软磁材料基本概念

合集下载

磁性材料和磁路及磁路基本定律

磁性材料和磁路及磁路基本定律
简单的说就是两个问题:
1.饱和——引起电感量减小
2.居里温度——磁导率减小
磁性材料
3
磁化曲线
开关电源技术——
磁性材料
tqzheng@
4
磁滞回线
磁性材料
Fig 1 Typical B vs H Loop
B Magnetic Flux Density(磁通密度[磁感应强度]) Bs Saturation Flux Density(饱和磁密) Br Remanence(剩磁) H magnetic Field Strength(磁场强度) Hc Coercive Force(矫顽力) i Initial Permeability(初始磁导率) a(max) Maximum Amplitude Permeability
开关电源技术——
磁性材料
tqzheng@
8
磁滞损耗Ph
The area enclosed by the hysteresis loop is a measure of hysteresis loss per cycle.
磁性材料
9
涡流损耗Pe
磁性材料
10
剩余损耗Pc
由于磁化弛豫效应或磁性滞后效应引起 的损耗。所谓弛豫是指在磁化或反磁化 的过程中,磁化状态并不是随磁化强度 的变化而立即变化到它的最终状态,而 是需要一个过程,这个‘时间效应’便 是引起剩余损耗的原因。
在退磁曲线中, B 与 H 之积, 在某一点处达到最 大值, 通常记作(BH)m, 叫最大磁能积.
磁性材料
5
磁性材料
6
基本定律
1、安培环路定律
Hdl I IN
2、电磁感应定律 (法拉第+楞次)

