第4章气动控制技术

合集下载

液压与气动技术习题答案毛好喜第4章习题参考答案

液压与气动技术习题答案毛好喜第4章习题参考答案

第四章液压控制与辅助元件思考与练习题解4-1 简述液压控制阀的作用和类型。

液压控制阀,简称为液压阀,它是液压系统中的控制元件,其作用是控制和调节液压系统中液压油的流动方向、压力的高低和流量的大小,以满足液压缸、液压马达等执行元件不同的动作要求。

液压阀的类型如表4-1所示。

表4-1 液压阀的类型分类方法 类型 详细分类压力控制阀 溢流阀、顺序阀、减压阀、压力继电器 按用途分流量控制阀 节流阀、调速阀、分流阀、集流阀方向控制阀 单向阀、液控单向阀、换向阀滑阀 圆柱滑阀、旋转阀、平板滑阀按结构分类座阀 椎阀、球阀、喷嘴挡板阀射流管阀 射流阀人力操纵阀 手把及手轮、踏板、杠杆操纵阀机械操纵阀 挡块、弹簧操纵阀按操作方式分液压(或气动)操纵阀 液压、气动操纵阀电动操纵阀 电磁铁、电液操纵阀比例阀 比例压力阀、比例流量阀、比例换向阀、比例复合阀 按控制方式分类伺服阀 单、两级电液流量伺服阀、三级电液流量伺服阀数字控制阀 数字控制压力控制流量阀与方向阀管式连接 螺纹式连接、法兰式连接阀按连接方式分类板式及叠加式连接 单层连接板式、双层连接板式、整体连接板式、叠加阀插装式连接 螺纹式插装阀、法兰式插装阀4-2 简述普通単向阀和液控单向阀的作用、组成和工作原理。

单向阀可分普通单向阀和液控单向阀两种。

1.普通单向阀的作用、组成和工作原理普通单向阀的作用是使油液只能沿一个方向流动,不许它反向倒流,故又称为止回阀。

如图4-1所示为普通单向阀的外形图,图4-2所示为其结构和图形符号图,这种阀由阀体1、阀芯2、弹簧3等零件组成。

当压力油从阀体左端的通口P1流入时,油液在阀芯的左端上产生的压力克服弹簧3作用在阀芯2上的力,使阀芯向右移动,打开阀口,并通过阀芯2上的径向孔a、轴向孔b,从阀体右端的通口P2流出。

当压力油从阀体右端的通口P2流入时,液压力和弹簧力一起使阀芯锥面压紧在阀座上,使阀口关闭,油液无法通过。

(a)结构图(b)图形符号图 1—阀体;2—阀芯;3—弹簧图4-2 普通单向阀2.液控单向阀的作用、组成和工作原理液控单向阀可使油液在两个方向自由通流,可用作二通开关阀,也可用作保压阀,用两个液控单向阀还可以组成“液压锁”。

液压与气动技术(第四版)章 (4)

液压与气动技术(第四版)章 (4)

25
(3)在上升之前作短暂时间的降压,可防止压缸上升时产生振 动、冲击现象,100吨以上的冲床尤其需要降压。
(4)当压缸上升时,有大量压油要流回油箱。回油时,一部分 压油经液控单向阀20流回油箱,剩余压油经电磁阀19中位流回油箱。 电磁阀19可选用额定流量较小的阀件。
(5)当压缸下降时,系统压力由溢流阀9控制;上升时,系统压 力由遥控溢流阀12控制。这样可使系统产生的热量减少,防止了油 温上升。
28
2)分度缸前进 夹紧液压缸将工件夹紧时并触发一行程开关使Y5通电,进油路 线为泵3→单向阀6→减压阀11→电磁阀14左位→分度缸右腔;回油 路线为分度缸左腔→电磁阀14左位→油箱。因无任何节流设施,且 分度液压缸前进时所需工作压力低,故泵以大流量送入液压缸,分 度缸快速前进。
29
图6-4 多轴钻床液压传动 系统
9
进油路:泵1→单向阀2→换向阀6左位→调速阀7→换向阀12右 位→液压缸左腔
回油路:液压缸右腔→换向阀6左位→顺序阀4→背压阀3→油 箱
因为工作进给时,系统压力升高,所以变量泵1的输油量便自 动减小,以适应工作进给的需要。其中,进给量大小由调速阀7调 节。
10
3.第二次工作进给 第一次工进结束后,行程挡块压下行程开关,使3YA通电,二 位二通换向阀将通路切断,进油必须经调速阀7和调速阀8才能进入 液压缸。此时,由于调速阀8的开口量小于调速阀7的,所以进给速 度再次降低,其他油路情况同一工进。
18 图6-3 动作顺序图
19
6.2.2 180吨钣金冲床液压系统的工作原理 1.压缸快速下降 按下启动按钮,Y1、Y3通电,进油路线为泵4、泵5→电磁阀19
左位→液控单向阀28→压缸上腔;回油路线为压缸下腔→顺序阀 23→单向阀14→压缸上腔。压缸快速下降时,进油管路压力低,未 达到顺序阀22所设定的压力,故压缸下腔压力油再回压缸上腔,形 成一差动回路。

气动基础知识培训课件

气动基础知识培训课件

气动基础知识培训课件一、教学内容本节课我们将学习气动基础知识,内容涉及《机械基础》第四章第三节:气动系统的组成与原理。

详细内容包括气源装置、执行元件、控制元件、辅助元件等气动元件的工作原理及功能,以及气动系统的基本控制原理。

二、教学目标1. 理解气动系统的基本组成,掌握各气动元件的作用及工作原理。

2. 学会分析气动系统的控制原理,具备简单的气动系统设计能力。

3. 能够运用所学知识解决实际问题,提高实践操作能力。

三、教学难点与重点教学难点:气动系统的控制原理,气动元件的选型及应用。

教学重点:气动系统的基本组成,各气动元件的工作原理及功能。

四、教具与学具准备1. 教具:气动基础知识课件、气动系统演示模型、气压表、气源处理器、气动执行元件、控制阀等。

2. 学具:笔、纸、计算器等。

五、教学过程1. 导入:通过展示气动系统在实际应用中的案例,引起学生对气动知识的兴趣。

2. 理论讲解:(1)介绍气动系统的基本组成,包括气源装置、执行元件、控制元件、辅助元件等。

(2)讲解各气动元件的工作原理及功能。

3. 实践操作:(1)演示气动系统的工作过程,让学生直观地了解气动元件的相互作用。

(2)指导学生进行气动元件的拆装、调试,提高学生的动手能力。

4. 例题讲解:分析一个简单的气动系统控制实例,引导学生学会分析气动系统的控制原理。

5. 随堂练习:布置一些关于气动基础知识的习题,让学生巩固所学内容。

六、板书设计1. 气动系统的基本组成:气源装置执行元件控制元件辅助元件2. 气动元件工作原理及功能:气源装置:提供压缩空气执行元件:将压缩空气转化为机械动作控制元件:控制气流的通断、方向和压力辅助元件:辅助实现气动系统的功能七、作业设计1. 作业题目:(1)简述气动系统的基本组成及各元件的作用。

2. 答案:八、课后反思及拓展延伸1. 反思:本节课通过理论讲解、实践操作、例题讲解等方式,使学生掌握了气动基础知识。

但在教学过程中,要注意关注学生的学习反馈,及时调整教学方法和节奏。

液压与气动技术 教案

液压与气动技术 教案

液压与气动技术教案第一章:液压与气动技术概述1.1 液压与气动技术的定义1.2 液压与气动技术的发展历程1.3 液压与气动技术的应用领域1.4 液压与气动技术的优缺点分析第二章:液压系统的基本组成2.1 液压泵2.2 液压缸2.3 液压控制阀2.4 液压油2.5 液压系统的辅助元件第三章:液压系统的原理与操作3.1 液压系统的原理介绍3.2 液压泵的工作原理与类型3.3 液压缸的工作原理与类型3.4 液压控制阀的工作原理与类型3.5 液压系统的操作步骤与注意事项第四章:气动系统的基本组成4.1 气源设备4.2 气动控制阀4.3 气动执行器4.4 气动辅助元件4.5 气动系统的连接与控制线路第五章:气动系统的原理与操作5.1 气动系统的原理介绍5.2 气动执行器的工作原理与类型5.3 气动控制阀的工作原理与类型5.4 气动系统的操作步骤与注意事项5.5 气动系统的应用案例分析第六章:液压与气动系统的维护与管理6.1 液压与气动系统的日常维护内容6.2 液压与气动系统的定期检查与保养6.3 液压与气动系统的故障诊断与排除6.4 液压与气动系统的安全操作规范6.5 液压与气动系统的节能与环保措施第七章:液压与气动系统的设计与计算7.1 液压系统设计的基本原则与步骤7.2 液压泵的选择与计算7.3 液压缸的设计与计算7.4 液压控制阀的选型与计算7.5 液压油的选择与系统油液循环第八章:气动系统的设计与计算8.1 气动系统设计的基本原则与步骤8.2 气源设备的选择与计算8.3 气动控制阀的选型与计算8.4 气动执行器的选择与计算8.5 气动系统的气动元件布局与线路设计第九章:液压与气动技术的应用案例分析9.1 液压系统在机械加工领域的应用案例9.2 液压系统在自动化生产线中的应用案例9.3 气动系统在工业自动化中的应用案例9.4 液压与气动系统在汽车行业中的应用案例9.5 液压与气动系统在其他领域的应用案例第十章:液压与气动技术的创新发展趋势10.1 液压与气动技术的发展前景10.2 液压与气动技术的创新技术10.3 液压与气动技术的行业标准与规范10.4 液压与气动技术的培训与教育10.5 液压与气动技术的国际合作与交流重点和难点解析重点环节1:液压与气动技术的定义和发展历程解析:理解和掌握液压与气动技术的概念是学习本课程的基础。

