初中圆的有关概念及圆的确定

合集下载

初中数学知识归纳圆的概念及性质

初中数学知识归纳圆的概念及性质

初中数学知识归纳圆的概念及性质圆是初中数学中的一个重要概念,它具有独特的性质和应用。

本文将对圆的概念及其性质进行归纳总结,以帮助读者更好地理解和掌握这一数学知识点。

一、圆的定义与基本概念圆是由平面上与一个确定点的距离相等的所有点组成的图形。

这个确定点称为圆心,距离称为半径。

圆可以用符号表示为O(A,r),其中O为圆心,A为圆上的任意一点,r为半径。

二、圆的性质1. 圆的直径圆上的任意两点连线,经过圆心,则称为圆的直径。

直径的长度是半径的两倍,用符号表示为d=2r。

2. 圆的弦圆上的任意两点连线,不经过圆心,则称为圆的弦。

圆的直径是一条特殊的弦,它同时也是最长的弦。

3. 圆的弧圆上的部分曲线,是由两个弦之间的交点所夹的部分,称为圆的弧。

同一个圆上的两个弧可以互补称为对称弧。

4. 圆的周长圆的周长是圆上所有点与圆心的距离之和,也就是圆的一周的长度。

圆的周长公式为C=2πr,其中π取约等于3.14。

5. 圆的面积圆的面积是圆内部的所有点与圆心的距离之和,也就是圆所围成的区域的大小。

圆的面积公式为A=πr²。

6. 圆的切线与切点从圆外一点引一条直线与圆相交,该直线在圆上的切点和与圆相切的直线称为圆的切线。

7. 圆的切圆两个圆相切于一点,称为圆的切圆。

8. 圆的切线定理如果一条直线与一个圆相切,那么与这条直线相垂直的半径也是与这条直线相切的。

9. 圆的相交性质两个圆相交于两个点,这两个点到各自的圆心的距离相等,且此两点不在任一圆内部。

10. 弧长与弧度圆的弧长是指圆心角所对应的弧的长度。

弧度是表示弧长与半径之比,记作θ,弧度大小等于圆心角大小的弧长除以半径,即θ=弧长/半径。

11. 弧长公式圆的弧长公式为L=θr,其中L表示弧长,θ表示圆心角的大小(弧度制),r表示半径。

12. 扇形的面积公式扇形是由圆心角和半径所夹的弧围成的区域,扇形的面积公式为S=1/2θr²,其中S表示扇形的面积。

初中数学圆的知识点总结3篇

初中数学圆的知识点总结3篇

初中数学圆的知识点总结3篇初中数学圆的知识点总结11.圆是以圆心为对称中心的中心对称图形;同圆或等圆的半径相等。

2.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

3.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

4.圆是定点的距离等于定长的点的汇编。

5.圆的内部可以看作是圆心的距离小于半径的点的汇编;圆的外部可以看作是圆心的距离大于半径的点的汇编。

6.不在同一直线上的三点确定一个圆。

7.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

8.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那它们所对应的其余各组量都相等。

9.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

10.经过切点且垂直于切线的直线必经过圆心。

11.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

12.切线的性质定理圆的切线垂直于经过切点的半径。

13.经过圆心且垂直于切线的直线必经过切点14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

15.圆的外切四边形的两组对边的和相等外角等于内对角。

16.如果两个圆相切,那切点一定在连心线上。

17.①两圆外离d>R+r②两圆外切d=R+r③两圆相交d>R-r)④两圆内切d=R-r(R>r)⑤两圆内含d=r)18.定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。

19.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

圆的知识点概念公式大全

圆的知识点概念公式大全

圆知识点概念公式大全一.圆定义1.在一个平面内,线段OA绕它固定一个端点O旋转一周,另一个端点A所形成图形叫圆.这个固定端点O叫做圆心,线段OA叫做半径.以O点为圆心圆记作⊙O,读作圆O.2.圆是在一个平面内,所有到一个定点距离等于定长点组成图形.3.确定圆条件:⑴圆心;⑵半径,其中圆心确定圆位置,半径长确定圆大小.二.同圆、同心圆、等圆1.圆心一样且半径相等圆叫做同圆;2.圆心一样,半径不相等两个圆叫做同心圆;3.半径相等圆叫做等圆.三.弦与弧1.连结圆上任意两点线段叫做弦.经过圆心弦叫做直径,并且直径是同一圆中最长弦,直径等于半径2倍.2.圆上任意两点间局部叫做圆弧,简称弧.以A B、为端点弧记作AB,读作弧AB.在同圆或等圆中,能够重合弧叫做等弧.3.圆任意一条直径两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆弧叫做优弧,小于半圆弧叫做劣弧.4.从圆心到弦距离叫做弦心距.5.由弦及其所对弧组成图形叫做弓形.四.与圆有关角及相关定理1.顶点在圆心角叫做圆心角.将整个圆分为360等份,每一份弧对应1︒圆心角,我们也称这样弧为1︒弧.圆心角度数与它所对弧度数相等.2.顶点在圆上,并且两边都与圆相交角叫做圆周角.圆周角定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对圆心角一半.推论1:在同圆或等圆中,如果两个圆周角相等,它们所对弧一定相等.推论2:半圆〔或直径〕所对圆周角是直角,90︒圆周角所对弦是直径.〔在同圆中,半弧所对圆心角等于全弧所对圆周角〕3.顶点在圆内,两边与圆相交角叫圆内角.圆内角定理:圆内角度数等于圆内角所对两条弧度数与一半.4.顶点在圆外,两边与圆相交角叫圆外角.圆外角定理:圆外角度数等于圆外角所对长弧度数与短弧度数差一半.5.圆内接四边形对角互补,一个外角等于其内对角.6.如果三角形一边上中线等于这边一半,那么这个三角形是直角三角形.7.圆心角、弧、弦、弦心距之间关系定理:在同圆或等圆中,相等圆心角所对弧相等,所对弦相等,所对弦弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦弦心距中有一组量相等,那么它们所对应其余各组量分别相等.五.垂径定理1.垂径定理:垂直于弦直径平分这条弦,并且平分弦所对两条弧.平分弦〔不是直径〕直径垂直于弦,并且平分弦所对两条弧;2.其它正确结论:⑴弦垂直平分线经过圆心,并且平分弦所对两条弧;⑵平分弦所对一条弧直径,垂直平分弦,并且平分弦所对另一条弧.⑶圆两条平行弦所夹弧相等.3.知二推三:⑴直径或半径;⑵垂直弦;⑶平分弦;⑷平分劣弧;⑸平分优弧.以上五个条件知二推三.注意:在由⑴⑶推⑵⑷⑸时,要注意平分弦非直径.4.常见辅助线做法:⑴过圆心,作垂线,连半径,造RT△,用勾股,求长度;⑵有弧中点,连中点与圆心,得垂直平分.相关题目:1.平面内有一点到圆上最大距离是6,最小距离是2,求该圆半径2.〔08郴州〕在Or=,AB CD⊙中,半径5,是两条平行弦,且,,那么弦AC长为__________..==AB CD86六.点与圆位置关系1.点与圆位置有三种:⑴点在圆外⇔d r>;⑵点在圆上⇔d r=;⑶点在圆内⇔d r<.如下表所示:2.过点作圆⑴经过点A圆:以点A以外任意一点O为圆心,以OA长为半径,即可作出过点A圆,这样圆有无数个.⑵经过两点A B、圆:以线段AB中垂线上任意一点O作为圆心,以、圆,这样圆也有无数个.OA长为半径,即可作出过点A B⑶过三点圆:假设这三点A B C、、共线时,过三点圆不存在;假设、、三点不共线时,圆心是线段AB与BC中垂线交点,而这A B C个交点O是唯一存在,这样圆有唯一一个.⑷过n()4n≥个点圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定圆圆心.3.定理:不在同一直线上三点确定一个圆.注意:⑴“不在同一直线上〞这个条件不可无视,换句话说,在同一直线上三点不能作圆;⑵“确定〞一词含义是“有且只有〞,即“唯一存在〞.4.三角形外接圆⑴经过三角形三个顶点圆叫做三角形外接圆,外接圆圆心是三角形三条边垂直平分线交点,叫做三角形外心,这个三角形叫做这个圆内接三角形.⑵三角形外心性质:①三角形外心是指外接圆圆心,它是三角形三边垂直平分线交点,它到三角形各顶点距离相等;②三角形外接圆有且只有一个,即对于给定三角形,其外心是唯一,但一个圆内接三角形却有无数个,这些三角形外心重合.⑶锐角三角形外接圆圆心在它内部〔如图1〕;直角三角形外接圆圆心在斜边中点处〔即直角三角形外接圆半径等于斜边一半,如图2〕;钝角三角形外接圆圆心在它外部〔如图3〕.五.直线与圆位置关系定义、性质及判定设O⊙半径为r,圆心O到直线l距离为d,那么直线与圆位置关系如下表:从另一个角度,直线与圆位置关系还可以如下表示:四.切线性质及判定1. 切线性质:定理:圆切线垂直于过切点半径.推论1:经过圆心且垂直于切线直线必经过切点.推论2:经过切点且垂直于切线直线必经过圆心.2. 切线判定定义法:与圆只有一个公共点直线是圆切线;距离法:与圆心距离等于半径直线是圆切线;定理:经过半径外端并且垂直于这条半径直线是圆切线.3. 切线长与切线长定理:⑴在经过圆外一点圆切线上,这点与切点之间线段长,叫做这点到圆切线长.⑵从圆外一点引圆两条切线,它们切线长相等,圆心与这一点连线平分两条切线夹角.五.三角形内切圆1. 定义:与三角形各边都相切圆叫做三角形内切圆,内切圆圆心叫做三角形内心,这个三角形叫做圆外切三角形.2. 多边形内切圆:与多边形各边都相切圆叫做多边形内切圆,该多边形叫做圆外切多边形.六.圆与圆位置关系定义、性质及判定设12O O 、⊙⊙半径分别为R r 、〔其中R r >〕,两圆圆心距为d ,那么两圆位置关系如下表: 位置关系 图形 定义性质及判定 外离两个圆没有公共点,并且每个圆上点都在另一个圆外部.d R r >+⇔两圆外离外切 两个圆有唯一公共点,并且除了这个公共点之外,每个圆上点都在另一个圆外部. d R r =+⇔两圆外切相交 两个圆有两个公共点. R r d R r -<<+⇔两圆相交内切 两个圆有唯一公共点,并且除了这个公共点之外,一个圆上点都在另一个圆内部. d R r =-⇔两圆内切内含 两个圆没有公共点,并且一个圆上点都在另0d R r ≤<-⇔两圆内含相离两圆没有公共点,它包括外离与内含两种情况;相切两圆只有一个公共点,它包括内切与外切两种情况.七.正多边形与圆1. 正多边形定义:各条边相等,并且各个内角也都相等多边形叫做正多边形.2. 正多边形相关概念:⑴正多边形中心:正多边形外接圆圆心叫做这个正多边形中心.⑵正多边形半径:正多边形外接圆半径叫做正多边形半径.⑶正多边形中心角:正多边形每一边所对圆心角叫做正多边形中心角.⑷正多边形边心距:中心到正多边形一边距离叫做正多边形边心距.3. 正多边形性质:⑴正n边形半径与边心距把正n边形分成2n个全等直角三角形;⑵正多边形都是轴对称图形,正n边形共有n条通过正n边形中心对称轴;⑶偶数条边正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.八、圆中计算相关公式第 11 页 设O ⊙半径为R ,n ︒圆心角所对弧长为l ,1. 弧长公式:π180n R l = 2. 扇形面积公式:21π3602n S R lR ==扇形 3. 圆柱体外表积公式:22π2πS R Rh =+4. 圆锥体外表积公式:2ππS R Rl =+〔l 为母线〕 常见组合图形周长、面积几种常见方法:① 公式法;② 割补法;③ 拼凑法;④ 等积变换法。