项目五电磁应用技术

项目五电磁应用技术

项目五电磁应用技术任务一认知磁现象(2课时)学习目标掌握磁的基本知识,理解磁的基本概念。

一、磁的基本概念1.磁性物质具有吸引铁、镍、钴等物质的性质称为磁性。

2.磁体具有磁性的物体称为磁体。

磁体根据来源不同可分为天然磁体和人造磁体,人造磁体根据形状不同可分为条形磁铁、针形磁铁、U形磁铁等。

3.磁极磁体上磁性最强的区域称为磁极。

任何物体都有两个磁极,分别为南极(S)北极(N)。

两磁体的磁极间具有相互作用,即同名磁极相互排斥,异名磁极相互吸引。

应用:指南针、磁悬浮列车。

二、磁场与磁力线规定在磁场中某一点自由旋转的小磁针静止时北极所指的方向为该点的磁场方向。

描述磁场的几个物理量如下:1.磁力线为了形象地描述磁场这一概念,引入磁力线(磁感线)的概念。

磁体周围存在的磁力作用空间称为磁场。

我们规定:在磁体外部,磁力线由N极指向S极;在磁体内部,由S极指向N极。

在曲线上任意一点切线方向就是小磁针在磁力作用下静止时N极所指方向。

通常以磁力线方向来表示磁场方向。

用磁力线的疏密来描述磁场的强弱,磁力线越密集,磁场越强,反之越弱。

2.磁感应强度垂直通过单位面积的磁力线的数目称为该点的磁感应强度,用字母B表示,单位为特斯拉,简称特(T)。

3.磁通量垂直通过某一面积上的磁力线的总数称为通过该面积的磁通量,简称磁通,用字母Φ表示,单位为韦伯,简称韦(Wb)。

匀强磁场磁通量为Φ=BS(5-1)任务二认知电流的磁场(2课时)学习目标(1)理解磁现象的电本质——电流的磁效应。

(2)掌握右手螺旋定制,学会判断电流产生磁场的方向。

电流的周围存在磁场,即电流的磁效应。

通电导体产生的磁场方向可以用右手螺旋法则(安培定则)来判断。

右手螺旋法则(安培定则)内容:1.直导体电流的磁场用右手握住通电导体,让拇指指向电流方向,则弯曲的四指的指向就是磁场方向。

2.螺线管电流的磁场用右手握住螺旋管,弯曲的四指指向线圈的电流方向,则拇指方向就是螺旋管内部磁场的方向。

软磁材料灵敏磁畴观察设计

软磁材料灵敏磁畴观察设计

软磁材料灵敏磁畴观察设计1.引言1.1 概述概述:软磁材料在电子领域具有广泛的应用,特别是在信息存储和传输方面。

磁畴是软磁材料中的一种磁性结构,对于理解材料的磁性质和性能具有重要意义。

因此,设计一种能够灵敏地观察软磁材料中磁畴变化的方法具有重要的研究价值和应用前景。

本文将对软磁材料灵敏磁畴观察设计进行深入研究和探讨。

首先,我们将介绍软磁材料的基本特性和应用背景,包括软磁材料的定义、性能指标和制备方法。

然后,我们将详细介绍灵敏磁畴观察设计的原理和方法,包括磁通显微镜和磁力显微镜等常用观察手段。

在介绍原理和方法之后,我们将探讨软磁材料中磁畴的形成机制和变化规律,以及磁畴与材料性能之间的关系。

同时,我们还将讨论不同外界条件对磁畴观察的影响,以及如何通过优化观察条件来提高软磁材料中磁畴的搜索和观察效率。

最后,我们将总结本文的主要内容,并展望未来对软磁材料灵敏磁畴观察设计的研究方向和发展趋势。

通过对软磁材料磁畴观察设计的深入研究,我们可以更好地理解软磁材料的磁性质和性能,为其在信息存储和传输等领域的应用提供有力的支持。

1.2文章结构文章结构描述了本文的整体框架和各个部分的内容安排。

本文的结构主要分为引言、正文和结论三大部分。

在引言部分,我们会对本文的背景和研究领域进行一个概述,以引起读者的兴趣和注意。

然后介绍文章的结构和各个部分的内容安排,让读者对整篇文章有一个整体的把握。

最后,明确本文的目的,即通过本研究对软磁材料灵敏磁畴观察设计进行探讨和分析,从而给相关研究提供一定的参考和指导。

接下来是正文部分。

首先,我们将介绍软磁材料的基本概念和特性,包括其磁性能、物理性质和应用领域等方面的内容。

然后,我们将详细阐述灵敏磁畴观察设计的原理和方法,包括实验设备、操作步骤和数据处理等方面的内容。

通过对软磁材料的灵敏磁畴观察设计进行深入探讨,我们将展示其在磁性材料研究中的重要作用和潜在应用价值。

最后是结论部分。

我们会对整篇文章的主要内容进行总结,归纳出一些重要的要点和结论。

软磁材料

软磁材料

软磁材料基本知识一、软磁材料的发展及种类1.软磁材料的发展软磁材料在工业中的应用始于十九世纪末。

随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。

到二十世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。

直至现在硅钢片在电力工业用软磁材料中仍居首位。

到二十年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。

从四十年代到六十年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。

进入七十年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。

2.常用软磁磁芯的种类铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。

按(主要成分, 磁性特点, 结构特点) 制品形态分类:1). 合金类:硅钢片、坡莫合金、非晶及纳米晶合金2). 粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)3). 铁氧体类:算是特殊的粉芯类, 包括:锰锌系、镍锌系常用软磁材料的分类及其特性(Soft Magnetic Materials)二、软磁材料的分类介绍(一). 合金类1.硅钢硅钢是一种合金,在纯铁中加入少量的硅(一般在 4.5%以下)形成的铁硅系合金称为硅钢,该类铁芯具有最高的饱和磁感应强度值为20000 高斯;由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。

是软磁材料中产量和使用量最大的材料。

也是电源变压器用磁性材料中用量最大的材料。

特别是在低频、大功率下最为适用。

常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。

磁性材料名词解释

磁性材料名词解释

磁性材料Jump to: navigation, search磁性材料magnetic material 可由磁场感生或改变磁化强度的物质。

按照磁性的强弱,物质可以分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性等几类。

铁磁性和亚铁磁性物质为强磁性物质,其余为弱磁性物质。

现代工程上实用的磁性材料多属强磁性物质,通常所说的磁性材料即指强磁性材料。

磁性材料的用途广泛。

主要是利用其各种磁特性和特殊效应制成元件或器件;用于存储、传输和转换电磁能量与信息,或在特定空间产生一定强度和分布的磁场;有时也以材料的自然形态而直接利用(如磁性液体)。

磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。

简史 中国是世界上最先发现物质磁性现象和应用磁性材料的国家。

早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。

11世纪就发明了制造人工永磁材料的方法。

1086年《梦溪笔谈》记载了指南针的制作和使用。

1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。

近代,电力工业的发展促进了金属磁性材料──硅钢片(Si-Fe合金)的研制。

永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。

随着通信技术的发展,软磁金属材料从片状改为丝状再改为粉状,仍满足不了频率扩展的要求。

20世纪40年代,荷兰J.L.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材料,接着又出现了价格低廉的永磁铁氧体。

50年代初,随着电子计算机的发展,美籍华人王安首先使用矩磁合金元件作为计算机的内存储器,不久被矩磁铁氧体记忆磁芯取代,后者在60~70年代曾对计算机的发展起过重要的作用。

50 年代初人们发现铁氧体具有独特的微波特性,制成一系列微波铁氧体器件。

压磁材料在第一次世界大战时即已用于声纳技术,但由于压电陶瓷的出现,使用有所减少。

后来又出现了强压磁性的稀土合金。

非晶态(无定形)磁性材料是近代磁学研究的成果,在发明快速淬火技术后,1967年解决了制带工艺,正向实用化过渡。

磁性材料金属磁性材料

磁性材料金属磁性材料

二元系:温度、压力、成分的立体图。由于一般情况下,压力常为 恒定,相图简化为温度、成分的直角坐标平面图。
三元系:(压力恒定)是一个立体图,底面呈正三角形(成分三角 形),三条底边上-的含量百分数。垂直于底面的纵轴表示温度。 (加图示)三角形内任何一点代表一定成分的三元合金。

2、相律和杠杆定理
⑴、相律 是指在平衡条件下,合金系统的组元数、相数和自由度数之间的 关系式。可以用下式表示:

3d过渡族元素的磁性来源
Fe、Ni、Co :
3d电子的交换相互作用,铁磁性 (2.2μB,0.6μB,1.7μB)
Cr、Mn:
3d电子的直接交换相互作用,反铁磁性
Cr、Mn的合金或化合物:
3d电子的超交换相互作用,亚铁磁性或铁磁性
㈡、稀土族元素的结构和磁性 ⑴ 结构 主要指原子序数为57(La)至71(Lu)的15个元素, 加 上性质类似的Y和Sc; 晶体结构大都为密排六方结构。 ⑵ 磁性 Gd从0K到居里温度239K只表现出纯粹的铁磁性,但磁 矩的取向随温度而变。 Gd以前的轻稀土Ce、Nd、Sm具有反铁磁性。 重稀土金属Tb、Dy、Ho、Er、Tm表现为铁磁性或亚 铁 磁性。 Y、Sc、La、Yb、Lu为非磁性稀土元素,但Y、Sc、 Yb 的离子具有磁矩。
如结晶时,p=3,则f=2-3+1=0 (恒温)
(2)、杠杆定理 合金在结晶过程中,各相的成分及其相对 含量将发生变化。对于相图中的两相区, 可以应用所谓杠杆定律求出这两相的成分 及相对含量。 在A-B二元系中,任选一合金p,它的成分 是Xp(组元B的浓度),组元A的浓度为 (1-Xp),在温度T时处于二相平衡,和 两相中组元B的浓度分别为Xa和Xb,而组 元A的浓度为()和(),设合金的重量 为1,和的相对量分别为C的C。这样P点 处两相中同一组元含量之和必等于合金P 中相应组元的含,可得两个方程式: CαXa+CβXb=Xp Cα(1-Xa)+Cβ(1-Xb)=1-Xp

