第5章相交线与平行线全章教案
人教版七年级下册第五章相交线与平行线教案
第五章相交线与平行线5.1相交线[教学目标]1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力。
2. 了解邻补角、对顶角以及同位角,内错角,同旁内角,能找出图形中的这些角,理解并能运用它解决一些简单问题。
[教学重难点]重点:邻补角与对顶角,垂线与及同位角,内错角,同旁内角的概念。
难点:理解对顶角相等的性质的探索,垂线的画法。
考点知识1.邻补角:有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
对顶角:有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角;对顶角相等。
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线:⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
C符号语言记作:如图所示:AB⊥CD,垂足为OOA BD⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3.垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
人教版七年级数学下册第五章相交线与平行线全章教学设计(全章教案)
5.1相交线六、教学过程设计师生活动设计意图教学过程一、观察剪刀剪布的过程,引入两条相交直线所成的角二、认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流.2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.3.学生根据观察和度量完成下表:4.概括形成邻补角、对顶角概念5.对顶角性质三、巩固运用判断题:(课堂作业)(1)如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )(2)两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )四、小结五、布置作业通过教具直观演示法、启发引导、尝试研讨、变式练习白板(课件)和黑板(重点板书)结合教学经历实际操作,通过观察讨论等活动,能在具体的情境中认识对顶角、邻补角。
通过学生练习,对有关知识加以巩固,让学生从运用所学知识解决问题的过程,获得成功的体验5.1.2 垂线5.1.3 同位角、内错角、同旁内角一、导入新课前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。
二、同位角、内错角、同旁内角如图,直线a、b与直线c相交,或者说,两条直线a、b被第三条直线c所截,得到八个角。
我们来研究那些没有公共顶点的两个角的关系。
∠1与∠2、∠4与∠8、∠5与∠6、∠3与∠7有什么位置关系?在截线的同旁,被截直线的同方向(同上或同下).具有这种位置关系的两个角叫做同位角。
(同位角形如字母“F”)∠3与∠2、∠4与∠6的位置有什么共同的特点?在截线的两旁,被截直线之间。
具有这种位置关系的两个角叫做内错角.(内错角形如字母“Z”)∠3与∠6、∠4与∠2的位置有什么共同的特点?在截线的同旁,被截直线之间。
第五章 相交线与平行线 全章教案
第五章相交线与平行线相交线(1)学习内容:相交线.学习目标:1.经历探究对顶角.邻补角的位置关系的过程;2.了解对顶角.邻补角的概念;3.知道“对顶角相等”并会运用它进行简单的说理.重点、难点:对顶角、邻补角的概念和“对顶角相等”是重点;正确区别互为邻补角与互为补角和运用“对顶角相等”说理是难点.教学资源的使用:课件.导学流程:一、情景导入(投影1)下图是一段铁路桥梁的侧面图,找出图中的相交线、平行线.“米”字形中的线段都相交,“米”字形中间的线段都平行,等等.相交线和平行线都有许多重要性质,并且在生产和生活中有广泛应用.我们将在前一章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有关推理证明的常识,为后面的学习做些准备.二、呈现目标、任务导学(一)呈现目标学习对顶角和邻补角的性质.(二)互动探究(投影2)面是一把剪刀,你能联想到什么几何图形?两条直线相交,如图.1B 23B4OBB ACBDB上图中两条相交直线形成的四个角中,两两相配共能组成六对角,即:∠1和∠2、∠1和∠3、∠1和∠4、∠2和∠3、∠2和∠4、∠3和∠4.量一量各个角的度数,你能将上面的六对角分类吗?可分为两类:∠1和∠2、1和∠4、∠2和∠3、∠3和∠4为一类,它们的和是180º;∠1和∠3、∠2和∠4为二类,它们相等.第一类角有什么共同的特征?一条边公共,另一条边互为反向延长线.具有这种关系的两个角,互为邻补角.讨论:邻补角与补角有什么关系?邻补角是补角的一种特殊情况,数量上互补,位置上有一条公共边,而互补的角与位置无关.第二类角有什么共同的特征?有公共的顶点,两边互为反向延长线.具有这种位置关系的角,互为对顶角.思考:〔投影3〕下列图形中有对顶角的是()〕注意:对顶角形成的前提条件是两条直线相交,而邻补角不一定是两条直线相交形成的;每个角的对顶角只有一个,而每个角的邻补角有两个.在用剪刀剪布片的过程中,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片.在这过程中,两个把手之间的角与剪刀刃之间的角有什么关系?为了回答这个问题,我们先来研究下面的问题.如图,直线AB和直线CD相交于点O,∠1和∠3有什么关系?为什么?∠1和∠3相等.∵∠1+∠2=180º,∠2+∠3=180º .∴∠1=∠3(同角的补角相等)同理∠2和∠4相等.这就是说:对顶角相等.你能利用这个性质回答上面的问题吗?因为剪刀的构造可以看成两条相交的直线,所以两个把手之间的角与剪刀刃之间的角互为对顶角,由于对顶角相等,因此,两个把手之间的角与剪刀刃之间的角始终相等.(三)应用示例(投影4)如图,直线a、b相交,∠1=400,求∠2、∠3、∠4的度数.解:∵∠1+∠2=180º,∴∠2=180º—∠1=180º—40º=140º.1234OBACD1B 23B4OBACD∠3=∠1=40º,∠4=∠2=140º. 三、强化训练.当堂达标 课本5面练习.四、设计问题.布置预习完成习题5.1中2题,预习“垂线”一节. 课后反思:相 交 线(2)学习内容: 垂线.学习目标:1.了解垂线的概念.2.理解垂线的性质1.3.会用三角尺或量角器过一点画一条直线垂直于已知直线. 重点.难点:垂线的概念、性质1和画法是重点;画线段和射线的垂线是难点. 教学资源的使用: 投影仪. 导学流程: 一、情景导入(投影1)如图,取两根木条a 、b ,将它们钉在一起,固定木条a ,转动木条b.当b 的位置变化时,a 、b 所成的角α是也会发生变化,当α=90º时;垂直.二、呈现目标、任务导学(一)自主学习显然,垂直是相交的一种特殊情形,即两条直线相交成90º的情况.两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图,直线AB 垂直于直线CD ,记作AB ⊥CD ,垂足为O.在生产和日常生活中,两条直线互相垂直的情形是很常见的,如:〔投影2〕aOBAC D十字路口的两条道路方格本的横线和竖线铅(二)交流展示你能再举一些其它的例子吗?思考:(投影3)下面所叙述的两条直线是否垂直?①两条直线相交所成的四个角相等.②两条直线相交,有一组邻补角相等.③两条直线相交,对顶角互补.①②③都是垂直的.(三)互动探究探究(投影4):学生用三角尺或量角器画已知直线l的垂线.(1)画已知直线l的垂线,这样的垂线能画出几条?(2)经过直线l上的一点A画l的垂线,这样的垂线能画几条?(3)经过直线l外的一点B画l的垂线,这样的垂线能画几条?由画图可知:(1)可以画无数条; (2)可以画一条; (3)可以画一条.这就是说,经过直线上或直线外一点,可以画一条垂线,并且只能画一条垂线,即:性质1 过一点有且只有一条直线与已知直线垂直.(四)解决疑难、适度拓展①“有”指存在,“只有”指唯一;②“过一点”中的“点”在直线上或在直线外. (五)总结梳理1.垂线的概念,垂直的表示;2.垂直的性质1;三、强化训练、当堂达标课本5面练习1、2题.3.垂线的画法.四、设计问题、布置预习完成课本8面3、4、5题,预习下一节.课后反思:相交线(3)学习内容:垂线段.学习目标:1.了解垂线段的概念.2.理解“垂线段最短”的性质.3.体会点到直线的距离的意义,并会度量点到直线的距离.重点、难点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用是重点;理解点到直线的距离的概念是难点.教学资源的利用: 投影仪. 导学流程: 一、情景导入(投影1)如图(课本图5.1-8),在灌溉时,要把河中的水引到农田P 处, 如何挖渠能使渠道最短?说到最短,上学期我们曾经学过什么最短的知识,还记得吗?两点之间,线段最短. 如果把渠道看成是线段,它的一个端点自然是点P ,那么另一个端点的位置在什么地方呢?把江河看成直线l ,那么原问题就是这样的数学问题:在连接直线l 外一点P 与直线l 上各点的线段中,哪一条最短? 二、呈现目标、任务导学 (一)呈现目标 垂线段最短的性质. (二)互动探究演示:在黑板上固定木条l , l 外一点P ,木条a 一端固定在点P ,使之与l 相交于点A.左右摆动木条a , l 与a 的交点A 随之变动,线段PA 的长度也随之变化,a 与l 的位置关系怎样时,PA 最短? a 与l 垂直时,PA 最短.这时的线段PA 叫做垂线段. (投影2)画出PA 在摆动过程中的几个位置,如图,点A 1、A 2、A 3……在l 上,连接PA 1、PA 2、PA 3……,P O ⊥ l ,垂足为O ,用叠合法或度量法比较PO 、PA 1、PA 2、PA 3……的长短,可知垂线段PO 最短.连接直线外一点与直线上各点的所有线段中,垂线段最短,简单说成: 垂线段最短.(二)自主学习我们知道,连接两点的线段的长度叫做两点间的距离,这里我们把直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如上图,P O 就是点P 到直线l 的距离.(三)解决疑难、适度拓展点到直线的距离和两点间的距离一样是一个正值,是一个数量,所以不能画距离,只能量距离.(四)总结梳理1.垂线段.点到直线的距离概念.2.垂线的性质2及应用. 三、强化训练、当堂达标(投影3)1.判断正确与错误,如果正确,请说明理由;若错误,请更正.lPaAbaCBA EDBAl PO A 2 A 1 … A 3(1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离.(2)线段AE是点A到直线BC的距离.(3)线段CD的长是点C到直线AB的距离.2.(投影4)已知直线a、b,过点a上一点A作AB⊥a,交b于点B,过B作BC⊥b 交a 上于点C.请说出线段AE的长是哪一点到哪一条直线的距离?CD的长是哪一点到哪一条直线的距离?3.课本中水渠该怎么挖?在图上画出来.如果图中比例尺为1:100000,水渠大约要挖多长?四:设计问题.布置预习完成课本8面6题,预习习题5.1中7—11题.课后反思:练习课学习内容:习题5.1中7—13题学习目标1.进一步学习平行线垂线的概念.2.会用平行线.垂线解决问题.重点难点:重点是做练习,难点是平行线.垂线的应用.教学资源的使用:投影仪.导学流程:一.复习引入1.对顶角和邻补角:有并且两边的两个角是对顶角;有并且的两个角是邻补角.2.对顶角的性质:对顶角 .(1)下列说法正确的是()A.相等的角是对顶角B.一个角的邻补角只有一个C.补角即为邻补角D.对顶角的平分线在一条直线上3.垂直和垂线:当两条直线相交所成的四个角中时,这两条直线互相垂直,其中的叫做的垂线.〔2〕题 [3]题 〔4〕题(2)(投影)如图,AB ⊥CD ,垂足为O ,EF 经过点O ,且∠3=260,则∠1= . 4.垂直的性质:(1)经过一点有且只有 与 垂直;(2)垂线段 .〔注〕性质(1)说明垂线的存在性和唯一性,是垂线作图的依据;性质(2)是定义点到直线距离的依据.(3)如图,三角形ABC 是直角三角形,∠C =900,其中最长的线段 是 .5.点到直线的距离:直线外一点到这条直线的 ,叫做点到直线的距离. 〔4〕如图,线段 的长度表示点D 到直线BC 的距离,线段 的长度表示点B 到直线CD 的距离,线段 的长度表示点A 、B 之间的距离.二.呈现目标.任务导学 (一)呈现目标 这一节做一些练习. (二).应用示例例1如图,一辆汽车在笔直的公路AB 上由A 向B 行驶,MN 分别是位于公路AB 两侧的村庄.(1)设汽车行驶到公路AB 上点P 位置时,距离村庄M 最近,行驶到点Q 位置时,距离村庄N 最近,请在图中的AB 上分别画出点P.Q 的位置;(2)当汽车从A 出发向B 行驶时,在哪一个位置到村庄M.N 的路程之和最短?请在图中标出这个位置.例2 如图,直线AB.CD 相交于点0,OD 平分∠BOF ,EO ⊥CD 于O ,∠EOF=1180,求∠COA 的度数.(三)互动探究讨论习题5.1中7—13题. 三、强化训练.当堂达标1.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA=4cm ,PB=5cm ,PC=2cm ,则点P 到 直线m 的距离为〔 〕A.4cmB.2cm;C.小于2cmD.不大于2cm2.如图所示,AD ⊥BD ,BC ⊥CD ,AB=a , BC=b ,则BD 的范围是〔 〕 A.大于a B.小于bC.大于a 或小于bD.大于b 且小于a 四、设计问题、布置预习1、完成习题5.1中10、11题.·M ·NBAA BC DEF 112131O ABCDEFO2、预习“平行线”.课后反思:平行线及其判定(1)学习内容:平行线和平行公理.学习目标:1.了解平行线的概念,理解同一平面内两条直线间的位置关系;2.掌握平行公理及平行线的画法.3.平行公理的存在性和唯一性.重点.难点:平行线的概念.画法及平行公理是重点;理解平行线的概念和根据几何语言画出图形是难点.教学资源的利用:投影仪.导学流程:一、情景导入(投影1)我们知道两条直线相交只有一个交点,除相交外,两条直线还存在其它的位置关系吗?看下面的图片:双杆上面的两根横杆,支撑横杆的直干它们所在的直线相交吗?游泳池中分隔泳道的线它们所在的直线相交吗?屏风的折处和边所在的直线相交吗?今天我们就来讨论这样的问题.二、呈现目标.任务导学(一)呈现目标:1.平行线.2.平行公理.(二)互动探究:1.平行线分别将木条a、b与木条c钉在一起,,并把它们想象成三条直线.转动a,直线a从在c的左侧与直线b 相交逐步变为在右侧与b 相交.想象一下,在这个过程中,有没有直线a 与直线b 不相交的位置呢?有,这时直线a 与直线b 左右两旁都没有交点. 同一平面内,不相交的两条直线叫做平行线. 直线AB 与直线CD 平行,记作“AB ∥CD ”.注意:①“同一平面内”是前提,以后我们会知道,在空间即使不相交,可能也不平行;②平行线是“两条直线”的位置关系,两条线段或两条射线平行,就是指它们所在的直线平行;③“不相交”就是说两条直线没有公共点.归纳一下,在同一平面内,两条直线有几种位置关系?动手画一画. 相交和平行两种.注意:这里所指的两条直线是指不重合的直线. 2.平行公理再来看上面的实验,想象一下,在转动木条a 的过程中,有几个位置能使a 与b 平行? 有且只有一个位置使a 与b 平行. 如图,过点B 画直线a 的平行线,能画几条?试试看. 只能画一条.从实验和作图,我们可以得到怎样的事实? 经过直线外一点,有且只有一条直线与这条直线平行.这一基本事实是人们在长期的实践中总结出来的结论,我们称它为公理,这个结论叫做平行公理.在上图中,过点C 画直线a 的平行线,它与过点B 画的的平行线平行吗?试试看.过点C 画的直线a 的平行线与过点B 画的直线a 的平行线相互平行. 这说是说,如果两条直线都与第三条直线平行,那么这条直线也互相平行.符号语言:∵b ∥a ,c ∥a ∴b ∥c.如果b 与c 不平行,那么经过直线外一点就有两条直线与已知直线平行,所以上面的结论是平行公理的推论.(三)总结梳理1.什么是平行线?“平行”用什么表示?2.平面内两条直线的位置关系有哪些?3.平行公理及推论是什么? 三、强化训练、当堂达标1.