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

总复习圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质 1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定不在同一直线上的三个点确定一个圆.要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点进阶:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点进阶:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点进阶:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC1902A =+∠°.(2)如图所示,E是△ABC的两外角平分线的交点,1902BEC A ∠=-∠°.(3)如图所示,E是△ABC内角与外角的平分线的交点,12E A ∠=∠.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,1902DFE A ∠=-∠°.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为DE上一点,则1902 DPE A ∠=+∠°.【典型例题】类型一、圆的性质及垂径定理的应用例1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.例2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB .举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定例3.已知:如图所示,△ABC 内接于⊙O ,BD ⊥半径AO 于D .(1)求证:∠C =∠ABD ;(2)若BD =4.8,sinC =45,求⊙O 的半径.类型二、圆的切线判定与性质的应用例4.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.举一反三:【变式】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型三、切线的性质与等腰三角形、勾股定理综合运用例5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且312OF-=,求证△DCE≌△OCB.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.例6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.举一反三:A的中点,CD⊥AB于D,CD与AE相交于F.【变式】如图所示,AB是⊙O的直径,C是E(1)求证:AC2=AF·AE;(2)求证:AF=CF.【巩固练习】一、选择题1. 在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5 B.6 C.7 D.152.如图,AB为⊙ O 的直径,CD 为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A. 70°B.35°C. 30°D. 20°3.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°第2题第3题第4题第5题4.如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为()A. 5B. 4C. 3D. 25.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. 14B. 15C. 32D. 236. 如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为0AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35 C .43D .45二、填空题7.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为 .8.如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.O B⊥AD,交AC 于点B .若OB=5,则BC 的长等于 .9.如图所示,已知⊙O 中,直径MN =10,正方形ABCD 的四个顶点分别在半径OM 、OP 以及⊙O 上,并且∠POM =45°,则AB 的长为________.第8题 第9题 第10 题10.如图所示,在边长为3 cm 的正方形ABCD 中,1O 与2O 相外切,且1O 分别与,DA DC 边相切,2O 分别与,BA BC 边相切,则圆心距12O O = cm .11.如图所示,,EB EC 是O 的两条切线,,B C 是切点,,A D 是O 上两点,如果∠E=46°,∠DCF=32°那么∠A 的度数是 .12.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是的中点,CE⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P 是∠ACQ 的外心,其中正确结论是 (只需填写序号).三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DC 2DP DO 3==.(1)求证:直线PB 是⊙O 的切线; (2)求cos∠BCA 的值.14.如图所示,点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A出发后多少秒两圆相切?15.已知⊙O的直径AB=10,弦BC=6,点D在⊙O上(与点C在AB两侧),过D作⊙O的切线PD.(1)如图①,PD与AB的延长线交于点P,连接PC,若PC与⊙O相切,求弦AD的长;(2)如图②,若PD∥AB,①求证:CD平分∠ACB;②求弦AD的长.16. 如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P 为半圆上一点,设∠MOP=α.当α=度时,点P到CD的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=度,此时点N到CD的距离是.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=34,cos41°=34,tan37°=34.)。

人教版初中数学九年级上册第24章知识复习第一部分圆的有关概念和性质

人教版初中数学九年级上册第24章知识复习第一部分圆的有关概念和性质

在上图中,
D
若∠COD=∠AOB,则 CD=AB,CD=AB ;
若CD=AB,则 ∠COD=∠AOB,CD=AB;
若CD=AB,则 ∠COD=∠AOB,CD=AB,.
CAD=ACB.
(二)圆的有关性质 3、垂径定理:

垂直于弦的直径平分这条弦,并且平分弦 所对的两条弧。 推论:①平分弦(非直径)的直径垂直于这条弦,
(二)圆的有关性质 Q
A•
O•
•B
P
C
4、②在同圆或等圆中,同弧或等弧所对的 圆周角相等,都等于该弧所对的圆心角的 一半;相等的圆周角所对的弧相等。
如图:∠BOC=2∠BAC=2∠BPC=2∠BQC.
(二)圆的有关性质
PQ
O •
D
A C
B
如图:若AB=CD, 则∠AOB=∠COD=2∠APB=2∠CQD.
反之,若∠APB=∠CQD,则AB=CD.
【及时巩固】
d P
P
d
O

r
d
P
1、设⊙O的半径为r,点P到圆心的而距离为d,
则 ①点P在⊙O上 d = r;
②点P在⊙O内 d< r;
③点P在⊙O外 d >r.
【及时巩固】
2、“经过三角形各顶点的圆叫三角形的外接圆. 外接圆的圆心叫做三角形的外心(即三角形三边 中垂线的交点),这个三角形叫圆的内接三角形.” 先分别作出锐角三角形、钝角三角形、直角三 角形的外接圆,再观察图形,填空:
并且平分弦所对的弧; ②平分弧的直径垂直平分这条弧所对的弦;...
(二)圆的有关性质

垂径定理及推论可归纳为: 一条直线若具有“①经过圆心; ②垂直于弦;③平分弦;④平分弦所对的 优弧;⑤平分弦所对的劣弧”这五个性质 中的两个,这条直线就具有其余三个性质. 注意:①③组合有限制.

