初中数学函数公式(汇总).doc

合集下载

初中数学三角函数公式汇总

初中数学三角函数公式汇总

初中数学三角函数公式汇总一、正弦函数公式1. 正弦函数的基本定义:在直角三角形中,对于一个锐角A,正弦函数定义为:sin A = 对边 / 斜边2. 正弦函数的倒数公式:两个锐角的正弦函数互为倒数,即:sin (90° - A) = 1 / sin A3. 正弦函数的和差公式:sin (A ± B) = sin A · cos B ± cos A · sin B4. 正弦函数的倍角公式:sin 2A = 2 · sin A · cos A二、余弦函数公式1. 余弦函数的基本定义:在直角三角形中,对于一个锐角A,余弦函数定义为:cos A = 邻边 / 斜边2. 余弦函数的倒数公式:两个锐角的余弦函数互为倒数,即:cos (90° - A) = 1 / cos A3. 余弦函数的和差公式:cos (A ± B) = cos A · cos B ∓ sin A · sin B4. 余弦函数的倍角公式:cos 2A = cos²A - sin²A = 2 · cos²A - 1 = 1 - 2 · sin²A三、正切函数公式1. 正切函数的基本定义:在直角三角形中,对于一个锐角A,正切函数定义为:tan A = 对边 / 邻边2. 正切函数的倒数公式:两个锐角的正切函数互为倒数,即:tan (90° - A) = 1 / tan A3. 正切函数的和差公式:tan (A ± B) = (tan A ± tan B) / (1 ∓ tan A · tan B)4. 正切函数的倍角公式:tan 2A = (2 · tan A) / (1 - tan²A)四、余切函数公式1. 余切函数的基本定义:在直角三角形中,对于一个锐角A,余切函数定义为:cot A = 邻边 / 对边 = 1 / tan A2. 余切函数的倒数公式:两个锐角的余切函数互为倒数,即:cot (90° - A) = 1 / cot A3. 余切函数的和差公式:cot (A ± B) = (cot A · cot B - 1) / (cot B ± cot A)4. 余切函数的倍角公式:cot 2A = (cot²A - 1) / (2 · cot A)五、正割函数和余割函数公式1. 正割函数的定义:在直角三角形中,对于一个锐角A,正割函数定义为:sec A = 斜边 / 邻边 = 1 / cos A2. 余割函数的定义:在直角三角形中,对于一个锐角A,余割函数定义为:csc A = 斜边 / 对边 = 1 / sin A以上是初中数学常见的三角函数公式汇总,这些公式在解决三角函数相关问题时非常有用。

初中数学三角函数公式汇总

初中数学三角函数公式汇总

初中数学三角函数公式汇总0 1定义式0 2函数公式倒数关系:①②③商数关系:①②平方关系:①②③0 3诱导公式公式1:设为任意角,终边相同的角的同一三角函数的值相等:公式2:设为任意角,与的三角函数值之间的关系:公式3:任意角与的三角函数值之间的关系:公式4:与的三角函数值之间的关系:公式5:与的三角函数值之间的关系:公式6:及与的三角函数值之间的关系:记背诀窍:奇变偶不变,符号看象限,即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。

形如2k×90°±α,则函数名称不变。

0 4基本公式【和差角公式】◆二角和差公式◆三角和公式【和差化积公式】口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.【积化和差公式】【倍角公式】◆二倍角公式◆三倍角公式◆四倍角公式sin4a=-4*[cosa*sina*(2*sina^2-1)]cos4a=1+(-8*cosa^2+8*cosa^4)tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)◆五倍角公式◆半角公式(正负由所在的象限决定)◆万能公式◆辅助角公式◆余弦定理◆三角函数公式算面积定理:在△ABC中,其面积就应该是底边对应的高的1/2,不妨设BC边对应的高是AD,那么△ABC的面积就是AD*BC*1/2。

而AD是垂直于BC的,这样△ADC就是直角三角形了,显然,由此可以得出,AD=ACsinC,将这个式子带回三角形的计算公式中就可以得到:,同理,即可得出三角形的面积等于两邻边及其夹角正弦值的乘积的一半。

◆公式:若△ABC中角A,B,C所对的三边是a,b,c:则S△ABC=1/2absinC=1/2bcsinA=1/2acsinB.◆反三角函数反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]y=arccos(x),定义域[-1,1] ,值域[0,π]y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】◆反三角函数公式:arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x∈〔0,π〕,arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)。