材料磁学性能-磁学性能(第四节)

材料磁学性能-磁学性能(第四节)
50Cu 29Co21Ni
50Cu 34Fe7Al 15Ni35Co 4Cu5Ti
0.95
5900
2600
0.54
44000
12000
0.34
54000
6400
0.76
123000 36000
BaO-6Fe2O3
0.32
240000 20000
TC (oC)
⎯ 760 410 860
860
450
电阻率 ρ ( Ω·m )
部分磁粉的性能
γ-Fe2O3 CrO2 CoFe 金属颗粒 钡铁氧体
比表面积 (m2/g)
15∼50
15∼40
20∼50
30∼60
25∼70
颗粒尺寸 (nm) 270∼500 190∼400 150∼400 120∼300 500∼200
颗粒体积 (10-5μm3) 30∼200 10∼100 5∼100
14
理想的磁光存储材料应具备以下基本性能:
材料的饱和磁化强度MS应偏小,以使磁光存储薄膜的磁化矢量垂直于膜面 薄膜的磁滞回线必须是矩形,即剩磁比为1,从而确保良好的记录开关特性 适中的居里温度,否则记录用半导体激光器的功率要增大 稳定的记录位尺寸d可以粗略地用d ∝1/HC表示,因此材料的矫顽力要足够大 记录材料要有高的热传导率,当激光作用时,记录介质能快速升温和冷却 热稳定性好,在记录/擦除激光光束反复作用下,材料的结构不发生变化 优良的抗氧化、抗腐蚀性能,要求存储介质经长期存放后性能不变 大面积成膜容易
易去磁,即磁滞回线很窄
高的磁导率和小的矫顽力要求材料的结构尽 量均匀,没有缺陷,在磁学上各向同性
若要在交变磁场中用作软磁材料,铁磁体应 有较大的电阻率,这可以通过材料的合金化 来做到,如铁-硅合金、铁-镍合金等

电机学 第一章磁路

电机学 第一章磁路

起始磁化曲线
oa段
ab段
bc段
cd段
膝点
饱和
铁磁材料 图1-7.
µ Fe = f ( H ) 磁化曲线见示意
� 应用: 设计电机和变压器时,为使主磁路内得 到较大的磁通量而又不过分增大励磁磁动势, 通常把铁心内的工作磁通密度选择在膝。 剩磁:去掉外磁场之后,铁磁材料内仍然保留的 磁通密度 B r 。 矫顽力:要使B值从减小到零,必须加上相应的反 向外磁场,此反向磁场强度Hc称为矫顽力。 磁滞:铁磁材料所具有的这种磁通密度B的变化滞 后于磁场强度H变化的现象。 磁滞现象是铁磁材料的另一个特性。
2.硬磁(永磁)材料 定义:磁滞回线宽、剩磁和矫顽力都很大的铁磁材 料称为硬磁材料,又称为永磁材料。 附图1-11b 磁性能指标 剩磁 矫顽力 最大磁能积
铸造型 铝镍钴
种类示意图
粉末型 铝镍钴
永磁材料 种类
铁氧体
稀土钴
钕铁硼
四、铁心损耗 1.磁滞损耗 定义: 铁磁材料置于交变磁场中时,磁畴相 互间不停地摩擦、消耗能量、造成损耗,这种 损耗称为磁滞损耗。 n 公式: p = C fB V
Hδ lδ = 385A
F = H FelFe + H δ lδ = 432.6 A
返回
2.简单并联磁路 定义:指考虑漏磁影响,或磁回路有两个以上分 支的磁路。 点击书本进入例题1-3
例 题
� [例1—3] 图1—14a所示并联磁路,铁心所 用材料为DR530硅钢片,铁心柱和铁轭的截面 积均为 A = 2 × 2 × 10 −4 m 2 ,磁路段的平均长 −3 度l = 5 ×10−2 m ,气隙长度 δ1 =δ2 = 2.5×10 m 励磁线圈匝数 N 1 = N 2 = 1000 匝。不计漏磁通,试求在气隙内产生 B δ =1.211T的磁通密度时,所需的励磁电流i。

软磁材料基本概念

软磁材料基本概念

软磁材料基本概念软磁材料:所谓软磁材料,特指那些矫顽力小、容易磁化和退磁的磁性材料。

所谓的软,指这些材料容易磁化,在磁性上表现“软”。

软磁材料的用途非常广泛。

因为它们容易磁化和退磁,而且具有很高的导磁率,可以起到很好的聚集磁力线的作用,所以软磁材料被广泛用来作为磁力线的通路,即用作导磁材料,例如变压器、传感器的铁芯,磁屏蔽罩,特殊磁路的轭铁等。

