2015春中国石油大学《离散数学》第三次在线作业及满分答案

合集下载

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。

A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。

A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。

A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。

A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。

答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。

答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。

答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。

答案:可达10. 命题逻辑中,合取(AND)的符号是______。

答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。

证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。

因此,若p∧q为真,则p和q都为真。

12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。

请找出f的值域。

答案:根据函数的定义,f的值域是其所有输出值的集合。

因此,f的值域为{4,5,6}。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、单项选择题(每题2分,共20分)1. 在集合论中,空集的表示符号是()。

A. {0}B. ∅C. {}D. Ø答案:B2. 如果A和B是两个集合,那么A∩B表示()。

A. A和B的并集B. A和B的交集C. A和B的差集D. A和B的补集答案:B3. 命题逻辑中,p ∧ q的真值表中,当p和q都为假时,p ∧ q的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B4. 在图论中,如果一个图中的任意两个顶点都由一条边相连,则称这个图为()。

A. 连通图B. 无向图C. 完全图D. 有向图答案:C5. 布尔代数中,逻辑或运算符表示为()。

A. ∧B. ∨C. ¬D. →答案:B6. 一个关系R是从集合A到集合B的二元关系,如果对于A中的每个元素x,B中都存在唯一的元素y与之对应,则称R为()。

A. 单射B. 满射C. 双射D. 单满射答案:C7. 在命题逻辑中,如果p是假命题,那么¬p的值为()。

A. 真B. 假C. 不确定D. 无定义答案:A8. 一个有向图是无环的,那么它一定是()。

A. 有向无环图B. 无向无环图C. 有向有环图D. 无向有环图答案:A9. 在集合论中,如果集合A是集合B的子集,那么A⊆B表示()。

A. A包含于BB. A是B的真子集C. A是B的超集D. A与B相等答案:A10. 命题逻辑中,p → q的真值表中,当p为真,q为假时,p → q 的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B二、多项选择题(每题3分,共15分)1. 在集合论中,以下哪些符号表示的是集合的并集()。

A. ∪B. ∩C. ⊆D. ⊂答案:A2. 在图论中,以下哪些说法是正确的()。

A. 有向图可以是无环的B. 无向图可以是无环的C. 有向图一定是连通的D. 无向图一定是连通的答案:A B3. 在命题逻辑中,以下哪些符号表示的是逻辑与()。

《离散数学》试题带答案(三)

《离散数学》试题带答案(三)

《离散数学》试题带答案试卷十四试题与答案一、 填空 10% (每小题 2分)1、 设>-∧∨<,,,A 是由有限布尔格≤><,A 诱导的代数系统,S 是布尔格≤><,A ,中所有原子的集合,则>-∧∨<,,,A ~ 。

2、 集合S={α,β,γ,δ}上的二元运算*为那么,代数系统<S, *>中的幺元是 , α的逆元是 。

3、 设I 是整数集合,Z 3是由模3的同余类组成的同余类集,在Z 3上定义+3如下:]3m od )[(][][3j i j i +=+,则+3的运算表为 ;<Z +,+3>是否构成群 。

4、 设G 是n 阶完全图,则G 的边数m= 。

5、 如果有一台计算机,它有一条加法指令,可计算四数的和。

现有28个数需要计算和,它至少要执行 次这个加法指令。

二、 选择 20% (每小题 2分)1、 在有理数集Q 上定义的二元运算*,Q y x ∈∀,有xy y x y x -+=*,则Q 中满足( )。

A 、 所有元素都有逆元;B 、只有唯一逆元;C 、1,≠∈∀x Q x 时有逆元1-x ; D 、所有元素都无逆元。

2、 设S={0,1},*为普通乘法,则< S , * >是( )。

A 、 半群,但不是独异点;B 、只是独异点,但不是群;C 、群;D 、环,但不是群。

3、图 给出一个格L ,则L 是( )。

A 、分配格;B 、有补格;C 、布尔格;D 、 A,B,C 都不对。

3、 有向图D=<V , E>,则41v v 到长度为2的通路有( )条。

A 、0;B 、1;C 、2;D 、3 。

4、 在Peterson 图中,至少填加( )条边才能构成Euler图。

A 、1;B 、2;C 、4;D 、5 。

三、 判断 10% (每小题 2分)1、 在代数系统<A,*>中如果元素A a ∈的左逆元1-e a 存在,则它一定唯一且11--=e a a 。

离散数学习题答案-2015.docx

离散数学习题答案-2015.docx

离散数学习题答案习题一1、利用逻辑联结词把下列命题翻译成符号逻辑形式(1)他既是本片的编剧,又是导演---P ∧ Q(2)银行利率一降低,股价随之上扬---P → Q(3)尽管银行利率降低,股价却没有上扬---P ∧ Q(4)占据空间的、有质量而且不断变化的对象称为物质---M(S∧ P∧T)(5)他今天不是乘火车去北京,就是随旅行团去了九寨沟---P ▽ Q(6)小张身体单薄,但是极少生病,并且头脑好使---P ∧ Q ∧ R(7)不识庐山真面目,只缘身在此山中---P → Q (解释:因为身在此山中,所以不识庐山真面目)(8)两个三角形相似,当且仅当他们的对应角相等或者对应边成比例---S(E∨ T)(9)如果一个整数能被 6 整除,那么它就能被 2 和 3 整除。

如果一个整数能被 3 整除,那么它的各位数字之和也能被 3 整除解:设 P –一个整数能被 6 整除Q –一个整数能被 2 整除 R–一个整数能被 3 整除S –一个整数各位数字之和能被 3 整除翻译为:( P →( Q ∧ R))∧( R → S )2、判别下面各语句是否命题,如果是命题,说出它的真值(1) BASIC 语言是最完美的程序设计语言--- Y , T/F(2)这件事大概是小王干的--- N(3) x2 = 64--- N(4)可导的实函数都是连续函数--- Y , T/F(5)我们要发扬连续作战的作风,再接再厉,争取更大的胜利--- N(6)客观规律是不以人们意志为转移的--- Y , T(7)到 2020 年,中国的国民生产总值将赶上和超过美国--- Y , N/A(8)凡事都有例外--- Y , F3、构造下列公式的真值表,并由此判别哪些公式是永真式、矛盾式或可满足式(1)( P ∨(~ P ∧ Q))→ Q解:P Q~P ∧ Q P ∨(~ P ∧ Q)( P ∨(~ P ∧ Q))→ Q可满足式00001011111001011011(2) ~(4)表略:( 2)可满足式、(3)永真式、( 4)可满足式4、利用真值表方法验证下列各式为永真式(1) ~(8)略5、证明下列各等价式(3) P→( Q∨ R )(P→ Q)∨(P→ R)证明:左式~P∨ Q∨ R~P∨ Q∨~ P∨ R(~ P∨ Q)∨(~ P∨ R )(P → Q)∨( P → R )右式(4)( P∧ Q)∨( R∧ Q)∨( R∧ P )(P∨ Q)∧(R∨ Q)∧(R∨ P)证明:左式( ( P∨ R)∧ Q)∨( R∧ P )( ( P∨ R)∨ R) )∧((P∨ R)∨ P) )∧(Q∨ R)∧(Q∨ P)( P∨ Q)∧( R∨ Q)∧( R∨ P )右式6、如果果~ P P∨ Q Q∨R, 能否断定 P~ R,能否断定P R ?R ?如果P∧Q Q∧ R,能否断定P R?如解:P∨ P∨ R P∧ P∧ R 式,及有(1)如果 P∨ Q Q∨R,不能判断Q∨ R,但 P 可以不等价于R.(2)如果 P∧ Q Q∧R,不能判断Q∧ R,但 P 可以不等价于R.(3)如果~ P~R,那么有PP <-> R为永真式,所以P R.P R,因为如果Q = P∨P R,因为如果Q = P∧R,因为~ P~R,则~R,那么P∨ QR,那么P∧ QP <->~R为永真8、把下列各式用↑等价表示出来(1) (P ∧ Q) ∨~ P解:原式((P(((P ↑ Q)↑ Q)↑ (P ↑ Q))↑ (P ↑ Q))∨ (P ↑ P)↑ ((P ↑Q)↑(P↑Q)))↑((P↑ P)↑ (P ↑ P))9、证明: {~→ }是最小功能完备集合证明 :因为{~,∨ }是最小功能完备集合, 所以 , 如果 {~→}能表示出∨ ,则其是功能完备集合。