圆的定义和有关概念

圆的定义和有关概念

圆的定义和有关概念一、圆的定义和有关概念1、圆的有关概念(1)圆的定义:在一个平面内,线段$OA$绕它固定的一个端点$O$旋转一周,另一个端点$A$ 所形成的图形叫做圆。

其固定的端点$O$叫做圆心,线段$OA$叫做半径。

以点$O$为圆心的圆,记作“$⊙O$”,读作“圆$O$”。

此外,圆心为$O$,半径为$r$的圆可以看成是所有到定点$O$的距离等于定长$r$的点的集合。

(2)弦:连接圆上任意两点的线段叫做弦。

(3)直径:经过圆心的弦叫做直径。

(4)弧:圆上任意两点间的部分叫做圆弧,简称弧。

以$A$,$B$为端点的弧记作$\overset{\frown} {AB}$,读作“圆弧$AB$”或“弧$AB$”。

圆的任意一条非直径的弦把圆分成两条不同长的弧,大于半圆的弧叫做优弧,一般用三个点表示;小于半圆的弧叫做劣弧。

(5)半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

(6)等圆、等弧:能够重合的两个圆叫做等圆。

容易看出:半径相等的两个圆是等圆;反过来,同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫做等弧。

2、垂直于弦的直径(1)圆的对称性圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。

圆有无数条对称轴。

圆也是中心对称图形,圆心是它的对称中心。

圆还具有旋转不变性。

(2)垂径定理垂直于弦的直径平分弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

3、弧、弦、圆心角(1)圆心角:顶点在圆心的角叫做圆心角。

(2)圆心角定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

同样还可以得到:① 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。

② 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优弧和劣弧分别相等。

4、圆周角(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

(2)圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

圆的概念及确定

圆的概念及确定

圆的概念及确定九年级数学同步辅导2009-07-01 06:28 阅读226评论1字号:大大中中小小圆的概念及确定1.圆定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。

2.固定的端点O叫做圆心。

(确定圆的位置)线段OA叫做半径。

(确定圆的大小)记法:以点O为圆心的圆,记作“⊙O”,读作“圆O”注意:(1)圆指的是“圆周”而不是“圆面”。

(2)半径指的是线段,为了方便也把半径的长称为半径。

圆的确定:(1)一个圆心一个半径(2)圆心、圆上一个一个的已知点(3)直径2. 圆的集合定义:(1)角平分线上的点到角两边的距离相等。

到角两边距离相等的点在角的平分线上。

所以:角平分线可以看做是到角的两边距离相等的点的集合。

(2)线段的垂直平分线上的点到线段的两个端点的距离相等。

到线段的两个端点的距离相等的点在线段的垂直平分线上。

线段的垂直平分线可以看做是和线段两个端点距离相等的点的集合。

*把一个图形看成是满足某种条件的点的集合,必须符合:a.图形上的每一点都满足某个条件,b.满足某个条件的每一个点,都在这个图形上。

(3)圆上各点到定点(圆心O)的距离都等于定长(半径r),到定点的距离等于定长的点都在同一个圆上。

(圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形)圆的集合定义:圆是到定点的距离等于定长的点的集合。

[教学目标]1. 了解圆的定义,点与圆的位置关系;理解等圆、等弧的概念和与圆有关的概念。

2. 了解轨迹的意义,掌握五个基本轨迹。

3. 圆的定义圆是到定点的距离等于定长的点的集合。

定点称为圆心,定长称为半径。

4. 圆外部分、圆内部分5. 点和圆的位置关系点和圆的位置关系有:点在圆内、圆上,圆外三种,设⊙O的半径为r,点P 和圆心O的距离为d,则有:点在圆内;点在圆上;点在圆外。

6. 理解定理,不在一直线上的三点确定一个圆,并掌握不在同一条直线上三点作圆的方法。

自学初中数学资料 圆之垂径定理、圆心角、圆周角定理 (资料附答案)

自学初中数学资料 圆之垂径定理、圆心角、圆周角定理 (资料附答案)