液压传动与气动技术教案已调整格式可直接打印

液压传动与气动技术教案已调整格式可直接打印

液压传动与气动技术教案第一章:液压传动与气动技术概述1.1 液压传动的定义与发展历程1.2 气动技术的定义与发展历程1.3 液压传动与气动技术的应用领域1.4 液压传动与气动技术在我国的应用与发展第二章:液压系统的基本组成与工作原理2.1 液压系统的组成2.2 液压系统的工作原理2.3 液压油的性质与选用2.4 液压系统的图形符号第三章:液压泵与液压马达3.1 液压泵的分类与工作原理3.2 液压泵的主要性能参数3.3 液压马达的工作原理与性能参数3.4 液压泵与液压马达的选用第四章:液压缸与液压执行器4.1 液压缸的分类与工作原理4.2 液压缸的主要性能参数4.3 液压执行器的分类与工作原理4.4 液压执行器的选用与安装第五章:液压控制阀及液压控制系统5.1 液压控制阀的分类与作用5.2 液压控制阀的主要性能参数5.3 液压控制系统的分类与工作原理5.4 液压控制系统的应用实例第六章:液压系统的设计与计算6.1 液压系统设计的基本原则6.2 液压缸和液压马达的选型计算6.3 液压泵的选型计算6.4 液压控制阀的选型计算第七章:液压系统的安装与维护7.1 液压系统的安装要求7.2 液压系统的调试与验收7.3 液压系统的日常维护与管理7.4 液压系统的故障诊断与排除第八章:液压元件的故障与维修8.1 液压泵的故障与维修8.2 液压控制阀的故障与维修8.3 液压缸和液压马达的故障与维修8.4 液压油的选择与更换第九章:气动技术的基本原理与应用9.1 气动技术的基本原理9.2 气源设备及其选用9.3 气动执行器及其选用9.4 气动控制元件及其应用第十章:气动元件的选用与维修10.1 气动元件的选用原则10.2 气动元件的安装与调试10.3 气动元件的维护与保养10.4 气动元件的故障诊断与排除第十一章:液压系统的应用案例分析11.1 液压系统在工业机械中的应用案例11.2 液压系统在汽车工业中的应用案例11.3 液压系统在航空航天领域的应用案例11.4 液压系统的创新应用案例分析第十二章:气动系统的应用案例分析12.1 气动系统在工业自动化中的应用案例12.2 气动系统在技术中的应用案例12.3 气动系统在制造业中的应用案例12.4 气动系统的创新应用案例分析第十三章:液压系统的仿真与优化13.1 液压系统仿真的基本概念13.2 液压系统仿真软件的使用13.3 液压系统优化的目的与方法13.4 液压系统优化案例分析第十四章:气动系统的仿真与优化14.1 气动系统仿真的基本概念14.2 气动系统仿真软件的使用14.3 气动系统优化的目的与方法14.4 气动系统优化案例分析第十五章:液压与气动技术的展望与发展趋势15.1 液压与气动技术的历史回顾15.2 液压与气动技术的现状15.3 液压与气动技术的挑战与机遇15.4 液压与气动技术的发展趋势预测重点和难点解析本教案涵盖了液压传动与气动技术的基本概念、组成、工作原理、应用领域、系统设计、元件故障与维修、系统安装与维护、气动技术基本原理与应用、元件选用与维修等内容。

[第4讲]-自动化仪表及过程控制-第四章-过程控制仪表

[第4讲]-自动化仪表及过程控制-第四章-过程控制仪表

第四章过程控制仪表⏹本章提要1.过程控制仪表概述2.DDZ-Ⅲ型调节器3.执行器4.可编程控制器⏹授课内容第一节概述✧过程控制仪表---是实现工业生产过程自动化的重要工具,它被广泛地应用于石油、化工等各工业部门。

在自动控制系统中,过程检测仪表将被控变量转换成电信号或气压信号后,除了送至显示仪表进行指示和记录外,还需送到控制仪表进行自动控制,从而实现生产过程的自动化,使被控变量达到预期的要求。

过程控制仪表包括调节器(也叫控制器)、执行器、操作器,以及可编程调节器等各种新型控制仪表及装置。

过程控制仪表的分类:●按能源形式分类:液动控制仪表、气动控制仪表和电动控制仪表。

●按结构形式分类:基地式控制仪表、单元组合式控制仪表、组件组装式控制仪表、集散控制装置等。

[基地式控制仪表]以指示、记录仪表为主体,附加某些控制机构而组成。

基地式控制仪表特点:—般结构比较简单、价格便宜.它不仅能对某些工艺变量进行指示或记录,而已还具有控制功能,因此它比较适用于单变量的就地控制系统。

目前常使用的XCT系列动圈式控制仪表和TA系列简易式调节器即属此类仪表。

[单元组合式控制仪表]将整套仪表划分成能独立实现一定功能的若干单元,各单元之间采用统一信号进行联系。

使用时可根据控制系统的需要,对各单元进行选择和组合,从而构成多种多样的、复杂程度各异的自动检测和控制系统。

特点:使用灵活,通用性强,同时,使用、维护更作也很方便。

它适用于各种企业的自动控制。

广泛使用的单元组合式控制仪表有电动单元组合仪表(DDZ型)和气动单元组合仪表(QD2型)。

[组件组装式控制仪表]是一种功能分离、结构组件化的成套仪表(或装置)。

它以模拟器件为主,兼用模拟技术和数字技术。

整套仪表(或装置)在结构上由控制柜和操作台组成,控制柜内安装的是具有各种功能的组件板,采用高密度安装,结构紧凑。

这种控制仪表(或装置)特别适用于要求组成各种复杂控制和集中显示操作的大、中型企业的自动控制系统。

液压传动与气动技术课程教案典型气动系统

液压传动与气动技术课程教案典型气动系统

液压传动与气动技术课程教案-典型气动系统第一章:气动系统概述教学目标:1. 了解气动系统的定义、组成和特点;2. 掌握气动系统的基本工作原理;3. 熟悉气动系统在工业中的应用。

教学内容:1. 气动系统的定义和组成;2. 气动系统的工作原理;3. 气动系统在工业中的应用案例。

教学方法:1. 讲授:讲解气动系统的定义、组成和特点;2. 演示:通过视频或实物展示气动系统的工作原理;3. 案例分析:分析气动系统在工业中的应用案例。

教学评估:1. 课堂问答:检查学生对气动系统定义、组成和工作原理的理解;2. 小组讨论:让学生探讨气动系统在工业中的应用案例,分享自己的观点。

第二章:气源设备及处理元件教学目标:1. 掌握气源设备的种类和功能;2. 熟悉气动处理元件的作用和结构;3. 了解气源系统的设计原则。

教学内容:1. 气源设备的种类和功能;2. 气动处理元件的作用和结构;3. 气源系统的设计原则。

教学方法:1. 讲授:讲解气源设备的种类和功能、气动处理元件的作用和结构;2. 互动:引导学生参与讨论气源系统的设计原则;3. 实操:演示气源设备和处理元件的安装与调试。

教学评估:1. 课堂问答:检查学生对气源设备、气动处理元件的理解;2. 实操考核:评估学生在实操中对气源设备和处理元件的安装与调试能力。

第三章:执行元件及控制元件教学目标:1. 掌握气动执行元件的种类和特点;2. 熟悉气动控制元件的功能和结构;3. 了解执行元件和控制元件在气动系统中的应用。

教学内容:1. 气动执行元件的种类和特点;2. 气动控制元件的功能和结构;3. 执行元件和控制元件在气动系统中的应用。

1. 讲授:讲解气动执行元件的种类和特点、气动控制元件的功能和结构;2. 互动:引导学生探讨执行元件和控制元件在气动系统中的应用;3. 实操:演示执行元件和控制元件的安装与调试。

