大学物理习题册计算题
大学物理习题册及解答_第二版_第四章_刚体的定轴转动
第四章 刚体定轴转动(一)
一.选择题
1.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几 个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变.
(1 )m m / 2 T mg m m m/2
k 1 k 2 2 1 2
4.质量为M,长为l的均匀细杆,可绕A端的水平轴自由转动,当 杆自由下垂时,有一质量为m的小球,在离杆下端的距离为a处垂 直击中细杆,并于碰撞后自由下落,而细杆在碰撞后的最大偏角 为,试求小球击中细杆前的速度。 解:球与杆碰撞瞬间,系统所受合外力矩为零,系 统碰撞前后角动量守恒
m (l a) J
1 J Ml 3
2
杆摆动过程机械能守恒
1 l J Mg (1 cos ) 2 2
2
解得小球碰前速率为
Ml 2 gl sin m(l a ) 3 2
5.一轻绳绕过一半径R,质量为M/4的滑轮。质量为M的人抓住绳 子的一端,而绳子另一端系一质量为M/2的重物,如图。求当人相 对于绳匀速上爬时,重物上升的加速度是多少? 解:选人、滑轮、与重物为系统,系统所受对滑轮轴的 外力矩为 1
1 d 13 即 MgR ( MR MRu) 2 dt 8
该题也可在地面参考系中分别对人和物体利用牛顿第二定 律,对滑轮应用转动定律求解。
一选择题
第四章 刚体定轴转动(二)
(完整版)大学物理学上下册习题与答案
习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03 q . (B) 04 q (C) 03 q . (D) 06 q [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02(B)S q 022 (C) 2022S q (D) 202Sq [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q ,M 点有负电荷q .今将一试验电荷0q 从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V ]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)[C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E . (B) 电势M N U U .(C) 电势能M N W W . (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q 和2q 的两个点电荷分别置于1x m 和1x m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? x2q q 0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x 即:22221(2)0121011x x x x22212210x x x x2610(322)x x x m 。
大学物理计算题11
三、计算题1如图所示,一个半径为R 1的均匀球体,总电荷为Q 1,球体外同心罩一个半径为R 2的均匀带电球面,总电荷为Q 2,试求:⑴ 用高斯定理求各区域电场的分布;⑵ 用场强积分球体与球面间的电势分布(R 1<r <R 1)。
2.如图所示,一个均匀带电球壳的内、外半径分别为1R 和2R (1R <2R ),带电球壳的电荷体密度为ρ,求:⑴ 用高斯定理求各区域电场的分布;⑵ 用场强积分公式求21R r R <<区域的电势分布(写出积分表达式即可)。
3、如左下图所示,在一半径为1R 的均匀带电球体A 外面套有一个同心的金属球壳B (已知导体球壳B 的内、外半径分别为2R 和3R )。
设A 球带电量为1Q ,球壳B 带电量为2Q 。
(1)利用高斯定理求各区域的电场分布;(2)利用电势定义求C (21R r R <<)和D (3R r >)两点的电势。
4、如左下图所示装置,均质圆盘形定滑轮C 的质量为m 、半径为r ,滑轮两边分别悬挂质量为1m 和2m 的物体A 、B 。
A 置于倾角为θ的斜面上,它和斜面间的摩擦因数为μ。
当B 向下作加速运动时,求:(1)两物体的线加速度的大小;(2)水平和竖直两段绳索的张力大小。
(设绳的质量和伸长略去不计,绳与滑轮间无相对滑动,滑轮与转轴间的摩擦略去不计。
)(注:只需列出足够的方程,不必写出结果)5、一个质量为M 、半径为R 的定滑轮(当作均质圆盘)上面绕有细绳。
绳的一端在滑轮边缘上,另一端挂一质量为m 的物体。
忽略轴处摩擦,求物体m 由静止下落h 高度时的速度和此时滑轮的角速度。
6、一细而轻的绳索跨过一质量为M ,半径为R 的定滑轮C ,绳的两端分别系有质量为1m 和2m 的物体,且1m >2m ,绳的质量、轮轴间的摩擦不计且绳与轮间无相对滑动。
轮可视为圆盘,求物体的加速度的大小和绳的张力。
B7、如左下图所示,均质定滑轮的质量为m,半径为r,一绳跨过定滑轮将物体m1和m连接。