自学资料一、圆的相关定义【知识探索】1.定理:不在同一直线上的三点确定一个圆.【说明】(1)过平面上一点能作无数多个圆;(2)过平面上两点能做无数多个圆,这些圆的圆心在两点连线的垂直平分线上;(3)过平面上三点:①三点不在同一直线上,能作唯一一个圆;②三点在同一直线上,不能作圆.【错题精练】例1.下列命题正确的个数有()①过两点可以作无数个圆;②经过三点一定可以作圆;③任意一个三角形有一个外接圆,而且只有一个外接圆;④任意一个圆有且只有一个内接三角形.A. 1个B. 2个C. 3个D. 4个第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训【解答】解:①过两点可以作无数个圆,正确;②经过三点一定可以作圆,错误;③任意一个三角形有一个外接圆,而且只有一个外接圆,正确;④任意一个圆有且只有一个内接三角形,错误,正确的有2个,故选:B.【答案】B例2.有下列四个命题,其中正确的有()①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A. 4个B. 3个C. 2个D. 1个【答案】C例3.如图,在平面直角坐标系中,点A坐标为(﹣4,0),⊙O与x轴的负半轴交于B(﹣2,0).点P是⊙O上的一个动点,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于()A.B.C.D.【解答】第2页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】C例4.如图,已知△ABC.(1)尺规作图作△ABC的外接圆(保留作图痕迹,不写作法);(2)设△ABC是等腰三角形,底边BC=10,腰AB=6,求圆的半径r.【答案】解:(1)如图所示;(2)连接OB,连接OA交BC于点E,∵△ABC是等腰三角形,底边BC=10,腰AB=6,∴BE=CE=5,AE=√AB2−BE2=√11,在Rt△BOE中,r2=52+(r-√11)2∴r=18√11=18√1111.第3页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第4页 共页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【解答】【解答】解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM==4,OM的长即为OP的最小值,∴4≤OP≤5.【答案】4≤OP≤55.已知:△ABC(如图)(1)求作:△ABC的外接圆(要求:用尺规作图,保留作图痕迹,不要求写作法及证明).(2)若∠A=60°,BC=8√3,求△ABC的外接圆的半径.【答案】解:(1)如图所示:⊙O即为所求△ABC的外接圆;(2)过点O作OD⊥BC于点D,∵∠A=60°,BC=8√3,∴∠COD=60°,CD=4√3,第5页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∴CO=4√3sin60°=8,答:△ABC的外接圆的半径为8.二、圆心角、弧、弦、弦心距、圆周角之间的关系【知识探索】年份题量分值考点题型2015114圆内接四边形的性质;点与圆的位置关系选择、简答201613圆周角定理;填空2017219弧长面积;切线的性质;圆周角定理选择、填空、简答201824圆周角定理;填空2019216扇形面积;切线长定理;圆心角、圆周角、垂径定理填空、解答【错题精练】例1.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=52°,则α的度数是()A. 51.5°B. 60°C. 72°D. 76°【解答】解:连接OD.∵∠BAO=∠CBO=α,∴∠AOB=∠BOC=∠COD=∠DOE,∵∠AOE=52°,∴∠AOB=(360°-52°)÷4=77°,第6页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第7页 共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼 非学科培训∴α=(180°-77°)÷2=51.5°. 故选:A .【答案】A例2.如图,在△ABC 中,∠C=90°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E .(1)若∠A=25°,求BD̂的度数. (2)若BC=9,AC=12,求BD 的长.【答案】解:(1)连接CD ,如图, ∵∠ACB=90°,∴∠B=90°-∠A=90°-25°=65°,∵CB=CD ,∴∠CDB=∠B=65°, ∴∠BCD=180°-2∠B=50°, ∴BD ̂的度数为50°;(2)作CH ⊥BD ,如图,则BH=DH , 在Rt △ACB 中,AB=√92+122=15, ∵12CH•AB=12BC•AC , ∴CH=9×1215=365, 在Rt △BCH 中,BH=√92−(365)2=275,∴BD=2BH=545.̂的度数为()例3.已知如图,在⊙O中,OA⊥OB,∠A=35°,则CDA. 20°B. 25°C. 30°D. 35°【解答】解:连接OC,∵OA⊥OB,∴∠AOB=90°,∵∠A=35°,∴∠OBC=90°-35°=55°,∴OB=OC,∴∠OBC=∠OCB=55°,∴∠COB=70°,∴∠COD=90°-70°=20°,̂的度数为20°,∴CD故选:A.【答案】A例4.已知AB是⊙O的直径,点C,D是⊙O上的点,∠A=50°,∠B=70°,连接DO,CO,DC (1)如图①,求∠OCD的大小:(2)如图②,分别过点C,D作OC,OD的垂线,相交于点P,连接OP,交CD于点M已知⊙O的半径为2,求OM及OP的长.第8页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】解:(1)∵OA=OD,OB=OC,∴∠A=∠ODA=50°,∠B=∠OCB=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=180°-∠AOD-∠BOC=60°,∵OD=OC,∴△COD是等边三角形,∴∠OCD=60°;(2)∵PD⊥OD,PC⊥OC,∴∠PDO=∠PCO=90°,∴∠PDC=∠PCD=30°,∴PD=PC,∵OD=OC,∴OP垂直平分CD,∴∠DOP=30°,∵OD=2,∴OM=√32OD=√3,OP=4√33.例5.如图,AB为⊙O的直径,△ABC的边AC,BC分别与⊙O交于D,E,若E为BD̂的中点.(1)求证:DE=EC;(2)若DC=2,BC=6,求⊙O的半径【答案】解:(1)连结AE,BD,∵E为BD̂的中点,∴ED̂=BÊ,∴∠CAE=∠BAE,∵∠AEB是直径所对的圆周角,第9页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第10页 共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练 非学科培训∴∠AEB=90°, 即AE ⊥BC ,∴∠AEB=∠AEC=90°,在△AEC 和△AEB 中{∠CAE =∠BAE AE =AE ∠AEC =∠AEB ,∴△AEC ≌△AEB (ASA ), ∴CE=BE , ∴DE=CE=BE=12BC ;(2)在Rt △CBD 中,BD 2=BC 2-CD 2=32, 设半径为r ,则AB=2r , 由(1)得AC=AB=2r , AD=AC-CD=2r-2,在Rt △ABD 中AD 2+BD 2=AB 2, ∴(2r-2)2+32=(2r )2, 解得:r=4.5,∴⊙O 的半径为4.5.例6.如图,点A ,B ,C 在⊙O 上,AB ∥OC .(1)求证:∠ACB+∠BOC=90°;(2)若⊙O 的半径为5,AC=8,求BC 的长度.【答案】(1)证明:∵AB̂对的圆周角是∠ACB ,对的圆心角是∠AOB , ∴∠AOB=2∠ACB , ∵OB=OA ,∴∠ABO=∠BAO , ∵AB ∥OC ,∴∠ABO=∠BOC ,∠BAO+∠AOC=180°, ∴∠BAO+∠AOB+∠BOC=180°, 即2∠ACB+2∠BOC=180°, ∴∠ACB+∠BOC=90°;(2)延长AO 交⊙O 于D ,连接CD ,则∠ACD=90°,由勾股定理得:CD=√AD2−AC2=√(5+5)2−82=6,∵OC∥AB,∴∠BOC=∠ABO,∠COD=∠BAO,∵∠BAO=∠ABO,∴∠BOC=∠COD,在△BOC和△DOC中{OB=OD∠BOC=∠DOC OC=OC∴△BOC≌△DOC(SAS),∴BC=CD,∵CD=6,∴BC=6.例7.如图,AB是半圆O的直径,AC是弦,∠CAB=60∘,若AB=6cm.(1)求弦AC的长;(2)点P从点A开始,以1cm/s的速度沿AB向点B运动,到点B停止,过点P作PQ∥AC,交半圆O于点Q,设运动时间为t(s).①当t=1时,求PQ的长;②若△OPQ为等腰三角形,直接写出t(t>0)的值.【解答】(1)解:如图1中,∵OA=OC,∠CAB=60∘,∴△AOC是等边三角形,∴AC=OA=3(cm);(2)解:①如图2中,作OH⊥PQ于H,连接OQ,由题意得:AP=1,OP=2,∵PQ∥AC,∴∠OPH=∠CAB=60∘,在Rt△OPH中,∵∠POH=90∘−∠OPH=30∘,OP=2,∴PH=1OP=1,OH=√3PH=√3,2在Rt△QOH中,HQ=√OQ2−OH2=√6,∴PQ=PH+HQ=1+√6;②如图3中,∵△OPQ是等腰三角形,观察图象可知,只有OP=PQ,作PH⊥OQ于H.∵PQ∥AC,∴∠QPB=∠CAB=60∘,∵PQ=PO,PH⊥OQ,,∠POQ=∠PQO=30∘,∴OH=HQ=32∴OP=OH÷cos30∘=√3,∴AP=3+√3,∴t=3+√3秒时,△OPQ是等腰三角形.【答案】(1)3cm;(2)①1+√6;②t=3+√3.例8.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.【解答】(1)解:△ABC为等腰三角形.理由如下:连结AE,如图,∵,∴∠DAE=∠BAE,即AE平分∠BAC,∵AB为直径,∴∠AEB=90∘,∴AE⊥BC,∴△ABC为等腰三角形;(2)解:∵△ABC为等腰三角形,AE⊥BC,∴BE=CE=12BC=12×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE=√102−62=8,∵AB为直径,∴∠ADB=90∘,∴12AE⋅BC=12BD⋅AC,∴BD=8×1210=485,在Rt△ABD中,∵AB=10,BD=485,∴AD=√AB2−BD2=145,∴sin∠ABD=ADAB =14510=725.【答案】(1)略;(2)725.【举一反三】1.如图,弦AC、BD相交于点E,且AB̂=BĈ=CD̂,若∠AED=80°,则∠ACD的度数为()A. 20°B. 25°C. 30°D. 15°【解答】解:如图,设AB̂的度数为m,AD̂的度数为n,∵AB̂=BĈ=CD̂,∴BĈ、CD̂的度数都为m,∴3m+n=360°①∵∠AED=80°,∴∠C+∠D=80°,∴12m+12n=80°②,由①②组成{3m+n=360°12m+12n=80°,解得m=100°,n=60°∴∠ACD=12n=30°.故选:C.【答案】C2.已知△ABC内接于⊙O,点D平分弧BmĈ.(1)如图①,若∠BAC=2∠ABC.求证:AC=CD;(2)如图②,若BC为⊙O的直径,且BC=10,AB=6,求AC,CD的长.【答案】(1)证明:∵点D平分弧BmĈ,∴弧DC=弧DB,∵∠BAC=2∠ABC,∴弧BDC=2弧AC,∴弧CA=弧CD,∴AC=CD;(2)解:连结BD,如图②,∵BC为⊙O的直径,∴∠BAC=∠BDC=90°,在Rt △BAC 中,∵BC=10,AB=6,∴AC=√BC 2−AB 2=8;∵弧DC=弧DB ,∴DB=DC ,∴△BCD 为等腰直角三角形,∴CD=√22BC=5√2.3.如图,在⊙O 中,点C 是优弧ACB 的中点,D 、E 分别是OA 、OB 上的点,且AD=BE ,弦CM 、CN 分别过点D 、E .(1)求证:CD=CE .(2)求证:AM̂=BN ̂.【答案】(1)证明:连接OC .∵AĈ=BC ̂, ∴∠COD=∠COE ,∵OA=OB ,AD=BE ,∴OD=OE ,∵OC=OC ,∴△COD ≌△COE (SAS ),∴CD=CE .(2)分别连结OM ,ON ,∵△COD ≌△COE ,∴∠CDO=∠CEO ,∠OCD=∠OCE ,∵OC=OM=ON ,∴∠OCM=∠OMC ,∠OCN=∠ONC ,∴∠OMD=∠ONE ,∵∠ODC=∠DMO+∠MOD ,∠CEO=∠CNO+∠EON ,∴∠MOD=∠NOE ,∴AM̂=BN ̂.4.如图,已知△ABC中,AB=AC,以AB为直径的⊙O与边BC相交于点D,过点D作⊙O的切线与AC交于点E.(1)求BDBC的值.(2)判断DE与AC的位置关系,并证明你的结论.(3)已知BC:AB=2:3,DE=4√2,求⊙O的直径.【解答】(1)解:如图,连接AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC,∴BDBC =12;(2)解:DE⊥AC;连接OD,∵DE是⊙O的切线,∴DE⊥OD,∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠ODB=∠C,∴AC∥OD,∴DE⊥AC;(3)解:∵BDBC =12且BC:AB=2:3,∴AB:CD=3,∵∠ADB =∠DEC =90∘,∠B =∠C ,∴△ABD ∽△DCE ,∴DC AB =CE BD =13,设CE =a ,则BD =CD =3a ,AB =9a ,在Rt△DEC 中,由勾股定理得:DE =2a √2=4√2,∴a =2,∴AB =18.【答案】(1)12;(2)DE ⊥AC ;(3)18.5.已知直径CD ⊥弦BF 于 E ,AB 为ʘO 的直径.(1)求证:FD̂=AC ̂; (2)若∠DAB=∠B ,求∠B 的度数.【答案】(1)证明:∵直径CD ⊥弦BF ,∴FD̂=BD ̂, ∵∠AOC=∠BOD ,∴BD̂=AC ̂, ∴FD̂=AC ̂; (2)解:由圆周角定理得,∠BOD=2∠DAB ,∵∠DAB=∠B ,∴∠BOD=2∠B ,∵CD ⊥BF ,∴∠B=30°.6.如图,⊙O 的半径为2,弦BC =2√3,点A 是优弧BC 上一动点(不包括端点),△ABC 的高BD 、CE 相交于点F ,连结ED .下列四个结论:①∠A 始终为60°;②当∠ABC =45∘时,AE =EF ;③当△ABC 为锐角三角形时,ED =√3;④线段ED 的垂直平分线必平分弦BC .其中正确的结论是 .(把你认为正确结论的序号都填上)【答案】①②③④.7.圆O的直径为10cm,A是圆O内一点,且OA=3cm,则圆O中过点A的最短弦长=__________cm【答案】88.如图,在圆O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=__________°【答案】501.如图,AB圆O的直径,点C在圆O上,若∠OCA=50°,AB=4,则弧BC的长为()πA. 103B. 109π C. 59πD. 518π【答案】B2.如图,将钢珠放在一个边长AB=8mm 的正方形的方槽内,测得钢珠顶端离零件表面的距离为8mm ,则这个钢珠的直径为______mm .【答案】103.如图,AB 是半圆的直径,E 是弦AC 上一点,过点E 作EF ⊥EB ,交AB 于点F ,过点A 作AD ∥EF ,交半圆于点D .若C 是BD ̂的中点,AF AE =√54,则EFAD 的值为 .【解答】解:延长BE 交AD 于A',∵AD ∥EF ,EF ⊥BE ,∴AA'⊥BA',∴∠AA'B=90°,∵AB 为⊙O 的直径,∴∠ADB=90°,∴D 与A'重合,∵AFAE =√54,∴设AF=√5a,AE=4a,过F作FG⊥AE于G,∵C是BD̂的中点,∴CD̂=BĈ,∴∠DAC=∠BAC,∵AD∥EF,∴∠BFE=∠DAB=2∠BAC=∠BAC+∠AEF,∴∠BAC=∠AEF,∴AF=EF,∴AG=EG=2a,由勾股定理得:FG=a,∵∠DAE=∠GAF,∠ADE=∠AGF=90°,∴△ADE∽△AGF,∴ADAE =AGAF,∴AD4a =2a√5a,AD=8a√5,∴EFAD =√5a8a√5=58,故答案为:58.【答案】584.在⊙O的内接△ABC中,AD⊥BC于D,(1)①图1中,若作直径AP,求证:AB.AC=AD.AP;②已知AB+AC=12,AD=3,设⊙O的半径为y,AB的长为x.求y与x的函数关系式及自变量x的取值范围;(2)图2中,点E为⊙O上一点,且弧AE=弧AB,求证:CE+CD=BD.【答案】5.在⊙O的内接△ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设⊙O的半径为y,AB的长为x。

