圆锥曲线综合高考实战篇圆锥曲线实用讲义
高考数学讲义圆锥曲线综合.参考教案.学生版
【例1】 P 是以1F 、2F 为焦点的椭圆上一点,过焦点2F 作12F PF ∠外角平分线的垂线,垂足为M ,则点M 的轨迹是( ) A .圆B .椭圆C .双曲线D .抛物线【例2】 已知P 为抛物线22(0)x py p =>上的动点,F 为抛物线的焦点,过F 作抛物线在P 点处的切线的垂线,垂足为G ,则点G 的轨迹方程为( ) A .222x y p +=B .2p y =- C .22224p p x y ⎛⎫+-= ⎪⎝⎭D .0y =【例3】 已知定点(30)B ,,点A 在圆221x y +=上运动,M 是线段AB 上的一点,且13AM MB =u u u u r u u u r,则点M 的轨迹方程是___________.【例4】 如图,正方体1111ABCD A B C D -的棱长为1,点M 在A 上,且13AM AB =,点P在平面ABCD 上,且动点P 到直线11A D 的距离的平方与P 到点M 的距离的平方差为1,在平面直角坐标系xAy 中,动点P 的轨迹方程是 .ABC D P A 1B 1C 11M xy【例5】 AB 是圆O 的直径,且||2AB a =,M 为圆上一动点,作MN AB ⊥,垂足为N ,在OM 上取点P ,使||||OP MN =,求点P 的轨迹方程.【例6】 已知A 、B 、D 三点不在一条直线上,且(20)A -,,(20)B ,,12()2AD AE AB AD ==+u u u r u u u r u u u r u u u r ,.①求点E 的轨迹方程;②过A 作直线交以A ,B 为焦点的椭圆于M ,N 两点,线段MN 的中点到y 轴圆锥曲线综合.参考教案的距离为45,且直线MN 与E 点的轨迹相切,求椭圆的方程.【例7】 直线y kx =与圆2264100x y x y +--+=相交于两个不同点A B ,,当k 取不同实数值时,求AB 中点的轨迹方程.【例8】 已知抛物线2:C y ax =,点(1,1)P -在抛物线C 上,过点P 作斜率为1k 、2k 的两条直线,分别交抛物线C 于异于点P 的两点11(,)A x y ,22(,)B x y ,且满足120k k +=.⑴求抛物线C 的焦点坐标;⑵若点M 满足BM MA =u u u u r u u u r,求点M 的轨迹方程.【例9】 已知曲线2:C y x =与直线:20l x y -+=交于两点(),A A A x y 和(),B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(),P s t 是L 上的任一点,且点P 与点A 和点B 均不重合. ⑴若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程; ⑵若曲线22251:24025G x ax y y a -+-++=与D 有公共点,试求a 的最小值.【例10】 长度为(0)a a >的线段AB 的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在线段AB 上,且AP PB λ=u u u r u u u r(λ为常数且0λ>). ⑴求点P 的轨迹方程C ,并说明轨迹类型;⑵当2λ=时,已知直线1l 与原点O 的距离为2a,且直线1l 与轨迹C 有公共点,求直线1l 的斜率k 的取值范围.【例11】 若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是A .1122⎡⎤-+⎣⎦,B .122122⎡⎤-+⎣⎦,C .1223⎡⎤-⎣⎦,D .123⎡⎤-⎣⎦,【例12】 下列命题正确的是( )A .到两坐标轴的距离相等的点组成的直线方程是y x =B .已知三点(20)A ,,(02)B ,,(00)C ,,ABC ∆的边AB 上的中线方程为y x = C .到两坐标轴的距离的乘积是1的点的轨迹方程是1xy =±D .到x 轴的距离等于1的点的轨迹方程是1y =【例13】 已知以4T =为周期的函数21(11]()12(13]m x x f x x x ⎧-∈-⎪=⎨--∈⎪⎩,,,,其中0m >.若方程3()f x x =恰有5个实数解,则m 的取值范围为( ) A .1583⎫⎪⎪⎝⎭,B .157⎝,C .4833⎛⎫⎪⎝⎭,D .473⎛ ⎝,【例14】 设π02θ<<,曲线22sin cos 1x y θθ+=和22cos sin 1x y θθ-=有四个交点, ⑴求θ的范围;⑵证明:这四个交点共圆,并求该圆半径的取值范围.【例15】 如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心,以(0)t t >为半径的圆分别与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . ⑴求点A 的横坐标a 与点C 的横坐标c 的关系式;⑵设曲线G 上点D 的横坐标为2a +,求证:直线CD 的斜率为定值.a+2a G:y 2=2xDCBAO yx【例16】 设0a >且1a ≠,试求使方程222log ()log ()a a x ak x a -=-有解的k 的取值范围.【例17】 过点(01)P ,且与抛物线22y x =只有一个公共点的直线方程为_______________________.【例18】 若曲线22y x =的一条切线l 与直线480x y +-=垂直,则切线l 的方程为( )A .430x y ++=B .490x y +-=C .430x y -+=D .420x y --=【例19】 如图,P 是抛物线C :212y x =上一点,直线l过点P 且与抛物线C 交于另一点Q .⑴若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程;⑵若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求ST ST SPSQ+的取值范围.OyxSl TMPQ【例20】 已知椭圆22122:1(0)y x C a b a b+=>>的右顶点为(10)A ,,过1C 的焦点且垂直长轴的弦长为1.⑴求椭圆1C 的方程;⑵设点P 在抛物线22:()C y x h h =+∈R 上,2C 在点P 处的切线与1C 交于点M ,N .当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值.【例21】 已知双曲线212xy -=的左、右顶点分别为1A ,2A ,点()11P x y ,,()11Q x y -,是双曲线上不同的两个动点.⑴ 求直线1A P 与2A Q 交点的轨迹E 的方程⑵ 若过点()0,h 的两条直线1l 和2l 与轨迹E 都只有一个交点,且12l l ⊥,求h 的值.【例22】 已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .⑴(ⅰ)若圆O 过椭圆的两个焦点,求椭圆的离心率e ;(ⅱ)若椭圆上存在点P ,使得90APB ∠=︒,求椭圆离心率e 的取值范围.⑵设直线AB 与x 轴、y 轴分别交于点M ,N ,求证:2222a b ON OM+为定值.【例23】 已知圆O :222x y +=交x 轴于,A B 两点,曲线C 是以AB 2的椭圆,其左焦点为F .若P 是圆O 上一点,连结PF ,过原点O 作直线PF 的垂线交直线2x =-于点Q .⑴求椭圆C 的标准方程;⑵若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切.⑶试探究:当点P 在圆O 上运动时(不与,A B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.【例24】 已知定点(10)A -,,(20)F ,,定直线12l x =∶,不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍.设点P 的轨迹为E ,过点F 的直线交E 于B 、C 两点,直线AB 、AC 分别交l 于点M 、N⑴求E 的方程;⑵试判断以线段MN 为直径的圆是否过点F ,并说明理由.【例25】 已知椭圆Γ的方程为22221(0)x y a b a b+=>>,点P 的坐标为()a b -,.⑴ 若直角坐标平面上的点M 、()0A b -,,()0B a ,满足()12PM PA PB =+u u u u r u u u r u u u r,求点M 的坐标;⑵ 设直线11:l y k x p =+交椭圆Γ于C 、D 两点,交直线22:l y k x =于点E .若2122b k k a⋅=-,证明:E 为CD 的中点;⑶ 对于椭圆Γ上的点()cos sin (0π)Q a b θθθ<<, ,如果椭圆Γ上存在不同的两个交点1P 、2P 满足12PP PP PQ +=u u u r u u u r u u u r ,写出求作点1P 、2P 的步骤,并求出使1P 、2P 存在的θ的取值范围.【例26】 已知0p >,动点M 到定点F ,02p ⎛⎫⎪⎝⎭的距离比M 到定直线:l x p =-的距离小2p . ⑴求动点M 的轨迹C 的方程; ⑵设,A B 是轨迹C 上异于原点O 的两个不同点,0OA OB ⋅=u u u r u u u r,求AOB ∆面积的最小值;⑶在轨迹C 上是否存在两点,P Q 关于直线():02p m y k x k ⎛⎫=-≠ ⎪⎝⎭对称?若存在,求出直线m 的方程,若不存在,说明理由.【例27】 设双曲线C :2221(0)x y a a-=>与直线:1l x y +=相交于两个不同的点A 、B .⑴求双曲线C 的离心率e 的取值范围:⑵设直线l 与y 轴的交点为P ,且512PA PB =u u u r u u u r,求a 的值.【例28】 椭圆C 的中心为坐标原点O ,焦点在y 轴上,离心率22e =,椭圆上的点到焦点的最短距离为1e -,直线l 与y 轴交于P 点()0m ,,与椭圆C 交于相异两点A 、B ,且AP PB λ=u u u r u u u r⑴求椭圆方程;⑵若4,OA OB OP m λ+=u u u r u u u r u u u r求的取值范围.【例29】 已知椭圆2222:1(0)x y C a b a b+=>>的短轴长为2,且与抛物线243y x =有共同的焦点,椭圆C 的左顶点为A ,右顶点为B ,点P 是椭圆C 上位于x 轴上方的动点,直线AP ,BP 与直线3y =分别交于,G H 两点.⑴求椭圆C 的方程;⑵求线段GH 的长度的最小值;⑶在线段GH 的长度取得最小值时,椭圆C 上是否存在一点T ,使得TPA △的面积为1,若存在求出点T 的坐标,若不存在,说明理由.【例30】 在平面直角坐标系xOy 中,如图,已知椭圆22195x y +=的左、右顶点为A 、B ,右焦点为F ,设过点()T t m ,的直线TA 、TB 与此椭圆分别交于点()11M x y ,、()22N x y ,,其中0m >,10y >,20y <.⑴ 设动点P 满足224PF PB -=,求点P 的轨迹;⑵ 设12x =,213x =,求点T 的坐标;⑶ 设9t =,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)yxO FB A【例31】 给定抛物线C :24y x =,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.⑴设l 的斜率为1,求OA u u u r与OB u u u r 夹角的余弦值;⑵设FB AF λ=u u u r u u u r,若[49]λ∈,,求l 在y 轴上截距的变化范围.【例32】 设F 是抛物线2:4G x y =的焦点.⑴过点(04)P -,作抛物线G 的切线,求切线方程;⑵设A 、B 为抛物线G 上异于原点的两点,且满足·0FA FB =u u u r u u u r,延长AF BF ,分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值.【例33】 已知椭圆22221(0)x y a b a b+=>>经过点()0,1,过右焦点F 且不与x 轴重合的动直线l 交椭圆于A 、C 两点,当动直线l 的斜率为2时,坐标原点O 到l 的距离为255. ⑴ 求椭圆的方程;⑵ 过F 的另一直线交椭圆于B 、D 两点,且AC BD ⊥,当四边形ABCD 的面积169S =时,求直线l 的方程.。
第三章 圆锥曲线复习讲义(精心整理、好用、经典)
圆锥曲线复习讲义-学生版【基础知识】 一.椭圆与双曲线椭 圆双 曲 线定义 1212||||2(2||)PF PF a a F F +=>1212||||||2(2||)PF PF a a F F -=<方程22221x y a b += 22221x y b a+= 22221x y a b -= 22221y x a b -= 图形焦点 (,0)F c ± (0,)F c ±(,0)F c ± (0,)F c ±焦距 C F F 221=对称轴关于x .y 轴对称,关于原点成中心对称顶点长轴:(-a ,0),(a ,0) 短轴:(0,-b ),(0,b )长轴:(-b ,0),(b ,0) 短轴:(0,-a ),(0,a )实轴:(-a ,0),(a ,0) 虚轴:(0,-b ),(0,b )实轴:(-b ,0),(b ,0)虚轴:(0,-a ),(0,a )轴 长轴长2a ,短轴长2b实轴长2a ,虚轴长2b离心率 22222221(01)c c a b b e e a a a a-====-<< 22222221(1)c c a b be e a a a a+====+>渐进线无xab y ±= x ba y ±= a ,b ,c 2220c b a b a +=>>,2220b a c a c +=>>,M MPK K 1A A 2F F O yx二.抛物线的性质标准方程22(0)y px p => 22(0)y px p =->22(0)x py p => 22(0)x py p =-> 图形焦点坐标 (,0)2p(,0)2p-(0,)2p (0,)2p -准线方程 2p x =-2p x = 2p y =-2p y =范围 0x ≥ 0x ≤0y ≥ 0y ≤离心率1e = 1e = 1e = 1e = 三、弦长公式: ||14)(1||1||2212212212A k x x x x k x x k AB ∆⋅+=-+⋅+=-+= 其中,∆,A 分别是联立直线方程和圆锥曲线方程,消去 y 后所得关于x 的一元二次方程 的判别式和2x 的系数求弦长步骤:(1)求出或设出直线与圆锥曲线方程;(2)联立两方程,消去y,得关于x 的一元二次方程,02=++C Bx Ax 设),(11y x A ,),(22y x B ,由韦达定理求出AB x x -=+21,ACx x =21;(3)代入弦长公式计算。
圆锥曲线的综合问题讲义解析