这里,介绍几种常用的软磁材料和用它们做成的常见元器件。

常用软磁材料:硅钢片:硅钢是含硅量在3%左右、其它主要是铁的硅铁合金。

硅钢片大量用于中低频变压器和电机铁芯,尤其是工频变压器。

硅钢的特点是具有常用软磁材料中最高的饱和磁感应强度(2.0T以上),因此作为变压器铁芯使用时可以在很高的工作点工作(如工作磁感值1.5T)。

但是,硅钢在常用的软磁材料中铁损也是最大的,为了防止铁芯因损耗太大而发热,它的使用频率不高,一般只能工作在20KHz以下。

硅钢通常是薄片状的,这是为了在制造变压器铁芯时减小铁芯的涡流损失。

目前硅钢片主要分热轧和冷轧两大类。

所谓热轧硅钢,是把硅钢板坯在850度以上加热后轧制,然后再进行退火。

由于轧制温度高,所轧制出来的硅钢片都是各向同性的,也就是说硅钢片的磁性在各个方向上相同。

这种各向同性的硅钢也叫做无取向硅钢。

无取向硅钢大量应用在电机中的定子或者转子。

因为要制造电机定子和转子,就要在大的硅钢片上冲压出圆形的零件。

这时总是希望硅钢片沿圆周方向磁性一致,所以要用无取向硅钢。

为了获得更好的磁性能,后来人们发明了冷轧硅钢片,即在较低温度下轧制,再退火。

冷轧取向硅钢片是其中的代表。

冷轧取向硅钢片首先对板坯进行冷轧,使得材料内部产生很多结构缺陷。

在随后的退火过程中,材料发生结构上的变化(称为再结晶),这种变化会使硅钢片在某个方向上磁性能非常好,也就是说磁性能和方向有关,因此被称为取向硅钢。

在最终使用时,让铁芯中的磁力线沿磁性能最好的方向通过,这样便可以最大限度地发挥硅钢片的磁性能潜力。

功能材料-磁性材料课件

功能材料-磁性材料课件

第三章 磁性材料-§3.1 软磁材料
3、高斯织构硅钢片
结构特点:
➢ 易磁化方向[100]与轧制方向平行 ➢ 难磁化方向[111]与轧制方向成55角
轧 [100] 制 方 向
55
[111] [110]
➢ 中等磁化方向[110]与轧制方向成90角
横向
高斯织构硅钢片具有磁各向异性,沿[100](轧制方向)磁性能最佳。
3、主要用途
直流磁场下工作的磁性元件,如电磁铁和继电器的铁芯。
第三章 磁性材料-§3.1 软磁材料
电工用硅钢片
在纯铁中加入1.04.0%Si的铁碳硅合金。 Si的加入,提高了电阻率,从而减少涡流损耗。
1、电工用硅钢片的种类
硅钢片按生产方法、结晶织构和磁性能的分类:
电工用硅钢片
热轧非织构(无取向)硅钢片 冷轧非织构(无取向)硅钢片 冷轧高斯织构(单取向)硅钢片 冷轧立方织构(双取向)硅钢片
150·cm,为1J79铁镍合金的2~3倍。 ➢ 硬度、强度和耐磨性较高。
例如1J16的硬度和耐磨性比1J79合金高,适用于磁头等磁性器件。 ➢ 密度较低。
可以减轻磁性元件的铁芯质量。 ➢ 对应力敏感性小。
适于在冲击、振动等环境下工作。 ➢ 合金的时效性良好。
随着环境温度的变化和使用时间的延长,其磁性变化不大。
第三章 磁性材料-§3.1 软磁材料
2、铁铝合金的主要应用
铁和铝资源丰富、价格低廉,铁铝合金的磁性能与铁镍合金类似, 同时还具有一些独特的优点,因此是铁镍合金的一种替代材料,适用于 电子变压器、磁头和磁致伸缩换能器等方面。
铁铝合金的牌号、主要成分、特点和用途
牌号 铝含量 /%
特点
主要用途
1J6

磁性材料基础知识-ppt课件

磁性材料基础知识-ppt课件

求其轴线上一点 p 的磁感强度的方向和大小.
Idl
r
dB
B
o
R
p B
x
*
x
I
dB 0

Idl r2
解: 根据对称性分析
毕奥—萨伐尔定律的应用2
Idl
sin R
R
o
r
x
dB
*p x
r2 R
B0I

r 2 x2
sindl
l r2
dB x
dB 0

Idl r2
dB xdsBin4 π 0Isri2 n dl
0I dl
2πR l
I B
dl
oR
l
l 设 l 与 I 成右螺旋
关系
3.3 安培环路定理-应用
求载流螺绕环内的磁场 (已知 n N I)
1) 对称性分析;环内 B 线为同心圆,环外 B 为零.
2 )选 回路(顺时针圆周) .
lB d Bl 2 0π NR I B 0 NI
2π R
d
令L2πRB0NIL
内部交流报告
磁性材料基础知识
提纲
1 磁性材料的发展简史
2 磁学基本常识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
5 磁性材料应用实例
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
一、磁性材料发展简史(续)
• 1946年 Bioembergen发现NMR效应 • 1948年 Neel建立亜铁磁理论

(整理)《磁性材料》基本要求.

(整理)《磁性材料》基本要求.

