高三理科数学第一轮复习§11.1:随机抽样

合集下载

【优化方案】2012高考数学总复习 第11章§11.1随机抽样精品课件 理 北师大版

【优化方案】2012高考数学总复习 第11章§11.1随机抽样精品课件 理 北师大版

思考感悟三种抽样方法有什么共同点和联系? 思考感悟三种抽样方法有什么共同点和联系? 三种抽样方法有什么共同点和联系 提示:共同点:抽样过程中每个个体被抽取的 提示:共同点: 机会均等. 机会均等. 联系: 联系:系统抽样中在分段后确定第一个个体时 采用简单随机抽样, 采用简单随机抽样,分层抽样中各层抽样时采 用简单随机抽样或系统抽样. 用简单随机抽样或系统抽样.
答案: 答案:C
2.要完成下列两项调查: .要完成下列两项调查: 从某社区125户高收入家庭 、 280户中等收入 户高收入家庭、 ① 从某社区 户高收入家庭 户中等收入 家庭、 户低收入家庭中选出 户低收入家庭中选出100户调查社会购 家庭、95户低收入家庭中选出 户调查社会购 买力的某项指标; 买力的某项指标; 从某中学的15名艺术特长生中选出 名艺术特长生中选出3人调查学 ②从某中学的 名艺术特长生中选出 人调查学 习负担情况. 习负担情况. 宜采用的抽样方法依次为( ) 宜采用的抽样方法依次为 A.①随机抽样法,②系统抽样法 . 随机抽样法, B.①分层抽样法,②随机抽样法 . 分层抽样法,
N N 是样本容量)是整数时 是整数时, 当 (n 是样本容量 是整数时,取 k= ; = n n
在第1段用 段用______________________确定第一 ③ 在第 段用 简单随机抽样 确定第一 个个体编号l(l≤ ; 个个体编号 ≤k); 按照一定的规则抽取样本. ④按照一定的规则抽取样本.通常是将 加上间隔k 加上间隔 l_________________得到第 个个体编号 +k), 得到第2个个体编号 得到第 个个体编号(l+ , 加k 得到第 个个体编号(l+ , 得到第3个个体编号 再______得到第 个个体编号 +2k),依次进行 下去,直到获取整个样本. 下去,直到获取整个样本.