(投影2)判断下列说法是否正确?(1)在同一平面内,两条线段不相交就平行.(2)在同一平面内,平行于直线AB 的直线只有一条.(3)如果几条直线都和同一条直线平行,那么这几条直线都互相平行. 2.课本13面练习.a四、设计问题、布置预习 1.课本16面2题.2.预习“平行线的判定”. 课后反思:平行线及其判定(2)学习内容: 平行线的判定. 学习目标:1.学习判定定理:同位角相等,两直线平行.2.会用判定定理解决问题.3.经历探索两直线平行条件的过程,理解两直线平行的条件. 重点、难点:探索两直线平行的条件是重点,理解“同位角相等,两条直线平行”是难点. 教学资源的利用: 投影仪.导学流程: 一、情景导入(投影1)如图1,装修工人正在向墙上钉木条,如果木条b 与墙壁边缘垂直,那么木条a 与墙壁边缘所夹角为多少度时,才能使木条a 与木条b 平行?图1 图2 要解决这个问题,就要弄清楚平行的判定.二、呈现目标、任务导学 (一)呈现目标 学习平行线的判定. (二)互动探究以前我们学过用直尺和三角尺画平行线,如图(课本13面图5.2-5)在三角板移动的过程中,什么没有变?3 2bac41cba 43215 6 87三角板经过点P 的边与靠在直尺上的边所成的角没有变.如图,∠1与∠2是三角板经过点P 的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单地说:同位角相等,两条直线平行.符号语言:∵∠1=∠2 ∴AB ∥CD.如图(课本14面5.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行,可知这样画出的就是平行线.(投影2)如图2,(1)如果∠2=∠3,能得出a ∥b 吗?(2)如果∠2+∠4=180°,能得出a ∥b 吗?(1)∵∠2=∠3(已知)∠3=∠1(对顶角相等) ∴∠1=∠2 (等量代换) ∴a ∥b (同位角相等,两条直线平行) 你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单地说:内错角相等,两直线平行. 符号语言:(1)∵∠2=∠3 ∴a ∥b. (2)∵ ∠4+∠2=180°,∠4+∠1=180° (已知)∴∠2=∠1 (同角的补角相等) ∴a ∥b. (同位角相等,条直线平行) 你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行. 简单地说:同旁内角互补,两直线平行. 符号语言: ∵∠4+∠2=180° ∴ a ∥b.三.强化训练.当堂达标1.完成课本15面练习1,补充(3)由∠A+∠ABC =1800可以判断哪两条直线平行?依据是什么?2.课本16面2题.四.设计问题.布置预习 1.作业16面1、2题.2.预习平行线的判定的应用. 课后反思:DC B A平行线及其判定(3)学习内容:平行线的判定的应用. 学习目标:1.掌握直线平行的条件,并能解决一些简单的问题;2.初步了解推理论证的方法,会正确的书写简单的推理过程.3.初识符号语言的运用. 重点.难点:直线平行的条件及运用是重点;会正确的书写简单的推理过程是难点. 教学资源的利用: 投影仪. 导学流程:一、复习引入:我们学习过哪些判断两直线平行的方法? (投影1)(1)平行线的定义:在同一平面内不相交的两条直线平行.(2)平行公理的推论:如果两条直线都平行于第三条直线,那么这两条直线也互相平行.(3)两直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 二、呈现目标、任务导学 (一)呈现目标平行线的判定的应用. (二)例题导引(投影2)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?答:这两条直线平行. ∵b ⊥a c ⊥a (已知) ∴∠1=∠2=90°(垂直的定义) ∴b ∥c (同位角相等,两直线平行)你还能用其它方法说明b ∥c 吗? 方法一: 如图(1),利用“内错角相等,两直线平行”说明;方法二:如图(2),利用“同旁内角相等,两直线平行”说明.(1) (2)cba21cba21cba21注意:本例也是一个有用的结论.(投影3)如图,点B 在DC 上,BE 平分∠ABD ,∠DBE=∠A ,则B E ∥AC ,请说明理由. 分析:由BE 平分∠ABD 我们可以知道什么?联系∠DBE=∠A ,我们又可以知道什么?由此能得出B E ∥AC 吗?为什么?解:∵BE 平分∠ABD ∴∠ABE=∠DBE (角平分线的定义)又∠DBE=∠A ∴∠ABE=∠A (等量代换)∴B E ∥AC(内错角相等,两直线平行)注意:用符号语言书写证明过程时,要步步有据. 三、强化训练、当堂达标1.(投影2)如图,∠1=∠2=55°,试说明直线AB ,CD 平行?.1题 2题2.如图所示,已知直线a ,b ,c ,d ,e ,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?四、设计问题、布置预习 1.完成课本17面7.2.预习习题5.2中剩余题目. 课后反思:练 习 课学习内容:复习平行线的判定. 学习目标:1.复习平行线的判定.2.会运用平行线的判定解决问题.3.开拓知识视野,训练思维能力. 重点、难点:重点是做一些练习,难点是练习时符号语言的运用.ABCD E3 A BCDEF21d ecb a3412A.1个B.2个C.3个D.4个导学流程: 一、复习引入1.平行线:在同一平面内, 的两条直线叫做平行线.2.两条直线的位置关系: .3.平行公理:经过直线 有且只有 与这条直线平行. 推论:如果两条直线都和 平行,那么这两条直线 .4.同位角.内错角和同旁内角两条直线被第三条直线所截,在截线的 ,被截直线的 的两个角叫做同位角;在截线的 ,被截直线 的两个角叫做内错角;在截线的 ,被截直线 的两个角叫做同旁内角.5.平行线的判定(1) ,两直线平行. (2) ,两直线平行. (3) ,两直线平行. 二、呈现目标、任务导学 (一)呈现目标这一节做一些练习,复习平行线的性质. (二)例题导引例 如图,下列推理中正确的有( ) ①因为∠1=∠2,所以BC ∥AD ; ②因为∠2=∠3,所以AB ∥CD ; ③因为∠BCD+∠ADC=180°,所以BC ∥AD ; ④因为∠BCD+∠ADC=180°,所以BC ∥AD.三、强化训练、当堂达标 1.下列说法正确的有〔 〕①不相交的两条直线是平行线;②在同一平面内,不相交的两条线段平行;③过一点有且只有一条直线与已知直线平行;④若a ∥b ,b ∥c ,则a 与c 不相交. A.1个 B.2个 C.3个 D.4个2.在同一平面内,两条不重合直线的位置关系可能是〔 〕A.平行或相交B.垂直或相交C.垂直或平行D.平行.垂直或相交3.如图,点E 在CD 上,点F 在BA 上,G 是AD 延长线上一点. (1)若∠A=∠1,则可判断_______∥_______,因为________. (2)若∠1=∠_________,则可判断AG ∥BC ,因为_________. (3)若∠2+∠________=180°,则可判断CD ∥AB ,因为____________.4.如图,一个合格的变形管道ABCD 需要AB 边与CD 边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求. 5.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互〔 〕A.平行B.垂直C.平行或垂直D.平行或垂直或相交ABCD4 132 GE21D C B A6.如图,AB ∥EF ,∠ECD=∠E ,则CD ∥AB.说理如下:∵∠ECD=∠E ( ) ∴CD ∥EF ( ) 又AB ∥EF ( ) ∴CD ∥AB ( ). 四、设计问题、布置预习: 预习下一节.平行线的性质(1)学习内容: 平行线的性质. 学习目标:1.学习平行线的性质.2.会用平行线的性质解决问题.3.经历探索直线平行的性质的过程. 重点、难点:直线平行的性质是重点;区别平行线的性质和判定,综合运用平行线的性质和判定是难点.教学资源的利用: 投影仪. 导学流程: 一、复习导入怎样判定两条直线平行?这就是说,利用同位角.内错角和同旁内角可以判定两条直线平行,反过来,两条直线平行,同位角.内错角和同旁内角各有什么关系呢?二、呈现目标、任务导学 (一)呈现目标 1.平行线的性质.2.用平行线的性质解决问题.3.继续学习符号语言.(二)互动探究 利用练习本上的横线画两条平行线a ∥b ,然后画一条直线c 与这两条直线相交,标出所形成的八个角,如图. 度量这些角的度数,把结果填入表内:哪些角是同位角?它们具有怎样的数量关系? 哪些角是内错角?它们具有怎样的数量关系?哪些角是同旁内角?它们具有怎样的数量关系?再任意画一条截线d ,同样度量并计算各个角度数,这种数量关系还成立吗?cb a 43215 7 86 FEDCB A那么由此你得到怎样的事实:1.平行线被第三条直线所截,同位角相等,简单说成:两直线平行,同位角相等.2.平行线被第三条直线所截,内错角相等,简单说成:两直线平行,内错相等.3.平行线被第三条线所截,同旁内角互补,简单说成:两直线平行,同旁内角互补.思考:平行线的性质与平行线的判定有什么关系?由角的数量关系得出两条直线平行是“判定”,由两条直线平行得出角的数量关系是“性质”,因此,两者的条件和结论正好互换.你能根据性质1,推出性质2吗?如上图,∵a∥b ∴∠1=∠2(两直线平行,同位角相等)又∠3=∠1(对顶角相等) ∴∠2=∠3.对于性质3,你能写出类似的推理过程吗?(三)总结梳理这节课我们学习了什么?你能画图说明吗?三、强化训练、当堂达标独立完成课本21面练习1题.四、设计问题、布置预习1.完成习题5.3中草药2.3题.2.预习下节例题.课后反思:平行线的性质(2)学习内容:平行线的性质.学习目标:1.学习平行线的性质的应用.2.会用平行线的性质解决问题.3.经历平行线的性质的应用过程,掌握学习技能.重点.难点:平行线的性质是重点;综合运用平行线的性质和判定是难点.教学资源的利用:投影仪.导学流程:一、复习引入1.平行线有哪些性质?2.你能画图说明吗?二、呈现目标、任务导学(一)呈现目标平行线性质的应用研究. (二)例题导引 如图是一块梯形铁片的线全部分,量得∠D=100°,∠C=115°, 梯形另外两个角分别是多少度? 分析:梯形有什么特征?∠A 与∠D 、∠B 与∠C 有什么关系? 解:∵AB ∥CD ∴∠A+∠D=180°,∠B +∠C=180°∴∠A=180°-∠D=180°-100°=80° ∠B=180°-∠C=180°-115°=65°所以,梯形的另外两个角分别是80°,65°. (三)自主学习独立完成课本21面练习2题. (四)总结梳理这节课我们学习了平行线的性质,要注意平行线的性质与平行线的判定的区别与联系,以便我们能准确地运用.三、强化训练、当堂达标分组讨论习题5.3中6、7题. 四、设计问题、布置预习1.完成课本22面4、5题2.预习“命题、定理”. 课后反思:平行线的性质(3)学习内容: 命题与定理. 学习目标:1.了解命题.定理.的含义.2.会区分命题的题设和结论.3.会判断一个命题的真假性. 重点.难点:命题及组成是重点;区分命题的题设和结论是难点. 教学资源的利用: 多媒体. 导学流程: 一、情景导入我们平常说的话细究起来是有区别的,例如,“你吃饭了吗?”与“今天天气不好”就有区别,前一句表示疑问,没有作出判断,后一句作出了判断.数学中象这类对某件事情作D C BA出判断的语句还很多,值得我们研究.二、呈现目标、任务导学(一)呈现目标命题、命题的组成、定理.(二)互动探究再来看几个句子(投影):①如果两条直线都与第三条直线平行,那么这两条直线也互相平行;②等式两边都加同一个数,结果仍是等式;③相等的角是对顶角;④如果两条直线不平行,那么内错角不相等;⑤同位角相等.这些语句都对某一件事情作出了“是”或“不是”的判断,象这样判断一件事情的语句,叫做命题.思考:(投影)下列语句是命题吗?为什么?①蓝蓝的天空白云飘;②这不是坑人吗?③画AB∥CD.不是命题.因为它们只是对某件事情进行了陈述,表达了疑问,并没有作出判断.(三)自主学习1.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常可以写成“如果……那么……”的形式,这时“如果”后面的部分是题设,“那么”后面的部分是结论.例如,上面命题①中,“两条直线都与第三条直线平行”是已知事项,是题设,“这两条直线也互相平行”是由已知事项推出的事项,是结论.有些命题的题设和结论不明显,怎样才能找出题设和结论呢?我们可以将它们改写成“如果……那么……”的形式.例如,上面命题⑤可改写成:如果两个角是同位角,那么这两个角相等.2.上面的命题中有正确的,也有错误的,正确的命题叫做真命题,错误的命题叫做假命题,如果是真命题,题设成立,那么结论一定成立,如果是假命题,题设成立,不一定能保证结论成立.要确定一个命题是真命题,必须通过推理证实,推理的过程叫做证明,通过证明是真的命题叫做定理,定理是推理的依据;要确定一个命题是假命题,只需举一个反例即可.(四)合作求解1.请你把上面的命题②.③改写成“如果……那么……”的形式,并指出它的题设和结论.2.探究:(投影3)下面的命题是真命题,还是假命题?(1)锐角小于它的余角;(2)若a2>b2则,a>b.(3)如图,如果∠1=∠2,C E∥BF,那么AB∥CD;(1)是假命题,如65º角的余角是350,而65º大于35º.(2)是假命题,如当a=-3,b=-2时a2>b2,而a<b.(3)是真命题.说明:∵C E∥BF∴∠C=∠2(两直线平行,同位角相等)又∠1=∠2(已知)∴∠C=∠1(等量代换)A BC DEF12。
相交线与平行线全章教案
相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。
2. 能够识别和判断直线之间的相交与平行关系。
3. 掌握平行线的性质及推论。
教学内容:1. 相交线的定义及特点。
2. 平行线的定义及特点。
3. 平行线的性质及推论。
教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。
2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。
3. 引导学生通过观察和思考,总结出平行线的性质及推论。
作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。
2. 请学生总结平行线的性质及推论,并加以证明。
第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。
2. 能够运用相交线的性质解决实际问题。
教学内容:1. 相交线的性质。
2. 相交线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。
2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。
作业布置:1. 请学生运用相交线的性质,解决一些实际问题。
2. 请学生总结相交线的判定方法,并加以证明。
第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的性质。
2. 平行线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。
2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。
作业布置:1. 请学生运用平行线的性质,解决一些实际问题。
2. 请学生总结平行线的判定方法,并加以证明。
第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的应用方法。
2. 实际问题解决。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。
2. 提供一些实际问题,让学生运用平行线的性质解决。
新人教版数学七年级下册第五章《相交线与平行线》全章教案
1.【探究一】
合
作 如图,怎样描述直线 AB、CD 和 EF 的位置关系? 学生讨论、回答:
探
究
直线 AB、CD 被直线 EF
所截
师概括为三线八角
2.【探究二】
引导学生观察得出
(1)观察图中的∠1 和∠5 与截线及两条 这 两 个 角 分 别 在 直 线
教学反思:
, 的垂线.