初中数学公式推导大全

初中数学公式推导大全

初中数学公式推导大全1.一次函数的斜率公式一次函数的一般形式为y=ax+b,其中a为斜率。

斜率表达式可以通过求导法则推导得到。

假设有一次函数y=ax+b,我们可以将其写成y=bx+a。

对其求导得到dy/dx=b。

根据斜率的定义,斜率是直线在x轴上的增量与y轴上的增量的比值。

而直线的斜率与斜率为b的导数相等,所以斜率公式可以记作a=b。

2.二次函数的顶点坐标公式二次函数的一般形式为y=ax^2+bx+c。

其顶点坐标可以通过求导法则推导得到。

二次函数的导数为dy/dx=2ax+b,令dy/dx=0,则得到x=-b/2a。

将x=-b/2a带入二次函数的方程中可以求得y,进而得到顶点的坐标。

3.直线的斜截式公式直线的斜截式公式是y=kx+b,其中k为斜率,b为截距。

斜截式公式可以通过观察直线经过的两个点,利用点斜式公式推导得到。

点斜式公式为(y-y1)=k(x-x1),其中(x1,y1)为直线上的已知点。

将点斜式公式中的x,y代入直线方程y=kx+b中,可以得到关于k和b的两个方程。

解这两个方程可以得到k和b的值,从而得到斜截式公式。

4.平方差公式平方差公式是(a+b)(a-b)=a^2-b^2平方差公式可以通过差的平方公式推导得到。

差的平方公式为(a-b)^2=a^2-2ab+b^2将差的平方公式中的2ab移项,可以得到(a-b)^2=a^2-b^2-2ab。

将(a-b)^2展开得到a^2-2ab+b^2=a^2-b^2-2ab,进一步化简得到(a+b)(a-b)=a^2-b^25.定积分的面积计算公式定积分可以表示曲线与x轴之间的面积。

对于曲线y=f(x),在区间[a,b]上的面积可表示为∫[a,b]f(x)dx。

定积分的面积计算公式可以通过拆分区间并计算矩形面积的方法推导得到。

将区间[a,b]分为n个小区间,每个小区间的长度为Δx=(b-a)/n。

在每个小区间上取一点xi,计算对应的高度为f(xi)的矩形面积,即面积Ai=f(xi)Δx。

初中数学三角函数公式汇总

初中数学三角函数公式汇总

初中数学三角函数公式汇总定义式倒数关系:①②③商数关系:①②平方关系:①②③公式1:设为任意角,终边相同的角的同一三角函数的值相等:公式2:设为任意角,与的三角函数值之间的关系:公式3:任意角与的三角函数值之间的关系:公式4:与的三角函数值之间的关系:公式5:与的三角函数值之间的关系:公式6:及与的三角函数值之间的关系:记背诀窍:奇变偶不变,符号看象限,即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。

形如2k×90°±α,则函数名称不变。

基本公式【和差角公式】◆ 二角和差公式◆ 三角和公式【和差化积公式】口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.【积化和差公式】【倍角公式】◆ 二倍角公式◆ 三倍角公式◆ 四倍角公式sin4a=-4*[cosa*sina*(2*sina^2-1)]cos4a=1+(-8*cosa^2+8*cosa^4) tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)◆ 五倍角公式◆ 半角公式(正负由所在的象限决定)◆ 万能公式◆ 辅助角公式◆ 余弦定理◆ 三角函数公式算面积定理:在△ABC中,其面积就应该是底边对应的高的1/2,不妨设BC边对应的高是AD,那么△ABC的面积就是AD*BC*1/2。

而AD是垂直于BC的,这样△ADC就是直角三角形了,显然,由此可以得出,AD=ACsinC,将这个式子带回三角形的计算公式中就可以得到:,同理,即可得出三角形的面积等于两邻边及其夹角正弦值的乘积的一半。

◆ 公式:若△ABC中角A,B,C所对的三边是a,b,c:则S△ABC=1/2absinC=1/2bcsinA=1/2acsinB.◆ 反三角函数反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]y=arccos(x),定义域[-1,1] ,值域[0,π]y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2) sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】◆ 反三角函数公式:arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotx sin(arcsinx)= x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x∈〔0,π〕,arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)。

初中数学函数公式

初中数学函数公式

卫生函数的性质定义判定方法函数的奇偶性函如果对一函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数;函如果对一函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数(1)利用定义直接判断;(2)利用等价变形判断:f(x)是奇函数f(-x)+f(x)=0f(x)是偶函数f(-x)-f(x)=0 函数的单调性对于给定的区间上的函数f(x):(1)如果对于属于这个去件的任意两个自变的值x1、x2,当x1<x2时,恒有f(x1)<f(x2),则f(x)在这个去件是增函数。

(2)如果对于属于这个去件的任意两个自变的值x1、x2,当x1<x2时,恒有f(x1)>f(x2),则f(x)在这个去件是减函数。

(1)利用定义直接证明(2)利用已知函数的单调性(3)利用函数的图象进行判断(4)根据复合函数的单调性的有关结论判断函数的周期性对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数。