圆锥曲线的综合问题讲义解析【课前双基巩固】 知识聚焦1.(1)没有 一个 两个(2)对称轴 渐近线 Δ>0 Δ=0 Δ<0 2.|y 1-y 2| 对点演练1.√2303[解析] 设A (x 1,y 1),B (x 2,y 2),由{2x -y +1=0,x 24+y 28=1消去y ,化简可得6x 2+4x-7=0,所以x 1+x 2=-23,x 1x 2=-76,所以|AB|=√1+k 2·√(x1+x 2)2-4x 1x 2=√1+22×√(-23)2-4×(-76)=√2303.2.54 [解析] 设A (x 1,y 1),B (x 2,y 2),则x 122-y 12=1,x 222-y 22=1,两式相减,得x 12-x 222=y 12-y 22,即k=y 2-y 1x 2-x 1=x 2+x 12(y 2+y 1),又线段AB 的中点恰好为点P (5,2),所以k=54.3.√3x-y-√3=0 [解析] 抛物线C :y 2=4x 的焦点为F (1,0),设直线l 的方程为y=k (x-1),与抛物线方程联立,得k 2x 2-(2k 2+4)x+k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2,所以|AB|=x 1+x 2+2=2k 2+4k 2+2=163,解得k 2=3,又直线l 的倾斜角为锐角,所以k=√3,所以直线l 的方程为y=√3(x-1),即√3x-y-√3=0.4.(1+√2,+∞) [解析] 由题设条件可知△ABF 2为等腰三角形,只要∠AF 2B 为钝角即可,所以有b 2a>2c ,即b 2>2ac ,所以c 2-a 2>2ac ,即e 2-2e-1>0,所以e>1+√2.5.1或-1 [解析] 由{x 2-y 2=1,y =k(x -√2),得(1-k 2)x 2+2√2k 2x-2k 2-1=0.当1-k 2=0,即k=±1时,方程只有一根,所以直线与双曲线仅有一个公共点;当1-k 2≠0,即k ≠±1时,要满足题意只需Δ=(2√2k 2)2-4(1-k 2)(-2k 2-1)=0,此时无解.所以若直线l :y=k (x-√2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为1或-1.6.[2-2 √2,2+2 √2] [解析] 由椭圆方程得y 2=1-x 22,所以x 2+y 2+2x=12x 2+2x+1=12(x+2)2-1.由x 22+y 2=1,得|x|≤√2,所以当x=√2时,x 2+y 2+2x 有最大值2+2 √2;当x=-√2时,x 2+y 2+2x 有最小值2-2 √2.所以x 2+y 2+2x ∈[2-2 √2,2+2 √2].第1课时 直线与圆锥曲线的位置关系【课堂考点探究】例1 [思路点拨] (1)由4a=8,得a=2,再由2×12×2c×b=2√3,b 2+c 2=4,e<√22,可求得b=√3,c=1,即可得椭圆的方程.(2)分类讨论:当y 0=0时,可求得x 0=±2,即可求得直线与曲线的交点; 当y 0≠0时,直线l 的方程可化为y=12−3x 0x 4y 0,代入椭圆方程,再由点P (x 0,y 0)为曲线C 上一点,解得x=x 0,代入直线方程,得y=y 0,故直线l 与曲线C 有且只有一个交点P.解:(1)依题意,设椭圆C 的方程为x 2a +y 2b =1(a>b>0),焦距为2c , 由题设条件知4a=8,得a=2,又2×12×2c×b=2√3,b 2+c 2=a 2=4,所以b=√3,c=1或b=1,c=√3(经检验不合题意舍去),故椭圆C 的方程为x 24+y 23=1.(2)证明:当y 0=0时,由x 024+y 023=1,可得x 0=±2,当x 0=2,y 0=0时,直线l 的方程为x=2,直线l 与曲线C 有且只有一个交点(2,0). 当x 0=-2,y 0=0时,直线l 的方程为x=-2,直线l 与曲线C 有且只有一个交点 (-2,0). 当y 0≠0时,直线l 的方程为y=12−3x 0x 4y 0,联立{y =12−3x 0x4y 0,x 24+y 23=1,消去y ,得(4y 02+3x 02)x 2-24x 0x+48-16y 02=0.①由点P (x 0,y 0)为曲线C 上一点,得x 024+y 023=1,可得4y 02+3x 02=12.于是方程①可以化简为x 2-2x 0x+x 02=0,解得x=x 0,将x=x 0代入方程y=12−3x 0x 4y 0,可得y=y 0,故直线l 与曲线C 有且只有一个交点P (x 0,y 0).综上,直线l 与曲线C 有且只有一个交点,且交点为P (x 0,y 0).变式题 C [解析] 设|F 1F 2|=2c (c>0),△PF 1F 2的内切圆分别与PF 1,F 1F 2,PF 2切于点G ,H ,I ,则|PG |=|PI |,|F 1G|=|F 1H|,|F 2H|=|F 2I|.由双曲线的定义知2a=|PF 1|-|PF 2|=|F 1G|-|F 2I|=|F 1H|-|F 2H|,又|F 1H|+|F 2H|=|F 1F 2|=2c ,故|F 1H|=c+a ,|F 2H|=c-a ,所以H (a ,0),即a=2.若直线l 与双曲线的右支交于A ,B 两点,则当l ⊥x 轴时,|AB|有最小值为2b 2a=b 2(通径长);若直线l 与双曲线的两支分别交于A ,B 两点,则当l ⊥y 轴时,|AB|有最小值为2a.于是,由题意得b 2>2a=4,即b>2,c=√a 2+b 2>2√2,所以双曲线的离心率e=ca >√2.故选C. 例2 [思路点拨] (1)根据题意列出方程组求得a ,b ,c 的值,即可求得椭圆的标准方程;(2)设出直线l 的方程,联立直线与椭圆的方程,同时利用弦长公式求四边形OACB 的面积S ,设OC⃗⃗⃗⃗⃗ =λOM ⃗⃗⃗⃗⃗⃗ (λ>0),结合点到直线的距离公式得到关于λ的方程,解方程即可求得最终结果,注意直线斜率不存在的情况.解:(1)由题意得{ ca =√22,√1+3=c,a 2=b 2+c 2,解得{a =√2,b =1,c =1,故椭圆K 的方程为x 22+y 2=1. (2)由(1)知F 2(1,0),由于直线AB 的倾斜角不能为零,所以设直线AB 的方程为my=x-1, 与x 22+y 2=1联立,可得(m 2+2)y 2+2my-1=0.设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2m m 2+2,可得y 0=-m m 2+2,x 0=my 0+1=2m 2+2.设C (x ,y ),OC ⃗⃗⃗⃗⃗ =λOM⃗⃗⃗⃗⃗⃗ (λ>0),所以x=λx 0,y=λy 0. 因为C 在K 上,故λ2x 022+y 02=1,得m 2+2=λ2.① 设h 1为点O 到直线AB 的距离,h 2为点C 到直线AB 的距离,则h1h 2=|OM⃗⃗⃗⃗⃗⃗⃗ ||MC ⃗⃗⃗⃗⃗⃗ |=1λ-1,得h 2=(λ-1)h 1.又由点到直线的距离公式得h 1=√1+m 2=√λ2-1,而|AB |=√1+m 2·√(y 1+y 2)2-4y 1y 2=2√2(1+m 2)m 2+2=2√2(λ2-1)λ2, 所以S=12|AB |(h 1+h 2)=√2(λ2-1)λ2·√λ2-1=√2√λ2-1λ. 由题意知,S=2√3=√3,所以√2√λ2-1λ=√3,得λ=√3.将λ=√3代入①式,得m=±1,所以直线l 的斜率为±1.变式题 解:(1)根据题意可设抛物线C 的标准方程为x 2=2py (p>0).∵|P 1P 2|=4,∴2p=4,∴p=2, ∴抛物线C 的标准方程为x 2=4y. (2)由(1)可知,F (0,1),∴l :y=kx+1, 设M (x 1,y 1),N (x 2,y 2),联立{x 2=4y,y =kx +1,消去y ,得x 2-4kx-4=0,∴x 1+x 2=4k ,∴y 1+y 2=k (x 1+x 2)+2=4k 2+2, ∴|MN|=y 1+y 2+p=4k 2+4.又∵点Q (0,3)到直线l 的距离为d=√1+k 2,∴|AB|=2√8−d 2=4√2k 2+12, ∴√1+k 2|AB|=2√2k 2+1,令√2k 2+1=t (t ∈(1,√3]),则k 2=12(t 2-1),∴√1+k 2|AB|=t 2+12t=12t+1t , 又∵t+1t ∈2,4√33,∴|MN|√1+k 2|AB|的取值范围为1,2√33.例3 [思路点拨] 思路一,首先设出直线方程,代入椭圆方程化为关于x 的一元二次方程,然后结合韦达定理可求得直线的斜率,进而求得直线l 的方程;思路二,利用“点差法”求解. x+2y-4=0 [解析] 方法一:易知直线l 的斜率存在.由题意可设l 的方程为y-1=k (x-2),即y=kx-2k+1.联立{y =kx -2k +1,x 216+y 24=1,整理得(1+4k 2)x 2-8(2k 2-k )x+16k 2-16k-12=0(*).设直线l 与椭圆的交点分别为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8(2k 2-k)1+4k 2.因为AB 的中点为M (2,1), 所以8(2k 2-k)1+4k 2=4,解得k=-12.所以所求l 的方程为y-1=-12(x-2),即x+2y-4=0.方法二: 设直线l 与椭圆的交点分别为A (x 1,y 1),B (x 2,y 2),易知x 1≠x 2,则由{x 1216+y 124=1,x 2216+y 224=1,得(x 1-x 2)(x 1+x 2)16+(y 1-y 2)(y 1+y 2)4=0,即(x 1+x 2)+4(y 1+y 2)·y 1-y 2x 1-x 2=0(*).又x 1+x 2=4,y 1+y 2=2,代入(*),得4+4×2×y 1-y 2x 1-x 2=0,所以y 1-y2x 1-x 2=-12,故直线l 的方程为x+2y-4=0.例4 [思路点拨] 首先利用“点差法”求出直线方程,然后联立直线方程与抛物线方程求得交点坐标,进而可求得△ABF 的面积.2 [解析] 易知F (1,0),点M (2,2)是抛物线内的点,设A (x 1,y 1),B (x 2,y 2),易知x 1≠x 2,则{y 12=4x 1,y 22=4x 2,两式相减可得y 12-y 22=4(x 1-x 2),化简得到(y 1+y 2)×y 1-y 2x 1-x 2=4,解得k=y 1-y2x 1-x 2=1,所以直线AB 的方程是y-2=x-2,即y=x ,与y 2=4x 联立,可得{x 1=0,y 1=0,{x 2=4,y 2=4,所以S △ABF =12×1×4=2.例5 [思路点拨] 首先根据条件得出直线PQ 的垂直平分线方程,并代入双曲线方程得到关于x 的一元二次方程,结合韦达定理求得中点M 的坐标,然后利用中点在抛物线上,也在直线y=x+b 上可求得b 的值.A [解析] 因为点P ,Q 关于直线y=x+b 对称,所以PQ 的垂直平分线为y=x+b ,所以直线PQ 的斜率为-1.设直线PQ 的方程为y=-x+m ,由{y =−x +m,x 22-y 23=1,得x 2+4mx-2m 2-6=0,所以x P +x Q =-4m ,所以x M =-2m ,所以M (-2m ,3m ).因为PQ 的中点M 在抛物线y 2=9x 上,所以9m 2=9×(-2m ),解得m=0或m=-2,又PQ 的中点M 也在直线y=x+b 上,所以b=5m ,所以b=0或-10,故选A. 强化演练1.6 [解析] 由抛物线y 2=4x 得p=2,设A (x 1,y 1),B (x 2,y 2),因为线段AB 的中点M 的横坐标为2,所以x 1+x 2=2×2=4,因为直线AB 过焦点,所以|AB |=x 1+x 2+p=4+2=6.2.2x+2y-3=0 [解析] 设A (x 1,y 1),B (x 2,y 2),代入椭圆方程有x 122+y 12=1,x 222+y 22=1,两式相减得(x 2-x 1)(x 2+x 1)2=-(y 2+y 1)(y 2-y 1),即(x 2-x 1)×22=-(y 2-y 1),所以k AB =y 2-y 1x 2-x 1=-1,所以直线l 的方程为y-12=-(x-1),即2x+2y-3=0.3.B [解析] 设M (x 1,y 1),N (x 2,y 2),双曲线方程为x 2a2-y 2b 2=1(a>0,b>0),将y=x-1代入双曲线方程,整理得(b 2-a 2)x 2+2a 2x-a 2-a 2b 2=0,得x 1+x 2=2a 2a -b ,则x 1+x 22=a 2a -b =-23.又c 2=a 2+b 2=7,所以a 2=2,b 2=5,所以双曲线的方程是x 22-y 25=1,故选B.4.x 28+y 24=1 [解析] 抛物线y 2=8x 的焦点为(2,0),∴c=2,设椭圆方程为x 2a2+y 2b2=1(a>0,b>0),A (x 1,y 1),B (x 2,y 2),代入椭圆方程后两式相减,得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,由中点M (1,1)及斜率为-12可得a 2b=2.∵a 2-b 2=c 2=4,∴a 2=8,b 2=4,∴椭圆C 的方程为x 28+y 24=1.5.(-2√1313,2√1313) [解析] 设A (x 1,y 1),B (x 2,y 2)是椭圆上关于直线y=4x+m 对称的相异的两点,AB的中点为M (x 0,y 0),则x 124+y 123=1,x 224+y 223=1,由“点差法”得y 0=3x 0,代入y 0=4x 0+m ,解得M 点坐标为(-m ,-3m ).而M 是AB 的中点,∴M 点在椭圆内部,∴m 24+9m 23<1,解得-2√1313<m<2√1313. 第2课时 最值﹑范围﹑证明问题【课堂考点探究】例1 [思路点拨] (1)由顶点坐标及椭圆的离心率,即可求得a 和c 的值,进而可求得椭圆方程; (2)分类讨论,当斜率为0时,即可求得m 的值,设直线l 的方程,代入椭圆方程,利用根与系数的关系及弦长公式即可求得m 的表达式,利用导数求得函数的单调性及最值,即可求得m 的最大值.解:(1)因为椭圆C :x 2a2+y 2b 2=1(a>b>0)的顶点坐标为(±√6,0),且离心率为√306, 所以a=√6,且√a 2-b 2a =√306,解得b=1.故椭圆C 的方程为x 26+y 2=1.(2)因为|MN |=4√33>2,所以直线MN 的斜率存在.又因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为y=kx+m , 代入椭圆方程x 26+y 2=1,得(1+6k 2)x 2+12kmx+6(m 2-1)=0,因为Δ=(12km )2-24(1+6k 2)(m 2-1)=24(1+6k 2-m 2)>0,所以m 2<1+6k 2.设M (x 1,y 1),N (x 2,y 2),由根与系数的关系得x 1+x 2=-12km1+6k 2,x 1x 2=6(m 2-1)1+6k 2,则|MN |=√1+k 2|x 1-x 2|=√1+k 2√(x 1+x 2)2-4x 1x 2=√1+k 2√(-12km 1+6k 2)2-24(m 2-1)1+6k 2.因为|MN |=4√33, 所以√1+k 2√(-12km 1+6k 2)2-24(m 2-1)1+6k 2=4√33, 整理得m 2=-18k 4+39k 2+79(1+k 2).令k 2+1=t ≥1,则k 2=t-1, 所以m 2=-18t 2+75t -509t=1975-18t+50t≤75−2×309=53,等号成立的条件是t=53,此时k 2=23,m 2=53,满足m 2<1+6k 2,符合题意.故m 的最大值为√153. 变式题 解:(1)曲线C 上的点满足|PF 1|+|PF 2|=2√2>|F 1F 2|=2,∴曲线C 是以F 1,F 2为焦点的椭圆,且a=√2,c=1,b=1,∴曲线C 的方程是x 22+y 2=1.(2)∵F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ =λF 2N ⃗⃗⃗⃗⃗⃗⃗ =μa ,∴M ,N ,F 2三点共线,且直线MN 的斜率为√3,∴直线MN 的方程为y=√3(x-1), 与椭圆方程联立得7x 2-12x+4=0,设M (x 1,y 1),N (x 2,y 2),∴|MN |=2√(x 1+x 2)2-4x 1x 2 =8√27. 设P (√2cos θ,sin θ),∴P 到直线MN 的距离d=|√6cosθ-sinθ-√3|2=|√7sin(θ-φ)+√3|2,∴d max =√7+√32, ∴S △MNP 的最大值为12|MN|·d max =2√14+2√67. 