C
A
D
B
B
年级 七年级 学科
数学
备课 内容
5.1.2 垂线(2)
教学目标
了解垂线段、点到直线的距离的概念,会利用三角尺画垂线段,会量点到 直线的距离.
教学重、难点
重点:两个结论的探究、垂线段和点到直线距离的概念. 难点:经历探究“垂线段最短”的过程,掌握垂线性质 2
教 学 过 程设计
角两边的反向延长线。
互为邻补角的两个角的特点:①两个角有一个公共顶点②两个角有一条公共边
(邻)③两个角在公共边两侧④两个角和为
五、布置作业:、 教学反思:
(补)
年级 七年级 学科
数学
备课 内容
5.1.2 垂线(1)
教学目标
1、理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的 垂线。 2、掌握点到直线的距离的概念,并会度量点到直线的距离。 3、掌握垂线的性质,并会利用所学知识进行简单的推理。
(5)如图直线 AB、CD、EF 相交于点 O,∠BOE 的对顶角是______,∠COF 的邻
a 补角是____ ,若∠AOE=30°,那么∠BOE=_____,∠BOF=_______。 E 2
(完整版)相交线与平行线全章教案
第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
人教版数学七年级下册第五章相交线与平行线数学活动课教学设计
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,我将采用生活情境导入法,引导学生从日常生活中发现数学知识。首先,我会展示一张包含平行线元素的图片,如铁轨、斑马线等,让学生观察并思考这些图片中的共同特征。接着,提出问题:“大家知道这些图片中的线有什么特别之处吗?”让学生展开讨论,激发学生的好奇心。通过这种方式,学生能够初步感知平行线的概念。
二、学情分析
七年级下册的学生已经具备了一定的几何基础,掌握了基本的几何图形和性质,但对相交线与平行线的理解尚处于表面层次。在此阶段,学生正处于从直观思维向抽象思维过渡的阶段,需要通过具体实例和实践活动来加深对几何概念的理解。此外,学生在小组合作学习中表现出较强的互动意识和沟通能力,但独立思考问题和解决问题的能力有待提高。因此,在教学过程中,教师应关注以下方面:
此外,我还将针对学生的个体差异,进行有针对性的辅导,确保每个学生都能掌握本节课的知识。最后,布置课后作业,鼓励学生在课后进行拓展学习,提高学生的自主学习能力。
五、作业布置
为了巩固学生对相交线与平行线知识的掌握,提高学生的应用能力和解决问题的能力,特此布置以下作业:
1.基础作业:
(1)完成课本第89页的练习题1、2、3;
5.能够运用相交线与平行线的知识,解决生活中的实际问题。
(二)过程与方法
1.通过观察、分析、归纳,培养学生的逻辑思维能力;
2.通过实践操作,如尺规作图,培养学生的动手操作能力和空间想象力;
3.通过小组讨论与合作学习,培养学生的团队协作能力和沟通交流能力;
4.学会运用数学语言表达几何问题,提高学生的数学表达能力;
(三)学生小组讨论,500字
华东师大版七年级数学上册第五章《相交线与平行线》教案
华东师大版七年级数学上册第五章《相交线与平行线》教案5.1 相交线第1课时教学目标【知识与能力】1.能准确理解对顶角的概念,会在图形中识别对顶角.2.理解对顶角的性质并能运用对顶角的相关知识进行简单运算.【过程与方法】经历观察、猜想、说理、交流等过程,进一步发展空间观念和有条理的表达能力.【情感态度价值观】在动手实践、自主探索、合作交流中获得成功的体验,建立自信心;感受数学与生活的密切联系,增强用数学的意识.教学重难点【教学重点】对顶角的概念与性质.【教学难点】在复杂图形中找对顶角.课前准备无教学过程一、情境引入同学们,进入七年级学习以来,大家都有这样的感受:“生活中处处有——数学.”现在老师请各位同学看一组生活中的图片,(多媒体展示X型晾衣架、栅栏、剪刀、小孔成像原理等图片)在这些图形中都出现了两条相交直线,每两条相交直线形成几个角?这些角叫什么角?它们有没有特殊关系?(说明:由此引入新课)二、探究新知1.问题导读自学教材第160、161前两个自然段,回答下列问题:(1)什么是对顶角?对顶角满足什么条件?(2)在教材第160页图5.1.1中找出对顶角.(3)举出生活中对顶角的例子.(4)教材第162页练习第1题.设计意图:明确对顶角的概念.2.合作交流(1)互为对顶角的两个角的大小关系是怎样的?可让学生动手画一画,学生两人一组,任取一个角∠2,得出∠2的度数,看这两个角的大小关系有什么特点,得出结论.最后全班汇总,看得出的结论是否相同.(2)这个结论正确吗?学生分组讨论,利用同角的补角相等说明.设计意图:先通过测量感知对顶角相等,然后再从理论上说明.(3)结论:对顶角相等.3.例题如图,直线AB、CD相交于点O,OE平分∠AOC,∠AOE=25°,你能说出图中哪些角的度数?先让学生分组讨论,充分利用已知条件,如对顶角、角平分线、补角等.思考:在本题中,如果已知∠BOD的度数,你能求出哪些角的度数?三、巩固练习1.教材第162页练习第2题2.如图,直线AB、CD、EF相交于点O,OE是∠AOC的平分线,那么OF是∠BOD的平分线吗?为什么?四、课堂小结本节课你学会了什么?请你说出来,还有哪些不明白?五、课后作业1.如图,其中共有对对顶角.【答案】4第1题图第2题图2.如图,AB、CD相交于点O,∠DOE=90°,∠AOC=70°,求∠BOE的度数.【答案】∠BOE的度数为20°.5.1 相交线第2课时教学目标【知识与能力】认识生活中的垂直现象,理解垂直定义,并能用符号表示.掌握垂线的性质,会过一点作已知直线的垂线.【过程与方法】经历垂线画法,垂线的性质以及点到直线的距离的探索过程,尝试从不同角度寻求垂线的画法,用不同方法得到垂线的性质.【情感态度价值观】通过与生活相联系,让学生对数学产生兴趣,认识到数学的实用价值.教学重难点【教学重点】垂线、垂线段、点到直线的距离的概念.【教学难点】垂线的性质和点到直线的距离.课前准备无教学过程一、引入设计意图:通过设置问题,引发学生的思考,激发学生的学习兴趣,在回忆旧知识的同时,自然切入本节课所要学习的内容.教师提问学生:能在生活中找到互相垂直的直线吗?学生观察实例,这时教师可以问学生“是通过什么特征来确定它们是垂线的?”帮助学生回忆垂直的形象(小学已接触过垂直).二、做一做设计意图:通过让学生动手操作,加深对垂线的理解,明确垂线的不同画法,锻炼了学生的实际操作能力,开拓了他们的思维,积累了他们的数学活动经验.1.请学生作出两条互相垂直的直线教师鼓励学生用不同的方法画垂线,学生发现用三角尺、量角器都可以来画互相垂直的直线,然后让两位学生各自采用一种作图工具在黑板上演示作图过程.2.引入垂直符号表示通过以上画图过程,使学生明确两条直线相交只有一个交点,当相交所成的角中有一个角是直角时,则此时两条直线互相垂直,若直线AB与CD垂直,则用符号“⊥”表示,即“AB⊥CD”,从而引出垂直的符号表示及垂足的定义.3.在方格纸上画出互相垂直的两条直线,用量角器验证你画出的两条直线是否垂直,如果是,能试着说明一下原因吗?三、想一想设计意图:让学生自主探究,从而经历垂线的性质得出过程,体会到经过一点,有且只有一条直线与已知直线垂直,通过动手测量,从而让学生了解到“垂线段最短”,这样学生得到的知识印象更深,更符合学生对新知识学习的接受过程.1.过点A作l的垂线,你能作出多少条?教师不仅要引导学生运用三角尺,过直线外一点和直线上一点作已知直线的垂线,还要鼓励学生运用自己的语言描述所得的结论,培养学生有条理的表达能力.2.点到直线的距离让学生量取直线外一点到直线的若干个线段的长,比较这一点到直线的垂线段的长度的大小,从而引出点到直线的距离的概念,其性质“垂线段最短”.四、做一做设计意图:让学生做出三角形的高,从而进一步巩固点到直线的距离是这一点到直线的垂线段的长度.让学生分别画出三个三角形AB边上的高(三个三角形分别是锐角三角形,直角三角形,钝角三角形),教师在学生的画图过程中注意发现问题,进行针对性的指导.五、巩固练习设计意图:通过练习,让学生进一步理解垂直的定义,怎样过一点画已知直线的垂线,加深对本节知识的理解和应用,从而学以致用,从学到的知识解决问题.1.作一条直线l,在直线l上取一点A,在直线l外取一点B,分别经过点A、B,用三角尺或量角器作l的垂线.2.如图所示,在某村庄中有一条街道,在街道的一侧有一公共汽车站,为了方便村民坐车,村委会决定修一条马路直达车站,你能设计一种方案,使得公共汽车站到街道的路程最近吗?六、课堂小结小结:以下几个方面由学生自己总结:①垂线的定义及垂直的符号表示;②垂线的有关性质;③过一点作已知直线的垂线的方法.七、课后作业1.如图,O是直线AB上一点,∠AOD=53°,∠BOE=37°,则OD与OE的位置关系是什么?【答案】∠DOE=180°-∠AOD-∠BOE=90°,所以OD⊥OE.2.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离为( )A.4cmB.2cmC.小于2cmD.不大于2cm【答案】D5.1 相交线第3课时教学目标【知识与能力】能够根据图形判断哪些角是同位角、内错角、同旁内角.【过程与方法】在认识三线八角中的同位角、内错角、同旁内角的过程中,培养学生的识图能力.【情感态度价值观】发展学生应用数学的意识与能力,增强学好数学的愿望和信心.教学重难点【教学重点】从不同图形中找出不同位置关系的角.【教学难点】根据图形特点正确确定位置关系的角.课前准备无教学过程一、创设情境,导入新课设计意图:通过问题情境,引发学生的学习兴趣和探究欲望,使学生参与到教学过程中来,培养学生的自主学习能力.教师提出问题:两条直线相交,只有一个交点,产生四个角,如图:直线AB与CD相交于点O,得到∠1,∠2,∠3,∠4,在这些角中,哪些是相等的?哪些是互补的?学生观察后作出回答,并且指出相等或互补的理由.二、探究新知设计意图:通过学生的观察、比较、归纳、探究,使学生体验两条直线被第三条直线所截产生的八个角的位置关系,能够识别同位角、内错角、同旁内角,去体验“三线八角”的具体特征. 师:两条直线相交产生四个角,若两条直a、b被同一平面内的第三条直线l所截,则又可得到几个角呢?这几个角之间又存在哪些关系呢?教师画出图形,引导学生去观察、思考.(1)同位角教师提出问题,图中的∠1和∠5的位置有什么关系?从直线l来看,∠1与∠5处于哪个位置,从直线a、b来看,∠1与∠5又处于哪个位置?学生先观察、思考,然后讨论交流.师生共同概括:∠1与∠5位于直线l的同一侧,直线a、b的同一方,这样位置的角叫做同位角. 在上图中,你还能发现哪些同位角?学生观察后,教师提问回答.(2)内错角师:除以上几对同位角外,如∠3与∠5不是同位角,∠3与∠5处于直线l的哪个位置?直线a、b 的哪个位置?学生观察后作出回答.由此总结出内错角的特征,认识了内错角的定义,并找出图中的其他内错角.(3)同旁内角师提出问题:除了以上两种位置关系的角之外,你还能发现其他不一样的角吗?学生观察、讨论、交流后进一步指出∠4与∠5,∠3与∠6这种位置关系的角.从而进一步得出同旁内角的特征:位于截线的同侧,且位于被截直线之间.三、巩固练习设计意图:通过学生自主练习,让学生进一步认识同位角、内错角、同旁内角;并且交流各自的学习成果,培养学生的自主学习能力.练习:如图,∠1是直线a、b相交所成的一个角,用量角器量出∠1的度数,画一条直线c,使直线c与直线b相交所成的角中有一个与∠1为一对同位角,并且自行找出一对内错角和同旁内角. 学生完成后,组内交流,展示不同的画法,不同的结果,互相评价.四、课堂小结设计意图:通过小结,让学生回顾一下本节所学的内容,对本节的知识形成一个完整的知识网络,有利于学生对知识的消化与吸收.小结:谈谈你对“三线八角”的认识,本节的收获是什么?五、课后作业(1)如图所示,∠1和∠2是直线和直线被第三条直线所截而成的角;(2)∠2和∠BCE是直线和直线被第三条直线所截而成的角;(3)∠4和∠A是直线和直线被第三条直线所截而成的角.【答案】(1)AB CE BD 同位 (2)AB EC BD 同旁内 (3)AB CE AC 内错.5.2 平行线第1课时教学目标【知识与能力】感受平行线的概念,理解平行公理,能作出已知直线的平行线.【过程与方法】通过观察、交流、探索等活动获取知识,在具体操作活动中了解平行线的有关性质.【情感态度价值观】丰富和发展自己的数学活动经历和体验,感受数学图形世界的丰富多彩.教学重难点【教学重点】平行线的概念和平行公理.【教学难点】用几何语言描述作图过程.课前准备无教学过程一、创设情境,引入新课设计意图:创设多种有关平行的现实情境,激发学生的学习兴趣,让他们体会数学知识与现实生活的联系,掀起他们探究的欲望.教师课件展示学生熟悉的有关平行线的现实情境,让学生观察:线、线与线的关系.如人行道、高压电线、百米跑道……问题:这些线之间呈现怎样的位置关系?学生积极思考,观察后踊跃发言.二、新知探索设计意图:在让学生动手操作画平行线的过程中加深对平行线的理解,培养学生主动参与合作交流的意识,提高观察、分析、概括和抽象能力,培养学生的动手能力,引导学生探索平行线的性质.1.教师板书课题,并说明本节课继续探讨现实生活中的平行现象,让学生给出平行的定义.一部分学生能回答出“不相交的两直线”而遗漏“在同一平面内”,教师此处应适当放开,让学生结合现实生活中的情景讨论“在同一平面内”的重要性.教师出示问题:在教学中找平行线?学生讨论,组内交流,最后派代表发表见解.师:生活中这么多平行,如何表示它们?如何画平行线?从而引出平行线的表示符号“∥”.2.画平行线教师让学生拿出方格纸,画出平行线,并进行组内交流.总结画平行线的方法:一靠、二落、三推、四画.为了让学生印象深刻,让学生板演,其余学生集中演示,体会.3.平行线的性质师:让学生拿出预制教具.(一块泡沫塑料上一根固定的木条和两根一端固定的木条)问题:何种情形下,活动的木条与固定的木条平行?学生一边活动木条,一边思考,用自己的语言叙述:只有一种情形.教师总结:经过直线外一点,有且只有一条直线与这条直线平行.进一步提问:若两根活动木条都与固定的木条平行,这两根活动木条有什么关系?学生经过讨论思考后,体会平行线的性质并积极发言.得出:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.三、巩固练习设计意图:通过练习,巩固对平行线的认识,熟悉做已知直线的平行线的方法,达到学以致用的目的.1.如图,四边形ABCD和四边形AFCE都是平行四边形,点E、F分别在CD、AB上,则图中平行线的组数是( )A.2组B.3组C.4组D.5组2.如图,你能用学过的方法判断a、b这两条直线的位置关系吗?(1)过直线外一点A画直线l的平行线;(2)找出图中所有的平行线,并用“∥”表示.四、课堂小结设计意图:由练习过渡到小结中,让学生再次体会,知识来自于实践中,反过来又指导实践,初步体验知识的系统性和完整性.小结:本课你从现实情境中了解了什么知识?对你获取的信息说说你的反思.五、课后作业1.如图所示,图中哪些线段是互相平行的?把它们表示出来.【答案】线段a∥e,线段b∥d,线段c∥f.2.已知:D是∠AOB内部一点,如图,过D作DE∥AO,作DF∥BO分别交OA、OB于F、E,画出图形,并说明四边形DEOF是什么图形?【答案】画图如图所示:四边形DEOF是平行四边形.3.如图所示,直线AB、CD是一条河的两岸,并且AB∥CD,点E为直线AB、CD外一点,现想过点E作CD的平行线,则只需过点E作河岸AB的平行线即可,其理由是什么?【答案】理由是(1)过直线外一点有且只有一条直线与已知直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.2 平行线第2课时教学目标【知识与能力】使学生认识平行线的识别法,能灵活地利用平行线的三个识别法解决一些简单的问题. 【过程与方法】经历平行线三种识别方法的发现过程,让学生通过直观感知,操作确认等实践活动,加强对图形的认识和感受.【情感态度价值观】通过实地观测建筑物,让学生体会数学之美,对学生进行美学教育,渗透数学源于实践又作用于实践的辩证唯物主义观点.教学重难点【教学重点】平行线的三种识别方法.【教学难点】运用三种识别方法进行简单的推理.课前准备无教学过程一、提出问题,创设情境设计意图:通过巧妙的设置问题,引导学生思考,既复习旧知识,做好新知识学习的铺垫,也不断激活学生思维,生成新问题,引起认知冲突,从而自然引入新课.1.