不为零的常数T叫做这个函数的周期。

(1)利用定义(2)利用已知函数的周期的有关定理。

函数名称解析式定义域值域奇偶性单调性正比例函数y=kx (k≠0) R R 奇函数k>0是增函数k<0是减函数反比例函数y= (k≠0)(-∞,0)∪(0,+∞)(-∞,0)∪(0,+∞) 奇函数当k>0时,在区间(-∞,0)∪(0,+∞)上是减函数当k<0时,在区间(-∞,0)∪(0,+∞)上是增函数一次函数y=kx+b (k≠0) R Rb=0时为奇函数b≠0时为非奇非偶函数b>0时是增函数b<0时是减函数(-∞,]a<0时,在(-∞,-]上是增函数在(-,+∞]上是减函数角一条射线绕着它的端点旋转所产生的图形叫做角。

旋转开始时的射线叫角的始边,旋转终止时的射线叫角的终边,射线的端点叫做角的顶点。

初中数学必背重要公式

初中数学必背重要公式

初中数学必背重要公式1. 一次函数的标准方程:y = kx + b2. 二次函数的标准方程:y = ax^2 + bx + c3. 平方差公式:(a+b)^2 = a^2 + 2ab + b^24. 二次差分公式:若数列an的二次差数列为bn,则bn = an+2 - 2an+1 + an5.等差数列通项公式:an = a1 + (n-1)d6.等差数列前n项和公式:Sn = (a1 + an)n/27.等比数列通项公式:an = a1 * q^(n-1)8.等比数列前n项和公式:Sn=a1*(1-q^n)/(1-q)(当q≠1时)Sn=a1*n(当q=1时)9. 乘法公式:(a+b)(c+d) = ac + ad + bc + bd10.因式分解公式:a^2-b^2=(a+b)(a-b)ab + ac = a(b+c)ab - ac = a(b-c)a^3 + b^3 = (a+b)(a^2 - ab + b^2)a^3 - b^3 = (a-b)(a^2 + ab + b^2)11.三角恒等式:sin(A+B) = sinAcosB + cosAsinBcos(A+B) = cosAcosB - sinAsinBtan(A+B) = (tanA + tanB) / (1 - tanAtanB)12.除法公式:sinA/sinB = 2RcosA/cosB = 2RtanA/tanB = 1/2R其中R为三角形外接圆的半径13. 余弦定理:c^2 = a^2 + b^2 - 2abcosC14. 正弦定理:a/sinA = b/sinB = c/sinC = 2R (R为三角形外接圆的半径)15. 牛顿莱布尼茨公式:F(x) = ∫[a,b]f'(x)dx16. 已知函数在点a处的导数值,可根据导数的定义公式求出函数在a附近的近似值:f'(a) = lim(h->0)(f(a+h) - f(a))/h17.反比例函数的标准方程:y=k/x18.等腰三角形的性质:等腰三角形的底边中点到顶角的距离等于底边一半的高19.平行四边形的性质:两对对边分别平行且相等对角线互相平分对角线互相垂直20.鹤嘴锁公式:两条直线的倾角之和等于180°21.三角形的内角和公式:三角形的内角和为180°22.余角公式:互补角的和为90°,补角的和为180°23.同位角公式:同位角互相相等24.同旁内角公式:同旁内角互相相等25.圆的面积公式:S=πr^226.圆的周长公式:C=2πr27.直角三角形的勾股定理:a^2+b^2=c^228.斜率公式:若直线过两点P(x1,y1)和Q(x2,y2),则直线的斜率为m=(y2-y1)/(x2-x1)29.泰勒展开公式:函数f(x)在x=a处的n阶泰勒展开式为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!30. 立方和公式:(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3这些公式在初中数学中非常重要,掌握后能帮助你更好地理解和解决各种数学问题。

(完整)初中常用三角函数公式

(完整)初中常用三角函数公式

(完整)初中常用三角函数公式初中常用三角函数公式
三角函数是数学中常见的概念,它们在初中阶段的数学研究中起着重要的作用。

以下是一些常用的三角函数公式:
1. 正弦函数公式:
- 正弦函数的定义:在直角三角形中,对于一个锐角角度A,正弦函数的值等于对边与斜边的比值,可以表示为sin(A) = 对边/斜边。