(完整word)大学物理习题册计算题及答案
大学物理习题册计算题及答案三 计算题1. 一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点。
弹簧的劲度系数k = 25N ·m -1。
(1) 求振动的周期T 和角频率.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相. (3) 写出振动的数值表达式。
解:(1) 1s 10/-==m k ω 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7。
5 cm,v 0 〈 0 由 2020)/(ωv +=x A得 3.1220-=--=x A ωv m/s π=-=-31)/(tg 001x ωφv 或 4/3∵ x 0 > 0 , ∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI )振动方程为)310cos(1015)cos(2πϕω+⨯=+=-t t A x (SI )﹡2. 在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为T = 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板。
解:选平板位于正最大位移处时开始计时,平板的振动方程为 t A x π4cos = (SI)t A x ππ4cos 162-=(SI ) (1) 对物体有 x m N mg=- ① t A mg x m mg N ππ4cos 162+=-= (SI) ② 物对板的压力为 t A mg N F ππ4cos 162--=-= (SI )t ππ4cos 28.16.192--= ③(2) 物体脱离平板时必须N = 0,由②式得 04cos 162=+t A mg ππ (SI )A qt 2164cos π-=π 若能脱离必须 14cos ≤t π (SI )即 221021.6)16/(-⨯=≥πg A m三 计算题﹡1。
江西理工大学大学物理习题册及答案完整版
江西理工大学 大 学 物 理 习 题 册班级_____________学号____________姓名____________运动学(一) 一、填空:1、已知质点的运动方程:X=2t ,Y=(2-t 2)(SI 制),则t=1s 时质点的位置矢量:m j i r )2(→→→+=,速度:1)22(-→→→⋅-=s m j i v ,加速度:22-→→⋅-=s m i a ,第1s 末到第2s末质点的位移:m j i r )32(→→→-=∆,平均速度:1)32(--⋅-=s m j i v。
2、一人从田径运动场的A 点出发沿400米的跑道跑了一圈回到A 点,用了1分钟的时间,则在上述时间内其平均速度为:0=∆∆=-trv 。
二、选择:1、以下说法正确的是:( D )(A)运动物体的加速度越大,物体的速度也越大。
(B)物体在直线运动前进时,如果物体向前的加速度减小了,物体前进的速度也减小。
(C)物体加速度的值很大,而物体速度的值可以不变,是不可能的。
(D)在直线运动中且运动方向不发生变化时,位移的量值与路程相等。
2、如图河中有一小船,人在离河面一定高度的岸上通过绳子以匀速度V O 拉船靠岸,则船在图示位置处的速率为:( C )(A)V O L (B)V O cos θ h (C)V O /cos θ(D)V O tg θ x 解:由图可知:222x h L +=由图可知图示位置船的速率:dt dx v = ;dt dL v =0 。
∴V o( θθcos 00v v x Lv ==三、计算题1、一质点沿OY 轴直线运动,它在t 时刻的坐标是: Y=4.5t 2-2t 3(SI 制)求:(1) t=1-2秒内质点的位移和平均速度 (2) t=1秒末和2秒末的瞬时速度 (3)第2秒内质点所通过的路程(4)第2秒内质点的平均加速度以及t=1秒和2秒的瞬时加速度。
解:(1)t 1=1s 时:m t t y 5.2)25.4(31211=-= t 2=2s 时:m t t y 0.2)25.4(32222=-=∴m y y y 5.012-=-=∆ 式中负号表示位移方向沿x 轴负向。
大学物理习题集(上,含解答)
大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+π sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR μ=.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理计算题