复习提问:什么叫平行线?引导学生注意在同一平面内这一条件.2.教师出示多媒体(图形显示,教师口述内容)在现实生活中,有不少平行的例子.例如:我们学校建筑物上就有平行线,上图是我们学校的校道对应的几何图形,我们已分组测量了α、β的度数,请几个小组同学说说测量的结果,老师告诉你:根据α=β,可得出校道中两段笔直的部分是平行的,想知道为什么吗?带着这个问题,我们来学习“平行线的识别”.(板书课题)二、动手实验,发现新知设计意图:在实现教学活动的过程中,使实际问题与学生生活密切联系,学生有较好的参与意识和学习兴趣,随着教师问题的提出而不断进行更深入的思考,设计的动手实验以教材为基础,实现了让学生通过动手操作,在变化中感受角的大小变化与直线位置关系的联系,实现了由感性到理性的上升.师生共同操作,经过直线外一点画已知直线的平行线.三角尺沿着直尺的方向由原来的位置移到另一个位置,角在平移前的位置与平移后的位置构成一对同位角,其大小不变,因此,只要保持同位角相等,画出的直线就平行于已知直线.(合作、交流讨论后得出)两条直线被第三条直线所截,如果同位角相等,那么这两直线平行.(同位角相等,两直线平行)例如:如图,直线a、b被直线l所截,如果∠1=∠3,那么a∥b.(交流后得出)因为∠1=∠3(已知),∠2=∠3(对顶角相等),所以∠1=∠2,∴a∥b.(同位角相等,两直线平行)结论:内错角相等,两直线平行.三、运用新知设计意图:及时训练是巩固知识的必要手段,练习题的选择要为教学目标的实现服务,通过学生的练习,通过巩固了上面得出的平行线的两种识别法;又在学生的自主探究中,得出平行线的第三种识别方法,实现了在练中学,在学中练的统一.教师出示例1.如图,直线a、b被直线l所截,已知∠1=115°,∠2=115°,那么a∥b吗?为什么?学生思考后根据所学知识做出解答.变式训练:若在以上问题中,∠1=115°,∠3=65°,那么a∥b吗?为什么?学生交流,讨论得出:同旁内角互补,两直线平行.例2.如图,在四边形ABCD中,已知∠B=60°,∠C=120°,AB与CD平行吗?AD与BC平行吗?教师让学生先独立思考,然后再交流,完成对以上题目的解答.注意引导学生的推理过程,步骤的逻辑性.四、课堂小结设计意图:学生在一节课积极、热烈的探究、合作学习之余,需要有一点时间静下心来默默地反思自己,这是对知识沉淀、吸收的过程,通过生生、师生的交流,形成完整的知识结构.师:平行线识别的几种方法是什么?通过今天的学习,你想进一步探究的问题是什么?五、课后作业1.如图,∠1=∠2,∠3=∠4,试问EF是否与GH平行?【答案】因为∠1=∠2(已知),又因为∠CGE=∠2(对顶角相等),所以∠1=∠CGE(等量代换),又因为∠3=∠4(已知),所以∠3+∠1=∠4+∠CGE,即∠MEF=∠EGH,所以EF∥GH(同位角相等,两直线平行).2.如图,已知∠1=35°,∠B=55°,AB⊥AC,则(1)∠DAB+∠B= ;(2)AD与BC平行吗?AB与CD平行吗?若平行,请说明理由;若不一定,那么再加上什么条件就平行了呢?【答案】(1)180°(2)AD∥BC,理由:同旁内角互补,两条直线平行;AB与CD不一定平行,若要使AB∥CD,则须满足AC⊥DC,或∠B+∠BCD=180°.5.2 平行线第3课时教学目标【知识与能力】掌握平行线的三个特征,体会平行线特征与平行线识别的区别,能运用平行线的识别与特征解决问题.【过程与方法】经历观察、操作、推理、交流等活动,进一步发展空间观念,加强推理能力和有条理的表达能力,经历探索平行线的特征的过程,掌握平行线的特征并解决一些问题.【情感态度价值观】通过操作、观察、合作、交流,进一步感受学习数学的意义,培养学生主动探索、合作以及解决问题的能力.教学重难点【教学重点】平行线的特征.【教学难点】平行线的特征与识别法的综合运用.课前准备无教学过程一、复习回顾设计意图:本节课所学知识与前一节课的内容有着密切的联系,两者既有相同之处又有本质的区别.在课的开始以习题化方式复习已学知识,一方面为本节课的学习奠定好基础,另一方面为“对比发现,加深理解”环节作好铺垫.教师出示问题:如图,直线a、b被直线l所截,在横线上填空:(1)因为∠1=∠2(已知),所以a∥b .(2)因为∠3=∠2(已知),所以a∥b .(3)因为∠2+∠4=180°(已知),所以a∥b .学生完成后,组内交流结果.二、情境引入设计意图:通过提出一个极具趣味性的问题,学生可能通过猜测得到答案,但并不理解其中真正的原因所在,从而激发学生强烈的求知欲和好奇心,引入新课的学习.教师出示问题:如图,是举世闻名的三星堆考古中发掘出的一个残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°,已知四边形ABCD的AD∥BC,请你求出另外两个角的度数. 学生经过思考,然后小组进行讨论,在教师的引导下得出结论.三、探究发现设计意图:教师要通过设计问题是,让学生经历观察、操作、推理、想象等探索过程,获得数学活动的经验,要发散学生思维,让学生尽可能用多种方法来说明自己猜测的正确性,培养学生合情说理的能力.问题:已知直线a、b被l所截,a∥b.让学生自己画出符合要求的图形后,提出问题.(1)合作交流一:请找出图中的同位角,并猜测它们有何关系?你能想办法验证你的猜测吗?(2)合作交流二:请找出图中的内错角,并猜测它们有何关系?你能想办法验证你的猜测吗?(3)合作交流三:图中还有其他位置关系的角吗?它们有何关系呢?说一说你是怎样得到结论的.以上问题在经过学生独立思考后,再进行小组讨论,互相补充,并派代表回答.(4)师生共同总结平行线的特征.四、巩固练习设计意图:通过练习,落实基础,特别是学生刚刚接触到新的知识时,往往应用起来会感到生疏,或者说对它的感觉仍旧停留在“雾里看花”的状态,这就需要一个过程,也就是对新知识从熟悉到熟练的过程.教师出示练习:1.完成下列填空:(1)因为AD∥BC(已知),所以∠B=∠1( );(2)因为AB∥CD(已知),所以∠D=∠1( );(3)因为AD∥BC(已知),所以∠C+∠D=180°( ).2.如图所示,AB∥CD,AD∥BC,分别找出与∠ADC相等或互补的角.学生完成后集中评议.五、课堂小结设计意图:课堂小结并不只是课堂知识点的回顾,教师要对教学目标的达成情况进行反馈,对相关知识点进行整合,要能够提出明确的具有反思性的问题,让学生有所思,有所得,达到巩固所学知识的目的.1.平行线的三个特征?2.直线平行的特征与直线平行条件的区别.(1)平行线识别与特征的条件与结论有什么关系?(2)使用平行线识别时是已知,说明;使用平行线特征时是已知,说明.师生共同交流总结以上所学的知识.六、课后作业1.如图,若AB∥CD,则正确的结论是( )A.∠1=∠2+∠3B.∠1=∠2=∠3C.∠1+∠2+∠3=180°D.∠1=∠2+∠3=180°【答案】A2.如图,AB∥CD,AC∥BD,试说明∠1=∠3.【答案】∵AB∥CD(已知),∴∠1=∠2(两直线平等,内错角相等), 又∵AC∥BD(已知),∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠3(等量代换).。
七年级数学上册 第5章 相交线与平行线 教案华东师大版
第5章相交线与平行线5.1相交线1.对顶角【基本目标】1.在现实情境中识别对顶角,理解对顶角的性质;能画出对顶角,并能利用对顶角相等的性质进行简单的计算以及解决一些相关的实际问题.2.经历观察、猜想、说理、交流等过程,进一步发展空间观念和有条理的表达能力.3.在动手实践、自主探索、合作交流中获得成功的体验,建立自信心;感受数学与生活的密切联系,增强运用数学的意识.【教学重点】通过观察思考,了解对顶角的概念及其性质;进一步发展空间观念和有条理的表达能力.【教学重点】从复杂图形中分解出基础图形,提高数学学习能力.一、情境导入,激发兴趣观察下列图片,你们觉得这些图片有什么共同点吗?【教学说明】通过观察图片,找到相交线的形象,激发探究兴趣,渗透数学来源于生活的理念.二、合作探究,探索新知1.请同学们画两条相交的直线,观察它们有几个交点?形成几个小于平角的角?2.学生画图,观察后回答,教师画图总结.图1(1)两条直线相交,只有一个交点.(2)形成4个小于平角的角:∠1、∠2、∠3、∠4.【教学说明】学生画图解答,教师小结板书.3.你知道∠1与∠2、∠2与∠3、∠3与∠4、∠1与∠4在位置和数量上有什么关系?请填下表.【教学说明】学生自主探究,通过填表找到这些角的位置和数量关系.4.请你根据上面的探究,观察思考∠1与∠3、∠2与∠4位置和数量上有什么关系?请填下表,并说明理由.5.教师归纳总结:(1)对顶角:如果两个角有一个公共顶点,并且它们的两边分别互为反向延长线,那么这样的两个角叫做对顶角.如图1,∠1与∠3是对顶角.(2)对顶角的性质: 对顶角相等.【教学说明】这是本节课的重点和难点,对于这些角的位置,学生描述可能不准确,教师一定要结合图形,让学生仔细观察,掌握特征.对顶角相等需要通过推理得到,要求学生写出推理的过程,以训练学生推理的能力.三、示例讲解,掌握新知例1如图,直线AB、CD相交于点O,∠1=30°,求∠2、∠3、∠4的度数.分析:∠1和∠2有什么关系?∠1和∠3有什么关系?∠2和∠4有什么关系?解:∵∠1+∠2=180°,∴∠2=180°—∠1=180°—30°=150°.∠3=∠1=30°,∠4=∠2=150°.【教学说明】要充分应用对顶角相等来解决问题,注意推理格式的规范性.例2如图,直线AB与CD相交于点O,射线OE是∠BOD的平分线,已知∠AOD=110°,求∠COB,∠AOC, ∠BOE,∠EOD的度数.【教学说明】这个图形比较复杂,教师可做适当的引导,注意过程的规范性和合理性.四、练习反馈,巩固提高1.如图,直线AB,CD相交于点O,∠1的对顶角是,∠4的对顶角是 .第1题图第2题图2.如图,直线AB,CD相交于点O,且∠AOC+∠BOD=118°,则∠AOD= .3.如图,直线AB、CD、EF相交于点O,OE是∠AOC的平分线,那么OF是∠BOD的平分线吗?为什么?【教学说明】学生独立完成,对于第3题,图形比较复杂,教师可以做适当的引导.注意解题过程的规范性.【答案】1.∠3,∠22.121°3.解:OF是∠BOD的平分线.∵OE平分∠AOC,∴∠AOE=∠COE.∵∠AOE=∠BOF,∠COE=∠DOF.∴∠BOF=∠DOF∴OF平分∠BOD五、师生互动,课堂小结1.两条直线相交,只有一个交点.2.对顶角:如果两个角有一个公共顶点,并且它们的两边分别互为反向延长线,那么这样的两个角叫做对顶角.3.对顶角的性质: 对顶角相等.【教学说明】教师引导学生对本节课知识进行总结,加深印象,对出现的疑惑及时予以解答,使学生更好的掌握本节课知识.完成本课时对应的练习本节课的教学活动设计是建立在“以学生的发展为本,为学生的终身学习奠定基础”的执教理念上,融入了新课标的思想内涵,在重视对数学知识形成过程中发现和探究的同时,也十分重视对学生学习能力的培养,突出了学生的主体地位.使学生学会了将生活问题数学化.教师引导学生观察生活中的相交线,从中抽象出数学模型,然后让学生动手画图——观察——猜想——说理,从而认识了对顶角,发现了“对顶角相等”这一性质.发现数学理论的过程也是不断反思、不断提出问题的过程.这种反思应该始终伴随着活动的进行而开展,否则会丢掉很多很有价值的发现新知识的机会.学生在面对较难问题时,要学会合作交流,学会理性地思考,因为在现代社会中,学会表达与交流尤为重要.2.垂线【基本目标】1.使学生理解垂线的含义与垂线的画法;2.能理解点到直线的距离,理解垂线段的意义;3.能在学习中了解几何在不同情况下的分类,并能在一个三角形中作出三角形的高.【教学重点】理解点到直线的距离以及垂线段最短.【教学重点】垂线公理及垂线段最短的应用.一、情境导入,激发兴趣〔投影〕如图,取两根木条a、b,将它们钉在一起,固定木条a,转动木条b.当b的位置变化时,a、 b所成的角是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a与b相交所成的四个角分别是多少度?总结归纳:有,当∠α=90°时,所成的四个角都是90°.【教学说明】在转动的过程中,必须注意到变与不变,什么变,什么不变,为什么,怎么变?当有一个角是直角时,另外三个角也是直角,这个在原理上必须让学生明白.二、合作探究,探索新知1.垂直定义(1)显然,两条直线相交有一个角是90°是一种特殊的情况.(2)当两直线相交所构成的四个角中有一个为直角时,称这两直线互相垂直.两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图,直线AB 垂直于直线CD,记作AB⊥CD,垂足为O.【教学说明】图形与语言的结合(转化)是几何中的一个难点,教师要进行示范.(3)在生产和日常生活中,两条直线互相垂直的情形是很常见的,如:〔投影2〕你能再举一些其它的例子吗?【教学说明】举出实际生活中的实例,加深学生对垂直定义的理解.同时,也使学生了解数学知识来源于生活,又在生活中有着广泛的应用.2.过一点画已知直线的垂线(1)如图,已知直线AB和直线AB外一点P,过点P画出直线AB的垂线,你能画出多少条呢?学生画图,观察后总结:只能画一条.(2)如图,你能经过直线AB上一点P,画出垂直于直线AB的直线吗?这样的垂线能画多少条呢?学生画图后总结:只能画一条.【教学说明】作图的方法,可以作为一个补充知识进行讲解.在画垂线时,不一定局限于三角板或是量角器,也应懂得利用身边的东西.(3)通过以上的操作,你有什么发现?归纳总结:在同一平面内,过一点有且只有一条直线与已知直线垂直.【教学说明】这是一个难点,重点强调在同一平面内.3.垂线段(1)演示:在黑板上固定木条l, l外一点P,木条a一端固定在点P,使之与l相交于点A.左右摆动木条a, l与a的交点A随之变动,线段PA 的长度也随之变化,a与l的位置关系怎样时,PA最短?小结:a与l垂直时,PA最短.这时的线段PA叫做点P到直线l的垂线段.【教学说明】让学生观察思考后回答,教师强调垂线段和垂线的区别.(2)〔投影3〕画出PA在摆动过程中的几个位置.如图,点A1、A2、A3….在l上,连接PA1、PA2、PA3…,PO⊥ l,垂足为O,用叠合法或度量法比较PO、PA1、PA2、PA3…的长短,可知垂线段PO最短.小结:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.【教学说明】学生通过比较得出结论,可以再多画一些线段进行比较.然后教师再举出一些实例加深理解.(3)我们知道,连接两点的线段的长度叫做两点间的距离,这里我们把直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如上图,PO就是点P到直线l的距离.【教学说明】教师强调点到直线的距离和两点间的距离一样是一个正值,是一个数量,所以不能画距离,只能量距离.三、练习反馈,巩固提高1.如图所示,AD⊥BD,BC⊥CD,AB=acm, BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm2.到直线l的距离等于2cm的点有( )A.0个B.1个C.无数个D.无法确定3.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cmC.小于2cmD.不大于2cm4.如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C到AB的距离是 ,点A到BC的距离是 ,点B到CD 的距离是 ,A、B两点的距离是 .5.已知:如图,直线AB,射线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD与OE 的位置关系.【教学说明】对于第4题距离的理解是难点,要提醒学生注意观察,第5题要注意推理的合理性和格式的规范性.【答案】1.D2.C3.D4.4.8 6 6.4 105.解:OD⊥OE,∵OE平分∠AOC,∴∠COE=12∠AOC.∵OD平分∠BOC,∴∠COD=12∠BOC,∴∠DOE=∠COE+∠COD=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB=12×180°=90°.∴OD⊥OE.四、师生互动,课堂小结1.当两直线相交所构成的四个角中有一个为直角时,称这两直线互相垂直.