大学物理-电场强度通量,高斯定理

合集下载

大学物理-82电通量高斯定理

大学物理-82电通量高斯定理

E dS

E d E E dS EdS cos
S S S
S
讨论
dE E dS
正与负
E dS
如右上图可知 E ds >0 若如红箭头所示,则 E ds <0
取决于面元的法线 方向的选取
S
dS
(3)任意电场中通过闭合面的电通量
q 2 S E dS E 4r 0
q E 40 r 2
(1)rR时,高斯面无电荷
+ + + +
+
+ +
R
+
r
+ + + +
+ + + +
q
E 0
(2)rR时,高斯面包围电荷q
E
q 40 r
2
均匀带电球面的电场分布
E r关系曲线
+ + + +
该面元对点电荷所张的 立体角 d 点电荷在面元处的场强为 E
q
S
d
dS
E
点电荷在面元处的场强为
E
q 4 0 r 2
q
r
^ r
^ r
S
d
dS
E
dE E dS
E dS
S
qdscos q q ˆ dS d r 2 2 4 0 4 0 r 4 0 r
S S i
q
S内
0
推广到任意带电系统的电场: 用迭加原理
s
q1
q2
q3

大学物理 高斯定理

大学物理 高斯定理

引言概述:在大学物理中,高斯定理是一项重要的物理原理,它描述了电场和磁场的性质。

高斯定理由德国物理学家卡尔·弗里德里希·高斯于18世纪中叶提出,是电磁学的基础之一。

本文将介绍高斯定理的概念、原理及其在电场和磁场中的应用。

正文内容:1. 高斯定理的概念1.1 定义高斯定理是描述电场和磁场分布的一种数学工具,它通过计算电场或磁场通过一个闭合曲面(高斯面)的总通量来研究场的分布。

1.2 数学表达高斯定理可以用数学表达式表示为:∮E·dA = q/ε0,其中∮E·dA表示场在闭合曲面上的总通量,q表示闭合曲面内的电荷量,ε0为真空介电常数。

2. 高斯定理的原理2.1 高斯面的选择高斯定理中的高斯面是根据具体问题选择的,一般情况下我们选择对称性较高的闭合曲面,以简化计算。

2.2 电场线的特性高斯定理的基础是电场线的性质,电场线从正电荷流向负电荷,且与介质边界垂直,通过一个封闭曲面的电场线数目与该封闭曲面内的电荷量有关。

2.3 通量与电场强度高斯定理中的总通量与电场强度呈正相关关系,通过计算总通量可以得到闭合曲面内的电场强度大小。

3. 高斯定理在电场中的应用3.1 点电荷的场分布高斯定理可以用来研究点电荷周围的电场分布,通过选择以点电荷为中心的球面作为高斯面,可以计算出球面内外的电场强度大小。

3.2 均匀带电球壳的场分布对于均匀带电球壳,可以通过选择以球壳为中心的闭合曲面来计算球壳内外的电场分布,根据高斯定理可以得到球壳内外的电场强度大小。

4. 高斯定理在磁场中的应用4.1 磁场的总通量类似于电场,磁场也可以使用高斯定理来描述,通过计算磁场通过闭合曲面的总通量可以了解磁场的分布情况。

4.2 磁场的磁感应强度高斯定理在磁场中的应用可以得到磁场的磁感应强度大小,通过选择合适的闭合曲面,可以计算出曲面内外的磁感应强度。

5. 高斯定理的实际应用5.1 高斯定理在电容器中的应用电容器是电子器件中常见的元件,根据高斯定理,可以计算电容器两极板之间的电场强度,进而了解电容器的性能。

大学物理——10-3电通量 高斯定理

大学物理——10-3电通量 高斯定理

v v dΦ = E ⋅ dS e
Φe = ∫ dΦe = ∫ s s
S 为封闭曲面时
v v E ⋅ dS
v v dΦ = E ⋅ dS e
S
v v Φe = E ⋅ dS ∫
三、高斯定理 通过真空中的静电场中任一闭合面的电通量 通过真空中的静电场中任一闭合面的电通量 Φe 闭合面 等于包围在该闭合面内 等于包围在该闭合面内的电荷代数和 ∑ qi 的 ε 0 分之 而与闭合面外的电荷无关. 一,而与闭合面外的电荷无关.
条电力线不会中断, 条电力线不会中断,仍全 部穿出封闭曲面 S ,即:
+
Φe =
q
ε0
点电荷位于球面中心
Φe =
q
ε0
(3)点电荷在闭合曲面之外 点电荷在闭合曲面之外
r v d Φ1 = E 1 ⋅ d S 1 > 0 v v d Φ2 = E 2 ⋅ d S 2 < 0
d Φ1 + d Φ 2 = 0
1 q d Φ e = E cos 0d S = dS 2 4π ε 0 r
qd S Φe = dΦe = ∫S ∫ S 4πε 0 r 2
=
=
r
+
v dS
q
4 πε 0r q
2