教学评估:1. 课堂问答:检查学生对气动执行元件、气动控制元件的理解;2. 实操考核:评估学生在实操中对执行元件和控制元件的安装与调试能力。

液压与气动技术 教案

液压与气动技术 教案

液压与气动技术教案第一章:液压与气动技术概述教学目标:1. 了解液压与气动技术的定义、原理和应用领域。

2. 掌握液压与气动系统的基本组成部分及其功能。

3. 理解液压与气动技术的优缺点及其比较。

教学内容:1. 液压与气动技术的定义与原理。

2. 液压与气动系统的组成:液压泵、液压缸、控制阀、油管和附件等。

3. 液压与气动技术的应用领域:工业、农业、交通运输、军事等。

4. 液压与气动技术的优缺点及其比较。

教学方法:1. 采用讲授法,讲解液压与气动技术的定义、原理和应用领域。

2. 采用示教法,展示液压与气动系统的组成及其工作原理。

3. 采用案例分析法,分析液压与气动技术在实际应用中的例子。

教学评估:1. 进行课堂问答,检查学生对液压与气动技术定义、原理和应用领域的理解。

2. 布置课后作业,要求学生绘制液压与气动系统的基本组成部分。

第二章:液压泵教学目标:1. 了解液压泵的类型、结构和工作原理。

2. 掌握液压泵的性能参数及其计算方法。

教学内容:1. 液压泵的类型:齿轮泵、叶片泵、柱塞泵等。

2. 液压泵的结构与工作原理。

3. 液压泵的性能参数:流量、压力、功率等。

4. 液压泵的选用原则及其维护保养。

教学方法:1. 采用讲授法,讲解液压泵的类型、结构和工作原理。

2. 采用示教法,展示不同类型液压泵的工作原理。

3. 采用案例分析法,分析液压泵在实际应用中的选用和维护保养。

教学评估:1. 进行课堂问答,检查学生对液压泵类型、结构和工作原理的理解。

2. 布置课后作业,要求学生计算液压泵的性能参数。

第三章:液压缸教学目标:1. 了解液压缸的类型、结构和工作原理。

2. 掌握液压缸的性能参数及其计算方法。

3. 理解液压缸的选用原则及其安装与维护。

教学内容:1. 液压缸的类型:单作用液压缸、双作用液压缸等。

2. 液压缸的结构与工作原理。

3. 液压缸的性能参数:有效行程、负载能力等。

教学方法:1. 采用讲授法,讲解液压缸的类型、结构和工作原理。

液压与气动技术第4章-控制元件.答案

液压与气动技术第4章-控制元件.答案

①手动换向阀。手动换向阀是利用手动杠杆改变阀芯位置来 实现换向的.如图4-7所示。
上一页 下一页 返回
4.1 常用的液压控制阀

图4-7(a)所示为自动复位式手动换向阀.手柄左扳则阀芯右
移.阀的油口P和A通.B和T通;手柄右扳则阀芯左移.阀的油口 P和B通.A和T通;放开手柄.阀芯在弹簧的作用下自动回复中
上一页 下一页 返回
4.1 常用的液压控制阀


4. 1. 3 压力控制阀
压力控制阀简称压力阀.主要用来控制系统或回路的压力。其 工作原理是利用作用于阀芯上的液压力与弹簧力相平衡来进 行工作。根据功用不同.压力阀可分为溢流阀、减压阀、顺序 阀、平衡阀和压力继电器等.具体如下:
上一页 下一页 返回
4.1 常用的液压控制阀

上一页 下一页 返回
4.1 常用的液压控制阀


5.压力继电器
压力继电器是一种将液压系统的压力信号转换为电信号输出 的元件其作用是根据液压系统压力的变化.通过压力继电器内 的微动开关自动接通或断开电气线路.实现执行元件的顺序控 制或安个保护。 压力继电器按结构特点可分为柱塞式、弹簧管式和膜片式等 图4-25所示。
上一页 下一页 返回
4.1 常用的液压控制阀



2.减压阀 (1)减压阀结构及工作原理 减压阀有直动型和先导型两种.直动型减压阀很少单独使用. 而先导型减压阀则应用较多。图4-18所示为先导型减压阀. 它是由主阀和先导阀组成.先导阀负责调定压力.主阀负责减 压作用。 压力油由P1口流入.经主阀和阀体所形成的减压缝隙从P2口 流出.故出口压力小于进口压力.出口压力经油腔1、阻尼管、 油腔2作用在先导阀的提动头上。当负载较小.出口压力低于 先导阀的调定压力时.先导阀的提动头关闭.油腔1、油腔2的 压力均等于出口压力.主阀的滑轴在油腔2里面的一根刚性很 小的弹簧作用下处于最低位置.主阀滑轴凸肩和阀体所构成的 阀口全部打开.减压阀无减压作用.

《气动技术概述》PPT课件

《气动技术概述》PPT课件

h
13
第8章 气动技术概述
2)
小型化气动元件,如气缸及阀类正应用于许多工业领 域。微型气动元件不但用于精密机械加工及电子制造业,而 且用于制药业、医疗技术、包装技术等。在这些领域中,已 经出现活塞直径小于2.5 mm的气缸、 宽度为10 mm的气阀 及相关的辅助元件,并正在向微型化和系列化方向发展。
第8章 气动技术概述
第8章
8.1 气动系统 8.2 气动技术的应用 8.3 气动技术的特点和应用准则 8.4 气动技术的发展趋势
h
1
第8章 气动技术概述
8.1 气动系统
气动(气压传动)系统是一种能量转换系统,其工作 原理是将原动机输出的机械能转变为空气的压力能, 利用管路、各种控制阀及辅助元件将压力能传送到执 行元件,再转换成机械能,从而完成直线运动或回转 运动,并对外做功。气动系统的基本构成如图8-1所示。
h
3
第8章 气动技术概述
8.2 气动技术的应用
气动技术用于简单的机械操作中已有相当长的时间了, 最近几年随着气动自动化技术的发展,气动技术起到了重 要的作用。
气动自动化控制技术是利用压缩空气作为传递动力或 信号的工作介质,配合气动控制系统的主要气动元件,与 机械、液压、电气、电子(包括PLC控制器和微机)等部 分或全部综合构成的控制回路,使气动元件按工艺要求的 工作状况,自动按设定的顺序或条件动作的一种自动化技 术。用气动自动化控制技术实现生产过程自动化,是工业 自动化的一种重要技术手段, 也是一种低成本自动化技术。
h
5
第8章 气动技术概述
图8-2 货物自动装卸
h
6
第8章 气动技术概述
图8-3 气动机械手
h
7

第4章--气动控制阀PPT课件

第4章--气动控制阀PPT课件
2021/7/24
(1)或门元件 逻辑表达式: S = a + b
应用举例
高低压转换回路
2021/7/24
手动—自动选择回路
(2)是门和与门元件
逻辑表达式: S = a S =a · b
气动“是” 回路起信号放大作用,将 先导信号压力a放大至阀的供给压力。
应用举例
2021/7/24
双手操作安全回路
分类方式 按阀内气体的流动方向 按阀芯的结构形式 按阀的密封形式 按阀的工作位数及通路数 按阀的控制操纵方式分
2021/7/24
形式 单向阀、换向阀 截止阀、滑阀 硬质密封、软质密封 二位三通、二位五通、三位五通等
气压控制、电磁控制、机械控制、手动控制
1. 单向型方向控制阀
(1)单向阀
气体只能沿着一个方向流动,反向不能流动的阀,与 液压阀中的单向阀相似。
(3)非门和禁门元件
非门逻辑表达式: 禁门逻辑表达式:
2021/7/24
气动回路实现应用举例
非门
2021/7/24
禁门
(4)或非元件
2021/7/24
逻辑表达式:
该元件有三个输入口, 一个输出口,一个气 源口。三个输入口中 任一个有气信号,S口 就无输出。
练习:写出回路逻辑表达式
回路实现或非
节流调速举例
60%
50% 80%
80% 50%
42 5 13
(a)
2021/7/24
42 5 13
(b)
42
1
53 1 50%
70%
(c)
2 3 42
5 13
(d)
问题:单作用气缸如何调速?
四、气动逻辑元件