国家开放大学电大《离散数学》形考任务3

国家开放大学电大《离散数学》形考任务3

形考任务三试题及答案题目为随机,用查找功能(Ctrl+F)搜索题目选择题[题目]设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为().[答案]P→Q[题目]设命题公式G:G:┐p→(Q∧R),则使公式G取真值为1的P,Q,R赋值分别是().[答案]1,0,0[题目]命题公式(P∨Q)→R的析取范式是().[答案](┐P∧┐Q)∨R[题目]命题公式(P∨Q)的合取范式是().[答案](P∨Q)[题目]命题公式┐(p→Q)的主析取范式是().[答案]P∧┐Q[题目]命题公式P→Q的主合取范式是().[答案]┐P∨Q[题目]下列等价公式成立的为().[答案]P→(┐Q→P)<=>┐P→(P→Q)[题目]下列等价公式成立的为().[答案]┐P∧P<=>┐Q∧Q[题目]下列公式成立的为().[答案]┐P∧(P∨Q)=>Q[题目]下列公式中()为永真式.[答案]┐A∧┐B↔┐(A∨B)[题目]下列公式()为重言式.[答案]Q→(P∨(P∧Q))↔Q→P[题目]命题公式(P∨Q)→Q为()[答案]可满足式[题目]设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().[答案][题目]设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().[答案][题目]设个体域为整数集,则公式的解释可为().[答案]对任一整数x存在整数y满足x+y=0[题目]表达式中的辖域是().[答案][题目]谓词公式(∀x)(A(x)→B(x)∨C(x,y))中的()。

[答案]x是约束变元,y都是自由变元[题目]设个体域D={a,b,c},那么谓词公式消去量词后的等值式为().[答案][题目]设个体域D是整数集合,则命题的真值是().[答案]T[题目]前提条件P→┐Q2P的有效结论是().[答案]┐Q判断题[题目]设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.()[答案]对[题目]设P:昨天下雨,Q:今天下雨.那么命题“昨天下雨,今天仍然下雨”符号化的结果为P∧Q.()[答案]对[题目]设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书.那么命题“我们下午2点或者去礼堂看电影或者去教室看书”符号化的结果为P∨Q.()[答案]错[题目]设P:他生病了,Q:他出差了,R:我同意他不参加学习.那么命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→┐R.()[答案]错[题目]命题公式P→(Q∨P)的真值是T.()[答案]对[题目]命题公式┐P∧P的真值是T.()[答案]错[题目]命题公式┐P∧(P∨Q)=>Q成立.()[答案]对[题目]命题公式┐P∧(P→┐Q)∨P为永真式.()[答案]对[题目]命题公式┐(P→Q)的主析取范式是P∨┐Q.()[答案]错[题目]含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).()[答案]对[题目]设P(x):x是人,Q(x):x去上课,那么命题“有人去上课.”为(∃x)(P(x)→Q(x)).()[答案]错[题目]设P(x):x是人,Q(x):x学习努力,那么命题“所有的人都学习努力.”为(∀x)(P(x)∧Q(x)).()[答案]错[题目]设个体域D={1,2,3},A(x)为“x小于3”,则谓词公式(∃x)A(x)的真值为T.()[答案]对[题目]设个体域D={1,2,3,4},A(x)为“x大于5”,则谓词公式(∀x)A(x)的真值为T.()[答案]错[题目]谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.()[答案]对[题目]谓词命题公式(∀x)((A(x)∧B(x))∨C(y))中的自由变元为x.()[答案]错[题目]谓词命题公式(∀x)(P(x)→Q(x)∨R(x,y))中的约束变元为x.()[答案]对[题目]设个体域D={a,b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).()[答案]错[题目]设个体域D={a,b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).()[答案]对[题目]下面的推理是否正确.()(1)(∀x)A(x)→B(x)前提引入(2)A(y)→B(y)US(1)[答案]错。

国开(中央电大)本科《离散数学(本)》网上形考(任务一至三)试题及答案

国开(中央电大)本科《离散数学(本)》网上形考(任务一至三)试题及答案

国开(中央电大)本科《离散数学(本)》网上形考(任务一至三)试题及答案国开(中央电大)本科《离散数学(本)》网上形考(任务一至三)试题及答案说明:适用于计算机科学与技术本科国开平台网上形考。