2. 余弦函数公式:
- 余弦函数的定义:在直角三角形中,对于一个锐角角度A,余弦函数的值等于邻边与斜边的比值,可以表示为cos(A) = 邻边/斜边。

3. 正切函数公式:
- 正切函数的定义:在直角三角形中,对于一个锐角角度A,正切函数的值等于对边与邻边的比值,可以表示为tan(A) = 对边/邻边。

4. 余切函数公式:
- 余切函数的定义:在直角三角形中,对于一个锐角角度A,余切函数的值等于邻边与对边的比值,可以表示为cot(A) = 邻边/对边。

5. 正割函数公式:
- 正割函数的定义:在直角三角形中,对于一个锐角角度A,正割函数的值等于斜边与邻边的比值,可以表示为sec(A) = 斜边/邻边。

6. 余割函数公式:
- 余割函数的定义:在直角三角形中,对于一个锐角角度A,余割函数的值等于斜边与对边的比值,可以表示为csc(A) = 斜边/对边。

这些公式是初中数学中常用的三角函数公式,它们可以用来解决与三角函数相关的各种问题。

熟练掌握这些公式并灵活运用,有助于提高数学解题能力和理解几何概念的能力。

初中数学函数之常用公式

初中数学函数之常用公式

初中数学函数之常用公式
常用公式
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0)
x y
+ + 在第一象限
+ - 在第四象限
- + 在第二象限
- - 在第三象限
8.若两条直线y1=k1x+b1‖y2=k2x+b2,那么k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1
10.
y=k(x-n)+b就是向右平移n个单位
y=k(x+n)+b就是向左平移n个单位
口诀:右减左加(对于y=kx+b来说,只改变k)
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口诀:上加下减(对于y=kx+b来说,只改变b)[初中数学函数之常用公式]。

(完整版)初中数学公式定理大全

(完整版)初中数学公式定理大全

一、锐角三角函数:初中数学公式定理大全sin A =∠A 的对边cos A =∠A 的邻边① ∠A 是 Rt △ABC 的任一锐角,则∠A 的正弦:tan A = ∠A 的对边斜边 ,∠A 的余弦: 斜 边 ,∠A 的正切:∠A 的邻边; 并且 sin 2A +cos 2A =1. 0<sin A <1,0<cos A <1,tan A >0. ∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小.② 余角公式:sin(90º-A )=cos A ,cos(90º-A )=sin A .铅垂高度=ℎ ℎ③ 斜坡的坡度:i =水平宽度 ④ 特殊角的三角函数值:l .设坡角为 α,则 i =tan α=l . l二、二次函数: y = ) 1.定义:一般地,如果 ,那么 y 叫做 x 的二次函数. 2. 抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当a > 0时,开口向上;当a < 0时,开口向下;|a |相等,抛物线的开口大小、形状相同。

②平行于 y 轴(或重合)的直线记作x = ℎ,特别地,y 轴记作直线x = 0。

y = ax 2 + bx + c = a(x + b )2 + 4ac ‒ b2(‒ b , 4ac ‒ b 2) x = ‒ b(1)公式法:2a4a,∴顶点是 2a4a,对称轴是直线2a(2)配方法:运用配方的方法,将抛物线的解析式化为y = a (x ‒ ℎ)2+ k 的形式,得到顶点为(h,k),对称轴是直线x = ℎ(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

(x ,y ) (x ,y ) x = x 1 + x 2 若已知抛物线上两点 1 、 2 (及 y 值相同),则对称轴方程可以表示为:2 4.抛物线y = ax 2 + bx + c 中,a ,b ,c 的作用(1)a 决定开口方向及开口大小,这与y = ax 2中的a 完全一样. b a y = ax 2 + bx + c x =‒ bb = 0 (2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线 2a ,故:① 时,对b > 0a b< 0 a称轴为 y 轴;②a (即 、b 同号)时,对称轴在 y 轴左侧;③a (即 、b 异号)时,对称轴在 y 轴右侧.(3)c 的大小决定抛物线y = ax 2+ bx + c 与 y 轴交点的位置. 当x = 0时,y=c ,∴抛物线y = ax 2+ bx + c 与 y 轴有且只有一个交点(0,c )① c = 0,抛物线经过原点; ②c > 0,与 y 轴交于正半轴;③c < 0,与 y 轴交于负半轴b < 0α以上三点中,当结论和条件互换时,仍成立。

初高中所有函数的公式及图像大全,八年级函数公式大全及图解

初高中所有函数的公式及图像大全,八年级函数公式大全及图解

初高中所有函数的公式及图像大全,八年级函数公式大全及图解初高中所有函数的公式及图像大全?初中生学习数学应该熟练掌握基本公式,下面总结了初中数学公式,希望能够帮助大家学习数学。

初中数学所有公式总结1一元二次方程求解公式二次函数表达式ax²+bx+c=0;(a≠0),一元二次方程可以参考二次函数进行变形。

求解一元二次方程,我们可以先做出抛物线,然后看与x轴交点。

△=b²-4ac;求解公式:x=(-b±v△)/2a;2因式分解常用公式1、平方差公式:a²-b²=(a+b)(a-b)。

2、完全平方公式:a²+2ab+b²=(a+b)²。

3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。

7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。

8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。

3三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))ctg觉得有用点个赞吧觉得有用点个赞吧八年级函数公式大全?三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))和差化积2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb 函数的种类及公式?一次函数 (1)当k0时,y随x的增大而增大;(2)当k0时,y随x的增大而减小.正比例函数与x、y轴交点是原点(0,0)。