第4章 执行器

第4章 执行器

Ae 因此: l P0 cs l与P0成比例
2.活塞式气动执行器
原理:以气缸内的活塞输出推力 结构:如图,执行机构和调节阀 输出:两位式(根据输入活塞两 侧操作压力的大小使活塞从高压侧 被推向低压侧)和比例式(在两位 式基础上加阀门定位器使推杆位移 和信号压力成比例关系)
特点:无弹簧反作用力,使推力 大;活塞两侧分别输入固定信号 (含通大气)和可变信号或均可变; 价格贵,只用于特殊需要场合。
第4章 执行器
14 执行单元
Actuating unit 执行器接受来自调节器的控制信号,由执行机构将其转换 成相应的角位移或直线位移去操纵调节机构(调节阀)改变控 制量,从而使被控变量符合预期要求。其原理简单,操作比较 单一,但大多安装在现场,要保持其安全运行并不容易。
主要内容
执行器工作原理—分类与比较、基本构成及工作原理 气动执行器—基本构成及阀门定位器
4.3 电动执行器
二、伺服放大器
Dynamoelectric actuator
切换到手动时,由 正反操作按钮直接控 制电机的电源,以实 现执行机构输出轴的 正转和反转,使系统 在掉电时也能工作。
伺服放大器将输入信号Ii和反馈信号If相比较,所得的差值经功率 放大后驱动伺服电动机转动,再经减速器减速,带动输出轴改变转角θ, 若差值为正伺服电动机正转,输出轴转角增大,为负则反转,转角减小。 输出轴转角θ位置经位置发送器转换成相应的反馈电流If,回送到伺服 放大器输入端,当反馈信号与输入信号相平衡时,差值为零,伺服电动 机停止转动,输出轴就稳定在与输入信号相对应的位置上。
气开气关的选择考虑原则是: 信号压力中断时,应保证设备和操作人员 的发全,如阀门处于打开位置时危害性小, 则应选用气关式;反之,则用气开式。

液压与气动技术 第4章

液压与气动技术 第4章

液压辅助元件
二、滤油器
1.滤油器的类型和特点
根据滤芯的不同可分为网式、 线隙式、纸质式、烧结式和磁性 滤油器等,它们的类型和特点如 表1-5-4 所示。
二、滤油器
1.滤油器的类型和特点
类型
结构
特点
线隙 式
滤油 器
纸质 式
滤油 动画

其滤芯用铜线或铝线密绕在筒形骨 架的外部制成,依靠铜丝间的微小间 隙滤除混入液体中的杂质。其结构简 单,通流能力大,过滤精度比网式滤 油器高,但不易清洗,多为回油滤油 器
液压辅助元件
一、油箱
油箱由回油箱1、泄油管2、吸油管3、空气滤油器4、安装板 5、隔板6、放油口7、滤油器8、清洗窗9和油位指示器10等组成。 隔板6将吸油管3与回油管1、泄油管2隔开。顶部、侧部及底部 分别装有空气滤清器4、油位指示器10等,安装液压泵及其驱动 电机的安装板5可固定在油箱的顶面上。
其滤芯为平纹或波纹的酚醛树脂或 木浆微孔滤纸制成的纸芯,将纸芯围 绕在带孔的镀锡铁做成的骨架上,以 增大强度。为增加过滤面积,纸芯一 般做成折叠形。其过滤精度较高,一 般用于油液的精过滤,但堵塞后无法 清洗,须经常更换滤芯
二、滤油器
1.滤油器的类型和特点
类型
结构
烧结
式 滤油
动画

特点
其滤芯用金属粉末烧结而成,利用 颗粒间的微孔来挡住油液中的杂质通 过。其滤芯能承受高压,抗腐蚀性好, 过滤精度高,适用于要求精滤的高压、 高温液压系统
(2)安装在泵的出口油路上
此处安装滤油器的目的是用来滤除可能侵入阀 类等元件的污染物。同时应安装安全阀以防滤 油器堵塞。
液压辅助元件
二、滤油器
3.滤油器的安装位置 (3)安装在系统的回油路上

气压与液压传动控制技术(第6版)第4章

气压与液压传动控制技术(第6版)第4章
第4章 气压传动的应用实例
• 4. 1气动钻床的气压传动系统 • 4. 2零件使用寿命检测装置 • 4. 3气动技术在数控机床中的应用
返回
4.1 气动钻床的气压传动系统
• 4.1.1 工作过程
• 专用气动钻床的结构如图4-1所示。它利用一个双作用气缸对工件进 行夹紧,并利用另一个双作用气缸实现钻头的进给。其工作过程为: • 放上工件后启动,气缸1A活塞杆伸出,夹紧工件→气缸2A活塞杆伸 出,对工件进行钻孔→钻孔结束后,气缸2A活塞杆缩回→气缸1A活 塞杆缩回,松开工件。
上一页 下一页
返回
4.3 气动技束在数控机床中的应用
• 所以气控换向阀1V1和1V2在这里起到了让气缸活塞在任意位置迅速 停止的作用,并能防止切断气源后气缸活塞位置随意改变。 • 回路中气缸活塞速度控制采用了两个单向节流阀进行排气节流控制。 这样主要是为了能有效降低气缸活塞的运动速度,防止刀具在翻转过 程中因运动速度过快而被甩出。
返回
上一页
返回
图4-1气动钻床示意图
返回
图4 -2气动钻床气动控制回路图
返回
图4-3零件使用寿命检测装置示意图
返回
图4-4 零件使用寿命检测装置气动控制 回路图
返回
图4-5 H400加工中心工作台夹紧回路 图
返回
图4-6 H400加工中心交换台 抬升回路图
返回
图4-7 VMC750E加工中心盘式刀库回路 图
上一页 下一页
返回
4.1 气动钻床的气压传动系统
• 当1 S1发出信号并且工件已经放好(1 S4)和按下了启动按钮(1S3), 则换向阀0V切换至左位,使S1供气线路可以给第一组的两个行程阀1 S2 , 2S2供气。 • 单向节流阀2V3使钻孔速度稳定可调,快速排气阀2V2使钻孔完成后 钻头能够快速退回。图4 -2中的各气控换向阀气控口的画法为旧画法, 与标准画法略有不同。

《液压传动技术与气动技术》课程标准

《液压传动技术与气动技术》课程标准

《液压传动技术与气动技术》课程标准一、课程概述液压传动技术与气动技术是现代工业生产中常用的两种传动方式,本课程旨在介绍液压传动的基本原理、液压元件、液压系统组成及工作过程,以及气动技术的特点、气动元件及应用。

通过本课程的学习,学生应掌握液压传动与气动技术的相关理论知识和实践技能,为今后的工作和学习打下坚实的基础。

二、课程目标1. 掌握液压传动的基本原理、液压元件的结构和工作原理;2. 了解液压系统的组成和工作过程,能够分析简单液压系统的工作原理;3. 掌握气动技术的特点、气动元件的结构和工作原理,能够分析简单气动系统的工作过程;4. 能够根据实际需求选择合适的液压传动和气动技术方案;5. 培养学生的实践操作能力和创新意识,提高综合素质。

三、教学内容与要求1. 液压传动部分第一章液压传动基础知识* 掌握液压传动的基本原理和液压油的性质;* 了解液压传动的特点和应用范围。

第二章液压泵和液压马达* 掌握液压泵和液压马达的工作原理、结构和工作特点;* 能够根据实际需求选择合适的液压泵和液压马达。

第三章液压控制阀* 了解液压控制阀的类型、工作原理和常见故障;* 能够分析常见液压控制阀的工作过程。

第四章液压缸和液压系统* 了解液压缸的类型、结构和工作特点;* 能够分析简单液压系统的组成和工作过程。

第五章液压辅件* 熟悉液压辅件的类型、作用和常见故障;* 能够正确使用和维护常见的液压辅件。

2. 气动技术部分第六章气动基础知识* 了解气动技术的特点和应用范围;* 掌握空气的性质和气动元件的基本参数。

第七章气动执行元件* 熟悉气缸的类型、结构和工作特点;* 能够根据实际需求选择合适的执行元件。

第八章气动控制元件和辅助元件* 了解气动控制元件的类型、工作原理和常见故障;* 熟悉气动辅助元件的类型、作用和维护要求。

第九章气动系统的设计、安装与调试* 能够根据实际需求设计简单的气动系统;* 能够正确安装和调试简单的气动系统。

气动控制系统设计课程设计

气动控制系统设计课程设计

气动控制系统设计课程设计一、课程目标知识目标:1. 让学生掌握气动控制系统的基本组成、工作原理及主要性能参数;2. 使学生了解气动元件的选用原则,能正确选择合适的气动元件;3. 引导学生掌握气动控制系统的设计方法,能根据实际需求完成气动控制系统的设计。

技能目标:1. 培养学生运用气动控制理论知识解决实际问题的能力;2. 提高学生动手操作和团队协作能力,能完成气动控制系统的搭建和调试;3. 培养学生运用计算机辅助设计软件进行气动控制系统设计的能力。

情感态度价值观目标:1. 培养学生对气动控制技术及其应用的兴趣,激发学习热情;2. 培养学生严谨的科学态度,注重实践与创新,提高分析和解决问题的能力;3. 引导学生关注气动控制技术在我国工业领域的应用,增强学生的社会责任感和使命感。

