目镜的出瞳位于整个系统的左侧,而在目镜的实际运用中,出瞳应位于系统的右侧。
此种情况相当于将目镜倒置,故而它所给出的49.4s '=f 我们不能直接加以运用,这里的's f 是指F ′与目镜最后一面之间的距离。
2、将手册中所给的目镜倒置:由于将目镜倒置,则目镜的数据将发生一定的变化,原来的第一个折射面(∞=1r )变为第八个面(∞=8r ),原来的第二个折射面(24.252-=r )变为第七个折射面(24.257=r )……,以此类推。
值得注意的是:不但折射面的次序发生变化,与此同时其半径的符号也将发生相应的改变,原来为正,则现在为负。
倒置后的新的数据如表2所示。
3利用光线追迹法求得目镜的像方焦点到最后一个透镜平面顶点的距离f s ,根据公式;;''''''h r n n nu u n r n n l n l n -=--=-;'';)('''i n n i n n n u u i =--=;;;;'1'1'1'1k k k k k k k k k k k n n u u u d h h d l l ==-=-=++++追迹结果是:设定的初始高度为h =1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汉口学院
《应用光学》
课程设计报告
报告题目:双筒棱镜望远镜设计学生姓名:
学号:
专业班级:
授课老师:
二O一四年十一月
双筒棱镜望远镜设计
设计任务与要求
双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为:
1、望远镜的放大率Γ=6倍;
2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D=
30mm);
3、望远镜的视场角2ω=8°;
4、仪器总长度在110mm左右,视场边缘允许50%的渐晕;
5、棱镜最后一面到分划板的距离>=14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。
6、lz ′>8~10mm
目录
一、外形尺寸计算
二、初始结构的选型
三、物镜初始结构参数的计算
四、物镜zemax的初始上机数据及像差图示
五、物镜zemax 的校正数据及像差图示
设计步骤
一、 外形尺寸计算 已知望远镜参数:
Γ=6,入瞳直径30D mm =,相对孔径
'
1:4D
f =,2ω=8°,L=110mm ; 视场边缘允许50%的渐晕;
棱镜最后一面到分划板的距离>=14mm 1、求1'f ,2'f
物镜焦距'14120f D mm =⨯=
目镜焦距''12
120
206
f f mm ==
=Γ
2、求'D 出瞳直径'5D
D mm =
=Γ
3、求视场直径
16.7824mm =tan4f 2=D '1 ⨯⨯视
4、求目镜视场
5.452tan =tan ''=⇒Γωωω
2ω
该望远系统采用普罗I型棱镜转像,普罗I型棱镜如下图:
将普罗I型棱镜展开,等效为两块平板,如下图:
无渐晕时候,,现在有25%的渐目镜口径D
目
晕,所以
由设计要求:视场边缘允许50%的渐晕,可利用分划板拦去透镜下部25%的光,利用平板拦去透镜上部的25%的光,这样仅有透镜中间的50%的光能通过望远系统,使像质较好。
在上图中截取平板拦光部分的梯形进行研究,如下图,可得比例关系:
7.51208.39127.5120
h a
--=-
其中a 为第二块平板的后表面到分划板的距离,根据要求,可取
14a mm =。
解得:8.287h mm = 由此可得:
等效平板厚度216.574D h mm ==
所以棱镜展开的实际厚度:33.148L KD mm == 考虑到棱镜的装配,取33.5L mm = 因此,等效空气平板厚度33.5
22.11.5163
L d mm n =
== 考虑到棱镜通光口径有限,因此需考虑到全孔径全视场的光线要能通过棱镜的第一个面(如下图),则物镜到第一个棱镜前表面的最小距离必须满足:
其中_
c 为物镜到第一个棱镜前表面的最小距离。
实际物镜到第一个棱镜前表面的距离:
120259.8c a b d mm =---=
其中b 为普罗I 型棱镜系统的两棱镜的距离,根据要求,取
2b mm =