(完整版)初中数学公式大全(整理打印版)

(完整版)初中数学公式大全(整理打印版)

初中数学公式大全初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值: ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。

二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);b a b a =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数); ⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bccd ab b d c a ±=±; 2. 方程与不等式 ①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =a b -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。

初中数学必背公式全集打印版

初中数学必背公式全集打印版

初中数学必背公式全集打印版一元一次方程:如果 ax+b=0,则 x = -b/a。

二元一次方程:如果 ax + by + c = 0, 则 x = [c - by]/a, y = [c - ax]/b。

一元二次方程:如果 ax2 + bx + c = 0,则解为 x1 = (-b + 平方根〔b2 - 4ac〕)/2a, x2 = (-b - 平方根〔b2 - 4ac〕)/2a 。

三角函数求值:① sinA + cosA = 1;② sin2A + cos2A = 1;③ 1+ tan2A = sec2A;④ cot2A + 1 = csc2A;勾股定理:若 3边长为 a、b、c,则 a2 + b2 = c2。

平面几何图形的面积公式:正方形的面积为 a2,矩形的面积为 ab,圆的面积为π r2,三角形的面积为 1/2 ab sinC,梯形的面积为(a + b)h÷2。

立体几何图形的体积公式:立方体的体积为 a3,圆柱体的体积为π r2h,圆锥体的体积为1/3 π r2h。

索引法求根:设 x2 = ax + b, x3 = ax2 + b,则 xn+1 = axn + b。

隐函数求解:若 y = f(x),则∂y/∂x = f'(x).函数图像:对任意函数 y = f(x),其图像为{(x, y)| x ∈ D, y=f(x)}。

矩阵运算:矩阵 A 和矩阵 B 的乘积为 C = AB,其中Cij = ∑k=1n Aik Bkj, n 为矩阵的阶数。

概率计算:联合概率P(A ∩ B) = P(A) × P(B|A),条件概率P(B|A) = P(A ∩ B) / P(A)。

不等式:若 ax + b > 0,则 x > -b/a; 若 ax2 + bx + c > 0,则x > [-b ± 平方根〔b2 - 4ac〕]/2a。

(完整版)初中三角函数公式表

(完整版)初中三角函数公式表

(完整版)初中三角函数公式表一、三角函数的基本定义在初中数学中,三角函数主要涉及正弦函数(sin)、余弦函数(cos)和正切函数(tan)。

这些函数与直角三角形的三边长度有着密切的关系。

1. 正弦函数(sin):正弦函数表示直角三角形中,对应于一个锐角的斜边与斜边与邻边之比。

公式为:sin(θ) = 对边 / 斜边。

2. 余弦函数(cos):余弦函数表示直角三角形中,对应于一个锐角的邻边与斜边之比。

公式为:cos(θ) = 邻边 / 斜边。

3. 正切函数(tan):正切函数表示直角三角形中,对应于一个锐角的斜边与邻边之比。

公式为:tan(θ) = 对边 / 邻边。

二、三角函数的相互关系1. 正弦函数和余弦函数的关系:sin(θ) = cos(90° θ),cos(θ) = sin(90° θ)。

2. 正切函数和余弦函数的关系:tan(θ) = sin(θ) / cos(θ)。

3. 正切函数和正弦函数的关系:tan(θ) = sin(θ) / cos(θ)。

三、三角函数的特殊值1. 0°:sin(0°) = 0,cos(0°) = 1,tan(0°) = 0。

2. 30°:sin(30°) = 1/2,cos(30°) = √3/2,tan(30°) =1/√3。

3. 45°:sin(45°) = √2/2,cos(45°) = √2/2,tan(45°)= 1。

4. 60°:sin(60°) = √3/2,cos(60°) = 1/2,tan(60°) = √3。

5. 90°:sin(90°) = 1,cos(90°) = 0,tan(90°) 无定义。

四、三角函数的周期性三角函数具有周期性,即函数值在一定的周期内会重复出现。

九年级数学公式大全

九年级数学公式大全

九年级数学公式大全九年级数学公式包括但不限于以下内容:1. 二次函数公式:y=ax^2+bx+c,其中a≠0。

2. 三角函数公式:正弦函数:sinθ=对边÷斜边余弦函数:cosθ=邻边÷斜边正切函数:tanθ=对边÷邻边余切函数:cotθ=邻边÷对边3. 平面向量公式:向量a=(x,y),向量b=(x,y),向量加法:a+b=(x+x, y+y)。