圆的概念和有关性质-知识总结和例题

圆的概念和有关性质-知识总结和例题

圆的概念和有关性质 知识总结和例题圆的旋转定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”固定的端点O 叫做圆心,线段OA 叫做半径,一般用r 表示. 确定一个圆的要素:一是圆心,圆心确定其位置;二是半径,半径确定其大小. 同心圆:圆心相同,半径不同 等圆 : 圆心相同,半径不同圆的集合定义:圆心为O 、半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点的集合. 弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径 注意:1.弦和直径都是线段.2. 直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.弧: 圆上任意两点间的部分叫做圆弧,简弧.以A 、B 为端点的弧记作 ,读作“圆弧AB ”或“弧AB ”. 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆 劣弧与优弧:小于半圆的弧叫做劣弧. ;小于半圆的弧叫做劣弧. ; 等弧:等弧仅仅存在于同圆或者等圆中.1.一点和⊙O 上的最近点距离为4cm,最远的距离为10cm, 则这个圆的半径是2.下面3个命题:①半径相等的两个圆是等圆;②长度相等的弧是等弧;③一条弦把圆分成两条弧,这两条弧不可能是等弧.其中真命题的个数为( )A .0个B .1C .2个D .3个3 .如图,MN 是半圆O 的直径,正方形ABCD 的顶点A 、D 在半圆上,顶点B 、C 在直径MN 上,求证:OB=OC.图4DB O NMAC图5DBONM AC(3) (4) (5) (6)4.如图,在扇形MON 中,=45MON ,半径MO=NO=10,,正方形ABCD 的顶点B 、C 、D 在半径上,顶点A 在圆弧上,求正方形ABCD 的边长5.如图,AB ,AC 为⊙O 的弦,连接CO ,BO 并延长,分别交弦AB ,AC 于点E ,F ,∠B =∠C.求证:CE =BF.6,如图,过A ,C ,D 三点的圆的圆心为E ,过B ,F ,E 三点的圆的圆心为D ,∠A =63°,求∠B 的度数.圆的对称性:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