例2 [思路点拨] (1)首先根据抛物线的准线方程可求得a 的值,然后根据椭圆的离心率结合a 2=b 2+c 2可求得b 的值,由此求得椭圆C 1和抛物线C 2的方程;(2)由题意知直线的斜率一定存在,由此设直线l :y=kx+2,代入椭圆的方程,消去y 得到关于x 的一元二次方程,然后利用判别式大于零及根与系数的关系,利用“O 在以线段PQ 为直径的圆的外部”等价于“OP ⃗⃗⃗⃗⃗ ·OQ ⃗⃗⃗⃗⃗ >0”建立不等式,求得k 的取值范围.解:(1)由题意得a 4=12,∴a=2,故抛物线C 2的方程为x 2=-2y.又e=c a =√32,∴c=√3,∴b=1,从而椭圆C 1的方程为x 24+y 2=1.(2)显然直线x=0不满足题设条件,故可设直线l :y=kx+2,P (x 1,y 1),Q (x 2,y 2). 由{x 24+y 2=1,y =kx +2,得(1+4k 2)x 2+16kx+12=0. ∵Δ=(16k )2-4×12(1+4k 2)>0,∴k∈-∞,-√32∪√32,+∞,x 1+x 2=-16k1+4k 2,x 1x 2=121+4k 2,根据题意,得0°<∠POQ<90°,即OP ⃗⃗⃗⃗⃗ ·OQ ⃗⃗⃗⃗⃗ >0,∴OP ⃗⃗⃗⃗⃗ ·OQ ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+2k (x 1+x 2)+4=12(1+k 2)1+4k 2+2k×-16k 1+4k 2+4=16−4k 21+4k 2>0,解得-2<k<2.综上得k ∈-2,-√32∪√32,2.变式题 解:(1) 由题知F p2,0,|FA |=3+2√2+p 2,|FD|=√2|FA|=3√2+4+√22p ,则D 3√2+4+√22p+p2,0,FD 的中点坐标为3√22+2+(2+√2)p4,0,则3√22+2+(2+√2)p4=3+2√2,解得p=2,故C 的方程为y 2=4x.(2)证明:依题可设直线AB 的方程为x=my+x 0(m ≠0),A (x 1,y 1),B (x 2,y 2),则E (x 2,-y 2).由{y 2=4x,x =my +x 0消去x ,得y 2-4my-4x 0=0,因为x 0≥12,所以Δ=16m 2+16x 0>0, y 1+y 2=4m ,y 1y 2=-4x 0.设P 的坐标为(x P ,0),则PE ⃗⃗⃗⃗ =(x 2-x P ,-y 2),PA ⃗⃗⃗⃗⃗ =(x 1-x P ,y 1). 由题知PE ⃗⃗⃗⃗ ∥PA⃗⃗⃗⃗⃗ ,所以(x 2-x P )y 1+y 2(x 1-x P )=0, 即x 2y 1+y 2x 1=y 22y 1+y 12y 24=y 1y 2(y 1+y 2)4=(y 1+y 2)x P ,显然y 1+y 2=4m ≠0,所以x P =y 1y 24=-x 0,即证得点P 的坐标为(-x 0,0).由题知△EPB 为等腰直角三角形,所以k AP =1,即y 1+y2x 1-x 2=1,即y 1+y 214(y 12-y 22)=1,所以y 1-y 2=4,所以(y 1+y 2)2-4y 1y 2=16,即16m 2+16x 0=16,则m 2=1-x 0,x 0<1. 又因为x 0≥12,所以12≤x 0<1.d=002=2=2−x ,令√2−x 0=t ∈1,√62,则x 0=2-t 2,d=2(2−t 2)t=4t-2t ,易知f (t )=4t-2t 在1,√62上是减函数,所以d∈√63,2.例3 [思路点拨] (1)设经过焦点的直线AB 的方程为y=k x-p2(k ≠0),联立直线的方程和抛物线的方程,利用韦达定理以及斜率之积等于-p 求出p 的值,由此求得抛物线方程;(2)利用(1)求得M 点的坐标,利用直线OM 的方程求出D 点的坐标,两者横坐标的比值大于2,得证.解:(1)设A (x 1,y 1),B (x 2,y 2),直线AB (不垂直于x 轴)的方程可设为y=k x-p2(k ≠0). ∵直线AB 过点F 且与抛物线C 交于A ,B 两点,∴y 12=2px 1,y 22=2px 2.∵直线OA 与OB 的斜率之积为-p ,∴y 1y 2x 1x 2=-p ,∴(y 1y 2x 1x 2)2=p 2,得x 1x 2=4.由{y =k (x -p2),y 2=2px,得k 2x 2-(k 2p+2p )x+k 2p 24=0,其中Δ=(k 2p+2p )2-k 2p 2k 2>0,∴x 1+x 2=k 2p+2p k 2,x 1x 2=p 24,∴p=4,∴抛物线C 的方程为y 2=8x.(2)证明:设M (x 0,y 0),D (x 3,y 3),∵M 为线段AB 的中点, ∴x 0=12(x 1+x 2)=k 2p+2p 2k 2=2(k 2+2)k 2,y 0=k (x 0-2)=4k,∴直线OD 的斜率k OD =y 0x 0=2kk 2+2,∴直线OD 的方程为y=2kk 2+2x ,代入抛物线方程y 2=8x ,得x 3=2(k 2+2)2k 2,∴x3x 0=k 2+2,∵k 2>0,∴|OD||OM|=x3x 0=k 2+2>2.变式题 解:(1)依题意得c a =√22,3a 2+12b 2=1,a 2=b 2+c 2,解得a 2=4,b 2=2,故椭圆C 的方程为x 24+y 22=1.(2)证明:由椭圆的对称性,不妨假设存在k>0,使得|BP||BQ|=12. 由题意得a 2=2b 2,则椭圆C :x 22b 2+y 2b 2=1,联立直线l 与椭圆C 的方程可得(1+2k 2)x 2+4kbx=0,解得x P =-4kb 1+2k 2,所以|BP |=√1+k 2×4kb1+2k 2,因为BP ⊥BQ ,所以|BQ |=√1+(-1k)2×4(-1k)b1+2(-1k)2=√1+k 2×4bk 2+2,因为|BP||BQ|=12,所以2√1+k 2×4kb 1+2k 2 =√1+k 2×4bk 2+2,即2k 3-2k 2+4k-1=0.记f (x )=2x 3-2x 2+4x-1,因为f (14)<0,f (12)>0,所以函数f (x )存在零点,所以存在k ∈R ,使得|BP||BQ|=12.第3课时 定点﹑定值﹑探索性问题【课堂考点探究】例1 [思路点拨] (1)设C (x ,y )(y ≠0),由题意与两点间的距离公式可得结论;(2)设直线MN 的方程为x=my+n ,M (x 1,y 1),N (x 2,y 2),联立直线与抛物线的方程结合韦达定理可得y 1y 2的表达式,结合条件中的斜率关系可得到y 1y 2的值,进而建立一个等式,可求得结果.解:(1)设C (x ,y )(y ≠0),因为B 在x 轴上且BC 的中点在y 轴上,所以B (-x ,0),由|AB |=|AC |,得(x+1)2=(x-1)2+y 2,化简得y 2=4x ,所以点C 的轨迹Γ的方程为y 2=4x (y ≠0).(2)证明:设直线MN 的方程为x=my+n ,M (x 1,y 1),N (x 2,y 2), 由{y 2=4x,x =my +n,得y 2-4my-4n=0,所以y 1y 2=-4n. k MP =y 1-2x 1-1=y 1-2y 124-1=4y1+2,同理k NP =4y 2+2,所以4y1+2+4y2+2=2,化简得y 1y 2=4,又因为y 1y 2=-4n ,所以n=-1, 所以直线MN 过定点(-1,0).变式题 解:(1)如图,因为☉C 1内切☉C 2于点A ,所以r-1=2,解得r=3,所以☉C 2的方程为(x-1)2+y 2=9.因为直线PQ ,PR 分别切☉C 1,☉C 2于Q ,R ,所以C 1Q ⊥PQ ,C 2R ⊥PR ,连接PM ,在Rt △PQM 与Rt △PRM 中,|PQ |=|PA |=|PR |,|PM |=|PM |,所以|QM |=|RM |,所以|MC 1|+|MC 2|=|MQ |+|C 1Q|+|MC 2|=|MR |+|C 1Q|+|C 2M|=|C 1Q|+|C 2R|=4>2=|C 1C 2|, 所以点M 的轨迹C 是以C 1,C 2为焦点,长轴长为4的椭圆(除去长轴端点), 所以M 的轨迹C 的方程为x 24+y 23=1(y ≠0).(2)证明:依题意,设直线MN 的方程为x=ty-1(t ≠0),M (x 1,y 1),N (x 2,y 2), 则M'(x 1,-y 1)且x 1≠x 2,y 1+y 2≠0, 联立{x =ty -1,x 24+y 23=1,消去x ,并整理得(3t 2+4)y 2-6ty-9=0, Δ=(-6t )2-4×(-9)(3t 2+4)=144t 2+144>0,则y 1+y 2=6t 3t 2+4,y 1y 2=-93t 2+4,直线M'N 的方程为y+y 1=y 2+y 1x 2-x 1(x-x 1),令y=0,得x=y 1(x 2-x 1)y 2+y 1+x 1=y 1x 2+x 1y 2y 2+y 1=y 1(ty 2-1)+y 2(ty 1-1)y 2+y 1=2ty 1y 2y 2+y 1-1=-18t 3t 2+46t 3t 2+4-1=-4,故直线M'N 过定点(-4,0).例2 [思路点拨] (1)由题意求得a 2,c 2,再由b 2=a 2-c 2求得b 2,从而可得椭圆的标准方程;(2)证明:设C (x 3,y 3),D (x 4,y 4),可求得直线AR 的方程,与椭圆方程联立,由韦达定理可求得y 1y 3=-4y 125−x 1,进一步可求C 的坐标,同理得D 的坐标,从而可得k 2与k 1的关系式,化简运算即可.解:(1)由题意得{c a =23,a -c =1,解得{a =3,c =2,∴b 2=a 2-c 2=5,故椭圆E 的标准方程为x 29+y 25=1.(2)证明:设C (x 3,y 3),D (x 4,y 4), 由已知得,直线AR 的方程为y=y 1x 1-1(x-1),即x=x 1-1y 1y+1.联立{x =x 1-1y 1y +1,x 29+y 25=1,消去x 并整理,得5−x 1y 12y 2+x 1-1y 1y-4=0,则y 1y 3=-4y 125−x 1,∵y 1≠0,∴y 3=4y1x 1-5, ∴x 3=x 1-1y 1y 3+1=x 1-1y 1·4y 1x 1-5+1=5x 1-9x 1-5, ∴C5x 1-9x 1-5,4y 1x 1-5.同理D5x 2-9x 2-5,4y 2x 2-5, ∴k 2=4y 1x 1-5-4y 2x 2-55x 1-9x 1-5-5x 2-9x 2-5=4y 1(x 2-5)-4y 2(x 1-5)(5x1-9)(x 2-5)-(5x 2-9)(x 1-5)=4y 1(x 2-5)-4y 2(x 1-5)16(x 2-x 1),∵y 1=k 1(x 1+2),y 2=k 1(x 2+2), ∴k 2=4k 1(x 1+2)(x 2-5)-4k 1(x 2+2)(x 1-5)16(x 2-x 1)=7k 1(x 2-x 1)4(x 2-x 1)=7k 14,∴k1k 2=47为定值.变式题 解:(1)设点P 的坐标为(x ,y ),因为定点F12,0在定直线l : x=-2的右侧,且动点P 到定直线l : x=-2的距离比到定点F 12,0的距离大32,所以x>-2且√(x -12)2+y 2=|x+2|-32,化简得√(x -12)2+y 2=x+12,即y 2=2x ,所以轨迹C 的方程为y 2=2x.(2)证明:设A (2t 12,2t 1),B (2t 22,2t 2)(t 1·t 2≠0),则DA ⃗⃗⃗⃗⃗ =(2t 12-2,2t 1),DB ⃗⃗⃗⃗⃗ =(2t 22-2,2t 2),因为A ,D ,B 三点共线,所以2t 2(2t 12-2)=2t 1(2t 22-2),所以(t 1-t 2)(t 1t 2+1)=0,又t 1≠t 2,所以t 1t 2=-1.直线OA 的方程为y=1t 1x ,令x=-2,得M -2,-2t 1.同理可得N -2,-2t 2,所以以线段MN 为直径的圆的方程为(x+2)(x+2)+y+2t1y+2t2=0,即(x+2)2+y 2+2t 1+t 2t 1t 2y+4t 1t 2=0.将t 1t 2=-1代入上式,可得(x+2)2+y 2-2(t 1+t 2)y-4=0, 令y=0,得x=0或x=-4,故以线段MN 为直径的圆被x 轴截得的弦长为定值4.例3 [思路点拨] (1)设M 点坐标为(x ,y ),直接找出关于x ,y 的方程,这就是曲线C 的轨迹方程;(2)设P (m ,0),由∠APF=∠BPF 可知直线BP 与AP 的倾斜角互补,即k BP +k AP =0,得到关于m 的方程,求出m 的值即可.解:(1)设M (x ,y ),则依题意有√(x -1)2+y 2|x -4|=12,整理得x 24+y 23=1,即为曲线C 的方程. (2)存在.设直线AB 的方程为x=ty+1(t ≠0),A (ty 1+1,y 1),B (ty 2+1,y 2),P (m ,0), 则由{x =ty +1,3x 2+4y 2=12,消去x ,得3(ty+1)2+4y 2=12,即(3t 2+4)y 2+6ty-9=0, 则y 1+y 2=-6t3t 2+4,y 1y 2=-93t 2+4, 由∠APF=∠BPF ,得k AP +k BP =0,即y 1ty 1+1−m +y 2ty 2+1−m=0,整理得2ty 1y 2+(1-m )(y 1+y 2)=0, 所以2t ·-93t 2+4+(1-m )·-6t3t 2+4=0,解得m=4.综上知,在x 轴上存在点P (4,0)满足题意.变式题 解:(1)依题意可知,△PF 1F 2的周长为|PF 1|+|PF 2|+|F 1F 2|,由于|F 1F 2|=2,故|PF 1|+|PF 2|=4,由于|PF 1|+|PF 2|>|F 1F 2|,故点P 的轨迹C 1是以F 1,F 2为焦点的椭圆的一部分,且a=2,c=1,故b=√3,故C 1的方程为x 24+y 23=1(x ≠±2),C 2的方程为y 2=4x.(2)假设存在.设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),设直线AB 的方程为x=my+1, 由{x =my +1,y 2=4x,得y 2-4my-4=0,故y 1+y 2=4m ,y 1y 2=-4, 又k MA +k MB =y 0-y 1x 0-x 1+y 0-y 2x 0-x 2=2k MF 2=2y0x 0-1, 所以(y 0-y 1)(x 0-my 2-1)+(y 0-y 2)(x 0-my 1-1)(x 0-my 1-1)(x 0-my 2-1)=2y 0x 0-1,即-(y 1+y 2)(x 0-1)2+my 0(y 1+y 2)(x 0-1)+2my 1y 2(x 0-1)=2m 2y 0y 1y 2, 即m (x 0+1)(x 0-my 0-1)=0,因为直线AB 不经过点M ,所以x 0-my 0-1≠0,故m=0或x 0+1=0. 当m=0时,C 1上除点1,±32外,均符合题意; 当m ≠0时,M 为-1,32和-1,-32都符合题意.。
(浙江专用)高考数学第八章平面解析几何第九节圆锥曲线的综合问题教案(含解析)