(黄冈名师)高考数学大一轮复习 核心素养提升练五十七 11.1 随机抽样 理(含解析)新人教A版-新

(黄冈名师)高考数学大一轮复习 核心素养提升练五十七 11.1 随机抽样 理(含解析)新人教A版-新

核心素养提升练五十七随机抽样(25分钟50分)一、选择题(每小题5分,共35分)1.利用简单随机抽样,从n个个体中抽取一个容量为10的样本,若第二次抽取时,余下的每个个体被抽到的概率为,则在整个抽样过程中,每个个体被抽到的概率为( )A. B. C. D.【解析】选B.由题意知=,所以n=28,所以P==.2.一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为( )A.056,080,104B.054,078,102C.054,079,104D.056,081,106【解析】选D.依题意可知,在随机抽样中,首次抽到006号,以后每隔=25个号抽到一个人,则构成以6为首项,25为公差的等差数列,即所抽取的编号依次为006,031,056,081,106,131,…,故编号为051~125之间抽得的编号为056,081,106.3.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则 ( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3【解析】选D.根据抽样方法的概念可知,简单随机抽样、系统抽样和分层抽样三种抽样方法中每个个体被抽到的概率相等,均是,故p1=p2=p3.4.李明所在的高二(5)班有51名学生,学校要从该班抽出5人开座谈会,若采用系统抽样法,需先剔除一人,再将留下的50人平均分成5个组,每组各抽一人,则李明参加座谈会的机会为( )A. B. C. D.【解析】选C.由题意知共有51名学生,学校要从该班抽出5人开座谈会,故每个人被抽到的概率是,故李明参加座谈会的概率为.5.某校高一、高二、高三学生共有1290人,其中高一480人,高二比高三多30人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为( )A.84B.78C.81D.96【解析】选B.因为高一480人,高二比高三多30人,所以设高三x人,则x+x+30+480=1290,解得x=390,故高二420人,高三390人,若在抽取的样本中有高一学生96人,则该样本中的高三学生人数为×390=78(人).6.一工厂生产了某种产品16800件,它们来自甲、乙、丙三条生产线,为检验这批产品的质量,决定采用分层抽样的方法进行抽样,已知在甲、乙、丙三条生产线抽取的个体数依次组成一个等差数列,则乙生产线生产的产品数是( )A.5000B.5200C.5400D.5600【解析】选D.因为在甲、乙、丙三条生产线抽取的个体数依次组成一个等差数列.则可设三数分别为a-x,a,a+x,故样本容量为(a-x)+a+(a+x)=3a,因而每个个体被抽到的概率为=,所以乙生产线生产的产品数为=5600.7.已知某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取20%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为( )A.100,8B.80,20C.100,20D.80,8【解析】选A.样本容量为(150+250+100)×20%=100,所以抽取的户主对四居室满意的人数为100××40%=8.二、填空题(每小题5分,共15分)8.一个总体中有90个个体,随机编号0,1,2,…,89依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的为m,那么在第k组中抽取的个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的是________.【解析】由题意知,m=8,k=8,则m+k=16,也就是第8组抽取的个位数字为6,十位数字为8-1=7,故抽取的为76.答案:769.利用随机数表法对一个容量为500,编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,选取方法是从随机数表第12行第5列、第6列、第7列数字开始由左到右依次选取三个数字(下面摘取了随机数表中的第11行至第12行),则读出选取的第3个数是________.18180792454417165809798386196206765003105523640505 26623897758416074499831146322420148588451093728871【解析】最先读到的数据的编号是389,向右读下一个数是775,775大于499,故舍去,再下一个数是841,舍去,再下一个数是607,舍去,再下一个数是449,再下一个数是983,舍去,再下一个数是114.故读出选取的第3个数是114.答案:11410.某商场有四类食品,食品类别和种数如表:类别粮食类植物油类动物性食品类果蔬类种数40 10 30 20现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样方法抽取样本,则抽取的植物油类与果蔬类食品种数之和为________.【解析】因为总体的个数为40+10+30+20=100,所以根据分层抽样的定义可知,抽取的植物油类食品种数为×20=2,抽取的果蔬类食品种数为×20=4,所以抽取的植物油类与果蔬类食品种数之和为2+4=6.答案:6(20分钟40分)1.(5分)某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的为443,则第一组用简单随机抽样抽取的为( )A.16B.17C.18D.19【解析】选 C.设第一组抽取的为x,根据题意可得抽样间隔为=25,则x+25×(18-1)=443,解得x=18.2.(5分)某工厂在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为 ( )A.800双B.1000双C.1200双D.1500双【解析】选C.因为a,b,c成等差数列,所以2b=a+c,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的三分之一,即为1200双皮靴.3.(5分)(2018·某某模拟)某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,…,699,700从中抽取70个样本,如下提供随机数表的第四行到第六行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是( )33211834297864560732524206443812234356773578905642 84421253313457860736253007328523457889072368960804 32567808436789535577348994837522535578324577892345A.523B.328C.253D.007【解析】选 A.从表中第5行第6列开始向右读取数据,得到的前6个编号分别是:253,313,457,007,328,523,则得到的第6个样本编号是5234.(12分)某公路某某有工程师6人,技术员12人,技工18人,要从这些人中抽取n人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.【解析】总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的间隔为,分层抽样的比例是,抽取的工程师人数为×6=,技术员人数为×12=,技工人数为×18=.所以n应该是6的倍数,36的约数,即n=6,12,18.当样本容量为(n+1)时,剔除1个个体后,总体容量是35人,系统抽样的间隔为,因为必须是整数,所以n只能取6.5.(13分)有以下三个案例:案例一:从同一批次同类型号的10袋牛奶中抽取3袋检测其二聚氰胺含量;案例二:某公司有员工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.从中抽取容量为40的样本,了解该公司职工收入情况;案例三:从某校1000名高一学生中抽取10人参加一项主题为“学雷锋,树新风”的志愿者活动.(1)你认为这些案例应采用怎样的抽样方式较为合适?(2)在你使用的分层抽样案例中写出抽样过程.(3)在你使用的系统抽样案例中按以下规定取得样本编号:如果在起始组中随机抽取的为L(编号从0开始),那么第K组(组号K从0开始,K=0,1,2,…,9)抽取的的百位数为组号,后两位数为L+31K的后两位数.若L=18,试求出K=3及K=8时所抽取的样本编号.【解析】(1)案例一用简单随机抽样,案例二用分层抽样,案例三用系统抽样.(2)①分层,将总体分为高级职称、中级职称、初级职称及其余人员四层;②确定抽样比例q==;③按上述比例确定各层样本数分别为8人、16人、10人、6人;④按简单随机抽样方式在各层确定相应的样本;⑤汇总构成一个容量为40的样本.(3)K=3时,L+31K=18+31×3=111,故第3组样本编号为311.K=8时,L+31K=18+31×8=266,故第8组样本编号为866.。