S
dS
ε0
Φ e 与r无关
(2)点电荷在任意闭合曲面 )点电荷在任意闭合曲面 内
+ q 发出的 q / ε 0
四、高斯定理的应用 对称性) (用高斯定理求解的静电场必须具有一定的对称性) 用高斯定理求解的静电场必须具有一定的对称性 其步骤为 对称性分析; 对称性分析; 根据对称性取合适的闭合面; 根据对称性取合适的闭合面; 应用高斯定理计算. 应用高斯定理计算. 1.场源电荷无限长轴对称性分布: 场源电荷无限长轴对称性分布: 场源电荷无限长轴对称性分布

大学物理-电通量-高斯定理

大学物理-电通量-高斯定理
❖ 一、求场强的思路
高斯定理反映的是电通量与电荷的关系,而不是场强 与电荷的直接联系。要通过电通量计算场强,就需要 在高斯定理表达式中,将场强从积分号中提出来,这 就导致要求电场的分布具有某种特殊的对称性。
几类对称性:
❖ 电场分布轴对称 ❖ 电场分布球对称 ❖ 电场分布面对称
二、 高斯定理的解题步骤:
大学物理
上册
§7. 3 电通量 高斯定理
§7. 3 电通量 高斯定理
7-3-1 电场线及其性质
❖ 标量场: 在空间各点存在着一个标量,它的数值是 空间位置的函数,如温度场、气压场
❖ 矢量场:在空间各点存在着一个矢量,它的值是空 间位置的函数,如流速场、电场、磁场 ▪ 场线:就是一些有方向的曲线,其上每一点的切 线方向都和该点的场矢量方向一致,场线的疏密 反映矢量的大小。
解: 对称性分析 E具有球对称作高斯面——球面
1) rR
电通量
e E1 dS E1 dS E14r2
s1
电量 qi 0
用高斯定理求解
+
+ +
R
+
+
r
E
+ +q
+
+
+
+
+
+++ +
E14r2 0 E1 0
e E 22d )S E r2 d RS E 2 4 r2
++
+
E
+
s2
S
E d S E 1 d S E 2 d S E n d S
S
S
S
S
0q1 0 q0 2 qn 0

大学物理电通量高斯定理

大学物理电通量高斯定理

高斯定理的应用范围
在静电场中,高斯定理广泛应用 于电荷分布和电场关系的分析。
在恒定磁场中,高斯定理可以用 来分析磁通量与电流之间的关系

高斯定理是解决物理问题的重要 工具之一,尤其在计算电场分布 、求解电势、分析带电体的相互
作用等方面具有广泛应用。
02
电通量和高斯定理的关系来自 电通量的定义和性质总结词
大学物理电通量高斯定理
汇报人: 202X-01-04
contents
目录
• 高斯定理的概述 • 电通量和高斯定理的关系 • 高斯定理的证明 • 高斯定理的应用实例
01
高斯定理的概述
高斯定理的内容
总结了电荷分布与电场之间的关系, 指出在空间中任一封闭曲面内的电荷 量与该封闭曲面上的电场通量之间存 在正比关系。
利用电场线证明高斯定理
总结词:直观明了
详细描述:通过电场线的闭合曲线围成的面积的电通量与该闭合曲线所包围的电荷量的关系,证明高 斯定理。
利用高斯公式证明高斯定理
总结词:数学严谨
详细描述:利用高斯公式,将空间分成无数小的体积元,再通过求和得到整个空间的电场分布,从而证明高斯定理。
利用微积分证明高斯定理
详细描述
高斯定理是描述电通量与电荷分布关系的定理,它指出在任意闭合曲面内的电荷量等于该闭合曲面所包围的体积 内电场线的总条数。这个定理表明,电荷分布与电场线数之间存在一定的关系,即电荷分布影响电场线的分布。
电通量和高斯定理的推导过程
总结词
通过数学推导,我们可以证明高斯定理的正确性。首先,我们定义电场线密度为电场强 度与垂直于曲面的面积之比,然后利用微积分原理和格林公式,推导出高斯定理的表达
公式表达为:∮E·dS = 4πkQ,其中 ∮E·dS表示封闭曲面上的电场通量,Q 表示曲面内的电荷量。