第九节圆锥曲线的综合问题1.直线与圆锥曲线的地址关系判断直线l 与圆锥曲线C 的地址关系时,平时将直线l 的方程Ax +By +C =0(A ,B 不一样 时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )获取一个关于变量x (或 变量y )的一元方程.即Ax +By +C =0,消去 y ,得 ax 2+bx +c =0.F x ,y=0(1)当a ≠0时,设一元二次方程 ax 2+bx +c =0的鉴识式为 ,则 >0? 直线与圆锥曲线C 订交;= 0?直线与圆锥曲线C 相切;<0?直线与圆锥曲线C 相离.(2) 当a =0,b ≠0时,即获取一个一次方程,则直线l 与圆锥曲线C 订交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的地址关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的地址关系是平行或重合. 2.弦长公式 设斜率为k (k ≠0)的直线l 与圆锥曲线C 订交于A ,B 两点,A (x ,y ),B (x ,y ),则112 2|AB |=1+k 2|x 1-x 2| =1+k 2·x 1+x 2 2-4x 1x 2=1121+k 2·|y -y |=1 y 1+ y2-412.1+2· 2kyy[小题体验]x 2 y 21.(教材习题改编)直线y =kx -k +1与椭圆9+4=1的地址关系为( )A .订交B .相切C .相离D .不确立分析:选A 直线y =kx -k +1=k (x -1)+1恒过定点(1,1) ,又点(1,1) 在椭圆内部,故直线与椭圆订交.2.极点在座标原点,焦点在 x 轴上的抛物线截得直线 =2 x +1所得的弦 的长为 15,y AB则该抛物线的标准方程为 ____________.分析:设抛物线的方程为y 2=( ≠0),( 1, 1),( 2, 2).mxm Ax y Bxyy 2=mx ,可得4 2+(4-)+1=0.由方程组y =2x +1x mx4-m1所以x 1+x 2=- 4 ,x 1x 2= 4.所以|AB |= 2 x +x2]+22-4xx1 1 2= 51-m 2-1=15,4解得m =12或m =-4.所以抛物线的标准方程为y 2=12x 或y 2=-4x . 答案:y 2=12x 或y 2=-4x1.直线与双曲线交于一点时,易误以为直线与双曲线相切,事实上不必定相切,当直 线与双曲线的渐近线平行时,直线与双曲线订交于一点.2.直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相 交于一点.[小题纠偏]1.过点(0,1) 作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有()A .1条B .2条C .3条D .4条分析:选C结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线 x =0).2.直线b y =ax +3与双曲线x 2y 2a 2-b 2=1的交点个数是()A .1B .2C .1或2D .0分析:选 A因为直线by =ax +3与双曲线的渐近线by =ax 平行,所以它与双曲线只有1个交点.考点向来线与圆锥曲线的地址关系要点保分型考点——师生共研[典例引领]在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1) 求轨迹C 的方程;(2) 设斜率为k 的直线l 过定点P (-2,1),若直线l 与轨迹C 恰好有一个公共点,务实数k 的取值范围.解:(1)设点M (x ,y ),依题意|MF |=|x |+1, ∴x -2+y 2=|x |+1,化简得y 2=2(|x |+x ),故轨迹C 的方程为y 2=4x ,x ≥0, 0,x <0.(2) 在点M 的轨迹C 中,记C 1:y 2=4x (x ≥0),C 2:y =0(x <0).依题意,可设直线l 的方程为y -1=k (x +2).y -1=kx + , 消去x , 联立y 2=4x 可得ky 2-4y +4(2k +1)=0.①1当k =0 时,此时y =1.把y =1代入轨迹C 的方程,得x =4.故此时直线l :y =1与轨迹C 恰好有一个公共点 1.,14当k ≠0时,方程①的=-16(2k 2+k -1)=-16(2k -1)(k +1),②设直线l与x 轴的交点为(x 0,0),则由 y -1= ( x +2),令 y =0,得=- 2k +1kxk<0,1(ⅰ)若x 0<0,由②③解得k <-1或k >2.所以当 k <-1或 k >1时,直线 l 与曲线1 没有公共点,与曲线 2有一个公共点,故此2 CC时直线l与轨迹C 恰好有一个公共点.=0,2k 2+k -1=0,(ⅱ)若即 2k +1解集为?.x ≥0,<0,k1 综上可知,当k <-1或k >或k =0时,直线l 与轨迹C 恰好有一个公共点.21故实数k 的取值范围为(-∞,-1)∪{0}∪2,+∞.[由题悟法]1.直线与圆锥曲线地址关系的判断方法(1)代数法:即联立直线与圆锥曲线方程可获取一个关于x,y的方程组,消去y(或x)得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标.(2)几何法:即画出直线与圆锥曲线的图象,依据图象判断公共点个数.2.判断直线与圆锥曲线地址关系的注意点(1)联立直线与圆锥曲线的方程消元后,应注意谈论二次项系数能否为零的状况.(2)判断直线与圆锥曲线地址关系时,鉴识式起着要点性的作用,第一:可以限制所给参数的范围;第二:可以弃取某些解省得产生增根.[即时应用]1.直线y=kx+2 与抛物线y2=8x有且只有一个公共点,则k的值为( )A.1 B.1或3C.0 D.1或0分析:选Dy=kx+2,得k2x2+(4k-8)x+4=0,由2=8,y x若k=0,则y=2,吻合题意.若k≠0,则=0,即64-64k=0,解得k=1,所以直线y=kx+2与抛物线y2=8x有且只有一个公共点时,k=0或1.x2 y22.已知双曲线a2-b2=1与直线y=2x有交点,则双曲线离心率的取值范围为( ) A.(1,5) B.(1,5]C.(5,+∞)D.[ 5,+∞)b分析:选C 因为双曲线的一条渐近线方程为y=a x,b c b2则由题意得a>2,所以e=a=1+a >1+4=5.考点二弦长问题要点保分型考点——师生共研[典例引领]x2y2(2018·浙江六校联考)如图,椭圆C1:a2+b2=1(a>b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三均分,且圆C2的面积为π.椭圆C1的下极点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2订交于点A,B,直线EA,EB与椭圆C1的另一个交点分别是点P,M.(1)求椭圆C1的方程;(2)求△EPM面积最大时直线l的方程.解:(1)由题意得:b=1,则a=3b,x 22所以椭圆C 1的方程为:9+y =1.(2) 由题意得:直线PE ,ME 的斜率存在且不为0,PE ⊥EM ,不如设直线PE 的斜率为k (k >0),则PE :y =kx -1,y =kx -1, 18k ,x = 2x =0, 由x 29k +1 2 得 2或 9 +y =19k -1y =-1.y =9k 2+1所以P 18k9k 2-1-18k 9-k 22,9k22,2,9k +1 +1,同理得M k + 9 k +9PMk 2-1则k =10k,y =kx -1,2k k 2-1k 2-1 由x 2+y 2=1,得A 1+k 2 ,1+k 2 ,所以k AB =2k ,1△EPM1k +k 3162k +k1△EPM162t所以S=2|PE|·|EM|=94+822+9=9.设t =k +,则S=92+64=k k9k 2+82+k 2kt16227,当且仅当= 1 8127,则直线:k 2-1≤t+=时取等号,所以k- =±=x648k k 3k3ABy2k9t +t11= 2k -k x ,7所以所求直线l 方程为:y =±3x .[由题悟法]弦长的3种常用计算方法(1) 定义法:过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义,可优化解题. (2) 点距法:将直线的方程和圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长.(3) 弦长公式法:它表现认识析几何中设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系获取的.[提示]直线与圆锥曲线的对称轴平行或垂直的特别状况.[即时应用]x 2 y 21(2018·温州二模)已知椭圆C :a 2+b 2=1(a >b >0)的长轴长为4,离心率为 2,过右焦点的直线l 与椭圆订交于M ,N 两点,点P 的坐标为(4,3) ,记直线 PM ,PN 的斜率分别为k 1,k 2.(1) 求椭圆C 的方程;24(2) 当|MN |=7时,求直线l 的斜率. 解:(1) ∵2a =4,∴a =2, 又e = c = 1,∴c =1,∴b 2=3. a 2x 2y 2∴椭圆C 的方程为4+3=1.(2) 椭圆右焦点(1,0),当l 斜率不存在时,|MN |=3,不合题意;当l斜率k 存在时,设直线l 的方程为y =k (x -1),M (x 1,y 1),N (x 2,y 2),x 2 y 2 由4+3=1,y =kx -,得(3+4k 2)x 2-8k 2x +4(k 2-3) =0, =144(k 2+1)>0建立,∴ x 1+ x2=8k22,12= k 2-2,3+4k xx3+4k∴||=1+ k 2 ·x 1+ 2 2-412MNxxx28k 22k 2-24= 1+k · 3+4k 2 -4×3+4k 2=7, 解得k =±1.故直线l 的斜率为±1.考点三定点、定值问题要点保分型考点——师生共研[ 典例引领]已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点.(1) 求抛物线C 的方程;1(2) 若直线OA ,OB 的斜率之积为-2,求证:直线AB 过x 轴上必定点. 解:(1)因为抛物线y 2=2px (p >0)的焦点坐标为(1,0),p所以2=1,即p =2.所以抛物线C 的方程为y 2=4x .(2)证明:①当直线AB 的斜率不存在时,t 2t 2设A4,t,B4,-t.1因为直线OA ,OB 的斜率之积为-2,t -t 1 2所以t 2·t 2 =-2,化简得t =32.4 4所以 (8, t ),(8,- t ),此时直线 的方程为 =8.A B AB x ②当直线AB 的斜率存在时,设其方程为y =kx +b ,A (x A ,y A ),B (x B ,y B ),y 2=4x ,消去x 得ky 2-4y +4b =0. 联立方程组y =kx +b , 由根与系数的关系得AB4byy =k ,1因为直线OA ,OB 的斜率之积为-2,y A y B 1AB +2 AB =0. 所以 ·=-,即x A x B 2 xx yy22y A y B即4·4+2y A y B =0,解得y A y B =0(舍去)或y A y B =-32.4b 所以y A y B =k =-32,即b =-8k , 所以y =kx -8k ,即y =k (x -8). 综合①②可知,直线AB 过定点(8,0).[由题悟法]1.圆锥曲线中定点问题的两种解法(1) 引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2) 特别到一般法:依据动点或动线的特别状况探究出定点,再证明该定点与变量没关. 2.定值问题常有的2种求法(1) 从特别下手,求出定值,再证明这个值与变量没关. (2) 引进变量法:其解题流程为[即时应用]1.(2018·宁波模拟)如图,中心在座标原点,焦点分别在 x 轴和y轴上的椭圆T ,T 都过点M (0,- 2),且椭圆T 与T 的离心率均为2.12122(1) 求椭圆T 1与椭圆T 2的标准方程;(2) 过点M 引两条斜率分别为k ,k ′的直线分别交T 1,T 2于点P ,Q ,当k ′=4k 时,问直线P Q 能否过定点?若过定点,求出定点坐标;若但是定点,请说明理 由.解:(1)设椭圆1,2的方程分别为x 2 y 2a >>0),y 22+ x 22=1( ′> ′>0),2+ 2=1(TTa bba ′b ′abc 2222由题意得b = 2,e =a =2,又a =b +c ,解得a =2.同理可得 a ′= 2,′=1,所以椭圆1和椭圆2的方程分别为 x 2 y 2y 2x 2+=1,+=1.bTT422(2) 直线MP 的方程为y =kx -2,x 2 y 2+ =1,消去y 得(2k 2+1)x 2-4 2kx =0,联立42 y =kx -24 2k则点P 的横坐标为2k 2+1,所以点P 的坐标为42 2k 22k 2-2, 2 .2k +1 2k +1同理可得点 Q 的坐标为 22k ′2k ′2-22.k ′2+2, k ′2+2又 k′=4 ,则点Q 的坐标为4 2 2k82k 2-2k,8k +18k +182k 2-222k 2-2所以k PQ =8k 2+1 - 2k 2+1 =-1 ,42k 4 2k2k8k 2+1-2k 2+12 2 2-21 4 2k则直线P Q 的方程为y -2k 2+1=-2k x -2k 2+1 ,化简得y - 12=-2x ,故直线P Q 过定点(0,2).kx 2 y 22.(2018·嘉兴模拟)如图,椭圆E :a 2+b 2=1(a >b >0)经过点A (0,2-1),且离心率为2.(1)求椭圆E的方程;(2)经过点(1,1),且斜率为k的直线与椭圆E交于不一样两点P,Q(均异于点A),证明:直线AP与A Q的斜率之和为定值.c2解:(1) 由题意知a=,b=1,2由a2=b2+c2,得a=2,所以椭圆E的方程为x2+y2=1.2(2)证明:设直线P Q的方程为y=k(x-1)+1(k≠2),2x代入+y=1,22 2得(1+2k)x-4k(k-1)x+2k(k-2)=0,由题意知>0,设P(x1,y1),Q(x2,y2),且x1x2≠0,4k k-2kk-则x1+x2=1+2k 2,x1x2=1+2 2 ,k所以直线AP与A Q的斜率之和y1+1y2+1k AP+k AQ=x1+x2kx1+2-k kx2+2-k=+x2x12k+(2-k) 1 1=+x2 x1x1+x2=2k+(2-k)x1x24k k-=2k+(2-k)2k k-=2k-2(k-1)=2.故直线AP与A Q的斜率之和为定值2.考点四最值、范围问题要点保分型考点——师生共研[典例引领](2018·浙江原创猜题卷)设抛物线C:y2=2px(p>0)的焦点为F,过点F的直线l 交抛物线C于P,Q两点,且|P Q|=8,线段P Q的中点到y轴的距离为3.(1)求抛物线C的方程;(2)若点 A (x 1,y 1),B (x 2,y 2)是抛物线C 上相异的两点,满足x 1+x 2=2,且AB 的中垂线交 x 轴于点 ,求△的面积的最大值及此时直线的方程.M AMBAB解:(1)设P (x ,y ),Q(x ,y ),PPQQ则P Q 的中点坐标为x P +x Q y P +y Q., 22x P +x Q由题意知=3,∴x P +x Q =6,2又|P Q|=x P +x Q +p =8,∴p =2,故抛物线C 的方程为y 2=4x .(2)当AB 垂直于x 轴时,明显不吻合题意, 所以可设直线AB 的方程为y =kx +b (k ≠0),y =kx +b , 消去y 并整理,得k 2x 2+(2kb -4)x +b 2=0, 由y 2=4x = 16(1-kb )>0,4-2kb 2 ∴由x 1+x 2=k 2=2,得b =k -k ,2∴直线AB 的方程为y =k (x -1)+k .2∵AB 中点的横坐标为1,∴AB 中点的坐标为1,k .13 可知AB 的中垂线的方程为y =-k x +k , ∴M 点的坐标为(3,0).∵直线AB 的方程为k 2x -ky +2-k 2=0,22|3k +2-k |2k 2+1∴M 到直线AB 的距离d = 4 +k 2 =k|k |.k 2x -ky +2-k 2=0,k 2 22由y 2=4x ,得4y -ky +2-k =0,=k 2(k 2-1)>0,48-4 k 2∴y 1+y 2=k ,y 1y 2=k 2 ,∴||=1y 1- y 4 k 2 +1k 2-1.1+ 2|2|=k 2ABk设△AMB 的面积为S ,1|·=41+ 1 1- 1则=|kk 2,21设1-k2=t,则0<t<1,2 3 2∴S=4t(2-t)=-4t+8 t,S′=-12t+8,6由S′=0,得t=3 (负值舍去),即当k=±max 16 63时,S =9 ,此时直线AB的方程为3x±3y-1=0.