两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.2.过一点有且只有一条直线与已知直线垂直.3.连接直线外一点与直线上各点的所有线段中,垂线段最短,简单说成:垂线段最短.4.我们把直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.【教学说明】教师引导学生对本节课知识进行总结,加深印象,重点是对于垂线段最短的理解和应用.对出现的疑惑及时予以解答,使学生更好的掌握本节课知识.完成本课时对应的练习.引入新课时,教师从学生的实际出发,关注学生的生活经验和知识基础,从两根木条的转动中让学生发现它们的特殊位置,为新知识的探究学习做了较好的准备.以此来激发学生的参与兴趣,感受由垂线组成图形的规矩之美,从而产生亲近数学的情感.新知探究部分,充分发挥学生的主体性,体现以人为本.让学生画一条直线,经过直线外一点画一条垂线,可以让学生们画出了不同方位直线在不同侧的垂线.初步体会了用作图工具三角尺画出的垂线比较规范,然后教师演示过直线上一点画已知直线的垂线的方法并同步介绍作图步骤.然后放手让学生画过直线上一点画已知直线的垂线.大家通过动口交流、动手操作、合作学习,积极主动地投入到垂线画法的探究过程中去,利于学生操作技能的形成和实践能力的培养.既发挥了学生的学习主动性,又体现了教师的指导作用,提高了学生学习的有效性.让学生经历画图——观察——总结——归纳的过程,形成知识点.对于垂线段的内容,是本节课的难点,要让学生通过比较,得出定义和性质,教师结合具体的实例加深学生的理解.3.同位角、内错角、同旁内角【基本目标】1.理解同位角、内错角、同旁内角的意义;2.会熟练地识别图中的同位角、内错角、同旁内角.【教学重点】同位角、内错角、同旁内角的识别.【教学重点】较复杂图形中同位角、内错角、同旁内角的识别.一、情境导入,激发兴趣1.如图,直线AB交直线CD于点O,则从前面的学习中,我们也知道在相交所形成的四个角中,有些角是相邻且互补,有些角是对顶角且相等的.2.如图,直线AB分别与直线CD、直线EF都相交,交点分别为P、Q,则图中存在着八个角.这八个角中,有相同顶点的角是对顶角或是相邻且互补.那么其它没有相同顶点的角之间,又有什么位置关系?【教学说明】从两条相交直线引导到一条直线截两条直线是一个比较正常、合理的方法,也比较能理顺学生的思路.二、合作探究,探索新知如图,直线AB、CD与EF相交(或两条直线AB、CD被第三条直线EF所截)构成个角.现在,我们来研究其中没有公共顶点的两个角的关系.(一)同位角1.定义:如图,∠1和∠5,分别在直线AB、CD的,在直线EF的 .具有这种位置关系的一对角叫做同位角.2.请你找出图中还有哪几对角构成同位角?3.两条直线被第三条直线所截构成的八个角中,共有对同位角.【教学说明】主要是找两个角的位置关系,注意语言的规范性.教师总结要强调同位角的特征.通过找其他的同位角,加深学生印象.(二)内错角1.定义:如图,∠3和∠5,分别在直线AB、CD的,在直线EF的 .具有这种位置关系的一对角叫做内错角.2.请你找出图中还有哪几对角构成内错角?3.两条直线被第三条直线所截构成的八个角中,共有对内错角.(三)同旁内角1.定义:如图,∠3和∠6,分别在直线AB、CD的,在直线EF的 .具有这种位置关系的一对角叫做同旁内角.2.请你找出图中还有哪几对角构成同旁内角?3.两条直线被第三条直线所截构成的八个角中,共有对同旁内角.【教学说明】注意总结方法和规律,与找同位角相比照,教师总结它们的特征.三、练习反馈,巩固提高1.找出图中所有的同位角、内错角、同旁内角.2.如图所示:(1)∠1,∠2,∠3,∠4,∠5,∠6是直线、被第三条直线所截而成的.(2)∠2的同位角是,∠1的同位角是 .(3)∠3的内错角是,∠4的内错角是 .(4)∠6的同旁内角是,∠5的同旁内角是,(5)∠4与∠A是同旁内角吗?3.如图所示:(1)AD,BC被BD所截而成的内错角是;(2)CD,AE被AC所截而成的内错角是;(3)AD,BF被AE所截而成的同位角是;(4)BD,AE被AD所截而成的同旁内角是 .4.如图,四个图形中的∠1和∠2不是同位角的是()【教学说明】对于比较复杂的图形,教师提示学生可将图形进行分解,再与总结的特征项比较,得出结论,然后让学生总结相关的规律.【答案】1.左图:同位角:∠2与∠5,∠1与∠8,∠3与∠6,∠4与∠7内错角:∠1与∠6,∠4与∠5同旁内角:∠1与∠5,∠4与∠6右图:同位角:∠1与∠3,∠2与∠4内错角:无同旁内角:∠2与∠32.(1)AB,AC,EF(2)∠5,∠6(3)∠6,∠5(4)∠4,∠3(5)是3.(1)∠ADB与∠DBC(2)∠DCA与∠CAE(3)∠DAE与∠FBE(4)∠DAB与∠ADB4.C四、师生互动,课堂小结1.同位角、内错角、同旁内角2.注意:(1)以上三对角都有一边公共,是第三条直线(截线).(2)识别“第三条直线(两个角一边所在的同一直线)”是关键.【教学说明】教师结合练习,总结三对角的特征,以表格的形式呈现,便于学生理解和记忆.对于需要注意的问题予以强调,加深学生的理解.完成本课时对应的练习.这节课主要内容是两条直线被第三条直线所截成的不共顶点的角的位置关系.主要是同位角、内错角、同旁内角的概念,关键是如何找同位角、内错角、同旁内角.教学中,如果遇到复杂图形,首先根据角的边分解出基本图形.两个角的公共边所在直线为截线,一旦确定截线,可根据定义确定三类角,也可根据图形确定三类角,如F型的同位角,Z型的内错角,U型同旁内角.另外,对于同旁内角也可根据三角形内有三对同旁内角,四边形有四对同旁内角,确定三角形或四边形后再去找,很好用,也很快.5.2 平行线1.平行线【基本目标】1.了解平行线的概念,理解同一平面内两条直线间的位置关系;2.掌握平行公理及平行线的画法.【教学重点】平行线的概念、画法及平行公理是重点.【教学重点】平行公理及其推论的应用.一、情境导入,激发兴趣我们知道两条直线相交只有一个交点,除相交外,两条直线还存在其它的位置关系吗?看下面的图片(投影):双杆上面的两根横杆、支撑横杆的直杆所在的直线相交吗?游泳池中分隔泳道的线所在的直线相交吗?屏风的折处和边所在的直线相交吗?【教学说明】几何的美感是新课程中使学生能体会到的一个重要方面,所以在讲解平行线时,应有意识加以引导.二、合作探究,探索新知1.平行线的概念(1)根据上面的探究,我们知道,在同一平面内不相交的两条直线叫做平行线.如下图:直线a与直线b互相平行,记作“a∥b”,读作“直线a平行于直线b”.【教学说明】仍然要注意几何图形的意义及其表现形式.对于平行线的表示方法要让学生自己写一遍加深印象.在此要注意:①“同一平面内”是前提,以后我们会知道,在空间即使不相交,可能也不平行;②平行线是“两条直线”的位置关系,两条线段或两条射线平行,就是指它们所在的直线平行;③“不相交”就是说两条直线没有公共点.(2)请同学们观察思考:在同一平面内,两条不重合的直线位置关系有哪几种?小结归纳:在同一平面内,两条不重合的直线位置关系有两种:相交或平行.【教学说明】在此要注意:这里所指的两条直线是指不重合的直线.2.过直线外一点画已知直线的平行线(1) 做一做已知直线a外一点P,那么经过点P可以画多少条直线与已知直线a平行?动手画一画.(2)通过观察和画图,可以体验一个基本事实:经过直线外一点,一条直线与这条直线平行.【教学说明】要掌握过直线外一点作已知直线的平行线,这里必须提醒学生注意到,这个点必须是直线外的一点.(3)如图,已知直线a和直线外两点B、C,请你按照上面的方法分别过B、C两点画直线a的平行线b和c,然后观察直线b和c有什么关系?小结归纳:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即如果b ∥a,c∥a,那么b∥c.【教学说明】这里要使用反证法来进行说明,教师要做引导,讲清楚相关的推导过程,使学生理解结论的科学性.三、练习反馈,巩固提高1.如图1所示,与AB平行的棱有条,与AA′平行的棱有条.2.如图2所示,按要求画平行线.(1)过P点画AB的平行线EF;(2)过P点画CD的平行线MN.3.如图3所示,点A,B分别在直线l1,l2上,(1)过点A画到l2的垂线段;(2)过点B画直线l3∥l1.4.下列说法中,错误的有()①若a与c相交,b与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行相交、垂线三种.A.3个 B.2个 C.1个 D.0个5.根据下列要求画图.(1)如图(1)所示,过点A画MN∥BC;(2)如图(2)所示,过点P画PE∥OA,交OB于点E,过点P画PH∥OB,交OA于点H;(3)如图(3)所示,过点C画CE∥DA,与AB交于点E,过点C画CF∥DB,与AB的延长线交于点F.(1)(2)(3)【教学说明】第1题把平面中的平行线与简单的立体图形相结合对学生的学习是有所帮助的.第5题画图要注意看清题目的要求,教师可适当示范画法.【答案】1.3,32.3.4.C5.四、师生互动,课堂小结1.在同一平面内不相交的两条直线叫做平行线.在同一平面内,两条不重合的直线位置关系有两种:相交或平行.2.过直线外一点有且只有一条直线与已知直线平行.3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即如果b∥a,c∥a,那么b∥c.【教学说明】教师引导学生对本节课知识进行总结,加深印象,重点强调“过直线外一点”.对出现的疑惑及时予以解答,使学生更好的掌握本节课知识.完成本课时对应的练习.本节课的重点是平行线的概念和平行公理及其推论.难点在于画平行线、平行公理及其推论的应用.但是,由于平行线是直线,而直线在我们的实际生活中并不存在,所以,我们需要借助同学们的想象力,将线段想象为直线.先通过图片展示让学生感受平行线的形象,然后让学生通过观察思考得出平行线的定义.教师要强调“在同一平面内”这一条件.画平行线时要强调“过直线外一点”.用几何语言进行叙述过程是学生学习的难点,教师可以通过示范引导,逐步让学生养成相应的习惯.2.平行线的判定【基本目标】1.使学生通过学习能掌握运用同位角相等、内错角相等、同旁内角互补来说明两条直线平行;2.使学生通过对三种判定方法的学习,能灵活地利用平行线的三个识别方法解决问题.【教学重点】对三种判定方法的灵活运用.【教学重点】如何在不同情况下选择不同的方法.一、情境导入,激发兴趣1.经过直线外一点,有且只有条直线与这条直线平行.2.如图,直线a、b都与直线c相交,根据各个角的位置关系填空:(1)∠1与∠2是角;(2)∠3与∠2是角;(3)∠2与∠4是角.【教学说明】这些知识点都是本节课需要用到的,通过复习,帮助学生进行回忆,为本节课知识的探究打下基础.二、合作探究,探索新知1.平行线的判定方法1(1)按要求作图:用直尺和三角板过点P做已知直线AB的平行线.画法:(2)画图过程中,什么角始终保持相等?(3)直线l1和l2位置关系如何?(4)根据以上探究,请你总结判定两条直线平行的方法?(5)小结归纳:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单地说:同位角相等,两条直线平行.符号语言:∵∠1=∠2,∴a∥b.【教学说明】学生边画图,边观察思考,总结发现的规律,主要从两个角的位置和大小关系上来进行探究,位置和大小的关系得出结果.教师要示范用符号语言表示这一判定方法,让学生了解几何说理的过程.2.平行线的判定方法2、3(1)如图,如果∠2=∠3,能得出a∥b吗?(2)如果∠2+∠4=180°,能得出a∥b吗?【答案】(1)∵∠2=∠3∠1=∠3(已知)∴∠1=∠2.∴a∥b.(同位角相等,两直线平行)你能用文字语言概括上面的结论吗?结论:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单地说:内错角相等,两直线平行.符号语言:∵∠2=∠3, ∴a∥b.(2)∵∠4+∠2=180°,∠4+∠1=180°(已知)∴∠2=∠1 (同角的补角相等)∴a∥b. (同位角相等,两条直线平行)你能用文字语言概括上面的结论吗?结论:两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.简单地说:同旁内角互补,两直线平行.符号语言:∵∠4+∠2=180°, ∴ a∥b.【教学说明】教师引导学生进行简单的推理,得出结论,然后再仿照方法一进行归纳,得出其它两个判定方法,同时渗透转化的数学思想.三、示例讲解,掌握新知例1如图,直线a、b被直线l所截,已知∠1=115°,∠2=115°,直线a、b平行吗?为什么?【教学说明】学生可能会将它转化为同位角相等来进行说明,教师要引导学生发现直接利用内错角相等来说明更简单.例2如图,在四边形ABCD中,已知∠B=60°,∠C=120°,AB与CD平行吗?AD与BC 平行吗?【教学说明】让学生观察两个角的位置关系,再结合判定方法来进行说明.注意过程的规范性.例3在同一平面内,直线CD、EF均与直线AB垂直,D、F为垂足.试判断CD与EF是否平行.小结归纳:在同一平面内,垂直于同一条直线的两条直线平行.【教学说明】这个问题三种判定方法都可以使用,可以引导学生用不同的方法来进行证明.然后对得到的结论进行总结,形成新的判定方法.四、练习反馈,巩固提高1.如图,∠D=∠EFC,那么()A.AD∥BCB.AB∥CDC.EF∥BCD.AD∥EF第1题图第2题图2.如图,判定AB∥EC的理由是()A.∠B=∠ACEB.∠A=∠ECDC.∠B=∠ACBD.∠A=∠ACE3.如图,下列推理正确的是()A.∵∠1=∠3,∴a∥bB.∵∠1=∠2,∴a∥bC.∵∠1=∠2,∴c∥dD.∵∠1=∠5,∴c∥d第3题图第4题图4.已知,如图∠1+∠2=180°,填空.∵∠1+∠2=180°()又∵∠2=∠3()∴∠1+∠3=180°∴()5.如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?【教学说明】学生独立完成,第4题是帮助学生熟悉证明的一般过程,注意理由的填写规范性.第5题是一个证明题,学生在书写的时候可能不是很规范,教师要及时予以纠正和强调.【答案】1.D 2.D 3.B4.已知对顶角相等a∥b,同旁内角互补,两直线平行5.解:a与c平行.∵∠1=∠2,∴a∥b.∵∠3+∠4=180°,∴b∥c,∴a∥c.五、师生互动,课堂小结【教学说明】教师引导学生对本节课知识进行总结,加深印象.重点是如何将文字语言转化为几何语言,对出现的疑惑及时予以解答,使学生更好的掌握本节课知识.完成本课时对应的练习.这节课的主要内容是平行线的判定方法,这也是本章的重点内容.难点是利用同位角判。
最新人教版七年级数学初一下册第五章相交线与平行线单元教案设计