大学物理高斯定理课件

大学物理高斯定理课件

复分析
在复分析中,高斯定理可以用于研究复函数的积分和全纯函数的空间性质。
THANKS
感谢观看
微分情势和积分公式
高斯定理的推导过程中需要用到微分 情势和积分公式,这些是微分几何的 重要概念和工具。
03
高斯定理的证明
证明的思路
01
引入高斯定理的背 景和意义
阐述高斯定理在电场和磁场中的 重要性,说明证明高斯定理的必 要性。
02
确定证明方法
03
构建证明框架
介绍使用微积分和向量场的方法 来证明高斯定理,说明其公道性 和可行性。
01
多重积分情势
高斯定理可以通过多重积分的情势进行 推广,以处理更复杂的几何形状和场散 布。
02
03
广义高斯定理
广义高斯定理将高斯定理的应用范围 扩大到非保守场,例如电磁场和引力 场。
高斯定理在其他物理领域的应用
01
02
03
电动力学
高斯定理在电动力学中用 于计算电场和电荷散布的 关系,以及电磁波的传播 。
相对论物理
在相对论物理中,高斯定 理可以应用于计算引力场 的能量密度和压力。
粒子物理学
在粒子物理学中,高斯定 理可以用于计算粒子在强 磁场中的运动轨迹和能量 。
高斯定理在其他数学领域的应用
微积分学
高斯定理是微积分学中的重要概念,可以用于 解决一系列积分问题。
实分析
实分析中,高斯定理可用于研究函数的积分性 质和可积性。
04
高斯定理的应用实例
电场中的应用
计算电场散布
高斯定理可以用来计算给定电荷散布 的电场散布,特别是在处理点电荷、 均匀带电球体等简单电荷散布时,高 斯定理提供了简洁的解决方案。

大学物理 —— 第四章2 电通量 电场中的高斯定理

大学物理 —— 第四章2  电通量  电场中的高斯定理

E • ds
s
0 r
qi
当场源分布具有高度对称性时求场强分布
步骤:1.对称性分析,确定
E
的大小、方向分布特征
2.作高斯面,计算电通量及 qi
3.利用高斯定理求解
例1.均匀带电球面
已知R、 q>0 求均匀带电球面的场强分布
解: 对称性分析
E
具有球对称
❖ 作高斯面 过P点的球面
R
r
P
通量
rR
e
E1 • ds E1
ds E14 r 2
rR r
通量
e
E2 • ds E2
P
ds E24 r2
s
s1
电量
qi 0
s
电量
s2
qi q
用高斯定理求解
E1 4r 2 0
E2 4r 2
q
0
E1 0
E2
q
4 0r 2
课 球体

练 计算均匀带电球体内外的场强分布,已知q,R
电通量 电场中的高斯定理
一.电场线(电场的图示法)
方向 :切线
E 大小:E dN =电场线密度
Ea
Eb
b
dS Ec
c
E
a
dS
E
性质: 静电场中,
不闭合;不相交 起于正电荷、 止于负电荷。
E
点电荷的电场线
负电荷
正电荷
+
一对等量异号电荷的电场线 +
一对等量正点电荷的电场线
+
+
一对异号不等量点电荷的电场线
)
等于这个闭合
曲面所包围的电荷的代数和除以 0 ,与闭合曲面外 的电荷无关。

高斯定理

高斯定理

非均匀电场强度电通量
dS dS en dΦe E dS
en
E dS
E
dS

E
Φe dΦe E cosdS s Φe E dS s
E ds EdS cos 0 E ds EdS cos 0
球对称分布:包 括均匀带电的球 面,球体和多层 同心球壳等
轴对称分布:包 括无限长均匀带 电的直线,圆柱 面,圆柱壳等;
无限大平面电荷: 包括无限大的均匀 带电平面,平板等。
关键:选取高斯面
电场分布的对称性分析 选取适当的高斯面
一般原则是: ①高斯面要通过所求场强的点 ②高斯面上(部分面上)各点的E(大小)=常量; 且 方向与曲面处处成 一定的角度,即 cos 为定值,从而使积分简化为: e E cosdS E cos dS
取长 L 的同轴圆柱面,加上底、下底构成高斯面 S
S

dq
L
r
P
' dE dE
o dq
'
' dE dE
E dS E dS
S 上

E dS

E dS


E cos

2
dS E cos


2
dS E cos 0 dS
闭合曲面
闭合曲面的电场强度通量
E
S
Φe E dS E cosdS
S S
dΦe E dS
dS
E
解: e E ds E ds E ds E ds