形考任务一试题及答案题目为随机,用查找功能(Ctrl+F)搜索题目[题目]若集合A={a,{a},{1,2}},则下列表述正确的是().[答案]{a}A[题目]若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是().[答案]AB,且AB[题目]若集合A={2,a,{a},4},则下列表述正确的是().[答案]{a}A[题目]设集合A={1,2,3},B={3,4,5},C={5,6,7},则A∪B–C=().[答案]{1,2,3,4}[题目]设集合A={a},则A的幂集为().[答案]{,{a}}[题目]设集合A={1,a},则P(A)=().[答案]{,{1},{a},{1,a}}[题目]若集合A的元素个数为10,则其幂集的元素个数为().[答案]1024[题目]设A、B是两个任意集合,则A-B=().[答案]AB[题目]设集合A={2,4,6,8},B={1,3,5,7},A到B 的关系R={<x,y>|y=x+1},则R=().[答案]{<2,3>,<4,5>,<6,7>}[题目]集合A={1,2,3,4,5,6,7,8}上的关系R={<x,y>|x+y=10且x,yA},则R 的性质为().[答案]对称的[题目]集合A={1,2,3,4}上的关系R={<x,y>|x=y且x,yA},则R的性质为().[答案]传递的[题目]如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.[答案]2[题目]设集合A={1,2,3,4}上的二元关系R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>},则S是R的()闭包.[答案]对称[题目]设A={1,2,3,4,5,6,7,8},R是A上的整除关系,B={2,4,6},则集合B的最大元、最小元、上界、下界依次为().[答案]无、2、无、2[题目]设集合A={1,2,3,4,5},偏序关系是A上的整除关系,则偏序集<A,>上的元素5是集合A的().[答案]极大元[题目]设集合A={1,2,3,4,5}上的偏序关系的哈斯图如图所示,若A的子集B={3,4,5},则元素3为B的().[答案]最小上界[题目]设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().[答案]8[题目]设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>,<b,2>},从B到C的函数g={<1,5>,<2,4>},则下列表述正确的是().[答案]g°f={<a,5>,<b,4>}[题目]设集合A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>},g={<1,3>,<2,2>,<3,2>},h={<1,3>,<2,1>,<3,1>},则h=().[答案]f◦g[题目]设函数f:N→N,f(n)=n+1,下列表述正确的是().[答案]f是单射函数判断题[题目]设集合A={1,2,3},B={2,3,4},C={3,4,5},则A∩(C-B)={1,2,3,5}.()[答案]错[题目]设集合A={1,2,3},B={1,2},则P(A)-P(B)={{3},{1,3},{2,3},{1,2,3}}.()[答案]对[题目]空集的幂集是空集.()[答案]错[题目]设集合A={1,2,3},B={1,2},则A×B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>}.()[答案]对[题目]设A={1,2},B={a,b,c},则A×B的元素个数为8.()[答案]错[题目]设集合A={0,1,2,3},B={2,3,4,5},R是A到B的二元关系,则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}.()[答案]对[题目]设集合A={1,2,3,4},B={6,8,12},A到B的二元关系R=那么R-1={<6,3>,<8,4>}.()[答案]对[题目]设集合A={a,b,c,d},A上的二元关系R={<a,b>,<b,a>,<b,c>,<c,d>},则R具有反自反性质.()[答案]对[题目]设集合A={a,b,c,d},A上的二元关系R={<a,a>,<b,b>,<b,c>,<c,d>},若在R中再增加两个元素<c,b>,<d,c>,则新得到的关系就具有反自反性质.()[答案]错[题目]若集合A={1,2,3}上的二元关系R={<1,1>,<1,2>,<3,3>},则R是对称的关系.()[答案]错[题目]若集合A={1,2,3}上的二元关系R={<1,1>,<2,2>,<1,2>},则R是自反的关系.()[答案]错[题目]设A={1,2}上的二元关系为R={<x,y>|xA,yA,x+y=10},则R的自反闭包为{<1,1>,<2,2>}.()[答案]对[题目]设R是集合A上的等价关系,且1,2,3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3>等元素.()[答案]对[题目]设A={1,2,3},R={<1,1>,<1,2>,<2,1>,<3,3>},则R是等价关系.()[答案]错[题目]如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()[答案]对[题目]若偏序集<A,R>的哈斯图如图二所示,则集合A的最大元为a,极小元不存在.()[答案]错[题目]设集合A={1,2,3,4},B={2,4,6,8},下列关系f={<1,4>,<2,2,>,<4,6>,<1,8>}可以构成函数f:.()[答案]错[题目]设集合A={1,2,3,4},B={2,4,6,8},下列关系f={<1,8>,<2,6>,<3,4>,<4,2,>}可以构成函数f:.()[答案]对[题目]设A={a,b},B={1,2},C={a,b},从A到B的函数f={<a,1>,<b,2>},从B到C的函数g={<1,b>,<2,a>},则g°f={<1,2>,<2,1>}.()[答案]错[题目]设A={2,3},B={1,2},C={3,4},从A到B的函数f={<2,2>,<3,1>},从B到C的函数g={<1,3>,<2,4>},则Dom(g°f)={2,3}.()[答案]对形考任务二试题及答案题目为随机,用查找功能(Ctrl+F)搜索题目单选题[题目]设图G=<V,E>,v∈V,则下列结论成立的是().[答案][题目]设无向图G的邻接矩阵为,则G的边数为().[答案]5[题目]设无向图G的邻接矩阵为,则G的边数为().[答案]7[题目]已知无向图G的邻接矩阵为,则G有().[答案]5点,7边[题目]如图一所示,以下说法正确的是().[答案]{(d,e)}是边割集[题目]如图二所示,以下说法正确的是().[答案]e是割点[题目]图G如图三所示,以下说法正确的是().[答案]{b,c}是点割集[题目]图G如图四所示,以下说法正确的是().[答案]{(a,d),(b,d)}是边割集[题目]设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是().[答案](a)是强连通的[题目]设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是().[答案](d)只是弱连通的[题目]无向图G存在欧拉回路,当且仅当().[答案]G连通且所有结点的度数全为偶数[题目]无向完全图K4是().[答案]汉密尔顿图[题目]若G是一个汉密尔顿图,则G一定是().[答案]连通图[题目]若G是一个欧拉图,则G一定是().[答案]连通图[题目]G是连通平面图,有v个结点,e条边,r个面,则r=().[答案]e-v+2[题目]无向树T有8个结点,则T的边数为().[答案]7[题目]无向简单图G是棵树,当且仅当().[答案]G连通且边数比结点数少1[题目]已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为().[答案]5[题目]设G是有n个结点,m条边的连通图,必须删去G的()条边,才能确定G的一棵生成树.[答案]m-n+1[题目]以下结论正确的是().[答案]树的每条边都是割边判断题[题目]已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15.()[答案]对[题目]设G是一个图,结点集合为V,边集合为E,则.()[答案]对[题目]设图G如图七所示,则图G的点割集是{f}.()[答案]错[题目]若图G=<V,E>,其中V={a,b,c,d},E={(a,b),(a,d),(b,c),(b,d)},则该图中的割边为(b,c).()[答案]对[题目]无向图G存在欧拉回路,当且仅当G连通且结点度数都是偶数.()[答案]对[题目]如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.()[答案]错[题目]如图八所示的图G存在一条欧拉回路.()[答案]错[题目]设完全图K有n个结点(n2),m条边,当n为奇数时,Kn中存在欧拉回路.()[答案]对[题目]汉密尔顿图一定是欧拉图.()[答案]错[题目]设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和小于n-1,则在G中存在一条汉密尔顿路.()[答案]错[题目]若图G=<V,E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为W|S|.()[答案]对[题目]如图九所示的图G不是欧拉图而是汉密尔顿图.()[答案]对[题目]设G是一个有7个结点16条边的连通图,则G为平面图.()[答案]错[题目]设G是一个连通平面图,且有6个结点11条边,则G有7个面.()[答案]对[题目]设连通平面图G的结点数为5,边数为6,则面数为4.()[答案]错[题目]结点数v与边数e满足e=v的无向连通图就是树.()[答案]错[题目]设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.()[答案]对[题目]无向图G的结点数比边数多1,则G是树.()[答案]错[题目]设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.()[答案]错[题目]两个图同构的必要条件是结点数相等;边数相等;度数相同的结点数相等.()[答案]对形考任务三试题及答案题目为随机,用查找功能(Ctrl+F)搜索题目选择题[题目]设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为().[答案]P→Q[题目]设命题公式G:G:┐p→(Q∧R),则使公式G取真值为1的P,Q,R赋值分别是().[答案]1,0,0[题目]命题公式(P∨Q)→R的析取范式是().[答案](┐P∧┐Q)∨R[题目]命题公式(P∨Q)的合取范式是().[答案](P∨Q)[题目]命题公式┐(p→Q)的主析取范式是().[答案]P∧┐Q[题目]命题公式P→Q的主合取范式是().[答案]┐P∨Q[题目]下列等价公式成立的为().[答案]P→(┐Q→P)<=>┐P→(P→Q)[题目]下列等价公式成立的为().[答案]┐P∧P<=>┐Q∧Q[题目]下列公式成立的为().[答案]┐P∧(P∨Q)=>Q[题目]下列公式中()为永真式.[答案]┐A∧┐B↔┐(A∨B)[题目]下列公式()为重言式.[答案]Q→(P∨(P∧Q))↔Q→P[题目]命题公式(P∨Q)→Q为()[答案]可满足式[题目]设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().[答案][题目]设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().[答案][题目]设个体域为整数集,则公式的解释可为().[答案]对任一整数x存在整数y满足x+y=0[题目]表达式中的辖域是().[答案][题目]谓词公式(∀x)(A(x)→B(x)∨C(x,y))中的()。