《磁性材料》基本要求一、熟练掌握基本概念:(1) 磁矩:磁偶极子等效的平面回路的电流和回路面积的乘积,μm =iS ,方向由右手定则确定,单位Am 2。

(2) 磁化强度(M ):定义单位体积磁性材料内磁矩的矢量和称为磁化强度,用M 表示,SI单位为A/m 。

CGS 单位:emu/cm 3。

换算关系:1 ×103 A/m = emu/cm 3。

(3) 磁场强度(H ):单位强度的磁场对应于1Wb 强度的磁极受到1牛顿的力。

SI 单位是A ·m -1。

CGS 单位是奥斯特(Oe)。

换算关系:1 A/m =4π/ 103 Oe 。

(4) 磁化曲线:磁体从退磁状态开始到磁化饱和的过程中,磁感应强度B 、磁化强度M 与磁场强度H 之间的非线性关系曲线。

(5) 退磁曲线:磁滞回线在第二象限的部分称为退磁曲线。

(6) 退磁场:当一个有限大小的样品被外磁场磁化时,在它两端出现的自由磁极将产生一个与磁化强度方向相反的磁场。

该磁场被称为退磁场。

退磁场的强度与磁体的形状及磁极的强度有关存在:Hd=-NM 。

(7) 饱和磁感应强度Bs(饱和磁通密度) :磁性体被磁化到饱和状态时的磁感应强度。

SI 单位是特斯拉[T]或[Wb·m -2];CGS 单位是高斯(Gauss)。

换算关系:1 T = 104 G 。

(8) 磁导率:定义为磁感应强度与磁场强度之比μ=B/H,表示磁性材料传导和通过磁力线的能力.单位为亨利/米(H·m -1). (9) 起始磁导率:磁性体在磁中性状态下磁导率的极限值。

H B H i 00lim1→=μμ (10) 磁化率定义为磁化强度与磁场强度之比:χ= M /H(11) 居里温度:即铁磁性材料(或亚磁性材料)由铁磁状态(或亚铁磁状态)转变为顺磁状态的临界温度,在此温度上,自发磁化强度为零。

(12) 磁各向异性:磁性材料在不同方向上具有不同磁性能的特性。

包括:磁晶各向异性,形状各向异性,感生各向异性和应力各向异性等。

磁场的屏蔽问题.

磁场的屏蔽问题.

磁场的屏蔽问题,是一个既具有实际意义又具有理论意义的问题。

根据条件的不同,电磁场的屏蔽可分为静电屏蔽、静磁屏蔽和电磁屏蔽三种情况,这三种情况既具有质的区别,又具有内在的联系,不能混淆。

静电屏蔽在静电平衡状态下,不论是空心导体还是实心导体;不论导体本身带电多少,或者导体是否处于外电场中,必定为等势体,其内部场强为零,这是静电屏蔽的理论基础。

因为封闭导体壳内的电场具有典型意义和实际意义,我们以封闭导体壳内的电场为例对静电屏蔽作一些讨论。

(一)封闭导体壳内部电场不受壳外电荷或电场影响。

如壳内无带电体而壳外有电荷q,则静电感应使壳外壁带电(如图1)。

静电平衡时壳内无电场。

这不是说壳外电荷不在壳内产生电场,根发电场。

由于壳外壁感应出异号电荷,它们与q在壳内空间任一点激发的合场强为零。

因而导体壳内部不会受到壳外电荷q或其他电场的影响。

壳外壁的感应电荷起了自动调节作用。

如果把上述空腔导体外壳接地(图2),则外壳上感应正电荷将沿接地线流入地下。

静电平衡后空腔导体与大地等势,空腔内场强仍然为零。

如果空腔内有电荷,则空腔导体仍与地等势,导体内无电场。

这时因空腔内壁有异号感应电荷,因此空腔内有电场(图3)。

此电场由壳内电荷产生,壳外电荷对壳内电场仍无影响。

由以上讨论可知,封闭导体壳不论接地与否,内部电场不受壳外电荷影响。

(二)接地封闭导体壳外部电场不受壳内电荷的影响。

如果壳内空腔有电荷q,因为静电感应,壳内壁带有等量异号电荷,壳外壁带有等量同号电荷,壳外空间有电场存在(图4),此电场可以说是由壳内电荷q间接产生。

也可以说是由壳外感应电荷直接产生的但如果将外壳接地,则壳外电荷将消失,壳内电荷q与内壁感应电荷在壳外产生电场为零(图5)。

可见如果要使壳内电荷对壳外电场无影响,必须将外壳接地。

这与第一种情况不同。

这里还须注意:①我们说接地将消除壳外电荷,但并不是说在任何情况壳外壁都一定不带电。

假如壳外有带电体,则壳外壁仍可能带电,而不论壳内是否有电荷(图6)。

电路基础(第3版_王慧玲)电子教案 电路基础第3版电子教案 3第10章 磁路与变压器

电路基础(第3版_王慧玲)电子教案 电路基础第3版电子教案 3第10章 磁路与变压器
磁通 Φ
磁阻
l
Rm S
电动势 E
电压降 U
电流 I
电阻 R l S
附:磁路和电路的基本定律比较 磁路
欧姆定律 基尔霍夫第1定律
F
Rm
Φ 0
电路
IE R
I 0
基尔霍夫第2定律 US IR NI Hl
例10-1 一空心线圈,形成环形闭合回路,其横截
面积为10 cm2,长度为20cm,线圈匝数为660,线
变压器结构
二、变压器的工作原理 变压器利用电磁感应的作用进行绕组间的能量
耦合,实现交流电能的传送与转换。
变压器的原理图
u1 i1(i1N1) i2(i2N2)
1 e1
e1 e2
2 e 2
电磁感应过程
考虑线圈损耗r1、r2,根据KVL列出一、二次回路的
电压方程
u1 r1i1 (e1 ) (e1 ) (10-13)
I2 N1 n
例10-5 解:
3.变压器的变换阻抗作用
由图可得 推出
Z1
U1 I1