初中圆的有关概念及圆的确定

初中圆的有关概念及圆的确定

要点一、圆的定义1.圆的描述概念如图,在一个平而内,线段0A绕它固迫的一个端点0旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固泄的端点0叫做圆心,线段0A叫做半径.以点0为圆心的圆,记作“00”,读作''圆0”.要点诠释;①圆心确泄圆的位置,半径确左圆的大小;确定一个圆应先确定圆心,再确泄半径,二者缺一不可;②圆是一条封闭曲线.2.圆的集合概念圆心为0,半径为r的圆是平而内到泄点0的距离等于立长r的点的集合. 平面上的一个圆,把平而上的点分成三类:圆上的点,圆内的点和圆外的点.圆的内部可以看作是到圆心的距离小于半径的的点的集合:圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释;①立点为圆心,泄长为半径:②圆指的是圆周,而不是圆面:③强调“在一个平而内”是非常必要的,事实上,在空间中,到定点的距离等于泄长的点的集合是球而,一个闭合的曲而.要点二、点与圆的位置关系点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.若00的半径为r,点P到圆心0的距离为d,那么:点P在圆内Od V r ;点P在圆上Od = r ;点P在圆外Od >r."O”读作''等价于”,它表示从左端可以推出右端,从右端也可以推出左端. 要点诠释:点在圆上是指点在圆周上,而不是点在圆面上:要点三、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径. 弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一泄是直径.为什么直径是圆中最长的弦?如图,AB 是00的直径,CD 是O0中任意一条弦,求证:AB2CD.证明:连结0C 、0DTAB 二A0PB 二C0TD2CD (当且仅当CD 过圆心0时,取“二”号) ・••直径AB 是O0中最长的弦.2. 弧 圆上任意两点间的部分叫做圆弧,简称弧•以A 、B 为端点的弧记作虫戏,读作“圆弧AB”或“弧AB”.半圆:优弧: 劣弧: 要点诠释: 圆的任意一条宜径的两个端点把圆分成两条弧,每一条弧都叫做半圆: 大于半圆的弧叫做优弧: 小于半圆的孤叫做劣弧.①半圆是弧,而弧不一左是半圆; ② 无特殊说明时,弧指的是劣弧.3. 等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:① 等弧成立的前提条件是在同圆或等圆中,不能忽视:② 圆中两平行弦所夹的弧相等.4. 同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.要点诠释:同圆或等圆的半径相等.5. 圆心角顶点在圆心的角叫做圆心角.要点诠释:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,反之也成立.要点四、确定圆的条件(1) 经过一个已知点能作无数个圆;(2) 经过两个已知点A 、B 能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;(3) 不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆 的内接三角形. 如图:00是AABC 的外接圆,AABC 是00的内接三角形,点0是△ ABC 的外心.外心的性质:外心是AABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等. 要点诠释:(1)不在同一直线上的三个点确泄一个圆•“确定”的含义是“存在性和唯一性” •(2)只有确泄了圆心和圆的半径,这个圆的位垃和大小才唯一确定.一、典型例题类型一、圆的定义1.如图所示,BD, CE是2\ABC的高,求证:E, B, C, D四点在同一个圆上.举一反三:【变式】平行四边形的四个顶点在同一圆上,则该平行四边形一定是()A.正方形B.菱形C.矩形D.等腰梯形2.爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域.这个导火索的长度为18cm,那么点导火索的人每秒钟跑6. 5m是否安全?类型二、圆的有关计算3・已知,点P是半径为5的00内一点,且0P二3,在过点P的所有的O0的弦中,弦长为整数的弦的条数为()A. 2B. 3C.4D. 5举一反三:【变式】平而上的一个点到圆的最小距离是4cm,最大距离是9cm,则圆的半径是().A. 2・ 5cmB. 6. 5cm C・ 2. 5cm 或6. 5cm D・ 5cm 或13cm类型三、确定圆的条件的有关作图与计算4.已知:不在同一直线上的三点A、B、C,求作:00使它经过点A、B、C.【变式】给定下列图形可以确定一个圆的是()A.已知圆心B.已知半径C.已知直径D.不在同一直线上的三个点5.如图,00的直径为10,弦AB二8, P是弦AB上的一个动点.那么0P的长的取值范围是 ____________________________ .举i反三:【变式】已知00的半径为13,弦AB二24, P是弦AB上的一个动点,则0P的取值范用是_.二.巩固练习2•有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是()A・1 B・2 C・3 D・42.下列语句中,不正确的个数是()①直径是弦;②弧是半圆:③长度相等的弧是等弧;④经过圆内一左点可以作无数条直径.A・1个B. 2个C・3个 D. 4个3•如图,。

苏教版九年级上册数学[圆的有关概念及圆的确定—知识点整理及重点题型梳理]

苏教版九年级上册数学[圆的有关概念及圆的确定—知识点整理及重点题型梳理]

苏教版九年级上册数学[圆的有关概念及圆的确定—知识点整理及重点题型梳理]研究目标】1.理解圆的描述概念和圆的集合概念;2.理解半径、直径、弧、弦、弦心距、圆心角、同心圆、等圆、等弧的概念;3.探索点与圆的位置关系,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系;4.了解不在同一直线上的三点确定一个圆,了解三角形的外接圆、三角形的外心、圆的外接三角形的概念。

要点梳理】要点一、圆的定义1.圆的描述概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

以点O 为圆心的圆,记作“⊙O”,读作“圆O”。

2.圆的集合概念:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合。

圆的内部可以看作是到圆心的距离小于半径的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合。

要点二、点与圆的位置关系点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外。

若⊙O的半径为r,点P到圆心O的距离为d,那么:点P在圆内⇔ d。

r。

要点三、与圆有关的概念1.弦:连结圆上任意两点的线段叫做弦。

2.半径:以圆心为端点的线段叫做半径,记作r。

3.直径:穿过圆心的弦叫做直径,记作d=2r。

4.弧:圆上两点间的部分叫做弧,记作AB。

5.弦心距:弦两端点到圆心的距离之差叫做弦心距,记作h。

6.圆心角:以圆心为顶点的角叫做圆心角,记作∠AOB。

7.同心圆:圆心相同,但半径不同的圆叫做同心圆。

8.等圆:半径相等的圆叫做等圆。

9.等弧:弧长相等的弧叫做等弧。

本文介绍了圆的基本概念和相关定理。

首先讲解了直径和弦心距的定义,证明了直径是圆中最长的弦。

接着介绍了弧的概念,包括半圆、优弧和劣弧,以及等弧的定义和性质。

然后讲解了同心圆和等圆的概念,以及圆心角的定义和相关定理。

最后介绍了确定圆的条件,包括经过一个已知点、经过两个已知点、不在同一直线上的三个点和外接圆的性质。

九年级上数学第24章圆复习课件

九年级上数学第24章圆复习课件

做直线与这个圆相切. (3) 相交: 一条直线与一个圆有两个公共点,叫
做直线与这个圆相交.
直线与圆位置关系的识别:
r.
r.
r.

∟ ∟
O d
dO
dO
l
l
l
设圆的半径为r,圆心到直线的距离为d,则:
(1)当直线与圆相离时d>r; (2)当直线与圆相切时d =r; (3)当直线与圆相交时d<r.
1.与圆有一个公共点的直线。 2.圆心到直线的距离等于圆的半
径的直线是圆的切线。 3.经过半径的外端且垂直于这条
半径的直线是圆的切线。


O A
∵OA是半径,OA⊥ l l ∴直线l是⊙O的切线.
切线的性质: (1)圆的切线垂直于经过切点的半径. (2)经过圆心垂直于切线的直线必经过切点. (3)经过切点垂直于切线的直线必经过圆心.

∵直线l是⊙O的切线,切 点为A
A
B

O C
D
1. 在⊙O中,弦AB所对的圆心角∠AOB=100°,则
弦AB所对的圆周角为__5__0_0或___1_3_0_0_.(05年上海)
2.如图,AB是⊙O的直径,BD是
⊙O的弦,延长BD到点C,使
DC=BD,连接AC交⊙O与点F.
(1)AB与AC的大小有什么关
A
系?为什么? (2)按角的大小分类, 请你判断
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A
B
圆周角的性质:
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角). 性质4: 900的圆周角所对的弦是圆的直径.

圆的确定,圆心角、圆周角、弧、弦、弦心距之间的关系

圆的确定,圆心角、圆周角、弧、弦、弦心距之间的关系

儒洋教育学科教师辅导讲义6、多边形与圆如果一个圆经过一个多边形的各顶点,那么这个圆叫做这个多边形的外接圆,这个多边形叫做这个圆的内接多边形,提示:1、与圆的确定有关的两个图形一定要学生重点理解。

2、补充两个知识点:线段垂直平分线的性质和角平分线的性质3、和学生一起重点分析课本例题1和2,理解题目考察的细节和解题方法。

二、例题分析:1、以线段AB为弦的圆的圆心的轨迹是___________。

cm。

2、已知扇形的圆心角为120°,半径为2cm,则扇形的弧长是cm,扇形的面积是23、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例1:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、下列四边形:①平行四边形,②菱形;③矩形;④正方形。

其中四个顶点一定能在同一个圆上的有()A、①②③④B、②③④C、②③D、③④5、(07上海中考)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块 B.第②块C.第③块 D.第④块6、三角形的外接圆的圆心是(),A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点7、直角三角形的两条直角边分别为5cm和12cm,则其外接圆半径长为。