大学物理高斯定理

大学物理高斯定理

大学物理高斯定理简介大学物理中,高斯定理(也称为电通量定理)是电学领域中的一个重要定理,它描述了电场通过一个封闭曲面的总电通量与该曲面内的电荷量之间的关系。

高斯定理的数学表达式是一个面积分,通过对电场和曲面的特性进行积分计算,我们可以计算得到相应的电通量。

定理表述高斯定理可以用数学公式表述如下:其中, - 表示对封闭曲面 S 的面积分; - 表示电场的向量;- 表示面元矢量; - 是真空中的介电常数(气体中也可近似使用该值); - 表示电荷密度在封闭曲面内的体积分。

解读根据高斯定理,电通量与环绕其的电荷量成正比。

如果电场线密集,表示电通量会相应增大,而如果电场线稀疏,表示电通量相应减少。

因此,高斯定理为我们提供了一种计算电场分布和电荷分布之间关系的方法。

高斯定理的背后思想是通过找到一个适当的曲面,使得计算曲面上的电场更加容易,从而求得电场的总电通量。

这个曲面可以是球面、柱面、立方体等等,具体选择曲面要与问题的几何特征和对称性相匹配。

应用举例例子1:均匀带电球考虑一个均匀带电球体,电荷密度为,半径为。

我们想通过高斯定理计算球内外的电场。

在这种情况下,由于球具有球对称性,我们选择一个以球心为中心的球面作为高斯曲面。

根据球对称性,球的电场在球面上处处相等,并且与球面的法线垂直。

因此,和在点积后等于,其中是球面上的电场强度。

曲面的面积元等于球的表面积元。

因此,高斯定理可简化为:等式的右边是整个球的表面积,用!表示。

由于电场是球对称的,且垂直于球面,所以电场与面积元相乘的结果在整个球面上是相等的。

由于曲面上的电场都是相等的,整个球面的面积元乘以电场强度后等于电场强度乘以整个球面的面积,所以可以简化为:解得:其中,为球内的总电荷量。

例子2:无限长均匀带电线考虑一个无限长均匀带电线,线密度为。

我们想通过高斯定理计算线外的电场。

在这种情况下,由于线具有柱对称性,我们选择一个以线为轴的柱面作为高斯曲面。

我们将柱面的两个底面分别设为 A 和 B,其中 A 的面积为,B 的面积为。

大学物理Ⅱ 高斯定理

大学物理Ⅱ 高斯定理

P
l
e
E dS S
E dS
侧 E dS 上底 E dS 下底 E dS
侧 EdS E 侧 dS E 2r l
根据高斯定理得 E 2r l 1 l 0
E 2 0 r
用高斯定理求场强小结:
1 . 对称性分析
电荷分布对称性→场强分布对称性
点电荷 球对称性 均匀带电球面
均匀带电球壳
球体
轴对称性 柱对称
无限带电直线
无限带电圆柱 无限圆柱面 无限同轴圆柱面
无限大平面 面对称性 无限大平板
若干无限大平面
2. 高斯面的选择
①高斯面必须通过所求的场强的点。
②高斯面上各点场强大小处处相等,方向处处与该 面元线平行;或者使一部分高斯面的法线与场强方 向垂直;或者使一部分场强为零。
+ q+ +
+
0
R
r
高斯定理的应用
例2 均匀带电球体的电场。球半径为R,带电为q。
解:电场分布也应有球对称性,方向沿径向。
作同心且半径为r的高斯面
1)r R时 ,
E ds E ds
E 4r2
s
s
r
q
0
4 r3
3
0
q
4 R3
4 r3330E qr4 0R3
R
高斯面
高斯定理的应用
Φe前 Φe后 Φe下
s
E
dS
0
y
P
N
en
o
zM
en
E
en
Q
Rx
Φe左
s左
E
dS
ES左
cosπ
ES左
Φe右 s右E dS ES右 cos ES左

大学物理之高斯定理

大学物理之高斯定理
面S的电通量Φe,等于该闭合曲面所包围电荷电量
的代数和除以 0,而与闭合曲面(高斯面)外的
电荷无关。

其数学表达式为 e

s
E dS

1
0
qi
• 注意: E是高斯面上任一点的电场强度,该E与所 有产生电场的场源有关。
2、高斯定理的验证---以点电荷为例
• 已知 E q ------q为场源点电荷的带电量
S