高考数学一轮复习随机抽样-教学课件

高考数学一轮复习随机抽样-教学课件
(2)确定分段间隔 k,对编号进行分段,当 N 是整数时, n
取 k= N ;当 N 不是整数时,随机从总体中把余数部分 nn
剔除,然后再用随机抽样的方法进行抽样.
(3)在第 1 段用简单随机抽样确定第一个个体编号 (l≤k). (4)依据预定的规则确定其他段应抽取的个体,直到获 取整个样本.
3.分层抽样
001,002,…,600.采用系统抽样方法抽取一个容量 为 50 的样本,且随机抽得的号码为 003.这 600 名学 生分住在三个营区,从 001 到 300 在第Ⅰ营区,从 301 到 495 在第Ⅱ营区,从 496 到 600 在第Ⅲ营区,三个 营区被抽中的人数依次为( ) (A)26,16,8 (B)25,17,8 (C)25,16,9 (D)24,17,9
从而第Ⅲ营区被抽中的人数是 50-42=8,故选 B.
考点三 分层抽样
【例 3】(1)(2012 年高考福建卷)一支田径队有男女运动员
98 人,其中男运动员有 56 人.按男女比例用分层抽样的方法,
从全体运动员中抽出一个容量为 28 的样本,那么应抽取女
运动员人数是
.
(2)(2012 年高考天津卷)某地区有小学 150 所,中学 75 所,
将总体均分成几部 分,按事先确定的规 则在各部分抽取
体被抽取
的机会
分层 相等
将总体分成几层,分
抽样
层进行抽取
相互联系
在起始部 分抽样时 采用简单 随机抽样 各层抽样 时采用简 单随机抽 样或系统 抽样
适用范围 总体中的个 体数较少
总体中的个 体数较多
总体由差异 明显的几部 分组成
双基自测
1.某学校为调查高三年级的 240 名学生完成课后作业所需时 间,采取了两种抽样调查的方式:第一种由学生会的同学随机 抽取 24 名同学进行调查;第二种由教务处对高三年级的学生 进行编号,从 001 到 240,抽取学号最后一位为 3 的同学进行调 查,则这两种抽样方法依次为( D ) (A)分层抽样,简单随机抽样 (B)简单随机抽样,分层抽样 (C)分层抽样,系统抽样 (D)简单随机抽样,系统抽样

2013届高三数学第一轮复习课件11-1随机抽样

2013届高三数学第一轮复习课件11-1随机抽样

3.变量间的相关关系以考查线性回归系数为主, 同时可考查利用散点图判断两个变量间的相关关 系.以实际生活为背景,重在考查回归方程的求 法.在高考题中本部分的命题主要是以选择、填 空题为主,属于中档题目. 4.统计案例对独立性检验及回归分析的考查是高 考的热点.预计本部分内容在高考中出选择题、 填空题,常以判断命题正误的形式出现,为中低 档题.
解析:设 C 产品的数量为 x,则 A 产品的数量为 1 700-x,C 产品 的样本容量为 a, 则 A 产品的样本容量为 10+a, 由分层抽样的定义可知: 1 700-x x 1 300 = = ,∴x=800。 a 130 a+10
答案:800
4. (2012·湖南模拟 )一个总体分为 A,B 两层,用分层抽样方法从总 体中抽取一个容量为 10 的样本, 已知 B 层中每个个体被抽到的概率都为 1 ,则总体中的个数为__________. 12
题型二 系统抽样 例 2 某 校 高 中 三 年 级 的 295 名 学 生 已 经 编 号 为 1,2 , … , 295 ,为了了解学生的学习情况,要按 1∶5的比例抽取一个样本,用系统抽样的方法进 行抽取,并写出过程. 解析:按照1∶5的比例,应该抽取的样本容量为 295÷5 = 59 ,我们把 295 名同学分成 59 组,每组 5 人. 第 1 组是编号为 1 ~ 5 的 5 名学生,第 2 组是编号为 6 ~ 10 的 5 名学生,依次下去,第 59 组是编号为 291~295的5名学生. 采用简单随机抽样的方法,从第1组5名学生中抽
考情分析 1.随机抽样主要考查学生在应用问题中构造抽样 模型、识别模型、选择适当的抽样方法抽取样 本.本部分在高考试题中主要以选择题或填空题 的形式出现,题目多为中傑档题,重在考查抽样 方法的应用. 2.用样本估计总体以考查频率分布直方图、茎叶 图、平均数、方差、标准差为主,同时考查对样 本估计总体的思想的理解.本节在高考题中主要 是以选择题和填空题为主,属于中低档题目.新 课标地区 ( 如广东、宁夏、海南等省份 ) 也常以频 率分布直方图为工具结合现实生活出现一道应用