由_
c c >知,设计满足实际棱镜通光口径的限制。
二、初始结构的选型
根据设计技术要求与外形尺寸计算结果:
物镜:'/1:4D f =,28ω=,'120f mm =
目镜:'20f mm ='245.5ω=,5D mm =,'8~10z l mm >
由查阅资料与老师讲解知,物镜为大孔径小视场,而目镜为小孔径大视场系统,可知双胶合物镜与凯涅尔目镜满足设计任务要求。
望远镜:孔径大,视场小,所以轴外像差小,只需要校正轴上点像差。
两种轴上点像差:球差、位置色差。
与孔径相关。
其余轴外像差:与视场相关,但慧差与孔径和视场都相关,所以也要考虑慧差。
所以:
对于物镜:校正球差、位置色差、慧差(用正弦差代替) 对于目镜:大视场,小孔径。
要校正:像散、场曲、畸变、慧差、倍率色差。
相关的结构特点,像差特性和光学性能如下:
双胶合望远物镜,结构简单,制造和装配方便,光能损失较小。
玻璃选择得当,可以同时校正球差,正弦差和色差。
当高级球差得到平衡时,胶合面的曲率较大,剩余的带球差偏大。
因而,双胶合物镜只适用于小孔径的使用场合。
常见的孔径如表所示。
考虑到胶合面有脱胶的概率,双胶合物镜的口径不宜过大,最大口径为100mm 。
双胶合物镜能适应的视场角不超过10。
凯涅尔目镜,接目镜为双胶镜,增加一个胶合面变数用来校正倍率色差,且在校正倍率色差的同时可以把场镜和接目镜的间隔进一步减小,从而取得结构缩短,场曲减小的效果。
光学性能:视场240~50ω=,相对镜目距''/1/2p f =。
三、物镜初始结构参数的计算 1. 求h ,z h ,J
由设计条件,有()1520''' 1.4089('0.125,''8.3912,'1)
'z
o o D h mm h J n u y h u y f tg mm n f ω⎧==⎪⎪
⎪=⎨==⎪⎪
=====⎪⎩
孔径光阑在物镜框上 2. 求平板像差
(由于含有平板,平板会产生像差,所以要用物镜的像差来平衡平板的像差)
u=0.125,u Z =︒-4=-0.0698,675.332=⨯=d ,5163.1=n ,1.64=ν
3. 求物镜像差
双胶合物镜像差应该与平行平板像差等值反号,据此提出物镜像差。
(若不需平衡平板像差的话,取物镜像差都为0)
0.006096I IP S S =-=;
0.003404II IIP S S =-=-;
0.003667I IP C C =-= (1) 根据C I 求C ,并规划成C
22
0.003667
1200.001956(15)C C h φI ==⨯= (2) 根据,S S I II 求P 、W
⎪⎪⎪
⎩⎪
⎪
⎪⎨⎧-=--=∑==∑-=--=∑∏003667.0)1(003404.0)(006096.012
2
24
3
2u n n d C u u S S u n n d S IP Z IP
P IP ν
0.0060960.000406415
0.003404
0.0032453
1.0489
z S S hP P h S S h P Jw w J I I II II =⇒=
===+⇒==-=- (3) 将P 、W 规化成P 、W
33
22
0.0004064
0.20808()(0.125)
W 0.0032453
0.2077(0.125)
P P h W h φφ=
=====() (4) 物本身位于无穷远,则 0.20808,0.2077P P W W ∞
∞
====
(5) 求0P
取冕牌在前,则
19822.0)1.0(85.020=+-=∞
∞W P P
(6) 选玻璃
根据___
0.001956C =与0P 查阅《光学仪器设计手册》,选取K9-F5玻璃对。
初始数据为:
(7) 求形状系数Q
(8)求归一化条件下透镜各面的曲率
(9)求薄透镜各面球面半径
(10)求厚透镜各面球面半径
凸透镜最小边缘厚度:
最小中心厚度:
凹透镜最小边缘厚度:
最小中心厚度:
四、物镜zemax的初始上机数据及像差图示
1.初始上机数据
2.像差图示
2D草图
光线像差特性曲线
光路特性曲线
标准点列图
五、物镜zemax的校正数据及像差图示
1.校正数据
2.像差图示
2D草图
光线像差特性曲线
光路特性曲线
标准点列图。