4. 周长公式:长方形周长=(长+宽)×2,C=2(a+b)正方形周长=边长×4,C=4a圆周长=直径×圆周率,C=2π5. 面积公式:长方形面积=长×宽,S=ab正方形面积=边长×边长,S=a²三角形面积=底×高÷2,S=ah/2平行四边形面积=底×高,S=ah梯形面积=(上底+下底)×高÷2,S=1/2(a+b)h圆形面积=半径×半径×圆周率,S=πr²扇形面积=半径×半径×圆周率×圆心角度数(n)÷360,S=nπr²/3606. 判别式公式:b²-4ac=0,注:方程有两个相等的实根;b²-4ac>0,注:方程有两个不等的实根;b²-4ac<0,注:方程没有实根,有共轭复数根。

7. 两角和公式:sin(A+B)=sinAcosB+cosAsinB。

这些公式在九年级数学中有着广泛的应用,是解决数学问题的基础。

同时,需要注意每个公式都有其特定的使用条件和范围,使用时需要加以区分和判断。

初中数学各种公式(完整版)

初中数学各种公式(完整版)

数学各种公式及性质1. 乘法与因式分解①(日+6)(日一Z?) =/—//;②(a+ ∕7) 2 = a2÷2a∂÷∂2;③(a+∂) (a2—a∂+∂2) = a +F;④(日一/?) (H+"+F)=/—/?'; /+/=(日+矿—2 訪;(日―矿=(m+b) J4 力。

2. 舉的运算性质①,Xm”=『”;(2)a÷a=a^n↑ 3(a)n=a n↑④(ab)π=ab n↑⑤(#)”=£;⑥『=》,特别: A=G)";⑦a0=1(a≠0)o3. 二次根式①(启)2=m(m^o);②仔=扁丨;③丽=晶×晶;④伶=备(日>0,620)。

4. 三角不等式IaI-Ibl≤∣a±b∣≤∣a∣ + ∣b∣(定理);加强条件:IIa卜IbllWIa±b∣W∣a∣ + ∣b∣也成立,这个不等式也可称为向量的三角不等式(其中a, b分别为向量a和向量b)|a+b| ≤ |a| +1b |; ∣a~b∣≤ ∣a∣ +1b|; IaI ≤b<=>-b≤a≤b ;∣a-b∣ NIalTb|; -∣a∣≤a≤∣a∣;5. 某些数列前n项之和1+2+3+4+5+6+7+8+9+∙∙∙+n=n (n+1)∕2; 1+3+5+7+9+11+13+15+∙∙∙+(2n-1)=n2 ;2+4+6+8+10+12+14+∙∙∙+ (2n) =n (n+1) ; 12+22+32+42+52+62+72+82+∙∙∙+∏2-n(n+1) (2n+1 )/6;13+23+33+43+53+63+∙∙∙n3=n2 (n+1) 74 ;1 *2+2*3+3*4+4*5+5*6+6*7+・・・+n (n+1 )=n (n+1) (n+2) /3;6. 一元二次方程对于方程:ax+∂x+c=0:①求根公式是X= 一H",其中△=圧一4影叫做根的判别式。

(word完整版)初中数学公式大全(整理打印版),推荐文档.doc

(word完整版)初中数学公式大全(整理打印版),推荐文档.doc

初中数学公式大全初中数学定理、公式汇编一、数与代数1.数与式(1)实数实数的性质:①实数 a 的相反数是— a,实数 a 的倒数是1(a≠0);a②实数 a 的绝对值:a( a 0)a 0( a 0)a(a 0)③正数大于0,负数小于0,两个负实数,绝对值大的反而小。

二次根式:①积与商的方根的运算性质:ab a b (a≥0,b≥0);a a( a≥ 0, b> 0);b b②二次根式的性质:a2a( a 0) aa(a 0)( 2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即 a m a n a m n ( m、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 a m a n a m n ( a≠ 0, m、 n 为正整数, m>n);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即( ab) n a n b n(n为正整数);④零指数: a 0 1 (a≠0);⑤负整数指数: a n1( a ≠ 0, n 为正整数);a n⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即( a b)( a b)a 2b 2 ;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的 2 倍,即 (ab) 2 a 2 2ab b 2 ;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即a a ma a m bb ;b b,其中 m 是不等于零的代数式;m m②分式的乘法法则:a c ac ;b d bd③分式的除法法则:a c a d ad(c 0) ;b db cbc( a ) nn④分式的乘方法则:a n ( n 为正整数);b b⑤同分母分式加减法则:a b a bc c c ;⑥异分母分式加减法则:a d ab cdc b;bc2. 方程与不等式① 一 元 二 次 方 程 ax 2bx c 0 (a ≠ 0 ) 的 求 根 公 式 :xbb 2 4ac (b 2 4ac0)2a② 一 元 二 次 方 程 根 的 判 别 式 :b 24ac 叫 做 一 元 二 次 方 程ax 2bx c 0 ( a ≠0)的根的判别式:0 方程有两个不相等的实数根; 0 方程有两个相等的实数根; 0方程没有实数根;③一元二次方程根与系数的关系:设x 1 、 x 2 是方程 ax 2 bx c0 ( a ≠ 0)的两个根,那么x1 + x2b c ;= a,x1x2=a不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3.函数一次函数的图象:函数 y=kx+b(k 、b 是常数, k≠ 0) 的图象是过点( 0,b)且与直线y=kx 平行的一条直线;一次函数的性质:设 y=kx+b ( k≠ 0),则当 k>0 时, y 随 x 的增大而增大;当k<0, y 随 x 的增大而减小;正比例函数的图象:函数y kx 的图象是过原点及点(1,k)的一条直线。