S/
E
e E S
e ES cos
• 非匀强电场中(曲面)的电通量求法

E

de E dS
S

e
E dS
S
• 电场中的任意闭合曲面S、非均匀电场强度E的通量:
e E cosdS

SE dS
2、有关电通量的注意点
场源电荷为点电荷系或电荷连续分布的带电体qjs?dsie?e??niiee1??????jjiieee???s内s外???ssdee??sdeesjjii????????????????????sjjsiisesedd??????????????ijsjsisese????dd00??iiq0?内q结论?在真空静电场中穿过任一闭合曲面的电场强度通量等于该曲面所包围的所有电荷的代数和除以而与闭合曲面高斯面外的电荷无关
• 2、(静电场中)电场线不是闭合曲线,在静电场中,电场线起 始于正电荷(或无穷远处),终止于负电荷(或无穷远处),不 形成闭合曲线。
• 3、电场线的每一点的切线方向都跟该点的场强方向一致。 • 4、电场线的疏密与电场强弱的关系:电场线的疏密程度与场强
大小有关,电场线密处电场强,电场线疏处电场弱。 • 5、电场线在空间不相交、不相切、不闭合。

大学物理静电场的高斯定理

大学物理静电场的高斯定理

高斯定理的数学表达形式简洁明了,是解决静电场问题的重要
03
工具。
高斯定理在物理中的重要性
高斯定理在物理学中具有广泛 的应用,不仅限于静电场。
它可用于分析恒定磁场、时 变电磁场以及相对论性电磁
场中的问题。
高斯定理是电磁学理论体系中 的重要基石,对于深入理解电 磁场的本质和规律具有不可替
代的作用。
THANKS FOR WATCHING
高斯定理的重要性
总结词
高斯定理是静电场理论中的基本定理之一,它揭示了电场与电荷之间的内在联 系。
详细描述
高斯定理的重要性在于它提供了一种计算电场分布的方法,特别是对于电荷分 布未知的情况。同时,它也揭示了电场线总是从正电荷出发,终止于负电荷, 或者穿过不带电的区域。
高斯定理的历史背景
总结词
高斯定理的发现和证明经历了漫长而曲折的历史过程。
VS
按空间位置分类
静电场可分为点电荷产生的电场、线电荷 产生的电场、面电荷产生的电场等类型。 这些不同类型的电场具有不同的分布规律 和性质。
05
高斯定理的推导过程
利用高斯定理推导电场强度与电通量的关系
总结词
通过高斯定理,我们可以推导出电场强度与 电通量之间的关系,即电场线穿过任意闭合 曲面的电通量等于该闭合曲面所包围的电荷 量与真空电容率的乘积。
静电场的电场强度与电势具有相对独立性
电场强度与电势之间没有直接关系,改变电场中某点的电势,不会影响该点的电场强度。
静电场的分类
按产生方式分类
静电场可分为感应起电和接触起电两种 方式。感应起电是由于带电体在接近导 体时,导体内部电荷重新分布而产生电 场;接触起电是两个不同物体相互接触 时,由于电子的转移而产生电场。

大学物理5-4 电通量 高斯定理

大学物理5-4 电通量 高斯定理

求 电场强度分布。 解 电场强度垂直带电平面, 选取 垂直带电面的圆柱形高斯面 S e E dS E dS E dS E dS
侧 左底 右底

0
左底
E dS E dS
右底
0 E1S E2 S
• q 在球心处,球面电通量为
dS
e E dS EdS E dS
S
S
S

q 4 π 0r
2
4π r
2
q
q
r
0
穿过球面的电力线条数为 q/ 0
• q 在任意闭合面内,电通量为 • q 在闭合面外,电通量为
e q / 0
e 0
穿出、穿入闭合面电力线条数相等
5.4 电通量
一、电力线(电场线) E
dN
高斯定理
场强方向沿电力线切线方 向,场强大小取决于电力 线的疏密
+
-
dS
dN E dS
• 电力线起始于正电荷
(或无穷远处),终止 于负电荷(或无穷远 处)。 • 电力线不相交。
二、电通量
穿过任意曲面的电力线条 数称为通过该面的电通量 1. dS 面元的电通量