25真空中两条平行的“无限长”均匀带电直线相距为a,其电荷线密度分别为-λ和+λ.试求:(1)在两直线构成的平面上,两线间任一点的电场强度(选OX轴如图所示,两线的中点为原点).(2)两带电直线上单位长度之间的相互吸引力.26若电荷以相同的面密度σ均匀分布在半径分别为r1 =10cm和r2=20cm的两个同心球面上,设无穷远处电势为零,已知球心电势为 300V,试求两球面的电荷面密度σ的值.(εo=8.85×10-12C2 /N·m2 )27电荷以相同的面密度σ分布在半径为r1 =10cm和r2=20cm的两个同心球面上.设无限远处电势为零,球心处的电势为Uo=300V.(1)求电荷面密度σ.(2)若要使球心处的电势也为零,外球面上应放掉多少电荷?[εo=8.85×10-12C2 /(N·m2 )]28一质子从O点沿OX轴正向射出,初速度vo=106 m/s.在质子运动范围内有一匀强静电场,场强大小为E=3000V/m,方向沿OX轴负向.试求该质子能离开O点的最大距离.(质子质量m=1.67×10-27 kg,基本电荷e=1.6×10-19C)29真空中A、B两点间相距为d,其上分别放置电量为-Q与+Q的点电荷,如图.在AB连线中点O处有一质量为m、电量为+q的向A点运动.求此带电粒子粒子,以速度vo运动到达距离A点d/4处的P点时的速度(重力可忽略不计).30真空中一"无限大"均匀带电平面,其电荷面密度为σ(>0).在平面附近有一质量为m、电量为q(>0)的粒子.试求当带电粒子在电场力作用下从静止开始垂直于平面方向运动一段距离时的速率.设重力的影响可忽略不计.31真空中一"无限大"均匀带电平面,平面附近有一质量为m、电量为q的粒子,在电场力作用下,由静止开始沿电场方向运动一段距离,获得速度大小为v.试求平面上的面电荷密度.设重力影响可忽略不计.32在极板间距为d的空气平行板电容器中,平行于极板插入一块厚度为d,面积与极板相同的金属板后,其电容为原来电容的多少倍?的与金如果平行插入的是相对介电常数为εr属板厚度、面积均相同的介质板则又如何?33,外球一球形电容器,内球壳半径为R1,两球壳间充满了相对介电常数壳半径为R2为ε的各向同性均匀电介质.设两球壳间电r,势差为U12求:(1)电容器的电容;(2)电容器储存的能量.34在介电常数为ε的无限大各向同性均匀介质中,有一半径为R的导体球,带电量为Q,求电场能量.35现有一根单芯电缆,电缆芯的半径为r1=50mm,=15mm,铅包皮的内半径为r2=2.3 的各向同性其间充以相对介电常数εr均匀电介质.求当电缆芯与铅包皮间的电压为= 600V时,长为=1km的电缆中贮U12存的静电能是多少?(ε=8.85×10- 12C2 ·N-1·m-2)o36一电容为C的空气平行板电容器,接上端电压U为定值的电源充电.在电源保持连接的情况下,试求把两个极板间距离增大至n倍时外力所作的功.37已知均匀磁场,其磁感应强度B= 2.0Wb·m-2,方向沿x轴正向,如图所示.试求:(1)通过图中aboc面的磁通量;(2)通过图中bedo面的磁通量;(3)通过图中acde面的磁通量.38有二根导线,分别长2米和3米,将它们弯成闭合的圆,且通以电流I1 和I2,已知两个圆电流在圆心处的磁感应强度相等.求圆电流的比值I1 /I2.39如图所示,半径为R,电荷线密度为λ(>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω转动,求轴线上任一点的的大小及其方向.40、用两根彼此平行的半无限长直导线L1 把半径为R的均匀导体圆环联到电源上,L2如图所示.已知直导线上的电流为I.求圆环中心O点的磁感应强度.41如图所示,一半径为R的均匀带电无限长直圆筒,电荷面密度为σ.该筒以角速度ω绕其轴线匀速旋转.试求圆筒内部的磁感应强度.42在一半径R= 1.0cm的无限长半圆筒形金属薄片中,沿长度方向有电流I= 5.0A通过,且横截面上电流分布均匀.试求圆柱轴线任一点的磁感应强度.(μ=4π×10-7oN/A2 )43一无限长圆柱形铜导体(磁导率μ),o半径为R,通有均匀分布的电流I.今取一矩形平面S(长为1m,宽为2R),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.44在B= 0.1T的均匀磁场中,有一个速度大小为v=104 m/s的电子沿垂直于的方向(如图)通过A点,求电子的轨道半径和旋转频率.45已知载流圆线圈中心处的磁感应强度为Bo,此圆线圈的磁矩与一边长为a通过电流为I的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径.46如图所示,相距为a,通电流为I1 和I2的两根无限长平形载流直导线.(1)写出电流元I1 d1对电流元I2d2 的作用力的数学表达式;(2)推出载流导线单位长度上所受力的公式.47在氢原子中,电子沿着某一圆轨道绕核运与电子轨道运动动.求等效圆电流的磁矩m和方向间的动量矩大小之比,并指出m的关系.(电子电荷为e,电子质量为m)48如图所示线框,铜线横截面积S= 2.0mm2 ,其中OA和DO'两段保持水平不动,ABCD段是边长为a的正方形的三边,它可绕OO'轴无摩檫转动.整个导线放在匀强磁场中,的方向竖直向上.已知铜的密度ρ=8.9×103 kg/m3 ,当铜线中的电流I=10A时,导线处于平衡状态,AB段和CD段与竖直方向的夹角=15o .