(三)巩固练习1、圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为.2、三角形的外接圆的圆心——三角形的外心——三角形的交点;三角形的内切圆的圆心——三角形的内心——三角形的交点;3、三角形的外心一定在该三角形上的三角形()(A)锐角三角形(B)钝角三角形(C)直角三角形(D)等腰三角形,第7题 (第2题) 7、如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=_______8、如图,OE ⊥AB 、OF ⊥CD ,如果OE=OF ,那么_______(只需写一个正确的结论)B A CEDOF(第8题) (第11题)9、已知,如图所示,点O 是∠EPF 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B和C 、D 。

人教版初中数学九(下)第24章圆第1节圆

人教版初中数学九(下)第24章圆第1节圆

人教版初中数学九(下)第24章圆第一节、圆(一)圆的有关概念:(1)圆的定义:①在一个平面内,线段OA绕其固定的端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆。

固定的端点O叫圆心,线段OA叫半径。

【圆心定位置,半径定大小】以点O为圆心的圆,记作“⊙O”,读作”圆O”. 同心圆:圆心相同,半径不相等的两个圆;等圆:能够重合的两个圆。

②在平面内到定点的距离等于定长的所有点组成的图形叫做圆。

练习:有两个同心圆,小圆的半径为2cm,大圆的半径为3cm,大圆上一点P与小圆上一点Q的距离PQ的取值范围是 .(2)圆的确定:不在同一条直线上的三个点确定..一个圆。

【两点定线,三点定圆】(3)概念:①弦:连结圆上任意两点的线段。

其中,过圆心的弦叫直径。

如图中的弦AB、AC、BC.其中,弦AB经过了圆心O,为直径。

②弧:圆上任意两点间的部分叫圆弧,简称弧,用“”表示。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

大于半圆的弧叫做优弧,如图中的ABC和BAC;小于半圆的弧叫劣弧,如图中的AC和BC。

*同圆或等圆(半径相等的圆)中,能够互相重合..的弧叫等弧。

《弧的相等要区别于线段的相等;在同圆或等圆中,弧与弧之间才能加减。

》③弦心距:圆心到弦的距离,如图中的OM。

④圆心角:顶点在圆心的角,如图中的∠AOC,∠BOC等。

《圆心角的度数和它所对的弧的度数相等》⑤圆周角:顶点在圆上,并且两边都和圆相交的角,如图∠ABC,∠BAC,∠ACB. (二)圆的有关性质:(1)对称性:★圆是旋转对称图形,绕圆心旋转任意角度都能与自身重合。

★圆是轴对称图形,任意一条直径所在的直线都是它的对称轴。

(2)在一个圆中,①如果圆心角相等,那么它所对的弧相等,所对的弦相等;②如果弧相等,那么它所对的圆心角相等,所对的弦相等;③如果弦相等,那么它所对的圆心角相等,圆心角...所对的弧相等《或者等弦所对的优弧和劣弧分别相等》。

初中数学圆的知识点(通用4篇)

初中数学圆的知识点(通用4篇)

初中数学圆的知识点〔通用4篇〕篇1:初中数学圆知识点 1.圆的定义(1)在一个平面内,线段OA绕它的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。

固定的端点O 叫做圆心,线段OA叫做半径,如右图所示。

(2)圆可以看作是平面内到定点的间隔等于定长的点的集合,定点为圆心,定长为圆的半径。

说明:圆的位置由圆心确定,圆的大小由半径确定,半径相等的两个圆为等圆。

2.圆的有关概念(1)弦:连结圆上任意两点的线段。

(如右图中的CD)。

(2)直径:经过圆心的弦(如右图中的AB)。

直径等于半径的2倍。

(3)弧:圆上任意两点间的局部叫做圆弧。

(如右图中的CD、CAD)其中大于半圆的弧叫做优弧,如CAD,小于半圆的弧叫做劣弧。

(4)圆心角:如右图中∠COD就是圆心角。

3.圆心角、弧、弦、弦心距之间的关系。

(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。

(2)推论:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

4.过三点的圆。

(1)定理:不在同一条直线上的三点确定一个圆。

(2)三角形的外接圆圆心(外心)是三边垂直平分线的交点。

5.垂径定理。

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:(1)①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弦的直径,垂直平分弦,并且平分弦所对的另一条弧。

(2)圆的两条平行弦所夹的弧相等。

6.与圆相关的角(1)与圆相关的角的定义①圆心角:顶点在圆心的角叫做圆心角②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。

③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。

(2)与圆相关的角的性质AB①圆心角的度数等于它所对的弦的度数;②一条弧所对的圆周角等于它所对的圆心角的一半; ③同弧或等弧所对的圆周角相等; ④半圆(或直径)所对的圆周角相等; ⑤弦切角等于它所夹的弧所对的圆周角;⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

初中数学:有关圆的概念及性质

初中数学:有关圆的概念及性质

初中数学:有关圆的概念及性质一、圆的基本概念及性质(1)圆的有关概念①圆:平面. 上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆. 上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形:其对称轴是任意一条过圆心的直线:圆是中心对称图形,对称中心为圆心。

②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有-组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角: 90”的圆周角所对的弦是直径.④三角形的内心和外心确定圆的条件:不在同一直线上的三个点确定一个圆.⑥:三角形的外心:三角形的三个顶点确定-一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。

圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。

圆周角的度数等于它所对的弧的度数的一半.(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的- -半.(4)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一一个外角等于它相邻内角的对角.圆的性质1、圆是轴对称图形,对称轴是任意一条过圆心的直线。

2、垂径定理:垂直于弦的直径平分这条弦,并粗平分弦所对的弧。

垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并平分弦对的弧。

初中数学 圆 知识点 考点 思维导图 圆的概念与性质 与圆有关的位置关系 圆有关的计算 正多边形与圆

初中数学 圆 知识点 考点 思维导图 圆的概念与性质 与圆有关的位置关系 圆有关的计算 正多边形与圆

1、与圆的位置关系可从形和数两方面来判断,思维单一容易致误. 2、切线长定理不能与三角函数结合致误. 3、两圆相交时,半径与圆心距的关系考虑不全.
点在圆内台d <r 点在圆上台 d=r
1.有切线,作过切点的半径.
2.有半径,过端点作圆的切线.
常作的
辅助线
点在圆外 与d>r
3.有切线长,作以切线、过切点的半径、圆心
2.在同圆或等圆中,同弧或等弧所对的圆周角相等;
相等的圆周角所对的弧相等.
定义 顶点都在同一圆上的多边形.
顶点都在同一圆上的三角形称圆内接三角形,
圆内接三角形 定义 圆心称三角形外心.
2.直径所对圆周角的特征
或三角形外接圆 性质 外心到各顶点距离相等,是三角形各边的中垂线的交点.
(1)作辅助线,构造"直径所对的圆周角是直角"
初初中中数数学学 圆 思思维维导导图图
考点 知识点 快速理解记忆
超超实实用用一一看看就就明明白白 极易记忆
第一节 圆的概念与性质
第二节 与与圆圆有关的位置关系
第三节 与圆有关的计算 第四节节 正多边形与圆
初中数学 第七章 圆 第一节 圆的概念与性质
在平面内,线段OA绕它固定的一个端点O旋转一周,另
(1)判定方法
1定义法∶与圆只有一个交点的直线
②数量法∶与圆心的距离d=/的直线.
(2)相切判定
③判定定理.
有明确交点,连半径,证直线与半径垂直. (3)证明直
无明确的交点,过圆心作垂线段,证其等于半径.线与圆相切
已知直线满足∶①过圆心;②过切点;
③垂直于切线.可知二推出另一个.
(4)切线性 质的拓展
线交点组成的正多边形叫圆外切正多边形.
性质 正多边形都有一外接圆,反之,同一个圆有无数多个内接正多边形

2.1 圆(解析版)

2.1 圆(解析版)