【新高考】高三数学一轮基础复习讲义:第十一章 11.1随机事件的概率-(学生版+教师版)

【新高考】高三数学一轮基础复习讲义:第十一章 11.1随机事件的概率-(学生版+教师版)

随机事件的概率进门测判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生频率与概率是相同的.()(2)随机事件和随机试验是一回事.()(3)在大量重复试验中,概率是频率的稳定值.()(4)两个事件的和事件是指两个事件都得发生.()(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.()(6)两互斥事件的概率和为1. ( )阶段训练题型一事件关系的判断例1(1)从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③(2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(3)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有()A.0组B.1组C.2组D.3组题型二随机事件的频率与概率例2某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度的平均保费的估计值.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?题型三互斥事件、对立事件的概率命题点1 互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?命题点2 对立事件的概率例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.1.概率和频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率.(2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ). 2.事件的关系与运算定义符号表示包含关系如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B ) 相等关系若B ⊇A 且A ⊇BA =B 并事件(和事件)若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件 若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或A ∩B (或AB )阶段重难点梳理(积事件)积事件)若A∩B为不可能事件(A∩B=∅),那么称事件A互斥事件A∩B=∅与事件B互斥若A∩B为不可能事件,A∪B为必然事件,那P(A)+P(B)=1 对立事件么称事件A与事件B互为对立事件3.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.重点题型训练典例 某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%. (1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)1.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则b >a 的概率是( ) A.45 B.35 C.25 D.152.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( ) A .必然事件B .随机事件C .不可能事件D .无法确定3.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为( ) A .0.5 B .0.3 C .0.6 D .0.94.袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________.1.甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56 B.25 C.16D.132.袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球. 在上述事件中,是对立事件的为( ) A .① B .② C .③ D .④3.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率作业布置为()A.0.7 B.0.65 C.0.35 D.0.54.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是()A.互斥但非对立事件B.对立事件C.相互独立事件D.以上都不对5.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为()A.0.8 B.0.5 C.0.7 D.0.36.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的卡片的频率是()A.0.53 B.0.5 C.0.47 D.0.377.在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件.8.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a 的取值范围是________________.9.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是________.10.一个口袋内装有大小相同的红球,白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________.11.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.12.国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7~10环的概率如下表所示:求该射击队员射击一次:(1)射中9环或10环的概率;(2)命中不足8环的概率.*13.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.随机事件的概率进门测判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生频率与概率是相同的.(×)(2)随机事件和随机试验是一回事.(×)(3)在大量重复试验中,概率是频率的稳定值.(√)(4)两个事件的和事件是指两个事件都得发生.(×)(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.(√)(6)两互斥事件的概率和为1.(×)阶段训练题型一事件关系的判断例1(1)从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述事件中,是对立事件的是( ) A .① B .②④ C .③ D .①③(2)设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(3)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡答案 (1)C (2)A (3)A解析 (1)③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.(2)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1.设掷一枚硬币3次,事件A :“至少出现一次正面”,事件B :“3次出现正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件. (3)至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.思维升华(1)准确把握互斥事件与对立事件的概念①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.(2)判别互斥、对立事件的方法判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有()A.0组B.1组C.2组D.3组答案 B解析①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰好1个白球和1个黄球,①中的两个事件不是互斥事件.②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥.③中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄球,因此两个事件是同一事件.④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B.题型二随机事件的频率与概率例2 某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A 为事件:“一续保人本年度的保费不高于基本保费”,求P (A )的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度的平均保费的估计值.解 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55. (2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.