求磁感应强度的大小.49已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O点处的磁感应强度.50如图所示,一无限长载流平板宽度为a,线电流密度(即沿X方向单位长度上的电流)为δ,求与平板共面且距平板一边为b的任意点P的磁感应强度.51螺绕环中心周长=10cm,环上均匀密绕线圈N= 200匝,线圈中通有电流I= 0.1A.管内充满相对磁导率μ=4200的磁介r质.求管内磁场强度和磁感应强度的大小.52一铁环中心线周长=30cm,横截面S= 1.0cm2 ,环上紧密地绕有N= 300 匝的线圈.当导线中电流I=32mA时,通过环截面的磁通量φ= 2.0×10-6Wb.试求铁.芯的磁化率χm53在一长直密绕的螺线管中间放一正方形小线圈,若螺线管长1m,绕了1000匝,通以电流I=10cos100πt(SI),正方形小线圈每边长5cm,共 100匝,电阻为1Ω,求线圈中感应电流的最大值(正方形线圈=的法线方向与螺线管的轴线方向一致,μo4π×10-7T·m/A).54如图所示,在马蹄形磁铁的中间A点处放置一半径r=1cm、匝数N=10匝的线圈,且线圈平面法线平行于A点磁感应强度,今将此线圈移到足够远处,在这期间若线圈中流过的总电量为Q=π×10-6C,试求A点处磁感应强度是多少?(已知线圈的电阻R=10Ω,线圈的自感忽略不计)55无限长直导线,通以电流I.有一与之共面的直角三角形线圈ABC.已知AC边长为b,且与长直导线平行,BC边长为a.若线圈以垂直于导线方向的速度向右平移,当B点与长直导线的距离为d时,求线圈ABC内的感应电动势的大小和感应电动势的方向.56如图,有一弯成θ角的金属架COD放在磁场中,磁感应强度的方向垂直于金属架COD所在平面.一导体杆MN垂直于OD边,并在金属架上以恒定速度向右滑动,与MN垂直.设t=0时,x=0.求下列两情形,.框架内的感应电动势εi(1)磁场分布均匀,且不随时间改变.(2)非均匀的时变磁场B=Kxcosωt.57如图所示,一长直导线通有电流I,其旁共面地放置一匀质金属梯形线框abcda,已知:da=ab=bc=L,两斜边与下底边夹角均为60°,d点与导线相距为.今线框从静止开始自由下落H高度,且保持线框平面与长直导线始终共面,求:(1)下落H高度后瞬间,线框中的感应电流为多少?(2)该瞬时线框中电势最高处与电势最低处之间的电势差为多少?58如图所示,长直导线中电流为i,矩形线框abcd与长直导线共面,且ad∥AB,dc边固定,ab边沿da及cb以速度无摩擦地匀速平动.t=0时,ab边与cd边重合.设线框自感忽略不计.,求ab中的感应电动(1)如i=Io势.ab两点哪点电势高?(2)如i=Io cosωt,求ab边运动到图示位置时线框中的总感应电动势.59一圆环,环管横截面的半径为a,中心线的半径为R,Ra.有两个彼此绝缘的导线圈都均匀地密绕在环上,一个N1 匝,另一个N2 匝,求(1)两线圈的自感L1 和L2 . (2)两线圈的互感M.(3)M与L1 和L2 的关系.60两根很长的平行长直导线,其间距离为d,导线横截面半径为r(rd),它们与电源组成回路如图.若忽略导线内部的磁通,试计算此两导线组成的回路单位长度的自感系数L.61一根电缆由半径为R1 和R2的两个簿圆筒形导体组成,在两圆筒中间填充磁导率为μ的均匀磁介质.电缆内层导体通电流I,外层导体作为电流返回路径,如图所示.求长度为的一段电缆内的磁场储存的能量.62在细铁环上绕有N= 200匝的一层线圈,线圈中通以电流I= 2.5A,穿过铁环截面的磁通量φ= 0.5mWb,求磁场的能量W.63二小球悬于同样长度的线上.将第一球沿竖直方向上举到悬点,而将第二球从平衡位置移开,使悬线和竖直线成一小角度,如图.现将二球同时放开,振动可看作简谐振动,则何者先到达最低位置?64在一竖直轻弹簧下端悬挂质量m=5g的小球,弹簧伸长△=1cm而平衡.经推动后,该小球在竖直方向作振幅为A=4cm的振动,求(1)小球的振动周期;(2)振动能量.65一定滑轮的半径为R,转动惯量为J,其上挂一轻绳,绳的一端系一质量为m的物体,另一端与一固定的轻弹簧相连,如图所示.设弹簧的倔强系数为k,绳与滑轮间无滑动,且忽略轴的摩擦力及空气阻力.现将物体m从平衡位置拉下一微小距离后放手,证明物体作简谐振动,并求出其角频率.66一振幅为 10cm,波长为200cm的一维余弦波.沿x轴正向传播,波速为 100cm/s,在t= 0时原点处质点开始从平衡位置沿正位移方向运动.求(1)原点处质点的振动方程.(2)在x=150cm处质点的振动方程.67一简谐波沿x轴负方向传播,波速为1m/s,在x轴上某质点的振动频率为1Hz、振幅为0.01m.t=0时该质点恰好在正向最大位移处.若以该质点的平衡位置为x轴的原点.求此一维简谐波的波动方程.68已知一平面简谐波的方程为y=Acosπ(4t+2x)(SI).(1)求该波的波长λ,频率和波速u的值;(2)写出t=4 .2s时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置;(3)求t=4.2s时离坐标原点最近的那个波峰通过坐标原点的时刻t.69如图所示,两列平面简谐相干横波,在两种不同的媒质中传播,在分界面上的P点相遇.频率=100 Hz,振幅A1 =A2=1.00×10-3m,S1 的位相比S2的位相超前π.