本课程针对高年级学生,结合学科特点,注重理论知识与实际应用的结合。

在分析课程性质、学生特点和教学要求的基础上,将课程目标分解为具体的学习成果,以便于后续的教学设计和评估。

通过本课程的学习,使学生能够具备气动控制系统设计和应用的基本能力,为未来从事相关工作打下坚实基础。

二、教学内容1. 气动控制系统的基本概念与组成- 教材章节:第二章 气动控制系统概述- 内容:气动控制系统的定义、组成、分类及其应用领域。

2. 气动元件及其选用- 教材章节:第三章 气动元件- 内容:气动执行元件、气动控制元件、气动辅件的工作原理、性能参数及选用原则。

3. 气动控制系统的设计方法- 教材章节:第四章 气动控制系统设计- 内容:气动控制系统的设计步骤、设计要求、控制回路的设计方法。

4. 气动控制系统的搭建与调试- 教材章节:第五章 气动控制系统的安装与调试- 内容:气动控制系统的安装、调试方法及注意事项。

5. 计算机辅助设计软件在气动控制系统中的应用- 教材章节:第六章 气动控制系统CAD- 内容:介绍常用的气动控制系统CAD软件及其应用。

根据课程目标,教学内容分为五个部分,确保教学内容的科学性和系统性。

钻机的气控制系统

钻机的气控制系统

2020/5/27
石油钻采机械——任连城
18
钻机的控制系统
进入干燥器的空气首先进入热交换器冷却, 经初步冷却的空气中析出的水份和油份经 分离器排出。然后,空气再进入致冷器, 进一步冷却到2~5℃,使空气中含有的水 份、油份等由于温度的降低而进一步大量 地析出,经分水排水器排出。冷却后的空 气再进入热交换器加热输出。
2020/5/27
石油钻采机械——任连城
31
钻机的控制系统
工作原理:
排气时,将操纵机构松开(图 a),上阀座在顶杆套弹簧作用下 向上移动复位,关闭气室A与气 室B的通路,同时打开气室B的放 气通路,将气室B的进气通路内 的气源放掉。
调压阀的工作性能与调压弹簧 有很大关系,要选择恰当,刚性 过大或过小都会影响调压阀的灵 敏性。
2020/5/27
石油钻采机械——任连城
25
钻机的控制系统
直动式、先导式调压阀
单向压力顺序阀
过滤调压阀
安全阀
2020/5/27
石油钻采机械——任连城
26
钻机的控制系统
直动式调压阀 1—调节手柄; 2、3—调压弹簧; 4—溢流阀口;5—膜片; 6—反馈导管;7—阀杆; 8—进气阀;9—复位弹簧; 10—溢流口;
安全阀也分为直动式和先导式。 结构上分为:活塞式、球阀式、膜片式等。
2020/5/27
石油钻采机械——任连城
34
钻机的控制系统
2020/5/27
球阀式
膜片式
石油钻采机械——任连城
35
钻机的控制系统
工作原理:当系统中压力在规定范围内时,作用在球阀上的压力小于弹
簧力,球阀处于关闭状态;系统压力升高,作用在球阀上的压力大于弹簧力 时,球阀左移,气体从溢流口放出,直到系统压力降至规定压力以下,球阀 在弹簧力的作用下右移并重新关闭。