[由题悟法]解决圆锥曲线中的取值范围问题的5种常用解法(1)利用圆锥曲线的几何性质或鉴识式构造不等关系,从而确立参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这种问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其余变量的函数,求其值域,从而确立参数的取值范围.[即时应用]1.如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.(1)求p的值;(2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.解:(1)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=-1的距离,p由抛物线的定义得2=1,即p=2.(2)由(1)得,抛物线方程为y2=4x,F(1,0),可设A(t2,2t),t≠0,t≠±1.y2=4x,因为AF不垂直于y轴,所以可设直线AF的方程为x=sy+1(s≠0),由消x=sy+1去x得y2-4sy-4=0.1 2故y1y2=-4,所以B t2,-t.2t又直线AB的斜率为t2-1,t2-1故直线FN的斜率为-2t,t2-1从而得直线FN的方程为y=-2t(x-1).2又直线BN的方程为y=-t,t2+3 2所以N t2-1,-t.2设M(m,0),由A,M,N三点共线得2t=2t+t2 t 2 ,t-m 2 +3t-t2-12t2 2于是m=t2-1=1,得m<0或m>2.1-t2经检验,m<0或m>2满足题意.综上,点M的横坐标的取值范围是(-∞,0)∪(2,+∞).2.(2018·温州期末)已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于P,Q两点,且|P Q|=3,(1)求椭圆的方程;(2)如图,过F2的直线l与椭圆交于不一样的两点M,N,则△F1MN的内切圆的面积能否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明原由.解:(1)设椭圆方程为x2 y2>>0),2+2=1(a b a b由焦点坐标可得c=1,2b2由|P Q|=3,可得a=3,2 2解得=2,=3,故椭圆的方程为x+y =1.a b 4 3(2)设M(x ,y),N(x ,y ),△FMN的内切圆的半径为R,1 12 2 11 R=4R,则△FMN的周长为4a=8,S△FMN=2(|MN|+|FM|+|FN|)1 1 1 1所以S△FMN最大,R就最大,S△FMN= 2 |FF|(y-y)=y -y .1 1 1 12 1 2 1 2由题知,直线l 的斜率不为零,可设直线l的方程为x=+1,myx =my +1,由x 2 y 22 2得(3m +4)y +6my -9=0, 4+3=12-2-3m +6m +13m -6m +1解得y 1=2,y 2=2,3m +43m +4212m +1则S △F 1MN =y 1-y 2=2.3m +4令t = 2m +1,则t ≥1,12t 12所以S △F 1MN =3t 2+1=t + 1,3 t令 f()=3 t1f1+,则′( )=3-2,tttt当t ≥1时,f (t )在[1,+∞)上单调递加,有112f (t )≥f (1)=4,S △FMN ≤4=3,即当t =1,m =0时,取等号, 又S △F 1MN =4R , 39所以R =4,故所求内切圆面积的最大值为16π.max所以直线l 的方程为 x =1时,△1的内切圆面积获得最大值FMN916π.一保高考,全练题型做到高考达标x 2 y 21.(2019·台州模拟)已知双曲线12-4=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是( )A.-3,3B .[-3,3]33C.-3,3D .(-3,3)33分析:选A易知该双曲线的渐近线方程为y =± 33x ,当过右焦点的两条直线分别与两条渐近线平行,即两条直线的斜率分别为3和-3时,这两条直线与双曲线右支分别只3 3有一个交点,所以此直线的斜率的取值范围是33 .-3,32.(2018·宁波调研)已知但是原点O 的直线交抛物线 y 2=2px 于A ,B 两点,若OA ,AB的斜率分别为 k =2,k =6,则OB 的斜率为()OAABA .3B .2C .-2D .-3分析:选 D 由题意可知,直线 OA 的方程为 y =2x ,与抛物线方程 y 2=2px 联立得y =2 ,x =0,ppy 2=2px ,解得y =0或2所以A 2,p ,则直线AB 的方程为 y -p =y =p ,p y =6x -2p ,x =2p,296x -2,即y =6x -2p ,与抛物线方程y =2px联立得y 2=2px ,解得 2py =-3p2pxp-=,2232或所以BpOB2p =-3.y =p , 9,-3,所以直线OB 的斜率k=9πx 2 y 23.(2018·杭州二模)倾斜角为4 的直线经过椭圆 a 2+b 2=1(a >b >0)的右焦点F ,与椭圆交于 , 两点,且 =2 ,则该椭圆的离心率为 ( )ABAFFBA. 3B.22323 C.2D.3x 2 y 2分析:选B由题可知,直线的方程为 y =x -c ,与椭圆方程联立得a 2+b 2=1,∴y =x -c ,y 1 +y 2-2b 2c=2 2,(2+2) y 2+2 2 - b 4=0,且>0.设( 1, 1),( 2, 2),则 a +b 又-b 4abbcyAx y Bx y y ya1 2 2 2-22AF =2FB ,∴(c -x 1,-y 1)=2(x 2-c ,y 2),∴-y 1=2y 2,即-y 2=a 2+b 2,1 -2 2-b 4 2,∴2=2= 2ya +b4c 22a 2+b 2,∴e =3,应选B.2 24.(2018·温州十校联考)已知点P 是双曲线:x2-y2=1(>0,>0)右支上一点,C a bab1是双曲线的左焦点,且双曲线的一条渐近线正是线段1的中垂线,则该双曲线的离心率FPF是()A.2B. 3 C .2D.52分析:选 D1ab- a , ab设直线PF :y =b (x +c ),则与渐近线y =-a x 的交点为Mcc .因1P -2a 2+ , 2ab,因为点P 在双曲线上,所以为M 是PF 的中点,利用中点坐标公式,得c cc b 2-a 224a 2b 2422满足a 2c 2-c 2b 2=1,整理得c=5ac ,解得e =5.5.(2019·丽水五校联考)已知抛物线C :y 2=2px (p >0) 的焦点为F ,准线为l ,过点F且倾斜角为60°的直线交C 于A ,B 两点,AM ⊥l ,BN ⊥l ,M ,N 为垂足,点Q 为MN 的中点, |Q F |=2,则p =________.分析:如图,由抛物线的几何性质可得,以AB 为直径的圆与准线相切,且切点为Q ,△MFN 是以∠MFN 为直角的直角三角形,∴ |MN |=2|Q F ||BD | °= 4 = 8 3sin603 3 .设A (x ,12y 2=2px ,12 2p2 2 125 p ,∴|AB |=x13x -y = 2 ,35 883+ x 2+p =3p +p =3p =3,∴p =3.答案:322y6.已知双曲线x -=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物 线y 2=18x 上,则实数m 的值为________.分析:设( 1, 1),( 2, 2), 的中点 ( 0, 0),MxyNxyMNPxy22y 1x 1 -3=1,则22y 2x 2 -3=1,1两式相减,得(x 2-x 1)(x 2+x 1)=3(y 2-y 1)(y 2+y 1),y -y 1 y +y 1 MN y 0 明显x 1≠x 2.∴ 2· 2=3,即k ·x 2 -x 1 x 2 +x 1 x =3,0 ∵M ,N 关于直线y =x +m 对称,∴k MN =-1,m 3m∴ y 0=-3x 0.又∵y 0=x 0+m ,∴P -4,4,92 m代入抛物线方程得16m =18×-4 ,解得m =0或-8,经检验都吻合. 答案:0或-87.(2019·湖州六校联考)设抛物线: y 2=4 x 的焦点为,过点(-1,0)作直线l 与CFP抛物线C 交于 , B 两点,若△ABF=2,且||<||,则|AF |=________.ASAF BF|BF |分析:设直线 l 的方程为x =my -1,将直线方程代入抛物线C :y 2=4x 的方程,得y 2-4my +4=0,= 2>0. 设A (x 1,y 1),B (x 2,y 2),|y 1|<|y 2|,所以y 1+y 2=4m ,16(m -1) y 1·y 2=4,又S △122=|y 2-y 1|=22==2,所以1+m ·|y -y |·22,所以y +yABF2m +122105y 1|AF | |x +1| |my -1+1| y 11110,所以12 ==,从而=,即=1 = 1==.y 2+ y 21·y 242+ 2-y22 |BF | |x 1| |my 11| 21答案:2x 221 C 所截8.(2019·衢州模拟)已知椭圆C :+y =1,若一组斜率为的平行直线被椭圆24线段的中点均在直线 l 上,则l 的斜率为________.分析:设弦的中点坐标为( , y ),设直线 =1+与椭圆订交于( 1, 1),( 2,Mxy 4xmAxyBxy = 1 +,4x m2222y 2)两点,由2消去y ,得9x +8mx +16m -16=0,=64m -4×9×(16mx 22+y=1232 32128m 1216m -16-16)>0,解得-4<m <4,x +x =-9,xx =9,∵M (x ,y )为弦AB 的中点,124m∴x +x =2x ,解得x =-9,3 2 3 22 2∵m ∈-4,4,∴x ∈-3,3,1y =4x +m ,由消去m ,得y =-2x ,4mx =-922则直线l 的方程为y =-2x ,x ∈-3,3, ∴直线l 的斜率为-2. 答案:-2x 22 9.(2018·东阳适应)已知椭圆a 2+y =1(a >1).(1)若A (0,1)到焦点的距离为 3,求椭圆的离心率.(2)Rt △以(0,1) 为直角极点,边,与椭圆交于两点,.若△ 面积的最ABCAAB AC BC ABC27大值为8,求a 的值.c 6解:(1) 由题可得a = 3,所以c = 2,所以e =a =3.(2)不如设AB 斜率k >0,1则AB :y =kx +1,AC :y =-kx +1,y =kx +1,由x 22a 2+y =1得(1+a 2k 2)x 2+2a 2kx =0,2a 2k2a 2k解得x B =-1+a 2k 2,同理x C =k 2+a 2,14k 1+k 2S =2|AB || AC |= 2a ·a 2k 4+a 4k 2+k 2+a 2114k +k=2 4k +k,=2a ·a 2a ·12 242k + 2 + 22ak+2+a+1ak a -1k1设t =k +k ,则t ≥2,4t2a 4a 3a 2-1S =2a ·2 2 + a 2-2=2 -2≤2-1,当且仅当t =a≥2,即a ≥1+ata 2t + a ta2时取等号,a 3273+297由a 2-1=8,解得a =3,a = 16(舍),若a <1+ 2,明显无解.∴a =3.x 2 y 2310.(2019·嘉兴模拟)已知椭圆C :a 2+b 2=1(a >b >0)的离心率为3,F 1,F 2分别为椭圆C 的左、右焦点,过 F 2的直线l 与C 订交于A ,B 两点,△F 1AB 的周长为43.(1) 求椭圆C 的方程;(2)若椭圆 C 上存在点 ,使四边形 为平行四边形,求此时直线 l 的方程.POAPB3 c 3解:(1)∵椭圆的离心率为3,∴a =3,∴a =3c ,又△F 1AB 的周长为4 3,∴4a =4 3,解得a =3,∴c =1,b =2,x 2y 2∴椭圆C 的标准方程为3+2=1.(2) 设点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),∵当直线l 的斜率不存在时,这样的直线不满足题意, ∴设直线l 的斜率为k ,则直线l 的方程为y =k (x -1), 将直线l 的方程代入椭圆方程,整理得(2+3k 2)x 2-6k 2x +3k 2-6=0,6k 2 ∴x 1+x 2=2+3k 2,6k 3-4k故y 1+y 2=k (x 1+x 2)-2k =2+3k 2-2k =2+3k 2.∵四边形OAPB 为平行四边形,∴ OP =OA + OB ,6k 2-4 k从而x 0=x 1+x 2=2+3k 2,y 0=y 1+y 2=2+3k 2,6k 2 2-4k 22+3 22+3 k 2又P (x ,y )在椭圆上,∴k+=1,23化简得3k 4-4k 2-4=0,解得k =±2,故所求直线l 的方程为y =±2(x -1). 二登台阶,自主选做志在冲刺名校221.(2018·湖州质检)已知椭圆: x 2+y2=1(a >>0),不经过原点 O 的直线 l :=E a b b ykx+m (k >0)与椭圆E 订交于不一样的两点 A ,B ,直线 OA ,AB ,OB 的斜率挨次构成等比数列.(1) 求a ,b ,k 的关系式;1+1(2)若离心率e =2且|AB |=7mm ,当m 为什么值时,椭圆的焦距获得最小值?解:(1) 设( 1, y 1),( 2, 2),AxBx y 2y 1y 2由题意得k =k OA ·k OB =.x 1x 222x 2 y 2222222222联立a +b =1,消去y ,整理得(b+ak )x +2akmx +am -ab =0,y =kx +m222222 222>0,故=(2akm )-4(b +ak )(am -ab )222 2即b -m +ak >0,2222 22akmam -ab且x 1+x 2=-b 2+a 2k 2,x 1·x 2=b 2+a 2k 2,y 1y2+kmx 1+x 2222kx 1x 2+m所以k ==xx,xx221 12 22 22akm2即km (x 1+x 2)+m =0,-b 2+a 2k 2+m =0.又直线不经过原点,所以m ≠0,所以b 2=a 2k 2,即b =ak .(2)因为 1 =2 ,= 3 , = 3=,则 ,2 22 2 23 所以x 1+x 2=-b 2+a 2k 2=-3,x 1·x 2=22 2 2222am -abb 2+a 2k 2=3m -2c ,所以|AB |=1+k 2|x 1-x 2|=7x 1+x 22-4x 1·x 2=27 2 322 222·- 3m-43m -2c721=4m2m + ,2 ·-3+8c =7 m214 32= 4m>0恒建立),化简得2c+2+2≥+2(3m3214当且仅当 4m,即 =±12时,焦距最小.=23mm2412综上,当m =±2时,椭圆的焦距获得最小值.2.(2018·学军适考)已知抛物线C :x 2=4y ,过点P (0,m )(m > 0) 的动直线l 与C 订交于A ,B 两点,抛物线C 在点A 和点B 处的切线 订交于点Q ,直线A Q ,B Q 与x 轴分别订交于点E ,F .(1) 写出抛物线C 的焦点坐标和准线方程; (2) 求证:点Q 在直线y =-m 上;(3) 判断能否存在点P ,使得四边形PE Q F 为矩形?若存在,求出点P 的坐标;若不存在,说明原由.解:(1)焦点坐标为(0,1),准线方程为y =-1.(2) 证明:由题意知直线l 的斜率存在,故设l 的方程为y =kx +m .y =kx +m , 得x 2-4kx -4m =0,由方程组2=4,xy由题意,得=16k 2+16m >0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4m ,121所以抛物线在点A 处的切线方程为y -4x 1=2x 1(x -x 1),1 12 化简,得y =2x 1x -4x 1,①同理,抛物线在点 B 处的切线方程为11 2 .