电大离散数学形考作业答案3-5-7合集

电大离散数学形考作业答案3-5-7合集

电大失散数学作业答案 3-7 合集姓名:失散数学作业 3学号:失散数学会合论部分形成性查核书得分:面作业教师署名:本课程形成性查核书面作业共 3 次,内容主要分别是会合论部分、图论部分、数理逻辑部分的综合练习,基本上是依据考试的题型(除单项选择题外)安排演习题目,目的是经过综合性书面作业,使同学自己查验学习成就,找出掌握的单薄知识点,要点复习,争取赶快掌握。

本次形考书面作业是第一次作业,大家要仔细实时地达成会合论部分的综合练习作业。

要求:将此作业用 A4 纸打印出来,手工书写答题,笔迹工整,解答题要有解答过程,要求 2010 年 11 月 7 日前达成并上交任课教师(不收电子稿)。

并在3任务界面下方点击“保留”和“交卷”按钮,达成并上交任课教师。

一、填空题1.设会合A{ 1, 2, 3}, B { 1, 2} ,则P(A) - P(B )= {{3},{1,3},{2,3},{1,2,3}}, A B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3.2>} .2.设会合 A 有 10 个元素,那么 A 的幂会合 P(A)的元素个数为1024.3.设会合 A={0, 1, 2, 3} ,B={2, 3, 4, 5} , R 是 A 到 B 的二元关系,则 R 的有序对会合为{<2, 2> ,<2, 3>,<3, 2>} ,<3,3>.4.设会合 A={1, 2, 3, 4 } ,B={6, 8, 12} , A 到 B 的二元关系R={ x, y y 2x, x A, y B}那么 R-1= {<6,3>,<8,4>}5.设会合 A={a, b, c, d},A 上的二元关系 R={<a, b>, <b, a>, <b, c>, <c, d>} ,则 R 拥有的性质是没有任何性质.6.设会合 A={a, b, c, d},A 上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>} ,若在 R 中再增添两个元素{<c,b>,<d,c>},则新获得的关系就拥有对称性..假如R 1和R2是 A 上的自反关系,则 R1∪R2,R1∩R2,R1- R2中自反关7系有2个.8.设 A={1, 2} 上的二元关系为 R={<x, y>|x A ,y A, x+y =10} ,则 R 的自反闭包为{<1,1>,<2,2>}.9.设 R 是会合 A 上的等价关系,且 1 , 2 , 3 是 A 中的元素,则 R 中起码包含<1,1>,<2,2>,<3,3>等元素.10.设 A={1 ,2} ,B={ a,b} ,C={3 ,4,5} ,从 A 到 B 的函数 f ={<1, a>, <2, b>} ,从 B 到 C 的函数 g={< a,4>, < b,3>} ,则 Ran(g f)={3,4} .二、判断说明题(判断以下各题,并说明原因.)1.若会合 A = {1 ,2,3} 上的二元关系R={<1, 1> , <2, 2>,<1, 2>} ,则(1) R 是自反的关系;(2) R 是对称的关系.(1)错误。

2021春中国石油大学《离散数学》第三次在线作业及满分答案

2021春中国石油大学《离散数学》第三次在线作业及满分答案

2021春中国石油大学《离散数学》第三次在线作业及满分答案篇一:2021春中国石油大学《离散数学》第一次在线作业及满分答案-更新2022春季中国石油大学离散数学第一次在线分派与问题1的满分答案空集不是任何集合的真子集你的答案是:错题目分数:0.5该问题得分:0.5分批注:本题考查空集的基本概念问题2一个集合可以是另一个集合的元素你的答案:正确题目分数:0.5该问题得分:0.5批注:本题考查集合的基本概念问题3设a、b为集合,如果集合a的元素都是集合b的元素,则称a是b的子集你的答案:正确题目分数:0.5该问题得分:0.5分批注:本题考查子集的基本概念问题4如果一个集合包含了所要讨论的每一个集合,则称该集合为全集,记为了你您的答案:正确科目分数:0.5此题得分:0.5注释:这个问题考察了完整集合的基本概念第5题在笛卡尔坐标系中,平面上点的坐标<1,2>和<2,1>代表不同的点。

你的答案:正确题目分数:0.5该问题得分:0.5分批注:本题考查笛卡儿坐标系的基本概念问题6复合运算不满足交换律,但复合运算满足结合律你的答案:正确题目分数:0.5该问题得分:0.5分批注:本题考查复合运算的是否满足交换律和结合律问题7映射也可以称为函数,是一种特殊的二元关系你的答案:正确题目分数:0.5该问题得分:0.5分篇二:石油华东《离散数学》2021年春学期在线作业(二)一、单选题(共11题,总分22分)v1。

6阶群的任何子群都不能是()a.3阶的b、订单6c.4阶的d、二阶2.在代数系统中整环和域的关系是()a、整个环必须是一个域b.域一定是整环c、域不一定是整环d.域一定不是整环三a.Bc.D4.汉密尔顿回路是()a、闭合轨迹b.路径c、这既是一条闭合轨迹,也是一个圆d.既不是闭迹也不是圈5.无向图中的边e是割边的充要条件是()a.边e不是重边b、边e是重边c.边e不包含在图的某个回路中d、边e不包括在图的任何闭合轨迹中6.仅由孤立结点组成的图称为()a、平凡图b.多重图c、零图d.完全图7.图g和G1的节点和对应边之间存在一对一的对应关系,这与图g和G1()a.必要条件b、充要条件c.充分条件d、既不是充分条件,也不是必要条件8.q为有理数集,q上定义运算*为a*b=a+b-ab,则<q,*>的幺元为()a、 ab.bc、一,d.09.只包含有限元素的格称为有限格,它必须是()a.有界格b、互补格c.分配格d、鼻涕虫10.设g=<v,e>有n个结点,m条边,则要确定g的一棵生成树必须删去g中边数为()a、 m-n+1b.n-m-1c、 m-n-1d.n-m+111.设G是V节点和e边的连通平面图,则曲面R等于()a.e-v+2b、 v-e+2c.v+e+2d、 v+e-2二、多选题(共4道试题,共28分。

离散数学形成性考核作业(三)

离散数学形成性考核作业(三)