2.1圆知识点管理归类探究知识点一:圆的定义1、圆的概念描述:①圆心确定圆的位置,半径确定圆的大小;②圆是一条封闭曲线。

2、圆的集合定义:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合。

3、同圆或等圆,半径相等。

题型一:圆的定义【例题1】(2021·全国九年级课时练习)确定一个圆的要素是________和________.【答案】圆心半径【分析】由圆的定义即可求解.【详解】解:由圆的定义可知,确定一个圆的两个要素为圆心和半径,故答案为:圆心;半径.【点睛】本题考查圆的定义,解题的关键是正确理解确定一个圆的要素是圆心和半径.变式训练【变式1-1】(2021·全国九年级课时练习)以5cm为半径可以画________个圆;以点O为圆心可以画________个圆;以点O为圆心,以5cm为半径可以画________个圆.【答案】无数无数 1【分析】根据圆的概念和性质分析即可.【详解】以5cm为半径,没有确定圆心,所以可以画无数个圆;以点O为圆心,没有确定半径,所以可以画无数个圆;以点O为圆心,以5cm为半径可以画1个圆.故答案为:无数,无数,1【点睛】本题考查了圆的基本概念,掌握圆的基本概念是解题的关键.【变式1-2】(2021·全国九年级课时练习)如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做_____.固定的端点O叫做______,线段OA叫做_______以点O为圆心的圆,记作“_________”,读作“ ______”.【答案】圆圆心半径⊙O圆O【变式1-3】(2021·上海市康城学校八年级期末)平面内到点A的距离等于3cm的点的轨迹是__________.【答案】以点A为圆心,3cm长为半径的圆【分析】利用圆的基本概念即可描述出轨迹.【详解】根据题意可知轨迹是:以A点为圆心,3cm长为半径的圆.【点睛】本题考查对圆的基本概念的理解.圆的概念即“在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆.”【变式1-4】(2021·上海长宁·八年级期末)经过定点A且半径为10的圆的圆心轨迹是_____________________.【答案】以点A为圆心,10为半径的圆【分析】要求作经过定点A,且半径为10的圆的圆心,则圆心应满足到点A的距离恒等于10,根据点和圆的位置关系与数量之间的联系进行分析.【详解】根据题意,得圆心应满足到点A的距离恒等于10,即经过定点A,且半径为10的圆的圆心轨迹是以点A为圆心,10为半径的圆故答案为:以点A为圆心,10为半径的圆.【点睛】此题考查圆的认识,掌握圆的形成方式:到定点的距离等于定长的所有点的集合是解题的关键.知识点二:点与圆的位置关系点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.若⊙O的半径为r,点P到圆心O的距离为d,那么:点P在圆内⇔d <r ;点P在圆上⇔d = r ;点P在圆外⇔d >r.注意:点在圆上是指点在圆周上,而不是点在圆面上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中圆的有关概念及圆的确定教学方案
要点一、圆的定义
1.圆的描述概念
如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.
要点诠释:
①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;
②圆是一条封闭曲线.
2.圆的集合概念
圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.
平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.
圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.
要点诠释:
①定点为圆心,定长为半径;
②圆指的是圆周,而不是圆面;
③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.
要点二、点与圆的位置关系
点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.
若⊙O的半径为r,点P到圆心O的距离为d,那么:
点P在圆内⇔d < r ;
点P在圆上⇔d = r ;
点P在圆外⇔d >r.
r
r
r
P
P
P
“⇔”读作“等价于”,它表示从左端可以推出右端,从右端也可以推出左端.
要点诠释:点在圆上是指点在圆周上,而不是点在圆面上;
要点三、与圆有关的概念
1.弦
弦:连结圆上任意两点的线段叫做弦.
直径:经过圆心的弦叫做直径.
弦心距:圆心到弦的距离叫做弦心距.
要点诠释:
直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.
为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.
证明:连结OC、OD
∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)
∴直径AB是⊙O中最长的弦.
2.弧
弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;
优弧:大于半圆的弧叫做优弧;
劣弧:小于半圆的弧叫做劣弧.
要点诠释:
①半圆是弧,而弧不一定是半圆;
②无特殊说明时,弧指的是劣弧.
3.等弧
在同圆或等圆中,能够完全重合的弧叫做等弧.
要点诠释:
①等弧成立的前提条件是在同圆或等圆中,不能忽视;
②圆中两平行弦所夹的弧相等.
4.同心圆与等圆
圆心相同,半径不等的两个圆叫做同心圆.
圆心不同,半径相等的两个圆叫做等圆.
要点诠释:同圆或等圆的半径相等.
5.圆心角
顶点在圆心的角叫做圆心角.
要点诠释:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,反之也成立.
要点四、确定圆的条件
(1)经过一个已知点能作无数个圆;
(2)经过两个已知点A、B能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;
(3)不在同一直线上的三个点确定一个圆.
(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.
如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心.
外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.
要点诠释:
(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.
(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.
小结反思
情况反馈○非常满意○满意○一般○差学生签字:
主管签字:日期
一、典型例题
类型一、圆的定义
1.如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.
举一反三:
【变式】平行四边形的四个顶点在同一圆上,则该平行四边形一定是()
A.正方形
B.菱形
C.矩形
D.等腰梯形
2.爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域.这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m是否安全?
类型二、圆的有关计算
3.已知,点P是半径为5的⊙O内一点,且OP=3,在过点P的所有的⊙O的弦中,弦长为整数的弦的条数为( )
A.2
B.3
C.4
D.5
举一反三:
【变式】平面上的一个点到圆的最小距离是4cm,最大距离是9cm,则圆的半径是().
A.2.5cm
B.6.5cm
C. 2.5cm或6.5cm
D. 5cm或13cm
类型三、确定圆的条件的有关作图与计算
4.已知:不在同一直线上的三点A、B、C,求作:⊙O使它经过点A、B、C.
【变式】给定下列图形可以确定一个圆的是()
A.已知圆心B.已知半径
C.已知直径D.不在同一直线上的三个点
5.如图,⊙O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP的长的取值范围是 .
举一反三:
【变式】已知⊙O的半径为13,弦AB=24,P是弦AB上的一个动点,则OP的取值范围是___ ____.
二、巩固练习
1.有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是()
A.1 B. 2 C. 3 D. 4
2.下列语句中,不正确的个数是()
①直径是弦;②弧是半圆;③长度相等的弧是等弧;•④经过圆内一定点可以作无数条直径.
A.1个 B.2个 C.3个 D.4个
3.如图,⊙O中,点A、O、D以及点B、O、C分别在一条直线上,图中弦的条数有(• )
A.2条 B.3条 C.4条 D.5条
第3题第4题
4.如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()
A.1个 B.2个 C.3个 D.4个
5.已知:A,B,C,D,E五个点中无任何三点共线,无任何四点共圆,那么过其中的三点作圆,最多能作出( ).
A.5个圆B.8个圆C.10个圆D.12个圆
6. 如图,点A 、D、G、M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形,设BC=a,EF=b,NH=c,
则下列各式正确的是()
A.a>b>c
B.b>c>a
C.c>a>b
D.a=b=c
5
5
-5
-5
P
x
y
O
第6题第7题
7.如图,P(x,y)是以坐标原点为圆心,5为半径的圆周上的点,若x、y都是整数,猜想这样的P点一共
有 .
8.若△ABC中,∠C=90°,AC=10cm,BC=24cm,则它的外接圆的直径为___________.
9.下列说法正确的是(填序号).
①半径不等的圆叫做同心圆;②优弧一定大于劣弧;
③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦.
10.如图,在半径不等的同心圆中,圆心角∠AOB所对的的长度有__ ___关系;
的度数有_ ___关系.
11.如图,已知⊙O内一点P,过P点的最短的弦在圆内的位置是__ __;
过P点的最长的弦在圆内的位置是__ __;并分别将图画出来.
12.在同一平面内,1个圆把平面分成0×1+2=2个部分,2个圆把平面最多分成1×2+2=4个部分,,3个圆
把平面最多分成2×3+2=8个部分,4个圆把平面最多分成3×4+2=14个部分,……
(1)10个圆把平面最多分成个部分;
(2)n个圆把平面最多分成个部分.
13.已知⊙O的半径r=5cm,圆心O到直线l的距离d=OD=3cm,在直线l上有P、Q、R三点,
且有PD=4cm,QD>4cm,RD<4cm,P、Q、R三点与⊙O位置关系各是怎样的?
14.如图,BD=OD,∠AOC=114°,求∠AOD的度数.
15.如图所示,AB是⊙O的一条弦(不是直径),点C,D是直线AB上的两点,且AC=BD.(1)判断△OCD的形状,并说明理由.
(2)当图中的点C与点D在线段AB上时(即C,D在A,B两点之间),(1)题的结论还存在吗?。

相关文档
最新文档