最新人教版七年级数学初一下册第五章相交线与平行线单元教案设计第五章相交线与平行线5.1相交线教学任务分析教学目标知识技能数学思考1.了解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角.2.知道“对顶角相等”.3.了解“对顶角相等”的说理过程.1.经历探究对顶角、邻补角的位置关系的过程,建立空间观念.2.通过分析具体图形得到对顶角、邻补角的概念,发展学生的抽象概括能力.通过小组学习等活动经历得出对顶角相等的过程,进一步提高学生应用已有知识解决数学问题的能力.1.通过对对顶角的探究,使学生初步认识数学与现实生活的密切联系.2.通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.解决问题情感态度重点难点对顶角的概念,“对顶角相等”的性质.“对顶角相等”的探究过程.教学流程安排活动流程图活动内容和目的活动1找出图形中的相交线活动2认识邻补角和对顶角活动3探究对顶角相等活动4巩固练习活动5课堂小结布置作业教具教师用三角板活动1观察图片,找出相交线,引入课题.活动2通过探究相交线中相交线角与角的位置关系,得出邻补角和对顶角的概念.并能找出图中的对顶角、邻补角.活动3通过探究发现“对顶角相等”的结论,进而通过说理证实这一结论,初步发展简单说理.活动4通过解决具体问题加深对对顶角、邻补角的理解.活动5通过学生习题,总结回顾本节知识点,以便培养学生的概括表达能力,并巩固知识、灵活应用.课前准备学具量角器,三角板补充材料教学过程设计问题与情境师生行为设计意图让学生借助已有的几何知识从现实生活中发现数学问题,能由实物的形状想象出相交线、平行线的几何图形.使新知识建立在对周围环境的直接感知的基础上.让学生增强对生活中的相交线、平行线的认识.建立直观的,形象化的数学模型.活动1问题找出图中的相交线、平行线.教师出示一组图片.学生观察图片,找相交线、平行线,引出本节课题.在本次活动中,教师应重点关注:(1)学生从简单的具体实物抽象出相交线、平行线的能力.(2)学生认识到相交线、平行线在日常生活中有着广泛的应用.(3)学生学习数学的兴趣.活动2问题(1)看见一把张开的剪刀,你能联想出什么样的几何图形?(2)观察这些角有什么位置关系.教师出示剪刀图片,提出问题.学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.教师提出问题.学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的两对邻补角与两对对顶角.在本次活动中,教师应关注:(1)学生画出两条相交线的几何图形,用语言准确描述.(2)学生能否从角的位置关系上对角进行分类.(3)学生是否能够正确区分邻补角、对顶角.(4)学生参与数学学习活动的主动性,敢于发表个人观点.通过生活中的情景抽象出几何图形,发现对顶角、邻补角,培养空间观念,发展几何直觉.通过对图形中角与角位置关系的研究分析,学生描述邻补角、对顶角概念,从角的位置关系上来研究这些角的相互关系.让学生经历从图形到文字到符号的转换过程,使学生加深对对顶角、邻补角概念的理解,积累一些图形研究的经验和方法.活动3问题(1)对顶角有什么大小关系呢?课件运用:此时可以在学生思考的基础上利用课件“对顶角”进行动画演示.(2)你能举出生活中应用对顶角相等的例子吗?教师提出问题.学生以组为单位,在观察的基础上研究解决问题的方法,鼓励学生从经验(用量角器,邻补角和为180度)出发,试从不同角度寻求解决问题的方法,得出对顶角相等的结论,口述过程,教师给予明晰,并板书说理过程.教师提出问题.学生回答.在本次活动中,教师应关注:(1)学生能否借助邻补角互补推导出对顶角相等的性质.(2)学生能否进行简单说理.(3)学生是否能运用对顶角相等准确地找到生活中的实际例子.活动2已从位置上对角进行了研究,现在从角的大小对对顶角进行研究,培养说理习惯.学生在探索的过程中会遇到困难,出现问题,通过合作学习加以解决.通过举出生活中应用对顶角相等的例子,使学生进一步理解对顶角的性质,体会对顶角在生活中的应用.活动4问题教师出示问题.(1)直线a、b相交,学生独立思考、独立解题.∠1=40°,求∠2、∠3、∠4教师具体指导并根据学生情况板书规的度数.范的简单说理过程.本次活动中,教师应关注:(1)学生对对顶角相等的掌握情况.(2)学生进行简单说理的准确性、规范性.(3)学生能否在独立思考的基础上,积极参与数学问题的讨论.(4)是否能用几何符号语言来表达自己的解题过程.(2)∠1等于90°时,∠2、∠3、∠4等于多少度?(3)如图是一个对顶角量角教师提出问题,并用课件“对顶角量角器.你能说明它度量角度的原器”演示度量过程.理吗?学生在观察的基础上进行讨论,最后学生独立解释其度量的原理.在本次活动中,教师应关注:(1)学生能否根据课件演示进行独立思考.(2)学生在思考后能否形成自己的看法并表达出来.通过具体问题,再次强化对顶角的概念及性质,并培养学生的说理习惯,发展符号感,逐步培养学生用几何语言交流的能力.问题(2)教师可根据学生的情况添加,为下一节学习两直线垂直作铺垫.。
人教版七年级数学下册第五章相交线与平行线(教案)
(3)在解决实际问题时,引导学生运用平行线知识,分析问题,提高解题能力。例如,在建筑设计中,如何运用平行线知识确定建筑物的结构线条。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相交线与平行线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如火车轨道、双杠等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、判定方法、性质及其在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-平行线在实际问题中的应用:运用平行线知识解决实际问题,培养学生的数学应用意识。
举例解释:
(1)重点讲解平行线的定义,通过图形直观展示,使学生深刻理解平行线的概念。
(2)强调平行线的性质,结合具体实例进行讲解,让学生掌握平行线之间的夹角关系。
(3)详细讲解判定平行线的方法,并通过典型题目进行巩固。
2.教学难点
此外,关于学生小组讨论环节,我觉得整体效果还不错,学生们能够积极参与,提出自己的观点。但在引导和启发学生思考方面,我觉得自己还有待提高。在今后的教学中,我将更加关注学生的思维过程,通过提问和引导,激发他们的思考。
新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)
赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线Array教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.Array 2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)
第五章 相交线与平行线5.1.1相交线一、联系生活,导入新知生:欣赏美丽的跨海大桥图片,观察思考两直线的位置关系有哪几种?师:这些直线有些是相交线,有些是平行线.相交线、平行线有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题.【板书】第五章 相交线、平行线5.1 相交线、对顶角【设计意图】在欣赏美丽的图画中寻找出数学模型,让学生体会“数学就在我们身边,初步培养学生从实物中抽象出简单的几何图形的能力,激发学生学习兴趣.二、合作探究,形成概念师:取两根木条a 、b ,用钉子将它们钉在一起,并且能随意张开. 生:画出图形,并用几何语言描述所画的图形. 师:思考所画的图形中有几个小于平角的角? 生:四个.师:为了方便描述,我们用::∠1、∠2、∠3、∠4来表示这四个角,如果把这四个角中任意两个角组成一对,一共可以组成几对呢?生:(互相补充)∠1和∠2,∠1和∠3,∠1和∠4,∠2和∠3,∠2和∠4,∠3和∠4.师:以小组为单位讨论:这六对角按位置特点来分可以分成几类?为什么?教 学 过 程 设 计12 121 2O121 2121 2生1:一类是相邻的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,一类是相对的∠1和∠3,∠2和∠4.生2:一类是有公共边的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,另一类是无公共边的……师:把这六对角分成两类,一类是有一条公共边,另一边互为反向延长线(∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4);另一类是没有公共边,两边都互为反向延长线(∠1和∠3,∠2和∠4),这就是今天要学的对顶角和邻补角.【板书】:两条直线相交得到的四个角中:有一个公共顶点,两边互为反向延长线的两个角互为对顶角;有一条公共边,另一边互为反向延长线的两个角互为邻补角.师:强调“相交直线”的前提条件.对顶角:有公共顶点无公共边.....邻补角:有公共顶点且有一公共边......“互为”两个字的含义是什么?生:互为是针对两个角而言,如∠1是∠3的对顶角,反过来∠3也是∠1的对顶角.【设计意图】引导学生按位置关系进行分类,并针对分类的原因进行探索和交流,让学生经历概念的形成过程,真正理解对顶角和邻补角的概念.在探索过程中,渗透分类思想,培养探究意识和合作交流能力,调动学生参与积极性.三、及时巩固,加深理解1、下列各图中,∠l和∠2是对顶角吗?为什么?(1)(2)(3)(4)【设计意图】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象.2.下列各图中,∠l和∠2是邻补角吗?为什么?(1)(2)(3)师:图(1)中的邻补角可以看成是怎样形成的?邻补角为什么互补?生:一条直线和一条射线相交形成,邻补角构成一个平角.3、请分别画出图中的∠l对顶角和∠2的邻补角.A BECD O1 221ABFCD OEa b1 42 324、如图,三条直线AB 、CD 、EF 相交于点O , ∠AOE 的对顶角是 , ∠EOD 的邻补角是 .【设计意图】通过辨、画、找,及时反馈学生思维上的一些偏差,加深对两个概念的理解,在画邻补角和找邻补角中让学领会分类思想.四、师生互动,再探性质师:在刚才的练习中,我们知道互为邻补角的两个角的和为180度,互为对顶角的两个角有什么样的大小关系呢?(演示相交线模型) 生:相等. 师:为什么? 生:(讨论交流)生1:∵∠1= 180°-∠2,∠3=180°-∠2(邻补角定义), ∴∠1=∠3(等量代换)生2:∵∠1与∠2互补,∠3与∠2互补(邻补角定义), ∴∠l =∠3(同角的补角相等)师:很好,根据上一章补角的性质“同角的补角相等”说明了对顶角相等这一性质. 【板书】:对顶角相等.【设计意图】引导学生观察、猜测、推理,得到本节课的重点——对顶角相等,让学生深刻理解性质,训练学生的说理能力,树立学好几何图形的信心.五、变式训练,提升能力1.已知直线a 、b 相交,∠l =40°,求∠2、∠3、∠4的度数.2. 变式1:把∠l =40°变为∠l =90°,求∠2、∠3、∠4的度数.变式2:把∠l =40°变为∠l =n°,求∠2、∠3、∠4的度数.变式3:把∠l =40°改为∠2是∠l 的3倍,求∠1、∠2∠3、∠4的度数.变式4:如图,直线AB 、CD 相交于O 点,OE 平分∠AOD , 若∠1=20°,那么∠2=______.A BFCD O E变式5:如图,直线AB 、CD 相交于O 点,∠AOE =90°,若 ∠1=20°,那么∠2=____,∠3=____,∠4=____.3.右图是对顶角量角器,你能说出用它测量角的原理吗?4.如图,要测量两堵围墙所形成的角AOB 的度数,但人不能进入围墙,如何测量? 5. 如图,三条直线AB 、CD 、EF 相交于点O ,图中共有几对对顶角?变式:图中共有几对邻补角?师:解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:为此,对顶角有 2×3=6个,邻补角的对数为 4×3=12个.【设计意图】通过变式,由易到难,培养学生举一反三的能力,在利用数学解决实际问题中感受成功,培养学生从现实情境中建立几何模型的能力,思考题能很好地培养学生的化归能力.六:回顾梳理,归纳小结师:这节课你学到什么知识?理解的怎样?你有哪些方面的感悟?还有什么疑惑? 生:……七:布置作业,分层发散1.课本:P 7-91,2,8,9;2.探究(选做)四条直线相交于一点,共有几对对顶角?几对邻补角?n 条直线呢?【教学反思】:5.1.2垂线(第1课时)教学过程设计2.当∠AOC=90°,口答∠2.垂直定义的应用:∵∠AO C=90°(已知)2.在直线AB上任取一点O,过点O作射线OC、OD 使OC⊥OD,当∠AOC=30A. 60°B.120°C. 605.1.2垂线(第2课时)教学过程设计3.课本第9页第13题。
人教版初中数学七年级下册《第五章相交线与平行线》全章教学设计
优质资料欢迎下载第五章相交线与平行线第五章第一节相交线第五章第一节第一课时教学目标1.通过动手观察、操作、推断、交流等数学活动 , 进一步发展空间观念 , 培养识图能力、推理能力和有条理表达能力 .2.在具体情境中了解邻补角、对顶角 , 能找出图形中的一个角的邻补角和对顶角 , 理解对顶角相等 , 并能运用它解决一些问题 .重点、难点重点 : 邻补角、对顶角的概念 , 对顶角性质与应用 .难点 : 理解对顶角相等的性质的探索.教学手段与方法师生共同探讨教学准备三角尺课件教学过程一、读一读 , 看一看教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.学生欣赏图片 , 阅读其中的文字 .师生共同总结 : 我们生活的世界中, 蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征 , 相交线的一种特殊形式即垂直 , 垂线的性质 , 研究平行线的性质和平行的判定以及图形的平移问题 .二、观察剪刀剪布的过程, 引入两条相交直线所成的角教师出示一块布片和一把剪刀, 表演剪刀剪布过程 , 提出问题 : 剪布时 , 用力握紧把手 , 引发了什么变化 ?进而使什么也发生了变化?学生观察、思想、回答, 得出 :握紧把手时 , 随着两个把手之间的角逐渐变小 , 剪刀刃之间的角边相应变小 . 如果改变用力方向 , 随着两个把手之间的角逐渐变大 , 剪刀刃之间的角也相应变大 .教师点评 : 如果把剪刀的构造看作两条相交的直线, 以上就关系到两条相交直线所成的角的问题, 本节课就是探讨两条相交线所成的角及其特征 .三、认识邻补角和对顶角, 探索对顶角性质1.学生画直线 AB、CD相交于点 O,并说出图中 4 个角 , 两两相配共能组成几对角 ? 各对角的位置关系如何?根据不同的位置怎么将它们C B分类 ?OA D(1)学生思考并在小组内交流, 全班交流 .当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确地表达, 如:∠AOC和∠ BOC有一条公共边 OC,它们的另一边互为反向延长线 .∠AOC和∠ BOD有公共的顶点 O,而是∠ AOC的两边分别是∠BOD两边的反向延长线 .2.学生用量角器分别量一量各个角的度数 , 以发现各类角的度数有什么关系 , 学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等 .3.学生根据观察和度量完成下表 :两直线相交所形成的角分类位置关系数量关系134AOD教师再提问 : 如果改变∠ AOC的大小 , 会改变它与其它角的位置关系和数量关系吗 ?4.概括形成邻补角、对顶角概念 .(1)师生共同定义邻补角、对顶角 .有一条公共边 , 而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线 , 那么这两个角叫对顶角.(2)初步应用 .练习 1: 下列说法 , 你同意吗 ?如果错误 , 如何订正 .①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.②邻补角可看成是平角被过它顶点的一条射线分成的两个角.③邻补角是互补的两个角, 互补的两个角也是邻补角?5.对顶角性质 .(1)教师让学生说一说在学习对顶角概念后 , 结果实际操作获得直观体验发现了什么 ?并说明理由 .(2)教师把说理过程 , 规范地板书 :在图 1 中, ∠AOC的邻补角是∠ BOC和∠ AOD,所以∠ AOC与∠ BOC 互补 , ∠AOC与∠ AOD 互补 , 根据“同角的补角相等”, 可以得出∠AOD=∠BOC,类似地有∠ AOC=∠BOD.教师板书对顶角性质 : 对顶角相等 .强调对顶角概念与对顶角性质不能混淆:对顶角的概念是确定二角的位置关系 , 对顶角性质是确定为对顶角的两角的数量关系.(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象 .四、巩固运用1. 例: 如图 , 直线 a,b 相交 , ∠1=40°, 求∠ 2, ∠3, ∠43的度2数 .a14b 教学时 , 教师先让学生辨让未知角与已知角的关系, 用指出通过什么途径去求这些未知角的度数的, 然后板书出规范的求解过程.2.练习 :(1)课本 P5练习.(2)补充 : 判断下列图中是否存在对顶角 .11122221五、作业课本 P9.1,2,P10.7,8.垂线第五章第一节第二课时教学目标一、素质教育目标(一)知识教学点1.使学生掌握垂线的概念。
第5章 相交线和平行线全章教案(共13份)
流程课
活动1
行线的概念一、创设情境,探究平行线的概念
活动1
观察,分别将木条a、b、c钉在一起,并把它们想象成
两端可以无限延伸的三条直线.转动直线a,直线a从在直
线c的下侧与直线b相交逐步变为在上侧与b相交,想象一
下在这个过程中,有没有直线a与直线b不相交的位置?