在媒质1中波速u1=400 m·s-1,在媒质2中的波速u2 =500 m·s-1,S1P=r1=4.00m,S2 P=r2=3.75m,求P点的合振幅.70如图所示,两列波长均为λ的相干简谐波分别通过图中的O1 和O2点,通过O1点的简谐波在M1 M2平面反射后,与通过O2点的简谐波在P点相遇.假定波在M1M2平面反射时有半波损失.O1 和O2两点的振动方程为y10=Acos(πt)和y20=Acos(πt),且+=8λ,=3λ(λ为波长),求:(1)两列波分别在P点引起的振动的方程;(2)P点的合振动方程.(假定两列波在传播或反射过程中均不衰减)71薄钢片上有两条紧靠的平行细缝,用波长λ=5461的平面光波正入射到钢片上.屏幕距双缝的距离为D=2.00m,测得中央明条纹两侧的第五级明条纹间的距离为x=12.0mm.(1)求两缝间的距离.(2)从任一明条纹(记作0)向一边数到第20条明条纹,共经过多大距离?(3)如果使光波斜入射到钢片上,条纹间距将如何改变?72在双缝干涉实验中,波长λ=5500的单色平行光垂直入射到缝间距a=2×10-4m的双缝上,屏到双缝的距离D=2m.求:(1)中央明纹两侧的两条第10级明纹中心的间距;(2)用一厚度为e=6.6×10-6m、折射率为n=1.58的玻璃片复盖一缝后,零级明纹将移到原来的第几级明纹处?73白光垂直照射到空气中一厚度为e=3800的肥皂膜上,肥皂膜的折射率n=1.33,在可见光的范围内(4000─7600),哪些波长的光在反射中增强?74图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R=400cm.用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30cm.(1)求入射光的波长.(2)设图中OA=1.00cm,求在半径为OA的范围内可观察到的明环数目.75用波长为 500nm(1nm=10-9m)的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上.在观察反射光的干涉现象中,距劈尖棱边=1.56cm的A处是从棱边算起的第四条暗条纹中心.(1)求此空气劈尖的劈尖角θ;(2)改用 600nm的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A处是明条纹还是暗条纹?(3)在第(2)问的情形从棱边到A处的范围内共有几条明纹?几条暗纹?76折射率为1.60的两块标准平面玻璃板之间形成一个劈尖(劈尖角θ很小).用波长λ=600nm(1nm=10-9m)的单色光垂直入射,产生等厚干涉条纹.假如在劈尖内充满n=1.40的液体时的相邻明纹间距比劈尖内是空气时的间距缩小=0.5mm,那么劈尖角θ应是多少?77曲率半径为R的平凸透镜和平板玻璃之间形成空气薄层,如图所示.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O点恰好接触.求:(1)从中心向外数第k个明环所对应的空气薄膜的厚度e.K(用R,波(2)第k个明环的半径rK).长λ和正整数k表示,R远大于上一问的eK78用波长为λ=600nm(1nm=10-9m)的光垂直照射由两块平玻璃板构成的空气劈尖薄膜,劈尖角θ=2×10-4rad.改变劈尖角,相邻两明条纹间距缩小了=1.0mm,求劈尖角的改变量θ.79用波长为λ的单色光垂直照射由两块平玻璃板构成的空气劈尖,已知劈尖角为θ.如果劈尖角变为θ',从劈棱数起的第四条明条纹位移值x是多少?80用波长λ=500nm(1nm=10-9m)的单色光垂直照射在由两块玻璃板(一端刚好接触成为劈棱)构成的空气劈尖上.劈尖角θ=2×10-4rad.如果劈尖内充满折射率为n=1.40的液体.求从劈棱数起第五个明条纹在充入液体前后移动的距离.81用氦氖激光器发射的单色光(波长为λ=6328)垂直照射到单缝上,所得夫琅和费衍射图样中第一级暗条纹的衍射角为5°,求缝宽度.82用波长为5893的钠黄光垂直入射在每毫米有500 条缝的光栅上,求第一级主极大的衍射角.83钠黄光中包含两个相近的波长λ1=589.0nm和λ2= 589.6nm.用平行的钠黄光垂直入射在每毫米有 600条缝的光栅上,会聚透镜的焦距f=1.00m.求在屏幕上形成的第2级光谱中上述两波长λ1 和λ2的光谱之间的间隔.84一束具有两种波长λ1 和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=5600,试问:(1)光栅常数a+b=?(2)波长λ2=?85地球的半径约为Ro=6376km,它绕太阳的速率约为v=30km·s-1,在太阳参照系中测量地球的半径在哪个方向上缩短得最多?缩短了多少?(假设地球相对于太阳系来说近似于惯性系)86在惯性系S中,有两事件发生于同一地点,且第二事件比第一事件晚发生t=2秒钟;而在另一惯性系S'中,观测第二事件比第一事件晚发生t'=3秒钟.那么在S'系中发生两件事的地点之间的距离是多少?87一隧道长为L,宽为d,高为h,拱顶为半圆,如图.设想一列车以极高的速度v沿隧道长度方向通过隧道,若从列车上观测,(1)隧道的尺寸如何?