数学初中函数公式总结归纳

数学初中函数公式总结归纳

数学初中函数公式总结归纳函数作为数学的重要概念,是初中数学课程中的重点内容。

通过学习函数,可以帮助学生提高逻辑思维和问题解决能力。

在函数的学习过程中,熟练掌握基本的函数公式是非常重要的。

本文将对初中数学中常见的函数公式进行总结和归纳,供同学们复习和参考使用。

一、线性函数公式1. 一般形式:y = kx + b其中,k为斜率,b为截距,表示图像为一条直线的函数。

2. 截距式:y = kx + c其中,k为斜率,c为y轴上的截距,表示函数与y轴的交点。

3. 斜率公式:k = (y2 - y1) / (x2 - x1)其中,(x1, y1)和(x2, y2)为直线上的任意两点,表示函数的斜率。

二、二次函数公式1. 一般形式:y = ax^2 + bx + c其中,a、b、c为常数,a不为0,表示图像为开口向上或向下的抛物线。

2. 零点公式:x = (-b ± √(b^2 - 4ac)) / (2a)其中,函数的零点为方程ax^2 + bx + c = 0的解,通过求根公式计算得出。

3. 对称轴公式:x = -b / (2a)其中,函数的对称轴为抛物线的中轴线,通过求对称轴公式计算得出。

三、指数函数公式1. 一般形式:y = a^x其中,a为常数且大于0且不等于1,表示图像为指数曲线。

2. 对数公式:x = loga(y)其中,a为底数,x为对数的真数,y为对数的值。

四、幂函数公式1. 一般形式:y = x^a其中,a为常数,表示图像为幂函数曲线。

2. 对数公式:a = logx(y)其中,x为底数,a为对数的真数,y为对数的值。

五、三角函数公式1. 正弦函数:y = sin(x)其中,x为角度,y为正弦函数值。

2. 余弦函数:y = cos(x)其中,x为角度,y为余弦函数值。

3. 正切函数:y = tan(x)其中,x为角度,y为正切函数值。

六、反比例函数公式1. 一般形式:y = k / x其中,k为常数且不等于0,表示图像为双曲线。

初中函数所有公式总结归纳

初中函数所有公式总结归纳

初中函数所有公式总结归纳函数作为数学中的重要概念,在初中数学学习中占据着重要的位置。

函数通过一组有序配对的数值来描述两个变量之间的关系。

在学习函数时,我们需要掌握一些基本的函数公式和性质。

本文将对初中函数的公式进行总结归纳,以帮助同学们更好地理解和运用函数知识。

一、一次函数一次函数又被称为线性函数,它的函数表达式为:y = kx + b。

其中,k表示斜率,b表示截距。

1. 点斜式公式:点斜式公式是一次函数的一种表达形式,它通过一个点和该点处的斜率来表示一次函数。

公式如下:y - y₁ = k(x - x₁)其中,(x₁, y₁)为一次函数上的已知点,k为斜率。

2. 两点式公式:两点式公式用两个已知点来表示一次函数,公式如下:(y - y₁) / (y₂ - y₁) = (x - x₁) / (x₂ - x₁)其中,(x₁, y₁)、(x₂, y₂)为一次函数上的两个已知点。

3. 斜截式公式:斜截式公式将一次函数表示为截距和斜率的形式,公式如下:y = kx + b其中,k为斜率,b为截距。

二、二次函数二次函数是关于变量的二次多项式函数,它的函数表达式为:y = ax² + bx + c。

其中,a、b、c为常数,且a ≠ 0。

1. 顶点坐标公式:二次函数的顶点坐标可通过以下公式求得:x = -b / (2a),y = -Δ / (4a)其中,Δ = b² - 4ac为判别式,用于判断二次函数的图像与x轴交点的情况。