E 由所有电荷决定,但 e EdS 与外部电荷无关,只
取决于内部电荷。
0
q1

0
q2

0
q3

1
0
q内
静电场高斯定理
1 e E dS
S
0
q内
真空中的任何静电场中,穿过任一闭合曲面的电通量,等
于该曲面所包围的电荷电量的代数和乘以 1 0

大学物理-电通量--高斯定理

大学物理-电通量--高斯定理

Φe
q
0
点电荷在闭合曲面之外
只有与闭合曲面S相切的锥 体范围内的电力线才通过闭
合曲面S,每一条电力线从
某处穿入必从另一处穿出, q
一进一出正负抵消,总电通 +
量为零.
rrq
Ñ E dS 0
仍成立
14
S
E
多个点电荷的情况
vv
nv v
Ñ Ñ Φe
E dS
S
(
S
Ei ) dS
i 1
v nv
外侧. 因此,从曲面上
穿出的电力线,电通量
为正值;穿入曲面的电
力线,电通量为负值。
9
r
r
例:一电场强度为 E 的均匀电场 ,E 的方向与x轴正方
向平行,则通过图中一半径为R的半球面的电通量为 D
A、πR2E
B、πR2E/ 2
C、2πR2E
O
x
D、0
B
10
三 高斯定理
通过真空中的静电场中任一闭合面的电通量 Φe
例8.6 均匀带电球面的电场强度
一半径为 R, 均匀带电+ q 的球
面 . 求球面内外任意点的电场强度.
解:电荷分布具有球对称性,所以 空间场强分布为球对称性,即
+ +S1+
r +
+O
+ +
+R +
+++
与球心距离相等的球面各点
场强大小相等,方向沿半径
呈辐射状。
取过场点P的同心球面为高斯面,半径为r
均匀电场 ,E 垂直平面
Φe ES
均匀电场 ,E 与平面法线 夹角为

大学物理-高斯定理

大学物理-高斯定理
复习 库仑定律
电场强度的计算
F
1
4 0
q1q2 r2
r0
电场强度
E
F
q0
(1) 点电荷的场强
E
1 4πε0
q r2
r0
(2) 场强叠加原理
E E1 E2 En
(3) 电荷连续分布的 带电体的电场
电 荷
E dE
dq
r
(q)
(q) 4 0r 3
分 布
dq ρdV (体 分 布) dq σdS (面 分 布) dq λdl (线 分 布)
q2 A P*
s
q2 B
q1
在点电荷 和q 的q静电场中,做如下的三个闭合面
求通过各闭合S面1 ,的S电2 ,通S量3。,
Φe1
E dS
q
S1
0
Φe2 0
Φe3
q
0
q
q
S1
S2
S3
例:一点电荷位于边长为 a 的立方体的顶角上, 求:通过该立方体表面总的电通量。
解: 顶角所在的三个面上的通量为零。 其余三个面上直接计算困难
(3) 天文学和大地测量学中:如小行星轨道的计算,地球大 小和形状的理论研究等。统计 理论和误差理论,发明了最小二乘法,引入高斯误差曲线。
(5) 高斯还创立了电磁量的绝对单位制。
一、电通量 1、电场线 ( Electric Field Line ) (电场的几何描述)
E
n
dS
E
S E cos dS
Φe
E dS
S
为通过 S 面的电通量。
dS 有两个法线方向,dφ 可正可负。
S为封闭曲面
规定:闭合面上各面元的外法

大学物理之54电场强度通量高斯定理

大学物理之54电场强度通量高斯定理

(5) 静电场:有源场.
Φe SE dSε10
n
qin i
i1
四 高斯定理应用举例
用高斯定理求电场强度的一般步骤为 对称性分析; 根据对称性选择合适的高斯面; 应用高斯定理计算.
Φe SE dSε10
n
qin i
i1
例2 设有一半径为R , 均匀带电Q 的球面. 求球面内外任意点的电场强度.
-q
2 高斯定理
高斯面
在真空中静电场,穿过任一闭合曲面 的电场强度通量,等于该曲面所包围的所
有电荷的代数和除以 ε 0 .
Φe SE dSε10
n
qin i
i1
3 高斯定理的讨论
(1) 高斯面:闭合曲面. (2) 电场强度:所有电荷的总电场强度.
(3) 电通量:穿出为正,穿进为负.
(4) 仅面内电荷对电通量有贡献.
二 电场强度通量
1 定义 通过电场中某个面的电场线数
2 表述
匀强电场 , E垂直平面时.
SS
Een
E
Φe ES
二 电场强度通量
1 定义 通过电场中某个面的电场线数
2 表述
匀强电场 ,
E与平面夹角 θ.
Φe EScoθs ES
S

en
E
非匀强电场,曲面S .
dS dSe n
d Φ e E cθ o d S s E d S
库仑定律 电场强度叠加原理
高斯 定理
高斯 (C.F.Gauss 17771855)
高 德国数学家、天文学
家和物理学家,有“数 学王子”美称,他与韦
斯 伯制成了第一台有线电
报机和建立了地磁观测 台,高斯还创立了电磁 量的绝对单位制.