(2)设列车的长度为,它全部通过o隧道的时间是多少?88粒子在磁感应强度为B= 0.025T的均匀磁场中沿半径为R=0.83cm的圆形轨道运动.(1)试计算其德布罗意波长.(2)若使质量m= 0.1g的小球以与粒子相同的速率运动.则其波长为多少?(粒子的质量m=6.64×10-27 kg,普朗克常量h=6.63×10-34 J·S,基本电荷e=1.6×10-19 C)89一维运动的粒子,设其动量的不确定量等于它的动量,试求此粒子的位置不确定量与它的德布罗意波长的关系.(不确定关系式P·x≥h)x90同时测量能量为1keV的作一维运动的电子的位置与动量时,若位置的不确定值在0.1nm(1nm=10-9m)内,则动量的不确定值的百分比P/P至少为何值?=9.11×10-31kg,1eV(电子质量me=1.60×10-19J普朗克常量h=6.63×10-34 J·s)二 . 证明题:1刚体上一点A与转轴的距离为r,当刚体做定轴匀角速转动时,该点的运动方程为:x=rcos(ωt+φ)o)y=rsin(ωt+φo上述方程中ω和φ皆为常量,试证明其中的oω为刚体定轴转动的角速度.2两个等值、平行、反向且其作用线不在同一直线上的力总称为力偶.一力偶作用在刚体上,两力所在的平面与刚体的转轴垂直.试证明力偶对于转轴的力矩等于力和两力间垂直距离的乘积,而与轴的位置无关.3从牛顿运动定律出发,推导出刚体的定轴转动定律.4质量为m1 、半径为r1的匀质圆轮A,以角速度ω绕通过其中心的水平光滑轴转动,若此时将其放在质量为m2 、半径为r2的另一匀质圆轮B上,B轮原为静止,但可绕通过其中心的水平光滑轴转动.放置后A轮的重量由B轮支持,如图所示(水平横杆的质量不计).设两轮间的摩擦系数为μ.A、B轮对各自转轴的转动惯量分别为m1 r和m2r.证明:A轮放在B轮上到两轮间没有相对滑动为止,经过的时间为m2 r1ωt=────────── .2μg(m1 +m2)5试由理想气体状态方程及压强公式,推导出气体温度与气体分子热运动的平均平动动能之间的关系式.6一定量的理想气体由初态(po ,Vo)经绝热过程膨胀至末态(p,V).试证明在这个过程中气体作功为:po Vo-pVA=───────(γ=CP/Cv).γ-17为了测定某种理想气体的比热容比γ,可用一根通有电流的铂丝分别对气体在等容条件和等压条件下加热,设每次通电的电流大小和时间均相同.若气体初始温度、压强、体积分别为To 、po、Vo,第一次通电保持容积不变,压强和温度变为p1 、T1;第二次通电保持压强po 不变,温度和体积变为T2、V1.试证明CP (p1-po)Voγ=──=───────── .Cv (V1-Vo)po8试论证静电场中电力线与等势面处处正交.9两个电矩均为=q的电偶极子在一条直线上,相距R(R),如图所示.试证明两偶极子间的作用力为3p2F≈- ────── (负号表示相互吸引)2πεo R410半径分别为R和r的两个导体球,相距甚远.用细导线连接两球并使它带电,电荷面密度分别为σ1 和σ2 .忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响.试证明σ1 r──=──σR211如图所示,有一根弯曲的导线AC,在均匀磁场中沿水平方向以速度切割磁力线,试证明,导线AC两端的动生电动势等于vB.其中是导线两个端点的联线在MN直线上投影,MN直线与和均垂直.三 . 改错题:1质量为m的物体轻轻地挂在竖直悬挂的轻质弹簧的末端,在物体重力作用下,弹簧被拉长.当物体由y=0达到yo时,物体所受合力为零.有人认为,这时系统重力势能减少量mgyo应与弹性势能增量ky相等,于是有yo=2mg/k,你看错在哪里?请改正.2质量为M的木块A放在光滑的水平面上,现有一质量为m速率为vo的子弹水平地射向木块,子弹在木块内行经距离后,相对于木块静止.此时木块在水平面上滑过距离为L,而速度为v1,如图所示.设子弹在木块中受的阻力F是恒定的.有人在求L时,对子弹、木块列出下列方程:对子弹-F=0-mv①对木块FL=Mv-0②mvo =(M+m)v1③试指出上述方程中哪一个是错的,为什么错,正确的应如何?3关于热力学第二定律,下列说法如有错误请改正:(1)热量不能从低温物体传向高温物体.(2)功可以全部转变为热量,但热量不能全部转变为功.4有一电偶极子,今以其中心为球心作半径为R的高斯球面S,把电偶极子包围在其中,如图所示.按高斯定理,因高斯面内电荷的代数和为零,得到:S ·d=∑q/εo=0即S ·d=Esds=E·4πR2 =0∴E=0即高斯面上各点场强处处为零.以上推证对不对?如果不对,请指出错在何处?5关于高斯定理S ·d=∑q/εo,下列说法中如有错误请改正.(1)∑q为闭合面内所有电荷的代数和.(2)闭合面上各点场强仅由面内电荷决定,与面外电荷无关.(3)闭合面的电通量仅取决于面内电荷,与面外电荷无关.6对于实际上的任何电流回路,任意选取的闭合积分回路,安培环路定理·d=LI都能成立,因此利用安培环路定理可以求出任何电流回路在空间任一处产生的磁场强度.以上看法如有错请指出并改正.7由安培环路定理的应用例子可见,只有空间电流分布对称的情况下,该定理才成立.