离散数学形成性考核作业(三)集合论与图论综合练习本课程形成性考核作业共4次,内容由中央电大确定、统一布置。

本次形考作业是第三次作业,大家要认真及时地完成图论部分的形考作业,字迹工整,抄写题目,解答题有解答过程。

一、单项选择题1.若集合A={2,a,{ a },4},则下列表述正确的是( ).A.{a,{ a }}∈A B.{ a }⊆AC.{2}∈A D.∅∈A2.设B = { {2}, 3, 4, 2},那么下列命题中错误的是().A.{2}∈B B.{2, {2}, 3, 4}⊂BC.{2}⊂B D.{2, {2}}⊂B3.若集合A={a,b,{1,2 }},B={1,2},则().A.B⊂ A,且B∈A B.B∈ A,但B⊄AC.B ⊂ A,但B∉A D.B⊄ A,且B∉A4.设集合A = {1, a },则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}}C.{∅,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}5.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b>⎢a , b∈A , 且a +b = 8},则R具有的性质为().A.自反的B.对称的C.对称和传递的D.反自反和传递的6.设集合A = {1,2,3,4,5 },B = {1,2,3},R从A到B的二元关系,R ={<a , b>⎢a∈A,b∈B且1a}=-b则R具有的性质为().A.自反的B.对称的C.传递的D.反自反的7.设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S是R的()闭包.A.自反B.传递C.对称D.以上都不对8.非空集合A上的二元关系R,满足( ),则称R是等价关系.A.自反性,对称性和传递性B.反自反性,对称性和传递性C.反自反性,反对称性和传递性D.自反性,反对称性和传递性9.设集合A={a, b},则A上的二元关系R={<a, a>,<b, b>}是A上的( )关系.A .是等价关系但不是偏序关系B .是偏序关系但不是等价关系C .既是等价关系又是偏序关系D .不是等价关系也不是偏序关系10.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系 的哈斯图如右图所示,若A 的子集B = {3 , 4 , 5},则元素3为B 的( ).A .下界B .最大下界C .最小上界D .以上答案都不对11.设函数f :R →R ,f (a ) = 2a + 1;g :R →R ,g (a ) = a 2.则( )有反函数.A .g ∙fB .f ∙gC .fD .g12.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡01110010000011100000100 则G 的边数为( ).A .5B .6C .3D .413.下列数组中,能构成无向图的度数列的数组是( ) .A .(1, 1, 2, 3)B .(1, 2, 3, 4, 5)C .(2, 2, 2, 2)D .(1, 3, 3) 14.设图G =<V ,E >,则下列结论成立的是 ( ). A .deg(V )=2∣E ∣ B .deg(V )=∣E ∣ C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(15.有向完全图D =<V ,E >, 则图D 的边数是( ). A .∣E ∣(∣E ∣-1)/2 B .∣V ∣(∣V ∣-1)/2C .∣E ∣(∣E ∣-1)D .∣V ∣(∣V ∣-1) 16.给定无向图G 如右图所示,下面给出的结点 集子集中,不是点割集的为( ) A .{b , d } B .{d } C .{a , c } D .{g , e }17.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +218.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点C .G 连通且所有结点的度数全为偶数D .G 连通且至多有两个奇数度结点 19.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能5 f确定G 的一棵生成树.A .1m n -+B .m n -C .1m n ++D .1n m -+ 20.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 . A .8 B .5 C .4 D . 3二、填空题1.设集合A B =={,,},{,}12312,则A ⋃B = ,A ⋂B = ,A – B = ,P (A )-P (B )= .2.设A , B 为任意集合,命题A -B =∅的条件是 . 3.设集合A 有n 个元素,那么A 的幂集合P (A )的元素个数为 . 4.设集合A = {1,2,3,4,5,6 },A 上的二元关系A b a b a R ∈><=,,{且1=-b a },则R 的集合表示式为 .5.设集合A = {1,2,3,4,5 },B = {1,2,3},R 从A 到B 的二元关系, R ={<a , b >⎢a ∈A ,b ∈B 且2≤a + b ≤4}则R 的集合表示式为 .6.设集合A ={0,1,2},B ={0,2,4},R 是A 到B 的二元关系,},,{B A y x B y A x y x R ⋂∈∈∈><=且且 则R 的关系矩阵M R =.7.设集合A ={1, 2, 3, 4 },B ={6, 8, 12}, A 到B 的二元关系R =},,2,{B y A x x y y x ∈∈=>< 那么R -1=8.设集合A ={a ,b ,c },A 上的二元关系R ={<a ,b >,<c .a >},S ={<a ,a >,<a ,b >,<c ,c >}则(R ∙S )-1= .9.设集合A ={a ,b ,c },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则二元关系R 具有的性质是 .10.设集合A = {1 , 2 , 3 , 4 }上的等价关系R = {<1 , 2>,<2 , 1>,<3 , 4>,<4 , 3>}⋃I A . 那么A 中各元素的等价类为 .11.设A ,B 为有限集,且|A |=m ,|B |=n ,那末A 与B 间存在双射,当且仅当 .12.设集合A ={1, 2},B ={a , b },那么集合A 到B 的双射函数是 .13.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 .14.设给定图G (如由图所示),则图G 的点 割集是 .15.设G=<V ,E >是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 ,则在G 中存在一条汉密尔顿路.16.设无向图G =<V ,E >是哈密顿图,则V 的任意非空子集V 1,都有 ≤∣V 1∣.17.设有向图D 为欧拉图,则图D 中每个结点的入度 . 18.设完全图K n 有n 个结点(n ≥2),m 条边,当 时,K n 中存在欧拉回路. 19.图G (如右图所示)带权图中最小生成树的权是20.连通无向图G 有6个顶点9条边,从G 中删去 条边才有可能得到G 的一棵生成树T .三、判断说明题1.设A 、B 、C 为任意的三个集合,如果A ∪B =A ∪C ,判断结论B =C 是否成立?并说明理由.2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1⋂R 2是自反的” 是否成立?并说明理由.3.设R ,S 是集合A 上传递的关系,判断 R ⋃S 是否具有传递性,并说明理由.bc d4.若偏序集<A ,R >的哈斯图如右图所示,则 集合A 的最小元为1,最大元不存在.5.若偏序集<A ,R >的哈斯图如右图所示,则 集合A 的极大元为a ,f ;最大元不存在.6.图G (如右图)能否一笔画出?说明理由.若能画出,请写出一条通路或回路.7.判断下图的树是否同构?说明理由.8.给定两个图G 1,G 2(如下图所示),试判断它们是否为欧拉图、哈密顿图?并说明理由.v 123 图Gg 图G 2 图G 1f(c )9.判别图G(如下图所示)310.在有6个结点,12条边的简单平面连通图中,每个面有几条边围成?为什么?四、计算题1.设}4,2{=,1{=,2=E,求:,3AB=C,4,25},,1{5},},,1{4(1)(A⋂B)⋃~C;(2)P(A)-P(C);(3)A⊕B.2.设集合A={a, b, c},B={b, d, e},求(1)B⋂A;(2)A⋃B;(3)A-B;(4)B⊕A.3.设A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},R是A上的整除关系,B={2, 4, 6}.(1)写出关系R的表示式;(2)画出关系R的哈斯图;(3)求出集合B的最大元、最小元.关系图如右图所示.(1)写出R的表达式;(2)写出R的关系矩阵;(3)求出R2.5.设A={0,1,2,3,4},R={<x,y>|x∈A,y∈A且x+y<0},S={<x,y>|x∈A,y∈A且x+y<=3},试求R,S,R︒S,R-1,S-1,r(R),s(R),t(R),r(S),s(S),t(S).6.设图G=<V,E>,其中V={a1, a2, a3, a4, a5},E={<a1, a2>,<a2, a4>,<a3, a1>,<a4, a5>,<a5, a2>}(1)试给出G的图形表示;(2)求G的邻接矩阵;(3)判断图D是强连通图、单侧连通图还是弱连通图?7.设图G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v2),(v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) }.(1)试给出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数(4)画出图G的补图的图形.8.图G=<V, E>,其中V={a, b, c, d, e, f },E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (d, e), (d, f), (e, f) },对应边的权值依次为5,2,1,2,6,1,9,3及8.(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.(1)求图G的最小生成树;(2)计算该生成树的权值.10.设有一组权为2,3,5,7,11,13,17,19,23,29,31,试(1)画出相应的最优二叉树;(2)计算它们的权值.五、证明题1.试证明集合等式:A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).2.证明对任意集合A,B,C,有C=⨯⋂⋂⨯)(.CAA⨯BAB3.设R是集合A上的对称关系和传递关系,试证明:若对任意a∈A,存在b∈A,使得<a, b>∈R,则R是等价关系.4.若非空集合A 上的二元关系R 和S 是偏序关系,试证明:S R 也是A 上的偏序关系.5.若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的.6.设G 是连通简单平面图,则它一定有一个度数不超过5的结点.(提示:用反证法)7.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k条边才能使其成为欧拉图.8.证明任何非平凡树至少有2片树叶.。