大学物理-第1章 电场强度 高斯定理

大学物理-第1章 电场强度 高斯定理

+的场强 视为点电荷 dq
r r
P
Q
分解
dq
Q
r dE
设带电体的电荷体密度为, dq在 P 点产生的场强为 叠加
则 d q dV
r dE
r 1 r dV 3 4π 0 r
r r E dE
P点的场强为
r 1 E 4π 0

V
r r dV 3 r
穿出为正,穿进为负
向外法 线
31
S

E
选取面积元 dS dS en
1.3.3 高斯定理
1. 点电荷q 的电场中任意闭合曲面的电场强度通量 (1)点电荷在闭合曲面内 以q为中心、半径任意的球面S 的电场强度通量 由库仑定律得P 点场强 面积元dS的电场强度通量
v E 1 q r e 2 r 4π 0 r
大小 F12 k
12
v v F21 F12
q1q2
q1q2
r122 方向 沿 q1、 q 2 的连线,同性相斥,异性相吸
k 9 109 N m2 C2
比例系数 真空中的电容率
9
1 4π 0 r12 2
v F21
v r12
q1
v F12
q2
0 8.851012 C2 (N m2 )
15
点电荷的电场分布
q>0
q<0 (b)负电荷
(a)正电荷
16
1.2.3. 一定数量点电荷产生的电场强度
q0 受到的合力为
q1
r r r r F = F+F 1 2+L F n
P 点场强
r E r Fi
n i 1
r r1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2
i
0
q
i
E 4πr 0
E 4 πr
2
q
E 0
0
E
q 4 π 0 r 2
例2 计算均匀带电球体的场强分布,q , R 解: 通量

q 4 πR 3 3
qi 2 Φe E dS E 4πr S 0
r<R r>R 电量
电量
4 3 q π r i 3
S S

n
E
曲面闭合时
Φe E dS E cos dS
S S
S
dS

注: E为dS处的电场强度
n E
例 三棱柱体放置在如图所示的匀强电 场中. 求通过此三棱柱体的电场强度通量. 解
Φe Φei
i 1
5
y
N
S1
P
S2
Φe1 Φe 2
2、高斯 (Gauss) 定理 (1) 证明: 略.书P166-168 (2 )内容(书P168): 真空中 注:
1 Φe E dS
s
0
q
i 1
n
in i
①公式中S:高斯面(闭合曲面)
②穿过S面的电场强度通量e: 只由S面内的电荷决定
(如图中 q1、q2) ③ E : 面元 dS 处的场强 , 由所有电荷(面内、外电荷) 共同产生(如图中 q1、 q2 、 q3)

.
q 8 0
(3) 若将此电荷移到正方体的一 个顶点上,则通过整个 正方体表面的电场强度通量为
1 e E dS
s
0
q
i 1
n
in i
q
四.高斯定理的应用:求球对称或柱对称场强分布 Gauss面的选择:尽量使面的方向与场强方向//或. 1、球对称场(特征:书P154) 求场强步骤: (1)分区 书P168
当电荷均匀分布在球面、球体或有厚度的球壳上时
1 Φe E dS
s
0
q
i
(2)各区分别作Gauss面S (同心球面 、半径为球心到
场点距离r). 则 Φ E dS E 4πr 2 e S (3)在不同区域分别求Gauss面所包围的总电量 qi
(4)
1 Φe E dS
s
0
q
i
无限长均匀带电直线的场强(书P170)
3、面对称场(特征:书P170)
例、无限大均匀带电平面 的场强,已知+
解: E 具有面对称性 E E
高斯面: 柱面
e E dS E dS E dS E dS
2
n
n
O
E
S1
n
S2
EπR
n
R
ΦS1 EπR 2
三、高斯定理
1、特例:
点电荷q 位于球面S(半径R)中心,求穿过球面S的电通量
Φe E dS
S
q E 2 4 πε0 R q Φe dS 2 S 4 πε0 R q ε0
dS
+
R
(书P163)
垂直通过电场中某个面的电场线的条数 1、匀强场穿过平面 S
E
S


n
E
Φe ES
Φe ES cos E S
二、电通量e
(书P163) S
dS
垂直通过电场中某个面的电场线的条数
2、非匀强电场穿过任意曲面
Φe E dS EdS cos
解:
q
i
r < R1:
q
i
0
r