②2 2112 11 211 22即2(x -x )x =4(x - x )(x +x ),因为x ≠x ,所以x =2 (x +x ),代入①,得y =4xx21 12 1 1 2121211 21 1x1+x2=-m,所以点Q,-m,即Q(2k,-m).2所以点Q在直线y=-m上.(3)假设存在点P,使得四边形PE Q F为矩形,由四边形PE Q F为矩形,得E Q⊥F Q,即A Q⊥B Q,11所以k AQ·k BQ=-1,即2x1·2x2=-1.1 1由(2),得4x1x2=4(-4m)=-1,解得m=1.所以P(0,1).以下只要考据此时的四边形PE Q F为平行四边形即可.1在①中,令y=0,得E2x1,0.1同理得F2x2,0.所以直线EP的斜率为k=1-0 -2 ,EP0-2x1直线Q的斜率k 0--=-2F 1x2-x+x2 x1 12 2EP FQ所以k=k,即EP∥F Q.同理∥Q.PF E所以四边形PE Q F为平行四边形.综上所述,存在点P(0,1),使得四边形PE Q F为矩形.命题点一椭圆x2y21.(2018·全国卷Ⅱ)已知F1,F2是椭圆C:a2+b2=1(a>b>0)的左、右焦点,A是C的左极点,点P 在过A且斜率为 3 的直线上,△12为等腰三角形,∠12=120°,则C6 PFF FFP的离心率为( )2 1A.3B.21 1C. D.3 4分析:选D如图,作PB ⊥x 轴于点 B .由题意可设|F 1F 2|=|PF 2|=2,则c =1.由∠FFP =120°,可得|PB |=3,|BF |=1,故|AB |=a +1+122|PB |33c 1 1=a +2,tan ∠PAB =||=a +2= 6,解得a =4,所以e == 4.ABa2x 2.(2018·浙江高考)已知点P (0,1),椭圆+y =m (m >1)上两点A ,―→―→B 满足AP =2PB ,则当m =________时,点B 橫坐标的绝对值最大.―→―→分析:设A (x 1,y 1),B (x 2,y 2),由AP =2PB ,- x 1=2x 2, 得 y 2- , 即x 1=-2x 2,y 1=3-2y 2.1-y 1=24x 2-2y24+2=m ,因为点 , 在椭圆上,所以2ABx 224+y 2=m ,13221 25 912+4≤4,=m -(3-2y)=-=-222所以当m =5时,点B 横坐标的绝对值最大. 答案:52x 3.(2018·全国卷Ⅰ)设椭圆C :+y =1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当 l 与 x 轴垂直时,求直线 的方程;AM (2)设O 为坐标原点,证明:∠ OMA =∠OMB .解:(1)由已知得(1,0) , l 的方程为 x =1.F则点 A 的坐标为2 或2 .1,21,-2又M (2,0),所以直线AM 的方程为y =-2 x +2或y =2 2 x -2,2即 x +2-2=0或x -2-2=0.yy(2) 证明:当l 与x 轴重合时,∠OMA =∠OMB =0°.当l与x 轴垂直时,OM 为AB 的垂直均分线, 所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为 y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2),则x 1<2,x 2<2,直线MA ,MB 的斜率之和为y 1y 2k MA +k MB =x 1-2+x 2-2. 由y 1=kx 1-k ,y 2=kx 2-k ,2 1 x 2 -3x 1+ 2+4kkxkx得k +k =.MAMBx 1-x 2-2将y =k (x -1)代入x+y 2=1,2得(2k 2+1)x 2-4k 2x +2k 2-2=0,4k 22k 2-2所以x 1+x 2=2k 2+1,x 1x 2=2k 2+1. 则2kx 1x 2-3k (x 1+x 2)+4k 4k 3-4k -12k 3+8k 3+4k =2k 2+1=0.从而k MA +k MB =0,故MA ,MB 的倾斜角互补.所以∠OMA =∠OMB . 综上,∠OMA =∠OMB 建立.x 2 y 24.(2018·天津高考)设椭圆a 2 +b 2=1(a >b >0)的左焦点为F ,上极点为B .已知椭圆的离心率为5A 的坐标为(b, 0),且||·||=62.,点3FBAB(1) 求椭圆的方程.(2)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q ,若|A Q|5 2|Q|=4 sin ∠AO Q(O 为原点),求k 的值.P解:(1)设椭圆的焦距为2c ,c 2 5222=3 .①由已知有2=,又由a =b +c ,可得2ba9a由已知可得|FB |=a ,|AB | = 2b ,又|FB |·|AB |=62,可得ab =6.② 联立①②解得a =3,b =2.x 2y 2所以椭圆的方程为+=1.94(2) 设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故|P Q|sin ∠AO Q =y 1-y 2.又因为|y 2A Q|=,而∠sin ∠OABOAB =π,4所以|A Q|=2y 2. |A Q|52由|P Q|=4sin ∠AO Q ,可得5y 1=9y 2.y =kx ,由方程组 x 2 y 2消去x ,可得y 1=6k.29+4=19k +4易知直线AB 的方程为x +y -2=0,y =kx ,2x +y -2=02k由方程组 消去x ,可得y =k +1.由5y 1=9y 2,可得5(k +1)=39k 2+4,两边平方,整理得256k -50k +11=0,解得 1 k =2或11k =28.所以k 的值为 1 或 211 28.x 2y 25.(2018·全国卷Ⅲ )已知斜率为 k 的直线 l 与椭圆C :4+3=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).1(1) 证明:k <-2;(2) 设F 为C 的右焦点,P 为C 上一点,且 ―→―→―→―→―→FP +FA +FB =0. 证明:|FA |,|FP |,―→|FB |成等差数列,并求该数列的公差.解:(1)证明:设A (x 1,y 1),B (x 2,y 2),222 2x 1y 1x 2 y 2则4+3=1,4+3=1.y 1-y 2 =k 得 x 1+x 2 y 1+y 2·k =0.两式相减,并由x 1-x 2 4 + 3 由题设知 x 1+x 2 y 1+y 23 =1, 2 =m ,于是k =- .①24 m 由题设得 3 k 10<<,故 <-.m 2 2(2) 由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1, y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =3,4从而P 1,- 3,| ―→ 32 FP |=,2―→21222x 1于是|111-FA |=x -+y =x -+34x 1=2-.2―→x 2同理|FB | =2-2.―→―→1所以| FA | +|FB |=4-2(x 1+x 2)=3.故 ―→ = ―→ ―→2| FP | | FA | +|FB |,即―→ ―→ ―→ |成等差数列. |FA |,| FP |,| FB 设该数列的公差为 d ,则2|d |=| ―→―→1|x -x |212=1x 1+x 22-412.②2xx3将m =4代入①得k =-1,7 所以l 的方程为y =-x +4,21代入C 的方程,并整理得7x -14x +=0.故x 1+x 2 =2,x 1x 2 13 21 = ,代入②解得|d |=.28283 21 3 21 所以该数列的公差为 28或-28.命题点二双曲线x 2y 21.(2018·全国卷Ⅱ)双曲线a 2-b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为 ()A .y =±2xB .y =±3xC . =±2 D .=±3 y2xy2xca 2+b 2分析:选A ∵e =a =a =3, ∴ a 2+b 2=3a 2,∴b =2a . ∴渐近线方程为 y =± 2.xx 2 y 22.(2018·全国卷Ⅲ)设F 1,F 2 是双曲线 C :a 2-b 2=1(a >0,b >0)的左、右焦点,O是坐标原点.过 2作 C 的一条渐近线的垂线, 垂足为 .若| 1|= 6||,则 C 的离心率为FPPFOP( )A. 5 B .2C.3D.2b 分析:选C法一:不如设一条渐近线的方程为y =a x ,则F 2到y = bx 的距离d =|bc |=b .aa 2+b 2在Rt △F 2PO 中,|F 2O |=c , 所以|PO |=a ,所以|PF 1|= 6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中,依据余弦定理得1a 2+c 2-6a2 2a cos ∠POF =2ac=-cos ∠POF =-c ,22222c即3a +c - (6a )=0,得3a =c ,所以e =a =3.法二:如图,过点F 向OP 的反向延长线作垂线,垂足为P ′,连1接P ′F 2,由题意可知,四边形PF 1P ′F 2为平行四边形,且△PP ′F 2是直角三角形.因为|F 2P |=b ,|F 2O |=c ,所以|OP |=a .又|PF 1 |= 6a =|F 2P ′|,|PP ′|=2 a ,所以|F 2P |= 2a =b ,所以c = a 2+b 2=3a ,所以e = c=3.a223.(2018·天津高考)已知双曲线x 2-y2=1(a>0,>0)的离心率为2,过右焦点且垂a bb直于x 轴的直线与双曲线交于 A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为 d 和d ,且d +d =6,则双曲线的方程为 ( )121 2x 2 y 2x 2 y 2A.4-12=1B. 12-4=1x 2 y 2x 2 y 2C.3-9=1D.9-3=1分析:选C法一:如图,不如设A 在B 的上方,则b 2,Ac ,aB c ,- b 2 .a又双曲线的一条渐近线为 bx -ay =0,则 d 1+ bc -b 2+bc +b 22bc2=a 2+b 2==2dcb=6,所以b =3.c222又由e =a =2,知a +b =4a ,所以a =3.所以双曲线的方程为x 2 y 2- =1.3 9x 2法二:由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线a 2-y 2c a 2+b 2 a 2+92b 2 =1(a >0,b >0)的离心率为2,所以a =2,所以a 2=4,所以 a 2=4,解得a =3,x 2y 2所以双曲线的方程为3-9=1.x 224.(2018·全国卷Ⅰ)已知双曲线C :3-y =1,O 为坐标原点,F 为C 的右焦点,过F的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=()3A.2 B .3 C .23D .4分析:选B 法一:由已知得双曲线的两条渐近线方程为y =113±3x .设两条渐近线的夹角为 2α,则有tan α=3=3,所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,因为双曲线拥有对称性,不如设MN ⊥ON ,以下列图.在 Rt △ONF 中,|OF |=2,则|ON |=3.在Rt △OMN 中,|MN |=|ON |·tan2α=3·tan60°=3.x 223法二:因为双曲线 3-y =1的渐近线方程为 y =± 3x ,所以∠MON =60°.不如设过点F 的直线与直线 3x 交于点M ,由△OMN 为直角三角形,不如设∠OMN =90°,则∠MFOy = 3 =60°,又直线过点 (2,0) ,所以直线 的方程为 y =- 3( x -2),MNFMNy =- 3x - ,x = 3 ,2由3得3y =3 x ,y =2 ,333232所以M 2,2,所以|OM |=2 +2 = 3,所以|MN |= 3|OM |=3.x 2 y 25.(2018·江苏高考)在平面直角坐标系xOy 中,若双曲线a 2-b 2=1(a >0,b >0)的右3焦点F (c,0)到一条渐近线的距离为2c ,则其离心率的值为________.分析:∵双曲线的渐近线方程为± =0,bx ay|bc ±0|∴焦点F (c,0)到渐近线的距离 d =b 2+a2=b ,∴=3,∴=c 2- 2=1,b2cab 2cc∴e =a =2. 答案:26.(2018·北京高考)已知椭圆x 2 y 2a >>0) ,双曲线x 2 y 2:2+2=1(:2-2=1.若双曲线M a b bN m n N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的极点,则椭圆 M 的离心率为__________;双曲线N 的离心率为________.n分析:法一:如图,∵双曲线N 的渐近线方程为y =±mx ,n3,∴=tan60°=m∴双曲线N 的离心率e2 n 2满足e =1+=4,∴e =2.11m1y = 3x , 2 a 2b 22.由x2y2得x = 2a 2+b 2=1,3a +b设D 点的横坐标为 x ,由正六边形的性质得 ||=2 x = ,∴42=2.EDcx c4a 2b 2224224∴3a 2+b 2=a -b ,得 3a -6ab -b =0,。
高考专家大讲堂:圆锥曲线讲义
圆锥曲线A:常规题型方面(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
例1 给定双曲线,1222=-y x 过A (2,1)的直线与双曲线交于两点P 1及P 2,求线段P 1P 2的中点P 的轨迹方程。
说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。
变式练习:给定双曲线2x 2 - y 2 = 2,过点B(1,1)能否作直线L,使L 与所给双曲线交于两点Q 1、Q 2 两点,且点B 是线段Q 1Q 2的中点?如果直线L 存在,求出它的方程;如果不存在,说明理由. (2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
例2 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β.(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
变式练习:设F 1、F 2分别是双曲线12222=-by a x (a>0,b>0)的左、右两个焦点,P 是双曲线上的一点,若∠P=θ,求证:S △=b 2cot2θ. (3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法例3 抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()() (1)求证:直线与抛物线总有两个不同交点。
(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
变式练习:直线y=ax+1与双曲线3x 2-y 2=1交于两点A 、B 两点. (1)若A 、B 都位于双曲线的左支上,求a 的取值范围; (2)当a 为何值时,以AB 为直径的圆经过坐标原点? (4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
超实用高考数学复习教学课件:专题5 解析几何第3讲圆锥曲线的综合应用
∴|EM|=2+x0-2y02; 直线PE:y=y0x-0 2x+2,令y=0,得xN=- y0-2x20,
∴|DN|=
2+y02-x02.