以上看法如有错误请指出并改正.四 . 问答题:1请分别写出质点系的动量守恒、动能守恒和机械能守恒的条件.2推导理想气体压强公式可分四步:(1)求任一分子i一次碰撞器壁施于器壁的冲量2mvi x ;(2)求分子i在单位时间内施于器壁冲量的总和(m/1)(vi x )2 ;(3)求所有N个分子在单位时间内施于器壁的总冲量(m/1)(vi x )2 ;(4)求所有分子在单位时间内施于单位面积器壁的总冲量──压强p=[m/(1 2 3)](vi x )2=(2/3)n.在上述四步过程中,哪几步用到了理想气体的假设?哪几步用到了平衡态的条件?哪几步用到了统计平均的概念?(1 、2、3分别为长方形容器的三个边长)3已知f(v)为麦克斯韦速率分布函数,N为总分子数,vP为分子的最可几速率.下列各式表示什么物理意义?(1)∫vf(v)dv;(2)∫f(v)dv;(3)∫Nf(v)dv.4静电学中有下面几个常见的场强公式:=/q(1)E=q/(4πεor2 )(2)E=(UA -UB)/(3)问:1.式(1)、(2)中的q意义是否相同?2.各式的适用范围如何?5试述静电场的环路定理.6如图所示,带电量均是Q的两个点电荷相距为,联线中点为O,有一点电荷q,在联线中垂线上距O为x处,若电荷q从静止开始运动,它将如何运动?(定性指出q的位置与速度变化情况).已知Q与q异号,忽略重力,阻力不计.7为什么不能把磁场作用于运动电荷的力的方向,定义为磁感应强度的方向? 8一条磁感应线上的任意二点处的磁感应强度一定大小相等么?为什么?9两个共面同心的圆电流I1 ,I2 其半径分别为R1 ,R2 ,问它们之间满足什么样关系时,圆心处的磁场为零.10从毕奥─萨伐尔定律能导出无限长直电流的磁场公式IμoB=────,2πa当考察点无限接近导线时(a→0),则B→∞,这是没有物理意义的,请解释.11将一长直细螺线管弯成环形螺线管,问管内磁场有何变化?12如图所示,环绕一根有限长的载流直导线有一回路c,·d=I是否成立?试c说明理由.。
大学物理复习计算
大学物理复习计算题1 一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求:(1) 物体能够上升的最大高度h ;(2) 该物体达到最高点后,沿斜面返回到原出发点时的速率v .2 如图所示,在与水平面成α角的光滑斜面上放一质量为m 的物体,此物体系于一劲度系数为k 的轻弹簧的一端,弹簧的另一端固定.设物体最初静止.今使物体获得一沿斜面向下的速度,设起始动能为E K 0,试求物体在弹簧的伸长达到x 时的动能.3 某弹簧不遵守胡克定律. 设施力F ,相应伸长为x ,力与伸长的关系为 F =52.8x +38.4x 2(SI )求:(1)将弹簧从伸长x 1=0.50 m 拉伸到伸长x 2=1.00 m 时,外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17 kg 的物体,然后将弹簧拉伸到一定伸长x 2=1.00 m ,再将物体由静止释放,求当弹簧回到x 1=0.50 m 时,物体的速率.(3)此弹簧的弹力是保守力吗?24 一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).5 一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).6 0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功.(普适气体常量R =8.31 11K mol J --⋅)3)57 两导体球A 、B .半径分别为R 1 = 0.5 m ,R 2 =1.0 m ,中间以导线连接,两球外分别包以内半径为R =1.2m 的同心导体球壳(与导线绝缘)并接地,导体间的介质均为空气,如图所示.已知:空气的击穿场强为3×106 V/m ,今使A 、B 两球所带电荷逐渐增加,计算:(1) 此系统何处首先被击穿?这里场强为何值?(2) 击穿时两球所带的总电荷Q 为多少?(设导线本身不带电,且对电场无影响.) (真空介电常量ε 0 = 8.85×10-12 C 2·N -1·m -2 )8 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1 = 2 cm ,R 2 = 5 cm ,其间充满相对介电常量为εr 的各向同性、均匀电介质.电容器接在电压U = 32 V 的电源上,(如图所示),试求距离轴线R = 3.5 cm 处的A 点的电场强度和A 点与外筒间的电势差.。
大学物理习题及解答(运动学、动量及能量)
⼤学物理习题及解答(运动学、动量及能量)1-1.质点在Oxy 平⾯内运动,其运动⽅程为j t i t r )219(22-+=。
求:(1)质点的轨迹⽅程;(2)s .t 01=时的速度及切向和法向加速度。
1-2.⼀质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置⽮量i r 100=。
求:(1)在任意时刻的速度和位置⽮量;(2)质点在oxy 平⾯上的轨迹⽅程,并画出轨迹的⽰意图。