R1
R2
4 3 3 q π ( r R 1) R1<r <R2: i 3 q(r 3 R13 ) E 3 4π 0 ( R2 R13 )r 2 q r >R2 qi q E 4 π 0 r 2
E 0

2、 电场强度大小
(1)电场线数密度(书P162) : N /S
N (2)规定: E S
(3)求匀强场穿过S 的电场线条数N S
n
S S
E


n
E
N ES n // E
(n, E ) N ES cos
二、电通量e
s1 s2 侧
n1
S1
n2
ES1 ES 2 0
1
s
S侧
S2
0
பைடு நூலகம்
S
2 ES
1
0
S
E 2 0
E 1 4π 0 r
2
q
i
(本章重点二)
例1 求均匀带电球面的场强分布(书P169) 已知R、 q>0 (1) 解: E 具有球对称性 (2) 分区: r < R; r >R r
r
R
P
1 (3)用高斯定理求解 Φe E dS
s
(3) 作高斯面 球面 (半径 r ) P 通量 通量 r R rR 2 2 Φ E d S E d S E 4 π r e Φe E dS E dS E 4πr S S S S 电量 qi q 电量 q 0

依据:Gauss定理
1 Φe E dS
s
0
in q i i 1
n
Ex3:点电荷 Q 被闭合曲面 S 包围, 从无穷远处引入另一
点电荷 q到曲面外一点. 如图,则引入前后, 不变 穿过曲面 S 的电通量_________;
变化 曲面上各点场强__________. (填“变化”、“不变”)
q1
S
q2
q3
Gauss定理 Ex1:
1 Φe E dS
s
0
in q i i 1
n
书 P188 问题 5-11
一定 E 0 Φe E dS 0
S
不一定 Φe E dS 0 E 0
S
+ + + + + + + + R+ + +
3 4 π r 高斯定理 E 4πr 2 0 3
q 高斯定理 E 4πr 0
2
qi q
q 4π 0 r 2
r qr E 3 0 4 π 0 R 3
E
例3 计算均匀带电球壳的场强分布,q , R1 , R2
1 2 Φe E dS E 4πr 0 s 1 E q 2 i 4π 0 r
•Q
S
q•
分析: 1 Φe E dS
s
类: 问题 5-15
0
q
i 1
n
in i

Q
0
曲面上各点场强由面内外电荷Q和q共同产生
Ex4: 边长为a的正方体中心放置一点电荷q,
q
(1) 通过整个正方体表面的电场强度通量为 的电场强度通量为
0
0

(2) 若将此电荷移到正方体外,则通过整个正方体表面
R
高斯面:圆柱面(底半径 r ,高 h ) 通量
e E dS
s 上底

E dS E dS
下底
侧面
E dS
P
P
h
0 0 E 2πrh E 2πrh
r <R
电量
qi 0
E0
r >R 电量 qi h E 2 π 0 r
(2) 作高斯面S(所求场点柱轴,垂线长度 r, 以 r 为底半径,
e E dS E 2πrh
S
(3)在不同区域分别求高斯面所包围的总电量 (4)
E 1 2π 0 q rh
i
q
i
例 无限长均匀带电圆柱面的场强分布,R ,电荷线密度. 解:场具有柱对称性
q 4 3 π( R2 R13 ) 3
2、柱 (或轴) 对称场(特征:书 P170)
电荷均匀分布在无限长柱面、柱体或有厚度的柱壳上 高斯面的选择:尽量使面的方向与场强方向//或. 求场强步骤: (1) 分区 任意高 h 作圆柱面 ), 则
1 Φe E dS
s
0
q
i
R
x
z
M
Q
结论: 匀强电场穿过任意闭合曲面的电通量始终为零
书P192习题5-14 求匀强电场通过一半球面S1的电通量.
Φe E dS
S
?
解: 作一半径R的圆平面S2将半球面S1补为封闭曲面S, 则穿过S的总电通量为
Φe ΦS1 ΦS 2 0
ΦS2 s2
E dS ES2 cos π
en

o
en
en E
R
x
P164
z
M
Q
Φe1 E dS ES1 cos π ES1 s1 Φe 2 E dS ES2 cosθ ES1 s1
Φe Φei 0
i 1 5
y
N
S1
P
S2
en

o
en
en E
5-4
电场强度通量 高斯定理(书P161)
Eb
1、 E 方向:切线
相关文档
最新文档