2015春中国石油大学《离散数学》第一次在线作业及满分答案-更新

2015春中国石油大学《离散数学》第一次在线作业及满分答案-更新

2015春中国石油大学《离散数学》第一次在线作业及满分答案第1题空集不是任何集合的真子集您的答案:错误题目分数:0.5此题得分:0.5批注:本题考查空集的基本概念第2题一个集合可以是另一个集合的元素您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查集合的基本概念第3题设A、B为集合,如果集合A的元素都是集合B的元素,则称A是B的子集您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查子集的基本概念第4题如果一个集合包含了所要讨论的每一个集合,则称该集合为全集,记为U您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查全集的基本概念第5题在笛卡儿坐标系中,平面上点的坐标< 1,2>与< 2,1>代表不同的点您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查笛卡儿坐标系的基本概念第6题复合运算不满足交换律,但复合运算满足结合律您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查复合运算的是否满足交换律和结合律第7题映射也可以称为函数,是一种特殊的二元关系您的答案:正确此题得分:0.5题目分数:0.5批注:本题考查映射的基本概念第8题映射的复合运算不满足交换律您的答案:正确题目分数:0.5此题得分:0.5批注:本题为映射的基础知识第9题空集是唯一的您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查空集的唯一性第10题对任意的集合A,A包含A您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查集合的包含概念您的答案:正确第11题集合上的三种特殊元是单位元、零元及可逆元您的答案:正确题目分数:0.5 此题得分:0.5批注:本题考查集合上的三种特殊元第12题集合A上的偏序关系的三个性质是自反性、反对称性和传递性您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查集合偏序关系的三个性质第13题设f:A -B, g:B f C。

若f, g都是满射,则gf也是满射您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查复合关系的满射概念第14题设f:A —B, g:B—C。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

石大远程奥鹏-离散数学-第三次在线作业正确答案

石大远程奥鹏-离散数学-第三次在线作业正确答案

中国石油大学(北京)
石大远程
离散数学-第三次在线作业
参考答案
试读一页
离散数学-第三次在线作业
1. 不能再分解的命题称为原子命题,至少包含一个联结词的命题称为复合命题
正确
错误
正确答案:正确
2. 命题是能够表达判断(分辩其真假)的陈述语句
正确
错误
正确答案:正确
3. 一个命题可赋予一个值,称为真值
正确
错误
正确答案:正确
4. 复合命题是由连结词、标点符号和原子命题复合构成的命题
正确
错误
正确答案:正确
5. 在条件命题P→Q中,命题P称为P→Q的前件或前提,命题Q称为P→Q的后件或结。

(完整版)《离散数学》试题及答案解析,推荐文档

(完整版)《离散数学》试题及答案解析,推荐文档
3. 设 R 是实数集合,,,是 R 上的三个映射,(x) = x+3, (x) = 2x, (x) = x/4, 试求复合映射•,•, •, •,••.
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).

中国石油大学大学《离散数学》期末复习题及答案

中国石油大学大学《离散数学》期末复习题及答案

《离散数学》期末复习题一、填空题(每空2分,共20分)1、集合A上的偏序关系的三个性质是、和。

2、一个集合的幂集是指。

3、集合A={b,c},B={a,b,c,d,e},则A?B= 。

4、集合A={1,2,3,4},B={1,3,5,7,9},则A?B= 。

5、若A是2元集合, 则2A有个元素。

6、集合A={1,2,3},A上的二元运算定义为:a* b = a和b两者的最大值,则2*3= 。

7、设A={a, b,c,d }, 则∣A∣= 。

8、对实数的普通加法和乘法,是加法的幂等元,是乘法的幂等元。

9、设a,b,c是阿贝尔群<G,+>的元素,则-(a+b+c)= 。

10、一个图的哈密尔顿路是。

11、不能再分解的命题称为,至少包含一个联结词的命题称为。

12、命题是。

13、如果p表示王强是一名大学生,则┐p表示。

14、与一个个体相关联的谓词叫做。

15、量词分两种:和。

16、设A、B为集合,如果集合A的元素都是集合B的元素,则称A是B的。

17、集合上的三种特殊元是、及。

18、设A={a, b},则ρ(A) 的四个元素分别是:,,,。

19、代数系统是指由及其上的或组成的系统。

20、设<L,*1,*2>是代数系统,其中是*1,*2二元运算符,如果*1,*2都满足、,并且*1和*2满足,则称<L,*1,*2>是格。

21、集合A={a,b,c,d},B={b },则A \ B= 。

22、设A={1, 2}, 则∣A∣= 。

23、在有向图中,结点v的出度deg+(v)表示,入度deg-(v)表示以。

24、一个图的欧拉回路是。

25、不含回路的连通图是。

26、不与任何结点相邻接的结点称为。

27、推理理论中的四个推理规则是、、、。

二、判断题(每题2分,共20分)1、空集是唯一的。

2、对任意的集合A,A包含A。

3、恒等关系不是对称的,也不是反对称的。

4、集合{1,2,3,3}和{1,2,2,3}是同一集合。

离散数学试卷及参考答案A

离散数学试卷及参考答案A

考试时间:90分钟满分:100分一、选择题(每题3分,共30分)1. 下列关于集合的描述,正确的是()A. 集合是具有相同性质的一组对象的集合B. 集合是具有不同性质的一组对象的集合C. 集合是具有相同性质的一组数字的集合D. 集合是具有不同性质的一组数字的集合2. 下列关于关系的描述,正确的是()A. 关系是集合中元素之间的对应关系B. 关系是集合中元素之间的相等关系C. 关系是集合中元素之间的包含关系D. 关系是集合中元素之间的顺序关系3. 下列关于函数的描述,正确的是()A. 函数是集合中元素之间的对应关系B. 函数是集合中元素之间的相等关系C. 函数是集合中元素之间的包含关系D. 函数是集合中元素之间的顺序关系4. 下列关于图的描述,正确的是()A. 图是由顶点和边组成的数学结构B. 图是由顶点和边组成的几何结构C. 图是由顶点和边组成的物理结构D. 图是由顶点和边组成的化学结构5. 下列关于图的类型的描述,正确的是()A. 无向图是顶点之间没有方向的图B. 有向图是顶点之间有方向的图C. 无向图是顶点之间有方向的图D. 有向图是顶点之间没有方向的图6. 下列关于图的性质的描述,正确的是()A. 图的顶点数等于边的数量B. 图的边数等于顶点的数量C. 图的顶点数可能大于边的数量D. 图的边数可能大于顶点的数量7. 下列关于图的路径的描述,正确的是()A. 路径是图中顶点之间的连续序列B. 路径是图中边之间的连续序列C. 路径是图中顶点和边之间的连续序列D. 路径是图中顶点和边之间的任意序列8. 下列关于图的连通性的描述,正确的是()A. 图是连通的,当且仅当任意两个顶点之间都有路径B. 图是连通的,当且仅当任意两个顶点之间都没有路径C. 图是连通的,当且仅当任意两个顶点之间都有至少一条边D. 图是连通的,当且仅当任意两个顶点之间都没有至少一条边9. 下列关于图的树的描述,正确的是()A. 树是连通且无环的图B. 树是连通且有环的图C. 树是连通且可能有环的图D. 树是连通且可能有环的图10. 下列关于图的颜色的描述,正确的是()A. 图的颜色是顶点之间的颜色关系B. 图的颜色是边之间的颜色关系C. 图的颜色是顶点和边之间的颜色关系D. 图的颜色是顶点和边之间的任意颜色关系二、填空题(每题2分,共20分)11. 集合是______的一组对象的集合。