Z2
U2 I2
Z1 n2 Z2
(10-22)
例10-6
解: 由图(a),电流为
I U S 36 A 0.18 A 180 mA RS RL 192 8
电压源输出的功率 PUS U S I 36 0.18W 6.48W 扬声器获得的功率 PL I 2RL 0.182 8W 0.2592W
3. 磁路的基尔霍夫定律 (1)磁路的基尔霍夫第一定律 穿过闭合面S的所有磁通的代数和等于零。 ∑Φ=0 (2)磁路的基尔霍夫第二定律 磁通势等于各段磁路的磁位差之和
∑(Hl)=∑(IN) 或 ∑Um=∑Fm

软磁材料

软磁材料

五、稳定性
• 高科技特别是高可靠工程技术的发展,要求软磁 材料不但要高µ i ,低损耗等,更重要的是高稳定性。
• 软磁材料的高稳定性是指磁导率的温度稳定性要高, 减落要小,随时间的老化要尽可能地小,以保证其 长寿命工作于太空、海底、地下和其他恶劣环境。 • 影响软磁材料稳定工作的因素有低温、潮湿、电磁 场、机械负荷、电离辐射等,在这些因素的影响下, 软磁材料的基本特性参数发生变化,从而导致性能 的变化。
4.2 提高起始磁导率的途径
• 必要条件:提高Ms并降低K1、λs :的值. • 充分条件:降低杂质浓度,提高密度, 增大晶粒尺寸,结构均匀化,消除内应 力和气孔的影响。这都与配方的选择和 工艺条件密切相关。
提高起始磁导率µ i的途径
一、提高Ms降低磁晶各向异性常数K1和磁致伸缩系数λs • 材料的起始磁导率µ i 与Ms的平方成正比。 • 最有效方法是从配方和工艺上使K1→0,λs →0. 例如:CoFe2O4、Fe3O4Ms虽高,但K1和λs太大。
4.3.1 电工纯铁
• 纯度:电工纯铁是指纯度在99.8%以上。冶炼时,
首先用氧化渣除之碳、硅、锰等元素,再用还原 渣除去磷和硫,出钢时在钢包中添加脱氧剂获得。 • 软磁性能:经过退火热处理,起始磁导率µi 为 3, Hc为 300—500,最大磁导率µ 为 (6~12) × 10 max 39.8~95.5 A/m。(0.5~1.2Oe) 1 A/m =4/ 103 Oe
二、矫顽力 Hc
• 软磁材料的基本性能要求是,能快速地响应 外磁场变化,这就要求材料具有低矫顽力值。 • 图为在低磁场时就表现出灵敏的响应。
软磁材料典型的磁滞回线示意图
影响矫顽力Hc的因素
• 软磁材料的矫顽力较低: 通常约为0.1-100 A/m 数量级。 • 软磁材料的反磁化过程主要是通过畴壁位移来 实现的,因此材料内部应力起伏和杂质的含量 与分布成为影响矫顽力Hc的主要因素。对于内 应力不易消除的材料,应着重考虑降低 λs;对 于杂质含量较多的材料应着重考虑降低Kl值。 • 对于软磁材料,在提高µ i 的同时可以实现降低 Hc的目的。