液压与气动技术习题集附答案

液压与气动技术习题集附答案

液压与气动技术习题集附答案第四章液压控制阀一.填空题1.单向阀的作用是控制液流沿一个方向流动;对单向阀的性能要求是:油液通过时,压力损失小;反向截止时,密封性能好;2.单向阀中的弹簧意在克服阀芯的摩檫力和惯性力使其灵活复位;当背压阀用时,应改变弹簧的刚度 ;3.机动换向阀利用运动部件上的撞块或凸轮压下阀芯使油路换向,换向时其阀芯移动速度可以控制,故换向平稳,位置精度高;它必须安装在运动部件运动过程中接触到的位置;4.三位换向阀处于中间位置时,其油口P、A、B、T间的通路有各种不同的联接形式,以适应各种不同的工作要求,将这种位置时的内部通路形式称为三位换向阀的中位机能 ;为使单杆卧式液压缸呈“浮动”状态、且泵不卸荷,可选用Y型中位机能换向阀;5.电液动换向阀中的先导阀是电磁换向阀,其中位机能是“Y”, 型,意在保证主滑阀换向中的灵敏度或响应速度;而控制油路中的“可调节流口”是为了调节主阀的换向速度 ;6.三位阀两端的弹簧是为了克服阀芯的摩檫力和惯性力使其灵活复位,并在位置上对中 ;7.为实现系统卸荷、缸锁紧换向阀中位机能“M”、“P”、“O”、“H”、“Y”可选用其中的“M”,型;为使单杆卧式液压缸呈“浮动”状态、且泵不卸荷,中位机能可选用“Y”; 型;8.液压控制阀按其作用通常可分为方向控制阀、压力控制阀和流量控制阀;9.在先导式减压阀工作时,先导阀的作用主要是调压 ,而主阀的作用主要是减压 ;10.溢流阀的进口压力随流量变化而波动的性能称为压力流量特性,性能的好坏用调压偏差或开启压力比、闭合压力比评价;显然p s—p k、p s—p B小好, n k和n b大好; 11.将压力阀的调压弹簧全部放松,阀通过额定流量时,进油腔和回油腔压力的差值称为阀的压力损失 ,而溢流阀的调定压力是指溢流阀达到额定流量时所对应的压力值;12.溢流阀调定压力P Y的含义是溢流阀流过额定流量时所对应的压力值;开启比指的是开启压力与调定压力的比值 ,它是衡量溢流阀静态性能的指标,其值越大越好;13.溢流阀应用在定量泵节流调速回路中起溢流稳压作用,这时阀口是常开的;而应用在容积调速回路中起安全作用,这时阀口是常闭的;14.溢流阀为进口压力控制,阀口常闭 ,先导阀弹簧腔的泄漏油与阀的出口相通;定值减压阀为出口压力控制,阀口常开 ,先导阀弹簧腔的泄漏油必须单独引回油箱 ; 15.为了使系统中某一支路上得到比主油路压力低的而且稳定的压力油,一般在该支路上串联单独引回油箱来实现,而一旦该元件出口与油箱相通时,整个系统将处于卸荷状态;16.顺序阀在原始状态时,阀口关闭 ,由进油口油压力控制阀芯移动;其泄油方式为外泄 ,在系统中相当于一个液压控制开关;17.在压力阀中减压阀阀和溢流阀在结构上大致相同,其主要区别是:前者利用出油口液体的压力控制阀芯移动而进行工作,因此泄漏油必须外泄 ,前者串在油路中,而后者并在油路中;18.调速阀是由定差减压阀和节流阀串联而成,该阀的性能特点是能自动调节可变液阻的减压阀口开度来保持节流口前后压差基本不变,它应用在节流调速回路中,能达到稳定调速的目的;19.在调速阀中,用定差减压阀控制节流阀进、出油口的压力差为定值,因此,当回路中,该压力差小于一定的值时,调速阀即具备节流阀的特性;20.调速阀是由定差减压阀和节流阀串联而成,旁通型调速阀是由差压式溢流阀和节流阀并联而成;二、判断题1.滑阀为间隙密封,锥阀为线密封,后者不仅密封性能好而且开启时无死区; √2.定量泵可利用M型、H型、K型换向阀中位机能来实现卸荷;√3.电液动换向阀中的先导阀,其中位用O型也行,因为这样,同样能保证控制油具备一定压力;×4.高压大流量液压系统常采用电磁换向阀实现主油路换向;×5.大流量的液压系统,应直接采用二位二通电磁换向阀实现泵卸荷;×6.一般单向阀不作任何更动,即可作背压阀用;×7.因液控单向阀关闭时密封性能好,故常用在保压回路和锁紧回路中;√8.0型机能的阀芯是常用的换向阀阀芯,它可以用于中位卸荷;×9.同一规格的电磁换向阀机能不同,可靠换向的最大压力和最大流量不同;√10.因电磁吸力有限,对液动力较大的大流量换向阀则应选用液动换向阀或电液换向阀;√11.当将液控顺序阀的出油口与油箱连通时,其即可当卸荷阀用;√12.顺序阀不能作背压阀用;×13.压力继电器可以控制两只以上的执行元件实现先后顺序动作;√14.将一定值减压阀串联在某一液压支路中,减压阀的出口油压力就能保证此油路的压力为一定值;×15.串联了定值减压阀的支路,始终能获得低于系统压力调定值的稳定的工作压力;×16.单向阀、减压阀两者都可用作背压阀; ×17.三个压力阀都没有铭牌,可通过在进出口吹气的办法来鉴别,能吹通的是减压阀,不能吹通的是溢流阀、顺序阀; √18.先导式溢流阀的远程控制口可以使系统实现远程调压或使系统卸荷;√19.调速阀中的减压阀为定差减压阀; √20.溢流阀、节流阀都可以作背压阀用;√21.节流阀是常用的调速阀,因为它调速稳定; ×22.通过节流阀的流量与节流阀口的通流截面积成正比,与阀两端的压差大小无关;×23.节流阀和调速阀都是用来调节流量及稳定流量的流量控制阀;×三、选择题1.在下列液压阀中, C不能作为背压阀使用;A单向阀 B顺序阀 C 减压阀 D溢流阀2.若某三位换向阀的阀心在中间位置时,压力油与油缸两腔连通、回油封闭,则此阀的滑阀机能为A;AP型 BY型CK型 DC型3.以变量泵为油源时,在泵的出口并联溢流阀是为了起到B;A溢流定压作用 B过载保护作用C令油缸稳定运动的作用 D控制油路通断的作用4.与节流阀相比较,调速阀的显着特点是C;A调节范围大 B结构简单,成本低C流量稳定性好 D最小压差的限制较小5.在液压系统中,减压阀能够D;A用于控制油路的通断 B使油缸运动平稳C保持进油口压力稳定 D保持出油口压力稳定6.一水平放置的双伸出杆液压缸,采用三位四通电磁换向阀,要求阀处于中位时,液压泵卸荷,且液压缸浮动,其中位机能应选用D;要求阀处于中位时,液压泵卸荷,且液压缸闭锁不动,其中位机能应选用B; AO型 BM型 C Y型 D H型7.有两个调整压力分别为5MPa和10MPa的溢流阀串联在液压泵的出口,泵的出口压力为C;并联在液压泵的出口,泵的出口压力又为A;A 5MPaB 10MPa C15MPa D20MPa8.有两个调整压力分别为5MPa和10MPa的溢流阀串联在液压泵的出口,泵的出口压力为C;有两个调整压力分别为5MPa和10MPa内控外泄式顺序阀串联在液泵的出口,泵的出口压力为B;A5Mpa B10MPa C15MPa D20MPa9.顺序阀在系统中作卸荷阀用时,应选用C型,作背压阀时,应选用A型;A内控内泄式 B内控外泄式 C外控内泄式 D外控外泄式10.三位四通电液换向阀的液动滑阀为弹簧对中型,其先导电磁换向阀中位必须是C机能,而液动滑阀为液压对中型,其先导电磁换向阀中位必须是D机能;AH型 BM型 CY型 DP型11.为保证锁紧迅速、准确,采用了双向液压锁的汽车起重机支腿油路的换向阀应选用A、C中位机能;要求采用液控单向阀的压力机保压回路,在保压工况液压泵卸载,其换向阀应选用A、B中位机能;AH型 BM型 CY型 DD型12.为保证负载变化时,节流阀的前后压力差不变,是通过节流阀的流量基本不变,往往将节流阀与B串联组成调速阀,或将节流阀与D并联组成旁通型调速阀;A减压阀 B定差减压阀 C溢流阀 D差压式溢流阀13.系统中采用了内控外泄顺序阀,顺序阀的调定压力为p x阀口全开时损失不计,其出口负载压力为p L;当p L>p x时,顺序阀进、出口压力间的关系为 B;当p L<p x时,顺序阀进出口压力间的关系为 A;A p1=p x, p2=p L p1≠p2B p1=p2=p LC p1上升至系统溢流阀调定压力p1=p y ,p2=p LD p1=p2=p x14.当控制阀的开口一定,阀的进、出口压力差Δp<3~5ⅹ105Pa时,随着压力差Δp变小,通过节流阀的流量B ;通过调速阀的流量B;A增加 B减少 C基本不变 D无法判断15.当控制阀的开口一定,阀的进、出口压力差Δp>3~5ⅹ105Pa时,随着压力差Δp增加,压力差的变化对节流阀流量变化的影响B;对调速阀流量变化的影响 C ;A 越大 B越小 C基本不变 D无法判断16.当控制阀的开口一定,阀的进、出口压力相等时,通过节流阀的流量为A;通过调速阀的流量为A;A 0 B某调定值 C某变值 D无法判断17.系统中中位机能为P型的三位四通换向阀处于不同位置时,可使单活塞杆液压缸实现快进—慢进—快退的动作循环;试分析:液压缸在运动过程中,如突然将换向阀切换到中间位置,此时缸的工况为 D;如将单活塞杆缸换成双活塞杆缸,当换向阀切换到中位置时,缸的工况为A;不考虑惯性引起的滑移运动A停止运动 B慢进 C快退 D快进四.画出下列元件的职能符号:五.确定下列各种状态下的压力值或变化范围、趋势1.图示回路,已知各阀的调定压力;假设负载达到最大值,试确定下列情况下P1 、P2的压力:1.12102.图示回路,已知各阀的调定压力;试确定:1DT-缸运动中:P a= 1 MPa,P b= 1 MPa,缸到底不动:P a= 5 MPa,P C= 4 Mpa;2DT+缸运动中:P a= 1 MPa,P b= 1 MPa,缸到底不动:P b= 4 MPa,P C= 3 Mpa ;3.图示回路中,已知溢流阀的调整压力P1=6 MPa,P2=4 MPa,P3=2 MPa,若负载达到最大值,试求下列情况下,泵出口压力P P分别是多少1电磁铁1DT通电;2电磁铁1DT断电;4.图示回路,已知各阀的调定压力;若负载达到最大值,试确定下列情况下,液压泵的最高出口压力:1全部电磁铁断电;2电磁铁2DT通电;3电磁铁2DT断电,1DT通电;答: MPa;3 MPa; MPa;5.