思维升华(1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.(2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙, 所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 题型三 互斥事件、对立事件的概率 命题点1 互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?解 方法一 从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A ,B ,C ,D ,则有P (A )=13,P (B ∪C )=P (B )+P (C )=512,P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14,因此得到黑球、黄球、绿球的概率分别是14,16,14.方法二 设红球有n 个,则n 12=13,所以n =4,即红球有4个. 又得到黑球或黄球的概率是512,所以黑球和黄球共5个. 又总球数是12,所以绿球有12-4-5=3(个).又得到黄球或绿球的概率也是512,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个).所以黑球有12-4-3-2=3(个). 因此得到黑球、黄球、绿球的概率分别是 312=14,212=16,312=14. 命题点2 对立事件的概率例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C );(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P (A )=11 000,P (B )=101 000=1100, P (C )=501 000=120.故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖,一等奖,二等奖. 设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C . ∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝⎛⎭⎫11 000+1100=9891 000. 故1张奖券不中特等奖且不中一等奖的概率为9891 000.思维升华 求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法: (1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)方法一记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.方法二记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.1.概率和频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率.(2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ). 2.事件的关系与运算若A∩B为不可能事件,A∪B为必然事件,那对立事件P(A)+P(B)=1么称事件A与事件B互为对立事件3.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.重点题型训练典例某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)思想方法指导若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解.规范解答解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.[2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).[7分](2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)=20100=15,P(A2)=10100=110.[10分]P(A)=1-P(A1)-P(A2)=1-15-110=710.[12分]故一位顾客一次购物的结算时间不超过2分钟的概率为710.[15分]1.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则b >a 的概率是( ) A.45 B.35 C.25 D.15 答案 D解析 基本事件的个数有5×3=15,其中满足b >a 的有3种,所以b >a 的概率为315=15.2.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( ) A .必然事件 B .随机事件 C .不可能事件 D .无法确定答案 B解析 抛掷10次硬币正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件. 3.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为( ) A .0.5 B .0.3 C .0.6 D .0.9 答案 A解析 依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5.4.袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________. 答案 ②解析 ①是互斥不对立的事件,②是对立事件,③④不是互斥事件.1.甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56 B.25 C.16 D.13答案 A解析 事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56.2.袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球. 在上述事件中,是对立事件的为( ) A .① B .② C .③ D .④ 答案 B解析 至少有1个白球和全是黑球不同时发生,且一定有一个发生. ∴②中两事件是对立事件.3.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.5作业布置答案 C解析∵“抽到的产品不是一等品”与事件A是对立事件,∴所求概率P=1-P(A)=0.35.4.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是()A.互斥但非对立事件B.对立事件C.相互独立事件D.以上都不对答案 A解析由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件,故选A.5.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为()A.0.8 B.0.5 C.0.7 D.0.3答案 C解析由互斥事件概率公式知重量大于40克的概率为1-0.3-0.5=0.2,又∵0.5+0.2=0.7,∴重量不小于30克的概率为0.7.6.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的卡片的频率是( ) A .0.53 B .0.5 C .0.47 D .0.37 答案 A解析 取到号码为奇数的卡片的次数为13+5+6+18+11=53,则所求的频率为53100=0.53.故选A.7.在200件产品中,有192件一级品,8件二级品,则下列事件: ①在这200件产品中任意选出9件,全部是一级品; ②在这200件产品中任意选出9件,全部是二级品; ③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件. 答案 ③ ② ①8.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是________________. 答案 (54,43]解析 由题意可知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<13a -3≤1,⇒⎩⎪⎨⎪⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43. 9.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是________. 答案 35解析个位数字共有5种情况,只有当个位数字取2,4,5时,得到的数才能被2或5整除,所以概率为3 5.10.一个口袋内装有大小相同的红球,白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________.答案0.2解析记事件A,B,C分别是摸出红球,白球和黑球,则A,B,C互为互斥事件且P(A+B)=0.58,P(A+C)=0.62,所以P(C)=1-P(A+B)=0.42,P(B)=1-P(A+C)=0.38,P(A)=1-P(C)-P(B)=1-0.38-0.42=0.2.11.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.。