在学生想象、描述的基础上引导学生进行归纳.
充分发挥
学生的想
象能力,把
三个木条
想象成三
条直线,想
象在转动
过程中不
活动4
究两
引导学生用几何语言进行说明,适时引入反证法(仅仅介
绍,让学生认识到用这样的方法可以说明道理,而不要求会用
这样的方法).
假设a与c不平行,则可以设a与c相交于点O,又a//b,
b//c,于是过O点有两条直线a和c都与b平行,于是和平行
公理矛盾,所以假设不正确,因此a和c一定平行.
在此环节主要培养学生的逻辑推理能力.
学生独立
思考,完成。
2024年新版人教版七年级数学下册教案全册
2024年新版人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面直角坐标系6.1:平面直角坐标系6.2:坐标与图形的性质6.3:坐标与图形的变化二、教学目标1. 理解并掌握相交线与平行线的性质和判定方法。
2. 学会运用平面直角坐标系表示点的位置,并分析坐标与图形之间的关系。
3. 能够运用所学知识解决实际问题。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用。
平面直角坐标系的建立和点的坐标表示。
2. 教学重点:理解并运用相交线与平行线的性质。
掌握平面直角坐标系的概念和应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 导入新课实践情景引入:展示实际生活中相交线与平行线的应用场景,如道路、桥梁等。
提问:同学们在生活中见过这样的图形吗?它们有什么特点?2. 新课讲解讲解第五章相交线与平行线的内容,通过示例和练习进行巩固。
讲解第六章平面直角坐标系的概念,以及坐标与图形的关系。
3. 例题讲解解答第五章相交线与平行线的相关例题。
解答第六章平面直角坐标系的相关例题。
4. 随堂练习学生完成第五章相交线与平行线的随堂练习题。
学生完成第六章平面直角坐标系的随堂练习题。
5. 知识巩固学生互相讨论,加深对知识的理解。
六、板书设计1. 黑板左侧:相交线与平行线的性质、判定方法。
2. 黑板右侧:平面直角坐标系的概念、坐标表示方法。
3. 中间部分:例题解答、随堂练习题。
七、作业设计1. 作业题目:第五章相交线与平行线习题:练习判断相交线与平行线,并解释原因。
第六章平面直角坐标系习题:在坐标系中绘制给定坐标的点,并分析坐标与图形的关系。
答案:见教材课后习题答案。
八、课后反思及拓展延伸2. 拓展延伸:鼓励学生探索相交线与平行线在生活中的应用,以及平面直角坐标系在地理、计算机等领域的应用。
第五章相交线与平行线全章教案-1.doc
义务教育课标实验教科书数学七年级(下)§5.1.1相交线情感与态度目标:让学生经历探索相交线的实际过程培养学生自主获取知识的能力点邻补角与对顶角的概念,“对顶角相等”的性质与应用点理解对顶角相等的性质的探索法体验探索式教学法课型新教学过程教学环节教学内容师生活动设计意图二、探究说理来。
(∠1与∠2;∠1与∠3;∠1与∠4;∠2与∠3;∠2与∠4;∠3与∠4)(3)观察图形,上面各对角之间存在怎样的位置、大小关系?学生根据观察和度量完成下表:两条直线相交所形成的角分类位置关系数量关系教师引导学生通过改变AOC∠的大让学生在合做四、巩固提高教师指导学生完成通过巩固训练进一步加强学生对所学知识的掌握力度。
义务教育课标实验教科书数学七年级(下)5.1.2垂线(1)一、观察发现学生观察教室里的课桌面、黑板面相邻的两条边的横线和竖线……,思考这些给大家什么印象? 出知识上的缺漏,以备下一环节展示。
(一)我们来看小演示:.出示相交线的模型,学生观察思考:固定木条当b的位置变化时,a、b所成的角a是如何变化的其中会有特殊情况出现吗?当这种情况出现时,a、四个角有什么特殊关系?OD BA 交点叫做_____。
3.表示方法:垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB垂直于直线CD,垂足为O”,则记为__________________,并在图中任意一个角处作上直角记号,如图.4.垂直应用:考从中获取的知识点。
同时培样学生自主获取知识的能力。
如图根据下列语句画图:(1)过点P画射线MN的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线AB延长线于Q点.PMA 学生从知识技能上和思想方法上总结所学知识。
学生通过画图操作所得两条教师做题时,巡视班级。
及时指导学生2.已知:如图,直线AB,垂线OC 交于点O,OD 平分∠BOC,OE平分∠AOC.试判断OD 与OE 的位置关系.注意总结E OD C BA义务教育课标实验教科书数学七年级(下)1、经历探索垂线的性质,并会利用所学知识进行简单的推理。
新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)44086
赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是Array∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB C D 1 234 O 5.1相交线5.1.1 相交线【教学目标】1.了解两条直线相交形成四个角;2.理解对顶角、邻补角的概念;3.掌握对顶角的性质及它的推导过程;4.能运用对顶角的性质解决一些问题.5.培养识图能力. 【教学重点】1.对顶角、邻补角的概念;2.对顶角的性质及应用. 【对话设计】〖探究1〗 两条直线相交所得的角(1)如图,直线AB 、CD 相交于O,若∠1=140º,你能求出其它3个角的度数吗?(2)两条直线相交所得的四个角之间,有怎样的关系(指位置及大小)?(3)〖结论〗在(1)图中,∠1与∠2是______角,∠1与∠3是____角,∠2的对顶角是______,邻补角是_______________. 〖了解邻补角及对顶角的特征〗(见P5)〖探究2〗"顾名思义,如果两个角的顶点重合,这两个角是对顶角."这句话对吗?画图说明.〖探究3〗如图,C 是直线AB 上一点,CD 是射线,图中有几个角?哪两个角互为邻补角? 有两个角互为对顶角吗? 〖结论〗在很多图形中,邻补角还可以看成是一条直线与端点在这条直线上的一条射线组成的两个角. 〖探究4〗判断下列语句是否正确: (1)互补的两个角一定是邻补角. (2)一个角的邻补角一定和它互补. (3)邻补角是有特殊位置关系的两个互补的角. 〖补充练习〗1.如图,D 、E 分别是AB 、AC 上的一点,BE 与CD 交于点G,若∠B=∠C,猜测图中哪些角是相等的. 2.如图,E 是AD 上一点,图中有互补的角吗?有相等的角吗?为什么? (注意:什么叫对顶角?)3.说明下列语句为什么是错误的: (1)一个锐角和一个钝角一定互补;(2)若两个角互补,则这两个角一定是一个锐角,一个钝角. 〖作业〗 P9.1,2,7,8.5.1.2 垂线(第一课时)【教学目标】1.理解垂线、垂线段的意义;2.会用三角尺或量角器过一点画已知直线的垂线;3.掌握垂线的性质1. 【教学重点】1.区分垂线和垂线段;2.用三角尺或量角器过一点画已知直线的垂线;3.垂线的性质1. 【教学难点】怎样画一条线段或射线的垂线. 【对话设计】〖探究1〗 两条直线相交的特殊情况如图, 直线AB 、CD 相交于O,若∠1=90º,求其它3个角. 〖阅读〗了解垂直、垂线和垂足(见P6).ABCD1 2 3 4OA B C DEA BCD EGA B C D〖理解〗日常生活中, 两条直线互相垂直的情形很常见(见P6图5.1-6).你能再举出其它例子吗? 〖探究2〗 过一点画直线的垂线(1)用三角尺画已知直线的垂线,这样的垂线能画出几条?(2)如图,过直线AB 上的已知点P,用三角尺画AB 的垂线;过直线上一点,可以画几条直线与这条直线垂直?(3)如图,过直线AB 外的已知点P,用三角尺画AB 的垂线,并注明垂足.过直线外一点,可以画几条直线与这条直线垂直?(4)从直线AB 外的已知点P,到直线AB 画垂线段,与(3)比较,注意区分垂线和垂线段. 〖阅读归纳〗你知道垂线的第一条性质吗(见P7)?请注意理解"有"与"有且只有"的区别.〖探究3〗 怎样画一条线段或射线的垂线 规定:画一条线段或射线的垂线,就是画线段或射线所在直线的垂线.(1)过线段AB 外的已知点P,画线段AB 的垂线;(2)过射线AB 外的已知点P,画射线AB 的垂线.〖探究4〗点到直线的距离这是一幅比例尺为1:500 000的地图,你能分别求出李庄A 到火车站B 和吴镇D 的距离吗?你认为铁路上是否存在到李庄距离最近的点? 〖作业〗 P9.4,5,6. 5.1.2 垂线(第二课时)【教学目标】1.理解点到直线的距离的意义,并会度量点到直线的距离;2.掌握垂线的性质2;3.感受简单推理. 【教学重点】1.点到直线的距离;2.度量点到直线的距离;3.垂线的性质2. 【教学难点】区分垂线段与点到直线的距离. 【对话设计】〖探究1〗怎样测量跳远的成绩如图,这是你们班的运动员小欣在校运会上跳远后留下的脚印,裁判员怎样测量跳远的成绩?画出皮尺的位置.〖归纳〗你能说出垂线的第二条性质吗?什么叫做点到直线的距离(见P8)?〖探究2〗如图,要从A 处到河边B 挖一道水渠AB 引水,B 点一般应选在哪一处?为什么?如果比例尺是1:100 000,水渠大约要挖多长?〖课堂练习〗1.从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段(垂线段) 叫做三角形的高.请用三角板分别画出下面三角形的三条高(各用三种颜色).2.如图,已知 △ABC, 用度量方法求 △ABC 面积的近似值.BCB CAB CA· 起跑 线 AB·A B P · A B P· A B P· A B P5.1.2 垂线(第三课时、练习课)【教学目标】复习巩固本节所学知识 【练习】1.如图,AD 是ΔABC 的高,如果∠B=∠C,那么,∠1一定等于∠2吗?为什么?2.如图,已知:AD 是ΔABC 的高,E 是AD 上一点,∠AEB=∠AEC,找出图中相等的角.3.如图,四边形ABCD 中,若∠DAB=∠BCD,∠DAC=∠BCA,找出其它相等的角,并说明理由.4.如图,若∠DAB=∠EAC,∠D=∠B,问ΔAED 与ΔACB 之间还有哪些相等的角?5.如图,若BD ⊥AC 于D,CE ⊥AB 于E,CE 、BD 相交于点O. (1)ΔAEC 与ΔADB 之间有哪些角是相等的? (1) ΔOCD 与ΔOBE 之间有哪些角是相等的?6.如图,已知:AD 、BC 相交于点E,如果∠A=∠D,图中还有相等的角吗?7.如图,这是比例尺为1∶300 000的地图,用度量法求学校A 到河流m 的实际距离.8.如图,找出等腰△ABC 底边的中点D, 再用度量法求点D 到两腰的距离(可用三角尺).9.用度量法分别求等腰 △ABC 底边的两个端点B 、C 到两腰AC 、AB 的距离. (提示:要先画出垂线段.)10.如图,用量角器画∠BOC 的平分线OP,再在OP 上任取一点Q,从Q 到OB 、OC 分别画垂线段QM 、QN(M 、N 为垂足).O B CA· mA B CB CA B CDE A B C D EO A B C DEA BC D AB C DE AB C D1 25.2 平行线5.2.1 平行线(第一课时)【教学目标】1.知道三线八角;2.知道同位角、内错角和同旁内角.【对话设计】〖复习〗两条直线相交所成的角共有四个,这四个角之间有哪几种关系?〖有关三线八角的介绍〗一条直线分别同两条直线相交(或者说两条直线被第三条直线所截) , 构成8个角,这些角中,没有公共顶点的两个角之间有以下三种位置关系:同位角、内错角和同旁内角.如图,直线AB、CD与直线EF相交,∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8都是同位角,共有4对;∠5和∠3,∠6和∠4都是内错角,共有2对;∠3和∠6,∠4和∠5都是同旁内角,共2对.〖探索1〗如图,直线AB、CD与直线EF相交,图中哪几对角是同位角?哪几对角是内错角?哪几对角是同旁内角?〖探索2〗如图,直线AB、CD与直线EF相交,∠5和_____是同位角,和____是内错角,与______是同旁内角.〖探索3〗如图,直线AB、CD与直线EF相交,图中哪几对角是同位角?哪几对角是内错角?哪几对角是同旁内角?〖探索4〗如图,找出∠1的内错角,用红笔一笔画出它们,先观察这两个角是否像英文字母"N", 再指出它们是哪两条直线被哪一条直线所截而成.〖探索5〗如图,已知四边形ABCD是梯形,你能用红笔一笔画出图中任意一对同旁内角吗?图中一有几对同旁内角?〖探索6〗如图,直线EF、CD与直线AB相交,任意找出一对同位角,分别记为∠1和∠2,你能用红笔一笔画出这两个角吗?5.2.1 平行线(第二课时练习课)【教学目标】巩固对同位角、内错角和同旁内角的感性认识.【练习】1.如图,BE是AB的延长线,指出下面的两个角是哪两条直线被哪一条直线所截而成?它们是什么角?(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE. ABD CEABE FDCCAB1DCABC D12345EFABED12345F C678ABCD12345FE678A BC D12345FE6782.如图,∠1与∠2是哪两条直线被哪一条直线所截而成?它们是什么角? ∠1与∠3是哪两条直线被哪一条直线所截而成?它们是什么角?3.如图,∠A 与哪个角是内错角?它们是由哪两条直线被哪一条直线所截而成的?试用彩色笔画出这两个角.4.