∴|DN|·|EM|=
2+y02-x02·2+x0-2y02=
2y0-y02-22+2x0·2x0-x20-2+2
2y0
=
2y0-y02-22+2x0·2x0-x20-2+2
(2)证明:设A(x1,y1),B(x2,y2), 当直线l与x轴不重合时,设l的方程:x=my+1.
x=my+1 由x22+y2=1 得(m2+2)y2+2my-1=0,
y1+y2=m-2+2m2 y1y2=m-2+12
,∴x1+x2=m24+2,x1x2=-m23+m22+1,
P→A·P→B=x1-54,y1·x2-45,y2
• 求解范围、最值问题的五种方法 • (1)利用判别式构造不等式,从而确定参数的取值范围; • (2)利用已知参数的取值范围,求新参数的范围,解这类问题的
核心是在两个参数之间建立相等关系; • (3)利用隐含的不等关系,求出参数的取值范围; • (4)利用已知不等关系构造不等式,从而求出参数的取值范围; • (5)利用求函数值域的方法,确定参数的取值范围.
【解析】 (1)设M(x,y),又A(-2,2),B(2,2), 则kAM-kBM=yx- +22-yx- -22=8x-2-44y=-2, 可得x2=2y(x≠±2), 则M的轨迹C的方程为x2=2y(x≠±2).
(2)证明:设P(m,m22),Q(n,n22),m,n≠±2, 又A(-2,2),可得kAP·kAQ=mm22+-22·n2n2+-22=m-2 2·n-2 2=-2, 即有mn-2(m+n)=-12,即mn=2(m+n)-12, 直线l的斜率为kPQ=m2m2- -nn22=m+2 n,
高考数学讲义圆锥曲线综合.知识框架
圆锥曲线与方程要求层次重难点曲线与方程的对应关系 B轨迹方程;圆锥曲线与向量综合;数学思想、方法直线与圆锥曲线的位置关系C1.坐标法:在直角坐标系中确定曲线的方程,并用方程研究曲线的性质,这种研究几何的方法称为坐标法.2.轨迹方程:一条曲线可以看成动点的运动轨迹,曲线的方程又常称为满足某种条件的点的轨迹方程.3.在平面直角坐标系中,如果曲线C 与方程()0F x y =,之间具有如下关系:⑴曲线C 上点的坐标都是方程()0F x y =,的解; ⑵以方程()0F x y =,的解为坐标的点都在曲线C 上.那么,曲线C 叫做方程()0F x y =,的曲线,方程()0F x y =,叫做曲线C 的方程.即:()()0M x y C F x y ∈⇔=,,.曲线C 用集合的特征描述为{}()|()0C M x y F x y ==,,. 4.曲线的交点:已知两条曲线1C 和2C 的方程分别为:()0F x y =,,()0G x y =,,则交点坐标对应方程组()0()0F x y G x y =⎧⎨=⎩,,的实数解.5.由曲线求它的方程:①建立直角坐标系;②设动点M 的坐标为()x y ,;③把几何条件转化为坐标表示. ④证明所求的就是曲线的方程.(一般省去证明,只通过验证除去或补上相关的点)6.利用方程研究曲线的性质:知识内容高考要求模块框架椭圆.知识框架①曲线的组成;②曲线与坐标轴的交点; ③曲线的对称性质; ④曲线的变化情况; ⑤画出方程的曲线. 7.求轨迹方程的常用方法:①直接法:直接利用条件建立x y ,之间的关系()0F x y ,; ②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数;③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程; ④代入转移法:动点()P x y ,依赖于另一动点00()Q x y ,的变化而变化,并且00()Q x y ,又在某已知曲线上,则可先用x y ,的代数式表示00x y ,,再将00x y ,代入已知曲线得要求的轨迹方程; ⑤参数法:当动点()P x y ,坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x y , 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程.8.直线与圆锥曲线的位置关系,可转化为直线与圆锥曲线的方程公共解问题,体现了方程的思想;数形结合也是解决直线与圆锥曲线位置关系的常见方法, 9.圆锥曲线中的思想方法 ⑴方程的思想:大部分题目是以方程形式给出的曲线,因此利用两个方程联立,特别是直线与二次曲线(包括圆与圆锥曲线)的联立后的一元二次方程,可以判断交点个数,可以利用韦达定理求得中点与弦长等,避免直接求交点的复杂计算;⑵函数的思想:对于曲线上的动点,在变化过程中引入一些相互关联、相互制约的量,得到一些函数关系,可以有效地处理一些解析几何问题; ⑶坐标思想:坐标法是解析几何的基本方法,灵活运用坐标法可以解决很多问题,注意对向量的坐标的利用; ⑷对称思想:圆锥曲线与圆都具有一定的对称性,利用对称有时可以达到减少变量,简化计算的效果; ⑸转化思想:利用圆锥曲线的定义、利用平面几何知识将条件进行适当转化,可以达到明了题意,方便解题的目的.⑹其它思想:参数思想、数形结合思想、分类讨论思想、整体思想、运动的观点,在恰当的时候运用可以达到意想不到的效果.总体来说,解析几何的思想方法很多,对综合性与灵活性要求较高,没有一些很固定的公式化的套路.需要在解题中不断积累经验,多动手多尝试,同时注意思考总结不同题型的典型解题思路,并举一反三,最终达到顺利解决解析几何综合题的目的.1.给出直线的方向向量()1u k =r ,或()u m n =r,. 2.A B C ,,三点共线:①//AB AC u u u r u u u r ;②存在实数λ,使AB AC λ=u u u r u u u r;③若存在实数αβ,,且1αβ+=,使OC OA OB αβ=+u u u r u u u r u u u r.3.给出0MA MB ⋅=u u u r u u u r ,等于已知MA MB ⊥,即AMB ∠是直角;给出0MA MB ⋅<u u u r u u u r,等于已知AMB ∠是钝角, 给出0MA MB ⋅>u u u r u u u r,等于已知AMB ∠是锐角.4.给出MA MB MP MA MB λ⎛⎫ ⎪+= ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r ,等于已知MP 是AMB ∠的平分线. 5.在ABC △中,给出OA OB OB OC OC OA ⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r,等于已知O 是ABC △的垂心(三角形的垂心是三角形三条高的交点).6.如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行转化,还是选择向量的代数形式进行转化.。
高考数学复习考点知识讲解课件58 圆锥曲线的综合问题
无实数解
l与C1的交点 无__公__共__点__
一__个__交__点__
_两__个__交__点_ 一__个__交__点__ _无__交__点___
(2)几何法:在同一直角坐标系中画出圆锥曲线和直线,利用图象和性质可判定 直线与圆锥曲线的位置关系.
必备知识—基础落实
一、必记2个知识点 1.直线与圆锥曲线的位置关系的判定 (1)代数法:把圆锥曲线方程与直线方程联立消去y,整理得到关于x 的方程ax2+bx+c=0.
a=0 a≠0
方程ax2+bx+c=0的解
b=0
b≠0
Δ>0 Δ=0 Δ<0
无解(含l是双曲线的渐近线) 有一解(含l与抛物线的对称轴平
A.1
B. 2
C. 3
D.2 2
答案:D
解析:由题意可知焦点F(1,0),设A(xA,yA),B(xB,yB),由|AF|=3=xA+1, 得xA=2,又点A在第一象限,故A(2,2 2),故直线l的斜率为2 2,选D.
5.[2022·石家庄摸底考试]已知抛物线C:y2=2px(p>0),直线l:y = 3(x-1),l与C交于A,B两点,若|AB|=136,则p=__2__.
高考数学复习考点知识讲解课件
第九节 圆锥曲线的综合问题
必备知识—基础落实
·最新考纲· 1.了解圆锥曲线的简单应用. 2.理解数形结合的思想. 3.掌握解决直线和圆锥曲线位置关系的方法.
·考向预测· 考情分析:直线与圆锥曲线的综合应用问题(特别是一些经典问题, 如:定值与定点、最值与取值范围、探索性问题)是高考热点,常常 与向量、圆等知识交汇在一起命题,多以解答题形式出现,近年试题 难度有所降低. 学科素养:通过最值、定点问题考查了学生的数学素养,直线与圆 锥曲线等问题考查了学生的数学运算、数学抽象.