一轮复习课时训练§11.1:随机抽样

一轮复习课时训练§11.1:随机抽样

第十一章§1:随机抽样(与一轮复习课件对应的课时训练)满分100,训练时间45钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在100个零件中,有一级品20个、二级品30个、三级品50个,从中抽取20个作为样本.(1)采用随机抽样法将零件编号为00,01,…,99,抽签取出20个;(2)采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;(3)采用分层抽样法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.以下判断正确的是A .不论采用哪一种抽样方法,这100个零件中每一个被抽到的概率都是15B .(1)(2)两种抽样方法,这100个零件中每一个被抽到的概率为15,(3)并非如此 C .(1)(3)两种抽样方法,这100个零件中每一个被抽到的概率为15,(2)并非如此 D .采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的2.某中学高三年级有15个班,每个班的同学从1至60排学号,为了交流学习经验,要求每班学号为25的同学留下进行交流,这里运用的是A .分层抽样B .抽签抽样C .随机抽样D .系统抽样3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为A .7B .15C .25D .354.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为A .9B .18C .27D .365.某橘子园有平地和山地共120亩,现在要估计平均亩产量,按一定的比例用分层抽样的方法共抽取10亩进行调查,如果所抽山地是平地的2倍多1亩,则这个橘子园的平地与山地的亩数分别为A.45,75 B.40,80 C.36,84 D.30,90二、填空题:本大题共3小题,每小题8分,共24分.6.某批零件一级品48个,二级品64个,三级品32个,等外品16个,从中抽取一个容量为20的样本即为①;某工厂有工人3 000人,从中抽取50人调查健康状况即为②,那么①和②分别宜采用的抽样方法为________和________.7.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取__________人.8.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分)某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本.如果采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.10.(本小题满分18分,(1)小问8分,(2)小问10分)已知标有1~15号的15个球,如果我们的目的是估计总体号码的均值,即15个球的号码的平均数,试验者抽3个球,以3个球号码的平均数估计总体号码的均值,请你按照如下几种情形进行抽样,并比较抽样的结果,你能得出什么结论,试说明理由.(1)从15个球中随机等可能地抽取3个球,计算它们的号码的平均数;(2)随机排序,计算其号码的均值;(3)按从小号到大号排序,随机选起点i0(1≤i0≤5),然后以i0,i0+5,i0+10号入样,计算其号码的均值,即Y=13[i0+(i0+5)+(i0+10)]=i0+5;(4)按从小号到大号排序,选中点为起点,用系统抽样抽取3个球,计算其号码的均值;(5)将15个球分成3层:第一层1~5号;第2层6~10号;第3层11~15号,每层随机等可能地抽取1个球,共抽3个球,计算其号码的均值.事实上,总体号码的均值为115(1+2+3+4+5+6+7+8+9+10+11+12+13+14+15)=8,抽样后的估计值可以与8进行比较,体会各抽样法哪个合适.参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:由于样本容量都为20,总体为100,所以三种抽样方法的抽样比都为20100=15. 答案:A2.解析:样本容量是15,分段间隔是60,在每一段抽取的都是25号. 答案:D3.解析:因为350∶250∶150=7∶5∶3,所以样本中中年职工为5人,老年职工为3人,故样本容量为15.答案:B4.解析:设老年职工为x 人,则430-3x =160,x =90,设抽取的样本为m ,则160430m =32,m =86,则抽取样本中老年职工人数为90430×86=18(人). 答案:B5.解析:由题意可求得所抽的平地为3亩,山地为7亩,故总的平地为120×310=36亩,山地为120×710=84亩. 答案:C 二、填空题:本大题共3小题,每小题8分,共24分.6.解析:①的个体存在明显差异,宜用分层抽样;②总体人数即样本容量较大,宜采用系统抽样.答案:分层抽样 系统抽样7.解析:由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下年龄段的职工数为200×50%=100,则应抽取的人数为40200×100=20. 答案:37 208.解析:所抽取的990户普通家庭中有50户拥有3套或3套以上住房,所抽取的100户高收入家庭中有70户拥有3套或3套以上住房,那么99 000户普通家庭中就有5 000户拥有3套或3套以上住房,1 000户高收入家庭中就有700户拥有3套或3套以上住房.那么该地100 000户居民中拥有3套或3套以上住房的家庭占的比例为5 000+700100 000=5 700100 000=5.7%.答案:5.7%三、解答题:本大题共2小题,共36分.9.(本小题满分18分)解:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取工程师人数为n 36×6=n 6(人),技术员人数为n 36×12=n 3(人),技工人数为n 36×18=n 2(人),所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.10.(本小题满分18分)解:(3)(5)的结果相当,它们的结果比(1)(2)要好,(1)(2)的结果相当,(4)的结果最好.(5)是分层抽样,分层抽样的代表性更好,而(3)由于以号码递增排序,所以也相当于系统抽样,系统抽样的效果比简单随机抽样好.(1)是简单随机抽样,(2)由于是随机排序,相当于简单随机抽样.。