如图,∠A 与哪个角是同旁内角?成的?试用彩色笔验证答案.5.找出图中∠DEC 的同位角,内错角和同旁内角.6.找出图中∠ADE 的同位角,内错角和同旁内角.5.2.1 平行线(第三课时)【教学目标】1.了解空间两条直线的位置关系;2.了解平行线的概念,理解同一平面内两条直线的位置关系;3.认识平行线的性质1、2.【对话设计】 〖复习 交流〗如图,已知直线AB 和直线外一点P,你能过点P 画一条直线与AB 平行吗?把你的画法与同伴交流,看谁的方法好.〖介绍空间两条直线的位置关系〗如图,与长方体的棱AB 平行的棱有__________________等____条,它们都和AB 在同一平面内;与AB 相交的棱有______________等____条, 它们也和AB 在同一平面内;棱AB 与棱B'C'不相交也不平行,像这样的两条直线叫做异面直线,与AB 异面的直线还有______________等____条. 〖归纳〗在同一平面内,两条直线的位置关系只有_____、_______两种.〖探索1〗在一张半透明的纸上任意画一条直线AB,在直线外任取一点P,你能折出过点P 的平行线吗?试一试,并把你的折法与同伴交流.〖探索2〗经过直线外一点,可以画两条直线和这条直线平行吗? 〖平行公理1介绍〗经过直线外一点,有且只有一条直线与这条直线平行.〖释义〗本书中所说的基本事实是人们在长期实践中总结出来的结论, 基本事实也称为公理.〖想一想〗如图,P 是直线AB 外一点,CD 与EF 相交于P.若CD 与AB 平行,则EFABCD E FAB ·P CD EF A CA B · P B DC E AAB ABE F 12 3D C与AB 平行吗?为什么?〖探索3〗如图,若CD ∥AB,且 EF ∥AB,则CD 与EF 能不平行吗?为什么? 〖平行公理2介绍〗如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 〖友情提示〗若a=b=c(字母表示数),那么,a=c ,根据的是等式的性质.若a ∥b,b ∥∥c(字母表示直线),那么a ∥b.根据的是平行公理2.5.2.2直线平行的条件(第一课时)【教学目标】1.掌握平行线的判定方法;2.了解从平行的判定公理得出其它两种判定方法的过程;3.感受逻辑推理;4.感受把未知化为已知的思想. 【教学重点与难点】探索并掌握平行线的判定方法. 【对话设计】 〖探索1〗我们以前学过用直尺和三角尺画平行线.如果只用一把三角尺可以吗?如果可以,请用这种方法过点P 画一条直线与AB 平行.你能够说明你所画的直线一定与AB 平行吗?〖介绍平行线的判定方法1〗两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 〖说明〗方法1也是基本事实(公理). 〖探索2〗木工经常用角尺画平行线,你能说出其中的道理吗(见P15)?如果只要求画平行线,不用角尺(例如只用三角尺中的一个锐角)行吗?〖探索3〗 如图,如果∠1=∠2,由平行线的判定方法1,能得出a ∥b 吗? 〖结论〗由平行线的判定方法1,可以得出平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.〖归纳〗遇到一个新问题时,常常把它转化为已知的(或已经解决的)问题来解决.这一节中,我们利用"同位角相等,两直线平行"得到"内错角相等,两直线平行".〖探索4〗如图,现在我们一起来探究: 两条直线(a 、b)被第三条直线(c)所截,如果同旁内角互补(∠1+∠2=180º),那么这两条直线(a 、b)平行吗? 〖结论〗由平行线的判定方法1(或2),可以得出平行线的判定方法3: 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.〖练习〗1.如图,分别指出下面各推理的根据: (1)∠2=∠5⇒a ∥b;(2)∠4=∠5⇒a ∥b;(3)∠3+∠5=180º⇒a ∥b.2.如图,(在同一平面内)若两条直线a 、b 都和直线c 垂直,那么这两条直线一定平行,这是为什么? 〖作业〗 P18.1、2、3.5.2.2直线平行的条件(第二课时)bcaba 1 2 3 4 5cc a1 2 bc a 12bA B · P【教学目标】会应用平行线的判定方法. 【对话设计】〖复习思考〗(见P18)〖探索1〗如图,下面的两个角分别是哪两条直线被哪一条直线所截而成?它们是什么角?(1)∠BAC 与∠DCA;(2)∠DAC 与∠BCA. 〖探索2〗如图,a 、b 、c 、d 是直线,E 、F 、G 、H 是交点,(1)若∠1=∠2,可以证明a ∥b,而不能证明c ∥d.这是因为∠1和∠2是直线_______和_____被直线____所截而成,它们与直线____无关.(2)同样的道理,若已知∠1 = ∠3,可以证明______∥______,这是因为它们是直线____和______被直线______所截而成.〖探索3〗如图,BE 是AB 的延长线,从∠CBE=∠A 可以判定_____∥______,这是因为相等的两角是直线____和____被直线____所截而成(与直线_____无关),判定平行的根据是___________________ __________________. 〖提示〗用彩色笔在图中画出相等的两个角(∠CBE 和∠A),理解为什么不能由此推出AB ∥CD.〖说明〗学习和运用判定方法1的难点是:(1)判定两个角是不是同位角;(2)确定这两个同位角是哪两条直线被那一条直线所截而成; (3)进而判定可以证明哪两条直线平行.〖探索4〗如图,D 是AB 上一点,E 是AC 上一点, ,根据判定方法1,如果知道哪两个角相等,就可以证明DE ∥BC?〖探索5〗如图,AE 与CD 相交于O,若∠A=110º,∠1=70º,就可以证明AB ∥CD,这是为什么?〖作业〗 P18.4、5、6.5.3 平行线的性质(第一课时)【教学目标】1.经历从性质公理推出性质2的过程;掌握平行线的性质,并能用它们作简单的逻辑推理;2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用. 【教学重点】平行线的性质以及应用. 【教学难点】平行线的性质公理与判定公理的区别. 【对话设计】〖探索1〗 反过来也成立吗过去我们学过: 如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.这两个句子都是正确的.现在换一个例子:如果两个角是对顶角,那么这两个角相等.它是对的.反过来,如果两个角相等,这两个角是对顶角.对吗?再看下面的例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?〖结论〗如果一个句子是正确的,反过来说(因果对调),就未必正确. 〖探索2〗上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?它还是对的吗?完成P21的探究,写出你的猜想. 〖推理举例〗如果把平行线性质1---"两直线平行,同位角相等"看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:"两直线平行,内错角相等".如图,已知:直线a 、b 被直线c 所截,且a ∥b,求证:∠1=∠2.a b 123cA B 1D CE OA B D C EAB D CE bH a G 123 c d F E A BD C证明:∵a∥b,∴∠1=∠3(__________________).∵∠3=∠2(对顶角相等),∴∠1=∠2(等量代换).〖探索3〗下面我们来证明平行线的性质3:两直线平行,同旁内角互补.请模仿范例写出证明.如图,已知: 直线a、b被直线c所截,且a∥b,求证:∠1+∠2=180º.证明:〖探索4 〗如图: 直线a、b被直线c所截,(1)若a∥b,可以得到∠1=∠2.根据什么?(2)若∠1=∠2,可以得到a∥b.根据什么?根据和(1)一样吗?〖练习1〗如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:(1)∵a∥b,∴∠1=∠3(___________________);(2)∵∠1=∠3,∴a∥b(_________________).(3)∵a∥b,∴∠1=∠2(__________________);(4)∴a∥b,∴∠1+∠4=180º(_____________________________________)(5)∵∠1=∠2,∴a∥b(___________________);(6)∵∠1+∠4=180º,∴a∥b(_______________).〖练习2〗画两条平行线,说出你画图的根据;再任意画一条直线和这两条平行线都相交,写出所生成的角当中的一对内错角,并说明这一对角一定相等的理由.〖作业〗P25.1、2、3、4.5.3 平行线的性质(第二课时)【教学目标】掌握两条平行线的距离的概念,并能灵活运用.【对话设计】〖探索1〗一块梯形铁片的残余部分如图,量得∠A=75º,∠B=72º,梯形的另外两个角分别是多少度?〖阅读模仿〗请模仿P23例作答.〖探索2〗如图,AB∥CD,(1)在AB上任取一点E,向CD画垂线段EF;(2)EF是否也垂直于AB呢?(3)在AB上另取一点G,向CD画垂线段GH;(4)在CD上,点F、H外,任取一点I,向AB画垂线段IJ;(5)量出EF、GH、IJ的长,说说你的发现.〖探索3〗同时垂直于两条平行线,并且夹在这两条平行间的线段之间....有什么性质?你能举出实际的例子吗?〖概念学习〗同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离.〖概念应用〗(1)探索2的图中,两条平行线的距离是多少?(2)如图,若AB∥CD,求AB、CD的距离.〖作业〗P25.5、6、7.B DA BDCab123c4ab12cab123c5.3 平行线的性质(第三课时)【教学目标】掌握命题的概念,并能分清命题的组成部分. 【对话设计】 〖概念理解1〗前面,我们学过一些对某一件事情作出判断的句子,例如:(1)如果两条直线都与第三条直线平行,那么,这两条直线也互相平行; (2)等式两边加同一个数,结果仍是等式; (3)对顶角相等.像这样判断一件事情的语句,叫做命题.〖探索1〗下列语句,哪些是命题?哪些不是? (1)过直线AB 外一点P,作AB 的平行线.(2)过直线AB 外一点P,可以作一条直线与AB 平行吗?(3)经过直线AB 外一点P, 有且只有一条直线与这条直线平行. (4)若|a|=-a,则a ≤0. 〖概念理解2〗许多命题都由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常写成"如果……那么……"的形式,这时,"如果"后接的部分是题设,"那么"后接的的部分是结论. 〖探索2〗命题"两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行"中,题设是什么? 〖探索3〗把下列命题改写成"如果……那么……"的形式: (1)互补的两个角不可能都是锐角;(2)垂直于同一条直线的两条直线平行. 〖探索4〗指出下列命题的题设和结论:(1)如果两个数互为相反数,这两个数的商为-1. (2)两直线平行,同旁内角互补. (3)同旁内角互补,两直线平行. (4)同角的余角相等.(5)绝对值相等的两个数相等.〖探索5〗判断下列命题是否正确:(1)如果两个数的和为0,这两个数互为相反数; (2)如果两个数互为相反数,这两个数的和为0; (3)如果两个数互为相反数,这两个数的商为-1; (4)如果两个数的商为-1,这两个数互为相反数. (5)如果两个角是邻补角,这两个角互补; (6)如果两个角互补,这两个角是邻补角. 〖作业〗 P25.8.〖补充练习〗1.下列句子是命题吗?若是,把它改写成"如果……那么……"的形式,并判断是否正确: (1)一个角的补角比这个角的余角大多少度? (2)垂线段最短,对吗? (3)等角的补角相等.(4)如果两条直线相交,那么它们只有一个交点. (5)同旁内角互补.(6)邻补角的平分线互相垂直. (7)两个负数,绝对值大的反而小. (8)绝对值大的数反而小.(9)若a>b,则b a>1.(10)两数和为正数,则这两数中至少有一个是正数. (11)0 除以任何一个数都得 0 .(12)若a<0,b>0,且|a|>|b|,则a+b=|b|-|a|. 2.平行四边形的对角相等,为什么?3.一个角的两边与另一个角的两边分别平行,这两个角一定相等.为什么不对?5.4平移(第一课时)【教学目标】 1.理解什么叫平移;2.经历观察、分析、操作、欣赏及抽象、概括的过程;3.进一步发展空间观念,增强审美意识. 【教学重难点】 平移的概念与性质. 【对话设计】 〖阅读〗P30-31. 〖理解平移〗如图,已知线段AB,平移AB,使点A 移动到点'A ,你能画出平移后的线段'A 'B 吗(只要画示意图)?如果是使点A 移动到点"A 呢?与同学交流答案.你能从中体会平移吗?形'A 'B 'C .〖练习〗如图,平移ΔABC,使点A 移动到点'A ,画出平移后的三角〖方格与平移〗如图,平移ΔABC,使点A 移动到点'A ,画出平移后的三角形'A 'B 'C .(请注意方格的作用.)形'A 'B 'C .(请〖练习〗如图,平移ΔABC,使点A 移动到点'A ,画出平移后的三角注意方格的作用.)〖平移与旋转〗如图,使ΔABC 绕点A 旋转90º,画出旋转后的三角形'A 'B 'C .(这时方格还有用吗?)〖平移的过程与结果〗 下列变换属于平移吗?AC'A·AB'A··"A。