《离散数学》第三次在线作业

《离散数学》第三次在线作业

第三次第1题不能再分解的命题称为原子命题,至少包含一个联结词的命题称为复合命题您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查原子命题和复合命题的基本概念第2题命题是能够表达判断(分辩其真假)的陈述语句您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题的基本概念第3题一个命题可赋予一个值,称为真值您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题真值的基本概念第4题复合命题是由连结词、标点符号和原子命题复合构成的命题您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查复合命题的基本概念第5题在条件命题P→Q中,命题P称为P→Q的前件或前提,命题Q称为P→Q的后件或结论您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查条件命题的基本概念第6题给定一个命题,若无论对分量作怎样的指派,其对应的真值永远为T,则称该命题公式为重言式或永真公式您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查永真公式的基本概念第7题给定一个命题,若无论对分量作怎样的指派,其对应的真值永远为F,则称该命题公式为矛盾式或永假公式您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查永假公式的基本概念第8题任何两个重言式的合取或析取仍然是一个重言式您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查重言式的基本概念第9题一个命题称为合取范式,当且仅当它具有如下的形式: A1∧A2∧…∧An,(n≥1)其中A1,A2,…,An都是由命题变元或其否定所组成的析取式您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查合取范式的基本概念第10题一个命题称为析取范式,当且仅当它具有如下的形式: A1∨A2∨… ∨An,(n≥1)其中A1,A2,…,An都是由命题变元或其否定所组成的合取式您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查析取范式的基本概念第11题一个命题的合取范式或析取范式不是唯一的您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查合取范式或析取范式的不唯一性第12题推理理论中的四个推理规则是全称指定规则 (US规则)、全称推广规则 (UG规则)、存在指定规则 (ES规则) 、存在推广规则 (EG规则)您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查推理理论中的四个推理规则第13题如果p表示王强是一名大学生,则¬p表示王强不是一名大学生您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题的运算第14题设p:2008年将在北京举办奥运会,q:中国是世界四大文明古国之一,则p∧q:2008年将在北京举办奥运会并且中国是世界四大文明古国之一您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题的∧运算第15题设p:小王努力学习,q:小王学习成绩优秀,则:p→q:如果小王努力学习,那么他的学习成绩就优秀您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查条件命题的基本概念第16题设p:张华是三好学生,q:张华德、智、体全优秀,则:p↔q:张华是三好学生当且仅当德、智、体全优秀您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查等价命题的基本概念第17题与一个个体相关联的谓词叫做一元谓词您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查一元谓词的基本概念第18题一般的,把与n个个体相关联的谓词叫做n元谓词您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查n元谓词的基本概念第19题量词分两种:全称量词和存在量词您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查量词的种类第20题设A1是合式公式A的子公式,若A1等价B1,并且将A中的A1用B1 替换得到公式B,则A等价B,称该定理为替换规则您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查替换规则的基本概念第21题对于任何一命题公式,都存在与其等价的析取范式和合取范式您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题公式的基本概念第22题“全体立正”不是命题您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题的基本概念第23题“禁止吸烟!”不是命题您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题的基本概念第24题“我正在说谎。

离散数学试题与答案

离散数学试题与答案

离散数学试题与答案【篇一:离散数学试题及答案】一、填空题1 设集合a,b,其中a={1,2,3}, b= {1,2}, 则a - b=____________________;= __________________________ .3. 设集合a = {a, b}, b = {1, 2}, 则从a到b的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式g=?(p?q)∧r,则g的主析取范式是_____________________________________________________________________________________ ____.5.设g是完全二叉树,g有7个点,其中4个叶点,则g的总度数为__________,分枝点数为________________.7. 设r是集合a上的等价关系,则r所具有的关系的三个特性是______________________, ________________________,_______________________________.8. 设命题公式g=?(p?(q?r)),则使公式g为真的解释有__________________________,_____________________________,__________________________.9. 设集合a={1,2,3,4}, a上的关系r1 = {(1,4),(2,3),(3,2)}, r1 = {(2,1),(3,2),(4,3)}, 则 r1?r2 = ________________________,r2?r1 =____________________________,=________________________.10. 设有限集a, b,|a| = m, |b| = n, 则| |?(a?b)| =_____________________________.11 设a,b,r是三个集合,其中r是实数集,a = {x | -1≤x≤1, x?r}, b = {x | 0≤x 2, x?r},则a-b = __________________________ , b-a = __________________________ , a∩b =__________________________ , .13. 设集合a={2, 3, 4, 5, 6},r是a上的整除,则r以集合形式(列举法)记为_________________________________________________________________ _.14. 设一阶逻辑公式g = ?xp(x)??xq(x),则g的前束范式是__________________________ _____.15.设g是具有8个顶点的树,则g中增加_________条边才能把g 变成完全图。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案离散数学是一门涉及离散结构和逻辑推理的数学学科。

它在计算机科学、信息技术和其他领域中具有重要的应用价值。

离散数学考试试题涵盖了离散数学的各个方面,包括集合论、图论、逻辑、代数结构等。

本文将为大家提供一些离散数学考试试题及答案,希望能帮助大家更好地理解和掌握这门学科。

一、集合论1. 设A={1,2,3,4,5},B={3,4,5,6,7},求A与B的交集、并集和差集。

答案:A与B的交集为{3,4,5},并集为{1,2,3,4,5,6,7},A与B的差集为{1,2}。

2. 设集合A={x|x是正整数,1≤x≤10},B={x|x是偶数,2≤x≤8},求A与B的笛卡尔积。

答案:A与B的笛卡尔积为{(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),...,(10,2),(10,4),(10,6),(10,8)}。

二、图论1. 给定图G,其邻接矩阵如下:| 0 1 1 0 || 1 0 0 1 || 1 0 0 1 || 0 1 1 0 |判断图G是否是连通图,并给出其连通分量。