2. 一般式公式:一般式公式将二次函数表示为标准形式,公式如下:y = ax² + bx + c其中,a为二次系数,决定了函数的开口方向;b为一次系数,决定了函数图像在x方向的平移;c为常数项,决定了函数图像在y方向的平移。

3. 因式分解公式:二次函数的因式分解形式为:y = a(x - x₁)(x - x₂)其中,(x₁, 0)和(x₂, 0)为二次函数的两个零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卫生函数的性质定义判定方法
函数的奇偶性函如果对一函数f(x)定义域内任意一个x,都有
f(-x)=-f(x),那么函数f(x)叫做奇函数;
函如果对一函数f(x)定义域内任意一个x,都有
f(-x)=f(x),那么函数f(x)叫做偶函数
(1)利用定义直接判断;
(2)利用等价变形判断:
f(x)是奇函数f(-x)+f(x)=0
f(x)是偶函数f(-x)-f(x)=0
函数的单调性对于给定的区间上的函数f(x):
(1)如果对于属于这个去件的任意两个自变的值
x1、x2,当x1<x2时,恒有f(x1)<f(x2),则f(x)在
这个去件是增函数。

(2)如果对于属于这个去件的任意两个自变的值
x1、x2,当x1<x2时,恒有f(x1)>f(x2),则f(x)在
这个去件是减函数。

(1)利用定义直接证明
(2)利用已知函数的单调性
(3)利用函数的图象进行判断
(4)根据复合函数的单调性的有关结论判断
函数的周期性对于函数f(x),如果存在一个不为零的常数T,使
得当x取定义域内的每一个值时,f(x+T)=f(x)都
成立,那么就把函数y=f(x)叫做周期函数。

不为零
的常数T叫做这个函数的周期。

(1)利用定义
(2)利用已知函数的周期的有关定理。

函数名称解析式定义域值域奇偶性单调性
正比例函
数y=kx (k≠0) R R 奇函数
k>0是增函数
k<0是减函数
反比例函
数y= (k≠0) (-∞,0)∪
(0,+∞)
(-∞,0)∪(0,+∞) 奇函数
当k>0时,在区间
(-∞,0)∪(0,+∞)上是减函数
当k<0时,在区间
(-∞,0)∪(0,+∞)上是增函数
一次函数y=kx+b (k≠0) R R b=0时为奇函数
b≠0时为非奇非
偶函数
b>0时是增函数
b<0时是减函数
在(-,+∞]上是减函数
角一条射线绕着它的端点旋转所产生的图形叫做角。

旋转开始时的射线叫角的始边,旋转终止时的射线叫角的终边,射线的端点叫做角的顶点。

角的单
位制
关系弧长公式扇形面积公式
角度制
10=弧度≈0.01745弧度l=S
扇形=
弧度制1弧度=≈57018' l=∣α∣·r S
扇形=∣α∣·r
2=lr
角的终

位置角的集合在x轴正半轴上{α∣α=2kπ,k Z}
在x轴负半轴上{α∣α=2kπ+π,k Z}
在x轴上{α∣α=kπ,k Z}
在y轴上{α∣α=kπ+,k Z}
在第一象限内{α∣2kπ<α<2kπ+,k Z}
在第二象限内{α∣2kπ+<α<2kπ+π,k Z}
在第三象限内
{α∣2kπ+π<α<2kπ+,k Z}
在第四象限内
{α∣2kπ+<α<2kπ+2π,k Z}
特殊角的三角函数值函数/角0 π2πsina 0 1 0 -1 0 cosa 1 0 -1 0 1 tana 0 1 不存在0 不存在0 cota 不存在 1 0 不存在0 不存在
三角函
数的性
三角函数定义域值域奇偶性周期图象单调性
(k Z)上是增函数
在[2kπ+,2kπ+], (k Z)上是减函数
y=cosx R [-1,1] 偶函数2π在[2kπ-π,2kπ], (k Z)上是增函数
在[2kπ,2kπ+π], (k Z)上是减函数
y=tanx {x∣x≠k
π
+,k Z}
R 奇函数π在[2kπ-,2kπ+],
(k Z)上是增函数
三角函数诱导公式
角/函数正弦余弦正切
-α-sinαcosα-tanα900-αcosαsinαcotα900+αcosα-sinα-cotα1800-αsinα-cosα-tanα1800+α-sinα-cosαtanα2700-α-cosα-sinαcotα2700+α-cosαsinα-cotα3600-α-sinαcosα-tanαk·3600+α (k Z) sinαcosαtanα
三角函数同角公式倒数关系sinα·cscα=1 cosα·secα=1 tanα·cotα=1 商数关系
平方关系sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α
和差角公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ
三角函数倍角公式sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
三角函数万能公式三角函数半角公式积化和差公式
和差化积公式。

相关文档
最新文档