如图所示的系统中,两个溢流阀串联,若已知每个溢流阀单独使用时的调整压力,p y1=20×105Pa,p y2=40×105Pa;溢流阀卸载的压力损失忽略不计,试判断在二位二通电磁阀不同工况下,A点和B点的压力各为多少;答:电磁铁 1DT - 2DT - p A =0 p B =01DT+ 2DT - p A =0 p B =20×105Pa1DT - 2DT+ p A =40×105Pa p B =40×105Pa1DT+ 2DT+ p A =40×105Pa p B =60×105Pa6.图示回路ab 回路中,已知溢流阀的调整压力P 1=5 MPa,P 2=2 MPa,若负载达到最大值,求下列情况,液压泵出口压力P P 分别是多少1电磁铁1DT 通电;2电磁铁1DT 断电;答: 图a图b 7.图示回路中,已知各阀的调整压力,试确定下列情况下,P 1 、 P 2的值;1电磁铁1DT 断电; 2全部电磁铁通电;3电磁铁2DT 断电, 1DT 通电;答:8.图示回路中,试确定F 增大时P 1、P 2的压力变化趋势;答: P 1增大,P 2不变; 9.若两个减压阀中P j1=10MPa, P j2=20MPa, P P =P Y =30MPa,则P a 10 ,P b 10 ,P c 30 ,P d 20 ;10.如图三级压力控制回路中,压力阀调定压力大小的关系如何P 1>P 2>P 311.图示回路,已知各阀的调定压力;试确定下列情况下,a 、b 、c 三点处的压力:1缸Ⅰ运动过程中;2缸Ⅰ运动到位,缸Ⅱ运动过程中;3两缸运动到位,均不动时;答:P a =1, P b =1,P C =0;.P a =4,P b =2,P C =3;P a=6,P b=2,P C=6;12.图示回路,已知各阀的调定压力,且节流阀开口适度 ;试确定下列情况下,a、b、c、d各点处的压力:1缸Ⅰ运动过程中;2缸Ⅰ运动到位,缸Ⅱ运动过程中;3两缸运动到位,均不动时;答:P a=1, P b=1,P C=0,P d=0;P a=5,P b=2,P C=5,P d=3;P a=5,P b=2,P C=5,P d=5;13.不计管路和换向阀压力损失,已知各阀调定压力,若负载达到最大值,试确定:1电磁铁DT断电时,液压泵的最高出口压力和A点的压力;2电磁铁DT通电时,液压泵的最高出口压力;答:DT-,P pmax=6,P A=6;DT+,P pmax=;14.图示回路,已知各阀的调定压力;若负载达到最大值,试确定下列情况下,液压泵的最高出口压力:1电磁铁DT断电;2电磁铁DT通电;答:DT-,P P =0;DT+,P P =3;15.图示回路中,已知V〈q p/A,1试确定F增大时P1、P2的压力变化趋势;2若节流阀的A T调得很小,F=0时,则P1、P2的关系;答:1P1不变,P2减小;2P2=P1A1/A2;16.图示回路中,已知V〈q p/A,试确定F增大时P1、P2、P P的压力变化趋势;答:P1增大,P2不变,P P不变;17.图示回路中,已知V〈q p/A,试确定F增大时P1、P2、P3的压力变化趋势;答:P1不变,P2减小,P3不变;18.图示回路,已知各阀的调定压力;试确定下列情况下,a、b、c三点处的压力:1缸Ⅰ运动过程中;2缸Ⅰ运动到位,缸Ⅱ运动过程中;3两缸运动到位,均不动时;答:P a=5,P b=1P a=1,P b=3,P C=1P a=5,P b=5,P C=5;六、分析题1.开启压力为 Mpa的单向阀开启通流后,其进口压力如何确定2.说明O型、M型、P型和H型三位四通换向阀在中间位置时油路连接的特点;3.图示电液换向阀换向回路,实用时发现电磁铁Y得电后,液压缸并不动作,请分析原因,并提出改进措施;4.若先导型溢流阀主阀芯上的阻尼孔被污物堵塞,溢流阀会出现什么样的故障为什么5.为什么直动式溢流阀在调压弹簧的预压缩量一定时,进口压力会随着通过流量的变化而有所波动6.减压阀的出口压力取决于什么其出口压力为定值的条件是什么7.将两个内控外泄的顺序阀XF1和XF2串联在油路上,XF1在前,调整压力为10 Mpa,XF2在后,调整压力由此5 Mpa增至15 Mpa,问调节XF2时,XF1的进口压力如何变化其阀芯处于什么状态8.试比较溢流阀、减压阀、顺序阀内控外泄式三者之间的异同点;9.若流经节流阀的流量不变,改变节流阀的开口大小时,什么参数发生变化,如何变化10.如将调速阀的进、出油口接反,调速阀能否正常工作,为什么11.流量控制阀节流口为何采用薄壁孔而不采用细长小孔呢12.调速阀与节流阀有何本质不同各用于什么场合13.使用调速阀为何能使输出流量基本恒定试画出原理简图说明之;14.如图所示,是否能将图中的定差减压阀改为定值减压阀为什么第五章辅助装置一、填空题1.蓄能器是液压系统中用以储存压力能的装置,当前最广泛应用的一种气囊式蓄能器;2.为了便于检修,蓄能器与管路之间应安装截止阀,为了防止液压泵停车或泄载时蓄能器内的压力油倒流,蓄能器与液压泵之间应安装单向阀;3.选用过滤器应考虑过滤精度、通流能力、机械强度和其它功能,它在系统中可安装在泵的吸油口、泵的压油口、系统的回油路上和单独的过滤系统中; 二.选择题1.油箱在液压系统中的功用是储存液压系统所需的足够油液; ×2.液压泵吸油口处的过滤器一般采用过滤精度较高的精过滤器; ×第六章液压基本回路一、填空题1.节流调速回路根据流量控制阀在回路中安放位置的不同可分为三种:1 进油路节流调速回路2 回油路节流调速回路3 旁油路节流调速回路 ;回油路节流调速回路可承受负值负载,而进油路节流调速回路承受负值负载需在回油路上串联一个背压阀;2.在定量泵供油的三种节流调速回路中, 回油路节流调速回路能在有负切削力的状态下工作,且速度平稳性最好,此回路中溢流阀起溢流稳压作用,回路承载能力决定于溢流阀的调定压力;而旁油路节流调速回路速度刚性差,低速时承载能力低,此回路中溢流阀起安全作用;3.“变量泵和定量马达”、“定量泵和变量马达”构成的两种容积调速回路,分别是恒扭矩和恒功率调速回路;且前者调速范围较大 ,后者调速范围较小 ;4.在由变量泵和变量马达组成的容积调速回路中,常考虑低速段用变量泵来调速,以达到恒扭矩调速;高速段用变量马达来调速,以达到恒功率调速 ;5.在定压式节流调速回路中,当节流阀通流面积一定时,负载F L越小,回路的速度刚度T越高;而当负载F L一定时,节流阀通流面积越大,回路的速度刚度T越差 ;6.容积调速回路的优点是无溢流和节流损失,系统发热少,效率较高 ,缺点是速度随着负载增加而下降 ;7.在用调速阀并联、串联的两个调速回路中,其中串联调速稳定性较好,而并联调速回路会引起前冲现象;8.液压系统实现执行机构快速运动的回路主要有液压缸差动连接式的快速回路、双泵供油式的快速回路和限压式变量泵式的快速回路;9.时间控制制动的磨床工作台换向回路,其冲出量受运动部件的速度和其它一些因素的影响 ,换向精度不高 ,因此适宜用在平面磨床液压系统中;10.在“时间控制”和“行程控制”的换向回路中,前者的回油不通过通过、不通过先导阀,而后者通过通过、不通过通过先导阀,因此,后者往往使用在内外圆的磨床液压系统中;11.在变量泵—变量马达调速回路中,为了在低速时有较大的输出转矩、在高速时能提供较大功率,往往在低速段,先将马达排量调至最大,用变量泵调速;在高速段, 泵排量为最大,用变量马达调速;12.限压式变量泵和调速阀的调速回路,泵的流量与液压缸所需流量自动相适应 ,泵的工作压力不变;而差压式变量泵和节流阀的调速回路,泵输出流量与负载流量相适应 ,泵的工作压力等于负载压力加节流阀前后压力差,故回路效率高;13.顺序动作回路的功用在于使几个执行元件严格按预定顺序动作,按控制方式不同,分为压力控制和行程控制;同步回路的功用是使相同尺寸的执行元件在运动上同步,同步运动分为速度同步和位置同步两大类;二、判断题1.旁路节流调速回路中,泵出口的溢流阀起稳压溢流作用,是常开的;×2.容积调速回路中,其主油路中的溢流阀起安全保护作用;√3.在节流调速回路中,大量油液由溢流阀溢回油箱,是其能量损失大,温升高,效率低的主要原因;√4.旁油路节流调速回路,适用于速度较高,负载较大,速度的平稳性要求不高的液压系统;√5.定量泵—变量液压马达组成的容积调速回路,将液压马达的排量由零调至最大时,马达的转速即可由最大凋至零;×6.容积调速回路的效率较节流调速回路的效率高;√7.采用双泵供油的液压系统,工作进给时常由高压小流量泵供油,而大泵卸荷;因此其效率比单泵供油系统的效率低得多;×8.专用机床或组合机床的液压系统,若要求其运动部件的快慢速转换平稳时,应采用串联调速阀的速度换接回路;√9.液控顺序阀能代替液控单向阀构成锁紧回路;×10.采用顺序阀的顺序动作回路,适用于液压缸数量多,且各缸负载差值比较小的场合;√11.采用顺序阀的多缸顺序动作回路,其顺序阀的调整压力应低于先动作液压缸的最大工作压力; ×12.利用顺序阀、压力继电器都可以控制油缸动作的先后顺序,这种回路称为“压力控制”顺序动作回路;√13.变量泵容积调速回路的速度刚性受负载变化影响的原因与定量泵节流调速回路有根本的不同,负载转矩增大泵和马达的泄漏增加,致使马达转速下降; √14.采用调速阀的定量泵节流调速回路,无论负载如何变化始终能保证执行元件运动速度稳定; ×15.旁通型调速阀溢流节流阀只能安装在执行元件的进油路上,而调速阀还可安装在执行元件的回油路和旁油路上; √16.在变量泵—变量马达闭式回路中,辅助泵的功用在于补充泵和马达的泄漏; ×17.同步运动分速度同步和位置同步,位置同步必定速度同步;而速度同步未必位置同步; √18.压力控制的顺序动作回路中,顺序阀和压力继电器的调定压力应为执行元件前一动作的最高压力; ×三.选择题1.