什么是软磁材料

什么是软磁材料

什么是软磁材料软磁材料是一种具有良好软磁性能的材料,通常用于电磁设备和电子器件中。

软磁材料具有低磁滞、低铁损、高导磁率等特点,能够有效地转换和传导磁能,因此在现代电工电子领域中应用广泛。

本文将从软磁材料的定义、分类、特性及应用等方面对软磁材料进行介绍。

首先,软磁材料是指在一定条件下,能够在外加磁场作用下产生磁感应强度,而在去磁场作用下能够完全消除磁感应强度的材料。

根据其磁滞回线的形状,软磁材料可分为软磁材料和硬磁材料。

软磁材料的磁滞回线呈现出狭窄的形状,而硬磁材料的磁滞回线呈现出宽阔的形状。

软磁材料主要包括铁素体材料、非晶合金材料、软磁纳米晶材料等。

软磁材料具有许多独特的特性。

首先,软磁材料具有低磁滞特性,即在外加磁场作用下,材料的磁化强度随着磁场的变化而变化,而在去磁场作用下,磁化强度能够迅速消失。

其次,软磁材料具有低铁损特性,即在交变磁场作用下,材料的铁损较小,能够有效地减少能量损耗。

另外,软磁材料还具有高导磁率特性,即在外加磁场作用下,材料能够产生较大的磁感应强度,从而有效地传导磁能。

软磁材料在电工电子领域中有着广泛的应用。

首先,软磁材料常用于电力变压器、互感器等电力设备中,能够有效地传导和转换电能。

其次,软磁材料还常用于电子器件中,如变压器、感应线圈、电感器等,能够实现信号的传输和处理。

另外,软磁材料还常用于磁记录材料中,如磁盘、磁带等,能够实现信息的存储和读取。

总之,软磁材料是一种具有良好软磁性能的材料,具有低磁滞、低铁损、高导磁率等特点,能够有效地传导和转换磁能。

在电工电子领域中有着广泛的应用,包括电力设备、电子器件、磁记录材料等。

随着科学技术的不断发展,软磁材料的研究和应用将会更加深入,为电工电子领域的发展带来新的机遇和挑战。

《磁性材料》基本要求

《磁性材料》基本要求

《磁性材料》基本要求一、熟练掌握基本概念:(1) 磁矩:磁偶极子等效的平面回路的电流和回路面积的乘积,μm =iS ,方向由右手定则确定,单位Am 2。

(2) 磁化强度(M ):定义单位体积磁性材料内磁矩的矢量和称为磁化强度,用M 表示,SI单位为A/m 。

CGS 单位:emu/cm 3。

换算关系:1 ×103 A/m = emu/cm 3。

(3) 磁场强度(H ):单位强度的磁场对应于1Wb 强度的磁极受到1牛顿的力。

SI 单位是A ·m -1。

CGS 单位是奥斯特(Oe)。

换算关系:1 A/m =4π/ 103 Oe 。

(4) 磁化曲线:磁体从退磁状态开始到磁化饱和的过程中,磁感应强度B 、磁化强度M 与磁场强度H 之间的非线性关系曲线。

(5) 退磁曲线:磁滞回线在第二象限的部分称为退磁曲线。

(6) 退磁场:当一个有限大小的样品被外磁场磁化时,在它两端出现的自由磁极将产生一个与磁化强度方向相反的磁场。

该磁场被称为退磁场。

退磁场的强度与磁体的形状及磁极的强度有关存在:Hd=-NM 。

(7) 饱和磁感应强度Bs(饱和磁通密度) :磁性体被磁化到饱和状态时的磁感应强度。

SI 单位是特斯拉[T]或[Wb·m -2];CGS 单位是高斯(Gauss)。

换算关系:1 T = 104 G 。

(8) 磁导率:定义为磁感应强度与磁场强度之比μ=B/H,表示磁性材料传导和通过磁力线的能力.单位为亨利/米(H·m -1). (9) 起始磁导率:磁性体在磁中性状态下磁导率的极限值。

H B H i 00lim1→=μμ (10) 磁化率定义为磁化强度与磁场强度之比:χ= M /H(11) 居里温度:即铁磁性材料(或亚磁性材料)由铁磁状态(或亚铁磁状态)转变为顺磁状态的临界温度,在此温度上,自发磁化强度为零。

(12) 磁各向异性:磁性材料在不同方向上具有不同磁性能的特性。

包括:磁晶各向异性,形状各向异性,感生各向异性和应力各向异性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

软磁材料基本概念
◆软磁材料:
所谓软磁材料,特指那些矫顽力小、容易磁化和退磁的磁性材料。

所谓的软,指这些材料容易磁化,在磁性上表现“软”。

软磁材料的用途非常广泛。

因为它们容易磁化和退磁,而且具有很高的导磁率,可以起到很好的聚集磁力线的作用,所以软磁材料被广泛用来作为磁力线的通路,即用作导磁材料,例如变压器、传感器的铁芯,磁屏蔽罩,特殊磁路的轭铁等。

这里,介绍几种常用的软磁材料和用它们做成的常见元器件。

◆常用软磁材料:
◇硅钢片:
硅钢是含硅量在3%左右、其它主要是铁的硅铁合金。

硅钢片大量用于中低频变压器和电机铁芯,尤其是工频变压器。

硅钢的特点是具有常用软磁材料中最高的饱和磁感应强度(2.0T以上),因此作为变压器铁芯使用时可以在很高的工作点工作(如工作磁感值1.5T)。

但是,硅钢在常用的软磁材料中铁损也是最大的,为了防止铁芯因损耗太大而发热,它的使用频率不高,一般只能工作在20KHz以下。

硅钢通常是薄片状的,这是为了在制造变压器铁芯时减小铁芯的涡流损失。

目前硅钢片主要分热轧和冷轧两大类。

所谓热轧硅钢,是把硅钢板坯在850度以上加热后轧制,然后再进行退火。

由于轧制温度高,所轧制出来的硅钢片都是各向同性的,也就是说硅钢片的磁性在各个方向上相同。

这种各向同性的硅钢也叫做无取向硅钢。

无取向硅钢大量应用在电机中的定子或者转子。

因为要制造电机定子和转子,就要在大的硅钢片上冲压出圆形的零件。

这时总是希望硅钢片沿圆周方向磁性一致,所以要用无取向硅钢。

为了获得更好的磁性能,后来人们发明了冷轧硅钢片,即在较低温度下轧制,再退火。

冷轧取向硅钢片是其中的代表。

冷轧取向硅钢片首先对板坯进行冷轧,使得材料内部产生很多结构缺陷。

在随后的退火过程中,材料发生结构上的变化(称为再结晶),这种变化会使硅钢片在某个方向上磁性能非常好,也就是说磁性能和方向有关,因此被称为取向硅钢。

在最终使用时,让铁芯中的磁力线沿磁性能最好的方向通过,这样便可以最大限度地发挥硅钢片的磁性能潜力。

例如,在变压器中,铁芯材料的磁力线是沿一个方向通过的,如果把硅钢片适当裁剪,然后卷绕成铁芯,使得铁芯周长方向恰好是硅钢片磁性能最好的方向,那么铁芯的导磁率就会很高,容易磁化,能量损耗小,最终提高了变压器效率。