高三一轮复习 随机抽样PPT学习教案

高三一轮复习  随机抽样PPT学习教案

______第_22_页_/共4_4页______.
(3)系统抽样与简单随
类别
特点
相互联系 适用范围 共同点
简单随 从总体中___逐__个___
总体中的个体
机抽样 抽取
数___较__少_____
系统 抽样
在起始部分
将总体平均分成几部 _按__事__先__确___定__的__规__则_
抽样时, 采用 简单随机抽
(1)系统抽样的概念 在抽样中, 当总体中
个体数较多时, 可将 总体分成均衡的几个 部分, 然后按照预先 制订的规则, 第21页/共44页从每一 部分抽取一个个体,
(2)系统抽样的特点
个体较多

①适用于

____________, 但
__可_能_性_相_等_的总体;
②在整个抽样的过程 中, 每个个体被抽取 到的
高三一轮复习 随机抽样
会计学
1
统计
统计学: 研究客观事物的数量特征和数量关系
,它是关于数据的搜集、整理、归纳和分 析方法的科学。 统计的基本思想:
用样本估计总体,即当总体容量很大 或检测过程具有一定的破坏性时,不直 接去研究总体,而是通过从总体中抽取 一个样本,根据样本的情况去估计总体 的相应情况。
2. 系统抽样的步骤及规则 (1)系统抽样的步骤 假设要从容量为编N号的总体中抽取容
量为n的样本, 步骤为: ② 当N分n(段①_n 是_: 确样编_本 定_号分_容_段量:_间)是先_隔整_k数将., 时对有,编总取号时k体进=可行__的N分n_直_段_N;. 接个利个用体个体自 ③编确号身门定l(l≤初所牌k始);编带号号:的等在第号; 1段码用_,__如___简_学_单__随号__机__抽、__样_准_确定考第证一个号个体、

高三数学一轮复习精品课件5:§11.1 随机抽样

高三数学一轮复习精品课件5:§11.1 随机抽样
依次进行下去,直到获取整个样本.
3.分层抽样
(1)定义:在抽样时,将总体分成 互不交叉 的层,然后按 照 一定的比例,从各层独立地抽取一定数量的个体,将各层
取出的个体合在一起作为样本,这种抽样方法叫做分层抽样. (2)分层抽样的应用范围:
当总体由 差异明显 的几个部分组成时,往往选用分层抽样.
知识拓展 三种抽样方法的共性:等概率抽样,不放回 抽样,逐个抽取,总体确定.
取 n 个个体作为样本(n≤N),如果每次抽取时总体内的各个
个体被抽到的机会都 相等 ,就把这种抽样方法叫做简单
随机抽样.
(2)最常用的简单随机抽样的方法: 抽签法和随机数法.
2.系统抽样的步骤 假设要从容量为 N 的总体中抽取容量为 n 的样本.
(1)先将总体的 N 个个体 编号 . (2)确定 分段间隔k ,对编号进行分段 ,当Nn是整数时,
题型1 简单随机抽样
例 1 (1)下列抽取样本的方式属于简单随机抽样的个数为 () ①盒子里共有 80 个零件,从中选出 5 个零件进行质量检验. 在抽样 操作时,从中任意拿出一个零件进行质量检验后再把它放回 盒子里; ②从 20 件玩具中一次性抽取 3 件进行质量检验;
③某班有 56 名同学,指定个子最高的 5 名同学参加学校组
取 k=Nn,当Nn不是整数时,随机从总体中剔除余数,再取 k=Nn′(N′为从总体中剔除余数后的总数).
(3)在第 1 段用 简单随机抽样 确定第一个个体编号
l(l≤k). (4)按照一定的规则抽取样本,通常是将 l 加上间隔 k 得到第
2 个个体编号 (l+k) ,再加 k 得到第 3 个个体编号 (l+2k) ,
基本能力自测 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误 的打“×”) (1)简单随机抽样中每个个体被抽到的机会不一样,与先后 有关.( ) (2)系统抽样在起始部分抽样时采用简单随机抽样.( )