答案:图G是连通图,其连通分量为{1,2,3,4}。

2. 给定图G,其邻接表如下:| 1 | 2 || 3 | 2 4 || 4 | 3 |判断图G是否是树,并给出其生成树。

答案:图G是树,其生成树为{1-2, 2-3, 3-4}。

三、逻辑1. 判断命题逻辑公式((p∨q)→r)∧(¬p∨¬q)的真值。

答案:命题逻辑公式((p∨q)→r)∧(¬p∨¬q)的真值为真。

2. 判断命题逻辑公式∀x(P(x)∧Q(x))→(∀xP(x)∧∀xQ(x))的真值。

答案:命题逻辑公式∀x(P(x)∧Q(x))→(∀xP(x)∧∀xQ(x))的真值为假。

四、代数结构1. 设集合S={0,1,2,3,4},定义运算*如下:a*b = (a+b)%5其中%表示取余运算。

《离散数学》复习题及答案

《离散数学》复习题及答案

《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式?x((A(x)?B(y,x))??z C(y,z))?D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( ) (1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P :我生病,Q :我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1) P Q →⌝ (2) Q P ⌝→ (3) Q P ⌝↔ (4)Q P →⌝8、设个体域为整数集,则下列公式的意义是( )。

(1) ?x ?y(x+y=0) (2) ?y ?x(x+y=0)答:(1)对任一整数x 存在整数 y 满足x+y=0(2)存在整数y 对任一整数x 满足x+y=09、设全体域D 是正整数集合,确定下列命题的真值:(1) ?x ?y (xy=y) ( ) (2) ?x ?y(x+y=y) ( )(3) ?x ?y(x+y=x) ( ) (4) ?x ?y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x 是奇数,Q(x):x 是偶数,谓词公式 ?x(P(x)?Q(x))在哪个个体域中为真?( )(1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015春中国石油大学《离散数学》第三次在线作业及满分答案
第1题
不能再分解的命题称为原子命题,至少包含一个联结词的命题称为复合命题
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查原子命题和复合命题的基本概念
第2题
命题是能够表达判断(分辩其真假)的陈述语句
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的基本概念
第3题
一个命题可赋予一个值,称为真值
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题真值的基本概念
第4题
复合命题是由连结词、标点符号和原子命题复合构成的命题
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查复合命题的基本概念
第5题
在条件命题P→Q中,命题P称为P→Q的前件或前提,命题Q称为P→Q的后件或结论
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查条件命题的基本概念
第6题
给定一个命题,若无论对分量作怎样的指派,其对应的真值永远为T,则称该命题公式为重言式或永真公式
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查永真公式的基本概念
第7题
给定一个命题,若无论对分量作怎样的指派,其对应的真值永远为F,则称该命题公式为矛盾式或永假公式
您的答案:正确
此题得分:0.5
批注:本题考查永假公式的基本概念
第8题
任何两个重言式的合取或析取仍然是一个重言式
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查重言式的基本概念
第9题
一个命题称为合取范式,当且仅当它具有如下的形式:A1∧A2∧…∧An,(n≥1)其中A1,A2,…,An都是由命题变元或其否定所组成的析取式
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查合取范式的基本概念
第10题
一个命题称为析取范式,当且仅当它具有如下的形式:A1∨A2∨…∨An,(n≥1)其中A1,A2,…,An都是由命题变元或其否定所组成的合取式
您的答案:正确
此题得分:0.5
批注:本题考查析取范式的基本概念
第11题
一个命题的合取范式或析取范式不是唯一的
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查合取范式或析取范式的不唯一性
第12题
推理理论中的四个推理规则是全称指定规则(US规则)、全称推广规则(UG规则)、存在指定规则(ES规则) 、存在推广规则(EG规则) 您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查推理理论中的四个推理规则
第13题
如果p表示王强是一名大学生,则¬p表示王强不是一名大学生
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的运算
设p:2008年将在北京举办奥运会,q:中国是世界四大文明古国之一,则p∧q:2008年将在北京举办奥运会并且中国是世界四大文明古国之一
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的∧运算
第15题
设p:小王努力学习,q:小王学习成绩优秀,则:p→q:如果小王努力学习,那么他的学习成绩就优秀
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查条件命题的基本概念
第16题
设p:张华是三好学生,q:张华德、智、体全优秀,则:p↔q:张华是三好学生当且仅当德、智、体全优秀
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查等价命题的基本概念
与一个个体相关联的谓词叫做一元谓词
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查一元谓词的基本概念
第18题
一般的,把与n个个体相关联的谓词叫做n元谓词
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查n元谓词的基本概念
第19题
量词分两种:全称量词和存在量词
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查量词的种类
第20题
设A1是合式公式A的子公式,若A1等价B1,并且将A中的A1用B1 替换得到公式B,则A等价B,称该定理为替换规则
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查替换规则的基本概念
第21题
对于任何一命题公式,都存在与其等价的析取范式和合取范式您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题公式的基本概念
第22题
“全体立正”不是命题
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的基本概念
第23题
“禁止吸烟!”不是命题
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的基本概念
第24题
“我正在说谎。

”不是命题
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的基本概念
第25题
“你会讲英语吗?”不是命题
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的基本概念
第26题
用A表示“是个大学生”,c表示“张三”,则A(c):张三是个大学生您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的基本概念
第27题
用A表示“是个教师”,d表示“李四”,则A(d):李四是教师
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的基本概念
第28题
用B表示“大于”,e代表“5”,f代表“3”,则B(e,f):5大于3
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的基本概念
第29题
一元谓词表达了客体的“性质”,多元谓词表达了客体之间的“关系”您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查谓词的基本概念
第30题
将命题“小李比小赵高”符号化为L(a,b),其中L(x,y):x比y高;a:小李;b:小赵
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的符号化
第31题
符号化“每个自然数都是实数”。

引入特性谓词N(x):x是自然数;
R(x):x是实数。

∀x(N(x)→R(x))
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的符号化
第32题
符号化“有的有理数是整数”。

引入特性谓词R(x):x是有理数;G(x):x是整数。

∃x(R(x) ∧G(x))
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的符号化
第33题
符号化“凡偶数均能被2整除”。

F(x):x是偶数,G(x):x能被2整除。

∀x(F(x)→G(x))
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的符号化
第34题
符号化“在北京工作的人未必都是北京人”。

F(x):x在北京工作,G(x):x是北京人¬∀x(F(x)→G(x))
题目分数:0.5
此题得分:0.5
批注:本题考查命题的符号化
第35题
符号化“一切的人都不一样高”。

M(x):x是人,H(x,y):x≠y,L(x,y):x与y一样高,∀x∀y (M(x)∧M(y)∧H(x,y)→¬L(x,y))
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的符号化
第36题
用量词、谓词表示命题“所有大学生都热爱祖国”。

令S(x):x是大学生,L(x):x热爱祖国,∀x(S(x)→L(x))
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的符号化
第37题
并不是所有的兔子都比所有的乌龟跑得快。

设F(x):x是兔子。

G(x):x是乌龟。

H(x,y):x比y跑得快。

该命题符号化为:¬∀x∀y(F(x)∧G(y)→H(x,y))
题目分数:0.5
此题得分:0.5
批注:本题考查命题的符号化
第38题
符号化命题“2是素数且是偶数”。

设F(x):x是素数。

G(x):x是偶数。

a:2,则命题符号化为F(a)∧G(a)
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的符号化
第39题
符号化命题“如果2大于3,则2大于4。

”。

设L(x,y):x大于y,a:2,b:3,c:4,则命题符号化为L(a,b)→L(a,c)
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的符号化
第40题
符号化命题“每个学生都要参加考试”。

Q(x):x要参加考试。

P(x):x是学生。

∀x(P(x)→Q(x))
您的答案:正确
题目分数:0.5
此题得分:0.5
批注:本题考查命题的符号化。

相关文档
最新文档