在下面几种调速回路中,B、C、D 中的溢流阀是安全阀,A中的溢流阀是稳压阀;A 定量泵和调速阀的进油节流调速回路B 定量泵和旁通型调速阀的节流调速回路C 定量泵和节流阀的旁路节流调速回路D 定量泵和变量马达的闭式调速回路2.为平衡重力负载,使运动部件不会因自重而自行下落,在恒重力负载情况下,采用B顺序阀作平衡阀,而在变重力负载情况下,采用D顺序阀作限速锁;A内控内泄式 B内控外泄式 C外控内泄式 D外控外泄式3.对于速度大、换向频率高、定位精度要求不高的平面磨床,采用 A、C液压操纵箱;对于速度低、换向次数不多、而定位精度高的外圆磨床,则采用B液压操纵箱;A 时间制动控制式 B行程制动控制式C时间、行程混合控制式 D其他4.在下列调速回路中,A、B、D为流量适应回路,B为功率适应回路;A 限压式变量泵和调速阀组成的调速回路B 差压式变量泵和节流阀组成的调速回路C 定量泵和旁通型调速阀溢流节流阀组成的调速回路D 恒功率变量泵调速回路5.容积调速回路中, B的调速方式为恒转矩调节;C的调节为恒功率调节;A变量泵—变量马达 B变量泵—定量马达 C定量泵—变量马达6.用同样定量泵,节流阀,溢流阀和液压缸组成下列几种节流调速回路,B能够承受负值负载,C的速度刚性最差,而回路效率最高;A进油节流调速回 B回油节流调速回路 C旁路节流调速回路7.在定量泵节流调速阀回路中,调速阀可以安放在回路的A、B、C,而旁通型调速回路只能安放在回路的A;A进油路 B回油路 C旁油路8.差压式变量泵和A组成的容积节流调速回路与限压式变量泵和B组成的调速回路相比较,回路效率更高;A节流阀 B调速阀 C旁通型调速阀9.在减压回路中,减压阀调定压力为p j ,溢流阀调定压力为p y ,主油路暂不工作,二次回路的负载压力为p L;若p y>p j>p L,减压阀进、出口压力关系为D;若p y>p L>p j,减压阀进、出口压力关系为A;A进口压力p1=p y , 出口压力p2=p jB进口压力p1=p y , 出口压力p2=p LC p1=p2=p j ,减压阀的进口压力、出口压力、调定压力基本相等D p1=p2=p L ,减压阀的进口压力、出口压力与负载压力基本相等10.在减压回路中,减压阀调定压力为p j ,溢流阀调定压力为p y ,主油路暂不工作,二次回路的负载压力为p L;若p y>p j>p L,减压阀阀口状态为D;若p y>p L>p j,减压阀阀口状态为A;A阀口处于小开口的减压工作状态B阀口处于完全关闭状态,不允许油流通过阀口C阀口处于基本关闭状态,但仍允许少量的油流通过阀口流至先导阀D阀口处于全开启状态,减压阀不起减压作用11.在回油节流调速回路中,节流阀处于节流调速工况,系统的泄漏损失及溢流阀调压偏差均忽略不计;当负载F增加时,泵的输入功率C,缸的输出功率D;A 增加 B减少 C基本不变 D可能增加也可能减少12.在调速阀旁路节流调速回路中,调速阀的节流开口一定,当负载从F1降到F2时,若考虑泵内泄漏变化因素时液压缸的运动速度v A;若不考虑泵内泄漏变化的因素时,缸运动速度v可视为C;A增加 B减少 C不变 D无法判断13.在定量泵-变量马达的容积调速回路中,如果液压马达所驱动的负载转矩变小,若不考虑泄漏的影响,试判断马达转速C;泵的输出功率B;A增大 B减小 C基本不变 D无法判断14.在限压式变量泵与调速阀组成的容积节流调速回路中,若负载从F1降到F2而调速阀开口不变时,泵的工作压力C;若负载保持定值而调速阀开口变小时,泵工作压力A;A 增加 B减小 C不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章气动控制技术
外部输入
信号处理
信号转换
行程检测
执行机构
图4.2.6 行程控制方框图
第4章气动控制技术
图4.2.7 行程开关示意图
第4章气动控制技术
电子限位开关 导线
图4.2.8 电子限位开关的安装示意图
第4章气动控制技术
图4.2.9 微型电子限位开关示意图
第4章气动控制技术
图4.2.10 电磁接近开关示意图
第4章气动控制技术
图4.3.18 双电控两气缸气动回路图
第4章气动控制技术
(a)位移—步骤图
(b)气缸动作分组图
图4.3.19 第一种复合运动的运动关系
第4章气动控制技术
(a)步骤一
第4章气动控制技术
(b)步骤二
第4章气动控制技术
(c)步骤三
第4章气动控制技术
(d)步骤四 图4.3.20 第一种复合运动电气回路设计步骤
第4章气动控制技术
(a)位移—步骤图
(b)气缸动作分组图
图4.3.21 第二种复合运动的运动关系
第4章气动控制技术
(a)步骤一
(b)步骤二
第4章气动控制技术
(c)步骤三
第4章气动控制技术
(d)步骤四 图4.3.22 第二种复合运动电气回路设计步骤
第4章气动控制技术
图4.3.23 单循环、连续循环及紧急复位电路
图4.1.5 快速往复动作回路
第4章气动控制技术
图4.1.6 速度换接回路
第4章气动控制技术
(a)行程阀的缓冲回路;(b)快速排气阀、顺序阀和节流阀的缓冲回路 图4.1.7 缓冲回路
第4章气动控制技术
(a)二位运动控制;(b)三位运动控制 图4.1.8 单作用气缸换向回路
第4章气动控制技术
图4.1.9 双作用气缸换向回路
第4章气动控制技术
表4.2.1 几种传感器符号图
第4章气动控制技术
4.3 继电器气动控制技术
图4.3.1 继电器气动控制实验板
第4章气动控制技术
图4.3.2 是门电路
第4章气动控制技术
图4.3.3 或门电路图
第4章气动控制技术
图4.3.4 与门电路
第4章气动控制技术
(a)停止优先自保持回路 (b)起动优先自保持回路 图4.3.5 自保持电路
第4章气动控制技术
图4.4.7 PLC与计算机通信接口连接图
第4章气动控制技术
图4.4.8 PLC控制系统设计步骤
第4章气动控制技术
图4.4.9 基于PLC控制的气动系统实例图片一
第4章气动控制技术
图4.3.24 单电控两气缸气动回路图
第4章气动控制技术
(a)位移—步骤图
(b)气缸动作分组图
图4.3.25 两气缸复合运动的运动关系
第4章气动控制技术
(a)步骤一
(b)步骤二
第4章气动控制技术
(c)步骤三
第4章气动控制技术
(d)步骤四 图4.3.26 电气回路设计步骤
第4章气动控制技术
第4章气动控制技术
(a)气动回路图
(b)继电器控制回路图
图4.3.14 单循环往复运动回路
第4章气动控制技术
图4.3.15 连续循环往复运动动作流程
第4章气动控制技术
(a)气动回路图
(b)继电器控制回路图
图4.3.16 连续3.17 在任意位置可复位的连续循环往复运动回路
第4章气动控制技术
图4.3.6 互锁电路
第4章气动控制技术
(a)延时闭合
(b)延时断开
图4.3.7 延时电路
第4章气动控制技术
图4.3.8 单气缸单循环往复运动动作流程
第4章气动控制技术
(a)气动回路图
(b)继电器控制回路图
图4.3.9 单气缸单循环往复运动回路
第4章气动控制技术
(a)气动回路图
(b)位移—步骤图
(c)继电器控制回路图
图4.3.10 延时单循环往复运动回路
第4章气动控制技术
图4.3.11 单气缸连续循环往复运动动作流程
第4章气动控制技术
(a)气动回路图
(b)继电器控制回路图
图4.3.12 单气缸连续循环往复运动回路
第4章气动控制技术
图4.3.13 单循环往复运动动作流程
第4章 气动控制技术
4.1 气动基本回路 4.2 电子气动控制的基本知识 4.3 继电器气动控制技术 4.4 PLC气动控制技术 4.5 电子气动控制系统实例分析 4.6 气动自动化综合系统及应用 4.7 现场总线技术在气动自动化系统中的应用 4.8 触摸屏及组态软件在气动自动化系统中的应用
第4章气动控制技术
4.4 PLC气动控制技术
图4.4.1 PLC硬件系统结构框图
第4章气动控制技术
图4.4.2 PLC扫描过程示意图
第4章气动控制技术
图4.4.3 扫描过程
第4章气动控制技术
图4.4.4 PLC外部接线图与梯形图
第4章气动控制技术
图4.4.5 PLC与计算机通信示意图
第4章气动控制技术
图4.4.6 PLC与计算机通信示例
第4章气动控制技术
图4.1.10 过载保护回路
第4章气动控制技术
图4.1.11 气压降低保护回路
第4章气动控制技术
图4.1.12 互锁回路
第4章气动控制技术
图4.1.13 与逻辑控制回路
第4章气动控制技术
图4.1.14 或逻辑控制回路
第4章气动控制技术
图4.1.15 刚性连接的同步回路 图4.1.16 气-液转换的同步回路
4.1 气动基本回路
1-溢流阀、2-压力表 图4.1.1 一次压力控制回路
第4章气动控制技术
图4.1.2 二次压力控制回路
第4章气动控制技术
图4.1.3 单作用气缸速度控制回路
第4章气动控制技术
(a)单向节流阀调速;(b)排气节流阀调速 图4.1.4 双作用气缸速度控制回路
第4章气动控制技术
第4章气动控制技术
4.2 电子气动控制的基本知识
图4.2.1 中间继电器外形图
第4章气动控制技术
图4.2.2 中间继电器原理图
第4章气动控制技术
继电器线圈
常开触点
图4.2.3 中间继电器线圈及触点符号
第4章气动控制技术
常闭触点
图4.2.4 时间继电器线圈及触点符号
第4章气动控制技术


图4.2.5 小车往返运动示意图
第4章气动控制技术
图4.2.11 电磁感应式传感器
第4章气动控制技术
1
2
3
4
图4.2.12 电磁感应式传感器原理方框图
第4章气动控制技术
1
2
3
4
图4.2.13 电容式传感器原理方框图
第4章气动控制技术
图4.2.14 光电式传感器原理方框图
第4章气动控制技术
t
1
2
3
4
图4.2.15 光电式传感器原理方框图
相关文档
最新文档