我国对硅钢片的编号是:热轧硅钢片D(如D31指含硅3.1%的热轧硅钢);冷轧硅钢片DT;高磁感取向硅钢片Q和QG。

这些材料的磁性能可以从相关的书籍和手册中得到。

◇坡莫合金:
坡莫合金指铁镍合金,其含镍量的范围很广,在35%-90%之间。

坡莫合金的最大特点是具有很高的弱磁场导磁率。

它们的饱和磁感应强度一般在0.6--1.0T之间。

最简单的坡莫合金是铁镍两种元素组成的合金,通过适当的轧制和热处理,它们能够具备高导磁率,同时也可以合理搭配铁和镍的含量,获得比较高的饱和磁感应强度。

但是,这种坡莫合金的电阻率低,力学性能不好,所以实际应用并不很多。

目前大量应用的坡莫合金是在铁镍的基础上添加一些其它元素,例如钼、铜等。

添加这些元素的目的是增加材料的电阻率,以减小做成铁芯后的涡流损失。

同时,添加元素也可以提高材料的硬度,这尤其有利于作为磁头等有磨损的应用。

坡莫合金的生产过程比较复杂。

例如,板材轧制的工艺、退火温度、时间、退火后的冷却快慢等都对材料最终的磁性能有很大影响。

我国的坡莫合金牌号是1JXX。

其中,J表示“精密合金”,“1”表示软磁,后面的数字为序号,通常表示合金中的含镍量。

例如1J50、1J851等。

坡莫合金具有高的导磁率,所以常常用在中高频变压器的铁芯或者对灵敏度有严格要求的器件中,例如高频(数十KHz)开关电源变压器、精密互感器、漏电开关互感器、磁屏蔽、磁轭等。

软磁铁氧体:
铁氧体是一系列含有氧化铁的复合氧化物材料(或者称为陶瓷材料)。

铁氧体的特点是饱和磁感应强度很低(0.5T以下),但导磁率比较高,而且电阻率很高(这时因为铁氧体是由很小的颗粒压制成的,颗粒之间的接触不好,所以导电不佳),因此非常有利于降低涡流损耗。

正因为如此,铁氧体能够在很高的频率下(可以达到兆Hz甚至更高)使用,而它的饱和磁感应强度低,因此不适合在低频下使用。

铁氧体最广泛的用途是高频变压器铁芯和各种电感铁芯。

◆常用软磁元器件:
◇变压器:所谓变压器,就是利用电磁感应实现交流电压变换的器件。

变压器的原理已经在“电磁感应”中说明。

因为变压器的铁芯处于不断变化的电磁场中,铁芯材料的磁化强度和磁感应强度也是不断改变的。

这就自然要求铁芯材料对这种变化的阻力小,变化足够灵敏。

所以,几乎对所有的变压器铁芯,都要求导磁率高。

同时,交变的电磁场必然会在铁芯中产生能量损耗(例如涡流),所有还要求材料的铁损低,以降低铁芯的温升,提高变压器效率。

变压器的形式和品种繁多。

在不同的场合,变压器的工作方式大不相同,所以对变压器铁芯的具体要求也存在很大差别。

低频变压器:工作频率较低(例如低于1KHz)一般地,工作点较低时电流和电压都是正弦波。

由于频率低,铁芯损耗不大,所以铁芯的工作磁感可以设计得比较高。

因此这时需要高饱和磁感的软磁材料作铁芯,例如硅钢。

硅钢片作为配电变压器铁芯时,工作磁感可以达到1.4T以上。

铁基非晶合金作为变压器铁芯时,工作点可以达到 1.3T。

为了提高变压器效率,要求铁芯材料的铁损低,同时要求材料导磁率高,以减小初级线圈的激磁电流,降低因线圈电阻带来的损耗(称为铜损)。

高频变压器:随着技术的进步,高频电源已经大量应用。

之所以发展高频电源,是因为传统的工频电源效率不高。

从电磁感应原理不难推出,变压器铁芯所能够传输的功率与磁通变化的频率成正比。

因此,如果提高变压器的工作频率,那么变压器铁芯的体积便可以大幅度缩小,重量减轻,并且提高电源的效率,降低各种损耗。

所以,自从七十年代以来,高频电源的发展非常迅猛。

但另一方面,工作频率的提高会导致变压器铁芯铁损的急剧增大。

要解决这个问题,一是降低铁芯的工作磁感,二是采用更好的软磁材料。

通常,高频变压器铁芯不能再使用硅钢片,而是要用损耗更小的铁镍合金(坡莫合金)、铁氧体或者非晶合金
◇滤波电感、扼流圈及电抗器:
在稳压电源和开关电源中,为了消除晶体管整流产生的巨大纹波、得到平滑的直流输出而使用的器件。

我们知道,电感就是一个通交流电的螺线管线圈(可以含有铁芯)。

由于线圈在通电的瞬间会产生感应电压,而该感应电压的反向是反抗所通电流形成的磁通,因此电感器件对变化的电流存在一种阻碍作用,使其不能通过,这称为感抗。

所通信号变化越快,感抗就越大,因此电感器件的特点是信号的频率越高,器件对该信号的阻碍就越强。

如果对电感通上一个直流信号,那么器件对信号没有阻碍。

电感器件对交流电的阻碍作用使用在电源上,安装在整流后的电路中,可以挡住交流信号,而让直流信号通过,仿佛是把交流信号过滤掉了。

所以,电感(或者电感和其它元器件的组合)又称为滤波器。

因为电感铁芯工作在交直流叠加状态,所以铁芯不但要承受交流信号的磁化,而且还有直流电流
的磁化(称为偏磁)。

这时,铁芯既要有较高的导磁率,用来产生电感量,以阻止交流信号的通过,又要防止因直流信号的偏磁导致铁芯被磁化到饱和。

为了做到这一点,经常采用的手段是把铁芯切口,这样可以使铁芯在较大直流电流磁化时不饱和。

另外就是采用粉末做的铁芯。

粉末铁芯一般是用软磁材料的粉末和粘接剂、绝缘剂压制成的。

由于粉末颗粒之间被粘接剂和绝缘剂隔离开来,铁芯虽然被压制成了一个整体,但实际上磁路是断开的,就好象在铁芯的磁路上开了许多小小的切口,这样也就防止了铁芯被磁化饱和。

相关文档
最新文档