高考一轮复习必备—圆锥曲线讲义
一、直线l与圆锥曲线C的位置关系的判断判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程0Ax By C++=(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到关于一个变量的一元二次方程,即联立0(,)0Ax By CF x y++=⎧⎨=⎩消去y后得20ax bx c++=(1)当0a=时,即得到一个一元一次方程,则l与C相交,有且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线平行;若C为抛物线,则直线l抛物线的对称轴平行。
(2)当0a≠时,0∆>,直线l与曲线C有两个不同的交点;0∆=,直线l与曲线C相切,即有唯一公共点(切点);0∆<,直线l与曲线C相离。
二、圆锥曲线的弦长公式相交弦AB的弦长1212ABABAB x y y⎧⎪=⎪⎪⎪=⎨⎪⎪=-==-⎪⎪⎩三、中点弦所在直线的斜率(1)若椭圆方程为22221(0)x ya ba b+=>>时,以P00(x,y)为中点的弦所在直线斜率22(0)bk ya=-≠xy,即22opbk ka=-g;若椭圆方程为22221(0)y xa ba b+=>>时,相应结论为22(0)ak yb=-≠xy,即22opak kb=-g;(2)P00(x,y)是双曲线22221x ya b-=部一点,以P为中点的弦所在直线斜率22(0)bk ya=≠xy,即22opbk ka=g;若双曲线方程为22221y xa b-=时,相应结论为22(0)ak yb=≠xy,即22opak kb=g;(3))P 00(x ,y )是抛物线22y px =部一点,以P 为中点的弦所在直线斜率0(0)pk y =≠0y ; 若方程为22x py =时,相应结论为k p=0x 。
Ⅱ 题型与方法一、直线与圆锥曲线的位置关系(1)直线与圆锥曲线有两个不同的公共点的判断:通法为直线代入曲线判断0∆>;另一方法就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率大小得到。
高考一轮复习必备—圆锥曲线讲义全
高考一轮复习必备—圆锥曲线讲义全-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANⅠ复习提问一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By C ++=(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到关于一个变量的一元二次方程,即联立(,)0Ax By C F x y ++=⎧⎨=⎩消去y 后得20ax bx c ++= (1)当0a =时,即得到一个一元一次方程,则l 与C 相交,有且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 抛物线的对称轴平行。
(2)当0a ≠时,0∆>,直线l 与曲线C 有两个不同的交点;0∆=,直线l 与曲线C 相切,即有唯一公共点(切点);0∆<,直线l 与曲线C 相离。
二、圆锥曲线的弦长公式相交弦AB的弦长1212AB AB AB x y y ⎧⎪=⎪⎪⎪=⎨⎪⎪=-==-⎪⎪⎩三、中点弦所在直线的斜率(1)若椭圆方程为22221(0)x y a b a b +=>>时,以P 00(x ,y )为中点的弦所在直线斜率202(0)b k y a =-≠00x y ,即22op b k k a =-;若椭圆方程为22221(0)y x a b a b +=>>时,相应结论为202(0)a k y b =-≠0x y ,即22op a k k b =-;(2)P 00(x ,y )是双曲线22221x y a b -=内部一点,以P 为中点的弦所在直线斜率202(0)b k y a =≠0x y ,即22op b k k a =; 若双曲线方程为22221y x a b -=时,相应结论为202(0)a k y b =≠0x y ,即22op a k k b =;(3))P 00(x ,y )是抛物线22y px =内部一点,以P 为中点的弦所在直线斜率0(0)pk y =≠0y ;若方程为22x py =时,相应结论为k p=0x 。
(完整)高中数学讲义圆锥曲线
高中数学讲义圆锥曲线【知识图解】定义标准方程椭圆几何性质定义标准方程圆锥双曲线圆锥曲线应用曲线几何性质定义标准方程抛物线几何性质【方法点拨】分析几何是高中数学的重要内容之一,也是连接初等数学和高等数学的纽带。
而圆锥曲线是分析几何的重要内容,因此成为高考观察的要点。
研究圆锥曲线,无外乎抓住其方程和曲线两大特色。
它的方程形式拥有代数的特征,而它的图像拥有典型的几何特征,所以,它是代数与几何的完满联合。
高中阶段所学习和研究的圆锥曲线主要包含三类:椭圆、双曲线和抛物线。
圆锥曲线问题的基本特色是解题思路比较简单清楚,解题方法的规律性比较强,可是运算过程常常比较复杂,对学生运算能力,恒等变形能力,数形联合能力及综合运用各样数学知识和方法的能力要求较高。
1.一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形联合,既娴熟掌握方程组理论,又关注图形的几何性质 .2.着力抓好运算关,提升运算与变形的能力,分析几何问题一般波及的变量多,计算量大,解决问题的思路剖析出来此后,常常因为运算可是关致使功亏一篑,所以要追求合理的运算方案,研究简化运算的基本门路与方法,并在战胜困难的过程中,加强解决复杂问题的信心,提升运算能力 .3.突出主体内容,重要紧环绕分析几何的两大任务来学习:一是依据已知条件求曲线方程,此中待定系数法是重要方法,二是经过方程研究圆锥曲线的性质,常常经过数形联合来表现,应惹起重视 .4.重视对数学思想如方程思想、函数思想、数形联合思想的概括提炼,达到优化解题思想、简化解题过程第 1 课椭圆 A【考点导读】1. 掌握椭圆的第必定义和几何图形 , 掌握椭圆的标准方程 , 会求椭圆的标准方程 , 掌握椭圆简单的几何性质 ;2. 认识运用曲线方程研究曲线几何性质的思想方法; 能运用椭圆的标准方程和几何性质办理一些简单的实质问题 .【基础练习】1.已知△ ABC 的极点 B 、C 在椭圆x 2 y2 1上,极点 A 是椭圆的一个焦点,且椭圆的另3外一个焦点在 BC 边上,则△ ABC 的周长是 ______2. 椭圆 x 24y 21的离心率为 ______3. 已知椭圆中心在原点,一个焦点为F (- 2 3 ,0),且长轴长是短轴长的2 倍,则该椭圆的标准方程是 ______4. 已知椭圆x 2 y 21 的离心率 e 1 ,则 k 的值为 ______8 92k【典范导析】例 1. ( 1)求经过点 (3 , 5 ) ,且 9 x 24 y 2 45 与椭圆有共同焦点的椭圆方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提示:代数不行几何来帮忙,即|AC|=|BD |⇔|AB|=|CD| (等量加等量,和相等) 建议记住的内容(你会发现节约大量运算时间的): 设椭圆 xa22+yb22=1 与直线 y=kx+m 交于 A, B 两点 则|AB|= 1+k2 |xA-xB| 二次项系数指的是直线与椭圆联立后 x2 的系数.
由
x2
4y
得 x2 4kx 4 0 ,由 x1, x2 是这个方程的两根, x1 x2 4k , x1x2 4 ④
y kx 1
由 x2
8
y2 9
得 (9 8k 2) x2 1
16kx 64
0 ,而 x3, x4
是这个方程的两根,
x3
x4
16k 9 8k 2
, x3x4
1
第一章 题目信息转化为坐标表达 第一章 题目信息转化为坐标表达/2
1.1 距离公式与弦长公式/3 1.2 题目核心条件转化为坐标/9 1.3 转化为坐标后,怎么处理/16 总思路:
1. 联立直线与曲线并且判断Δ>0 ⇒ 使用韦达定理得到 x1+x2= , x1x2=
(绝大部分学生能做到) 2. 题目中核心信息 ⇒ 坐标表达式 (本课需要解决的问题,也是学生感觉最杂的问题。通过收集,归纳,整理可以解决。建议学生准备一个 活页本,把试卷作业,例题都抄录下来,核心部分用红笔加注,每过一段时间回顾一下,并把同类题归 类。到高三下学期,自成体系,圆锥曲线大题可以满分。) 3. 计算表达式 (后期学生最缺的能力,圆锥曲线最难算的部分,学生最头痛的位置。建议初学者一定要心平气和对待, 计算要一步三回头!!)
注意: 1. 如果直线过焦点 F,则不必使用弦长公式,而是使用 更快捷的焦半径公式。 2. 不要盲目使用,直线不过焦点的话,我们还是得乖乖 的使用万能的弦长公式。
4
例:过点 M(2,0)作直线 l 与抛物线 y 2=4x 交于 A,B 两点,其中直线的斜率为 1,求|AB |
例:过点 M(1,0)作直线 l 与抛物线 y 2=4x 交于 A,B 两点,其中直线的斜率为 1,求|AB |
例:已知曲线 C:y 2=4x,已知过点(1,0)的直线与曲线 C 交于 A,B 两点
求证: 1 AF
+1 BF
=1
【2015
湖南文】已知抛物线 C1
: x2
4 y 的焦点 F
也是椭圆 C2
:
y2 a2
x2 b2
1
(a b 0) 的一个焦点, C1 与 C2 的公共弦长为 2 6 ,过点 F 的直线 l 与 C1 相交于 A, B 两点,与 C2 相
第五章 面积与最值/66 5.1 三角形的面积表达/66 5.2 求最值之变量化一/77 5.3 求最值之均值不等式/79 5.4 求最值之借助导数/83
第六章 切线/86 第七章 轨迹方程/98 第八章 借助几何分析解决问题/108 第九章 探索类问题/136 第十章 对称问题/143 第十一章 弦中点与点差法/149
9
64 8k 2
,
⑤
将④、⑤代入③,得16(k 2
1)
162 k 3 (9 8k 2)2
4 64 9 8k 2
。即16(k 2
1)
162 9(k 2 1) (9 8k 2)2
所以 (9 8k 2)2 16 9 ,解得 k 6 ,即直线 l 的斜率为 6
4
4
考点:直线与圆锥曲线的位置关系;椭圆的性质
二. 抛物线中的弦长公式 ①已知抛物线 y 2=2px ( p>0),过焦点 F 的直线与抛物线交于 A, B 两点 设 A(x1 , y1 ), B(x2 , y2 ),那么 |AF |=x1+p2 |BF |=x2+p2 |AB | =|AF |+|BF |=x1+x2+p ②已知抛物线 x 2=2py ( p>0),过焦点 F 的直线与抛物线交于 A, B 两点 设 A(x1 , y1 ), B(x2 , y2 ),那么 同理:|AB | =|AF |+|BF |=y1+y2+p
交于 C, D 两点,且 AC 与 BD 同向。
(I)求 C2 的方程;
(II)若 AC BD ,求直线 l 的斜率。
【答案】(I) y2 x2 1 ;(II)
6
.
98
4
试题解析:(I)由 C1 : x2 4 y 知其焦点 F 的坐标为 (0,1) ,因为 F 也是椭圆 C2 的一个焦点,所以 a2 b2 1
①; 又 C1 与 C2 的公共弦长为 2 6 ,C1 与 C2 都关于 y 轴对称,且 C1 的方程为 C1 : x2 4 y ,由此易知
C1 与 C2 的公共点的坐标为 (
6,
3) 2
,
9 4a
2
6 b2
1
②,
联立①②得 a2
9,b2
8 ,故 C2 的方程为
y2 9
x2 8
1。
(II)如图,设 A(x1, y1), B(x2, y2 ),C(x3, y3), D(x4, y4 ),
2
关的坐标形式。 总之,韦达定理是一个桥梁,它连接了题干中的条件与方程中的参数。所以我们第一章的所有题的总思 路,都是先把题目信息坐标化,然后联立直线与曲线,最 后使用韦达定理。
1.1 距离公式与弦长公式 一,距离公式 假设 A(xA , yA ), B(xB , yB ) ,则 A, B 之间的距离: |AB|= (xA-xB)2+ (yB-yA)2 = 1+kAB2|xA-xB|= 1+kA1B2|yA-yB| 1.距离公式源于两点间距离公式,任何时候都能用,不 是非得与曲线联立才能用,只要找横(纵)坐标
⇒ ky2-4 y+4m=0
y1y2=4km=-16 ⇒ m=-4k
代入到直线方程 ⇒ y=kx-4k =k (x-4) ⇒ 直线过(4,0)
首先说一说为什么有些题要使用韦达定理解决:
拿椭圆来说
y=kx+m xa22+yb22=1
联立得(b 2+a 2 k 2 )x 2+2kma2 x+a 2 (m2-b2 )=0
和 AB 于点 P,C,已知 |PC|=2 |AB|,求 k
思路:设 A(x1 , y1 ), B(x2 , y2 ), A,B 的中点为 C( x1+x2 , y1+y2 ),
2
2
设直线 AB 为 y=k (x-1),
因为 PC⊥AB,所以 k PC=-1k
|PC|= 1+kPC2 |xP-xC|=
5 求 |FA|| FB|
解析:第一步:题目信息坐标化:
设 A(x1 , y1 ), B(x2 , y2 ),因为 F( 2,0 ) |FA|= 1+kFA2 |xA-xF|= 1+2 2 |x1-2| | FB|= 1+kFB2 |xB-xF|= 1+2 2 |x2-2| |FA|·| FB|=5| x1-2| |x2-2 |=5 |x1 x2-2(x1+x2 )+4| 第二步:联立所得直线 y=2x-2 与椭圆 x2+y2=1 得
1+kA1B2 |yA-yB| = 2|yB|
3
这里我们观察到 :由于 F 点的纵坐标是 0, 使用关于 y 的 距离公式的话,结果变得非常简洁.联立时只需要消 去 x, 保留 y.这给我们的经验就是:可以留心有没有 纵 坐标为 0,使得距离公式大幅简化.
【2015 江苏】知椭圆 x2+y2=1,过右焦点 F 的直线 l 与椭圆交于 A, B 两点,AB 的垂直平分线交 x=-2 2
例:抛物线 y2=4x ,与直线 l 交于 A, B, 且 OA⊥OB, 求证 AB 过定点
设直线 AB 为:y=kx+m, A(x1 , y1 ), B(x2 , y2 ).
OA⊥OB ⇒ x1x2 + y1y2=0 ⇒
y12·y22 44
+y1y2=0
⇒x+m y2=4x
因 AC 与 BD 同向,且 AC BD ,
所以 AC BD ,
从而 x3 x1 x4 x2 ,即 x3 x4 x1 x2 ,
于是 (x3 x4 )2 4x3x4 (x1 x2 )2 4x1x2
③
设直线 l 的斜率为 k ,则 l 的方程为 y kx 1,
5
y kx 1
1+(-1)2 |-2-x1+x2 |=
k
2
1+(-1)2 |2+x1+x2 |
k
2
|AB|= 1+k2 |xA-xB|= 1+k2 |x1-x2|
接下来的任务就是联立
x2+y2=1 2 y=k (x-1)
, 使用韦达定理代换的过程了
答案:k=±1
对距离公式的理解:不需要求解 P 点的纵坐标来算距离,只需要两个横坐标以 及斜率即可。
三.圆的弦长公式: 圆的弦长可借助垂径定理与勾股定理来求解:
如图,圆 O 的半径为 R, OE⊥AB,其中 AB 为圆 O 的弦,AB 与直径 CD 交于点 E. |OE|= d ,则 AB=2 R2-d2 计算 d 时,需要使用点到直线的距离公式.
6
(2014 重庆)已知直线 ax+y-2=0 与圆心为 C 的圆(x-1)2+(y-a)2=4 相交于两点,且△ABC 为等边三 角形,则实数 a =
和斜率 共计三个量即可表示距离。 2.如果 A 与 B 是曲线上的两个点,那么上述式子称之为 弦长公式。 3.弦长公式是万用的,只要是直线与曲线有两个交点 A, B. 都可以用上述式子计算弦长。
我们看下面两个例子: 例:椭圆 x2+y2=1 的右焦点为 F,斜率为 2 且过点 F 的直线 l , 与该椭圆相交于 A, B 两点,
5 21x 2-40x+15=0 其中 x1 x2=1251=75 x1+x2=4201 . 第三步:使用韦达定理
|FA|·| FB|=2 |x1 x2-2(x1+x2 )+4|