2015高考数学(理)一轮复习考点突破课件:11.1随机抽样

2015高考数学(理)一轮复习考点突破课件:11.1随机抽样


(2)防疫站对学生进行身体健康调查,采用分层抽样法抽取.红星 中学共有学生1 600名,抽取一个容量为200的样本,已知女生比 男生少抽了10人,则该校有女生____人.
解析:设女生有 x 人,则男生有(1 600-x)人. 200 200 由题知1 600×(1 600-x)=1 600×x+10, 解得 x=760 人. 答案:760
由以上树状图知所有结果共 18 种, 其中 2 人都支持 1 号歌手的有 4 2 a1b1,a1b2,a2b1,a2b2,共 4 种,故所求概率 P=18=9.
• 【易误警示】 1.对分层抽样的抽取实质理解不到位,各组人数计 算错误. • 2.在用列举法写出不同取法时容易漏,而使得概率不准. • 3.解决分层抽样问题时,以下几点易造成失分: • (1)分层中不明确有几层; • (2)计算比例时找不准比例关系,出现计算错误.
相互联 系
适用范围
总体中的 个体数越 少
系统 抽样
在起始 部分抽 样时采 用简单 随机抽 样
总体中的 个体数较 多
• •
题型一
简单随机抽样 (2013·江西)总体由编号为01,02,„,19,20的20个个体 组成.利用下面的随机数表选取5个个体,选取方法是从随机数 表第1行的第5列和第6列数字开始由左到右依次选取两个数字, 则选出来的第5个个体的编号为( )
• •

1.简单随机抽样 (1)定义:设一个总体含有N个个体,从中 抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽 逐个不放回地 到的机会都 ,就把这种抽样方法叫做简单随机抽样. (2)最常用的简单随机抽样的方法: 和
相等
抽签法
随机数法.
• 对点演练 • 大、中、小三个盒子中分别装有同一种产品120个、60个、20个, 现在需从这三个盒子中抽取一个样本容量为25的样本,较为恰当的 抽样方法为________. • 答案:简单随机抽样

高考第一轮复习数学:11.1 随机事件的概率 高考数学第一轮复习教案集 新课标 人教版 高考数学第

高考第一轮复习数学:11.1  随机事件的概率 高考数学第一轮复习教案集 新课标 人教版 高考数学第
11.1 随机事件的概率
●知识梳理
1.随机事件:在一定条件下可能发生也可能不发生的事件.
2.必然事件:在一定条件下必然要发生的事件.
3.不可能事件:在一定条件下不可能发生的事件.
A的概率:在大量重复进行同一试验时,事件A发生的频率 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0.
解析:10位同学总参赛次序A .一班3位同学恰好排在一起,而二班的2位同学没有排在一起的方法数为先将一班3人捆在一起A ,与另外5人全排列A ,二班2位同学不排在一起,采用插空法A ,即A A A .
∴所求概率为 = .
答案:B
3.(2004年某某,9)将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是
答案:B
2.(2004年某某模拟题)甲、乙二人参加法律知识竞赛,共有12个不同的题目,其中选择题8个,判断题4个.甲、乙二人各依次抽一题,则甲抽到判断题,乙抽到选择题的概率是
A. B. C. D.
解析:甲、乙二人依次抽一题有C ·C 种方法,
而甲抽到判断题,乙抽到选择题的方法有C C 种.
∴P= = .
(2)当m=7时,(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共有6种,此时P= = 最大.
●思悟小结
求解等可能性事件A的概率一般遵循如下步骤:
(1)先确定一次试验是什么,此时一次试验的可能性结果有多少,即求出A.
(2)再确定所研究的事件A是什么,事件A包括结果有多少,即求出m.
●点击双基
1.(2004年全国Ⅰ,文11)从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
解析
第十一章:统计与统计案例 §11.1:随机抽样
解析
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
解析
第十一章:统计与统计案例 §11.1:随机抽样
解析
第十一章:统计与统计案例 §11.1:随机抽样
解析
第十一章:统计与统计案例 §11.1:随机抽样
解析
第十一章:统计与统计案例 §11.1:随机抽样
解析
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
解析
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
解析
第十一章:统计与统计案例 §11.1:随机抽样
解析Biblioteka 第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
第十一章:统计与统计案例 §11.1:随机抽样
相关文档
最新文档