1-3. ⼀质点在半径为m .r 100=的圆周上运动,其⾓位置为342t +=θ。
(1)求在s .t 02=时质点的法向加速度和切向加速度。
(2)当切向加速度的⼤⼩恰等于总加速度⼤⼩的⼀半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则⾓速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=??==ωr a22s t t s m 80.4d d -=?==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的⾓位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所⽰,在⽔平地⾯上,有⼀横截⾯2m 20.0=S 的直⾓弯管,管中有流速为1s m 0.3-?=v 的⽔通过,求弯管所受⼒的⼤⼩和⽅向。
解:在t ?时间内,从管⼀端流⼊(或流出)⽔的质量为t vS m ?=?ρ,弯曲部分AB 的⽔的动量的增量则为()()A B A B v v t vS v v m p -?=-?=?ρ依据动量定理p I ?=,得到管壁对这部分⽔的平均冲⼒()A B v v I F -=?=Sv t ρ从⽽可得⽔流对管壁作⽤⼒的⼤⼩为N 105.2232?-=-=-='Sv F F ρ作⽤⼒的⽅向则沿直⾓平分线指向弯管外侧。
大学物理习题册答案
练习 十三知识点:理想气体状态方程、温度、压强公式、能量均分原理、理想气体内能一、选择题1. 容器中储有一定量的处于平衡状态的理想气体,温度为T ,分子质量为m ,则分子速度在x 方向的分量平均值为 (根据理想气体分子模型和统计假设讨论) ( )(A )x υ= (B )x υ=; (C )m kT x 23=υ; (D )0=x υ。
解:(D)平衡状态下,气体分子在空间的密度分布均匀,沿各个方向运动的平均分子数相等,分子速度在各个方向的分量的各种平均值相等,分子数目愈多,这种假设的准确度愈高.2. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 ( )(A )pV /m ; (B )pV /(kT ); (C )pV /(RT ); (D )pV /(mT )。
解: (B)理想气体状态方程NkT T N R N RT m N Nm RT M M pV AA mol ==== 3.根据气体动理论,单原子理想气体的温度正比于 ( )(A )气体的体积; (B )气体的压强;(C )气体分子的平均动量;(D )气体分子的平均平动动能。
解: (D)kT v m k 23212==ε (分子的质量为m ) 4.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 ( )(A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高;(C )两种气体的温度相同; (D )两种气体的压强相同。
解:(A) kT v m k 23212==ε,2222H O H O T T m m =(分子的质量为m ) 5.如果在一固定容器内,理想气体分子速率都提高为原来的2倍,那么 ( )(A )温度和压强都升高为原来的2倍;(B )温度升高为原来的2倍,压强升高为原来的4倍;(C )温度升高为原来的4倍,压强升高为原来的2倍;(D )温度与压强都升高为原来的4倍。
大学物理练习册答案
第十章练习一一、选择题1、以下四种运动〔忽略阻力〕中哪一种是简谐振动?〔〕(A)小球在地面上作完全弹性的上下跳动(B)细线悬挂一小球在竖直平面上作大角度的来回摆动(C)浮在水里的一均匀矩形木块,将它局部按入水中,然后松开,使木块上下浮动 (D)浮在水里的一均匀球形木块,将它局部按入水中,然后松开,使木块上下浮动2、质点作简谐振动,距平衡位置时,加速度a=/s 2,则该质点从一端运动到另一端的时间为〔 〕3、如图下所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动,假设从松手时开场计时,则该弹簧振子的初相位为〔〕(A) 0 (B) 2π (C) 2π-(D) π 4、一质量为m 的物体与一个劲度系数为k 的轻弹簧组成弹簧振子,当其振幅为A 时,该弹簧振子的总能量为E 。
假设将其弹簧分割成两等份,将两根弹簧并联组成新的弹簧振子,则新弹簧振子的振幅为多少时,其总能量与原先弹簧振子的总能量E 相等〔〕(A)2A (B) 4A(C)2A (D)A 二、填空题1、简谐振动A x =)cos(0ϕω+t 的周期为T ,在2Tt =时的质点速度为,加速度为。
2、月球上的重力加速度是地球的1/6,假设一个单摆(只考虑小角度摆动)在地球上的振动周期为T ,将该单摆拿到月球上去,其振动周期应为。
3、一质点作简谐振动,在同一周期内相继通过相距为11cm 的A,B 两点,历时2秒,速度大小与方向均一样,再经过2秒,从另一方向以一样速率反向通过B 点。
该振动的振幅为,周期为。
4、简谐振动的总能量是E ,当位移是振幅的一半时,k E E =,P E E =,当xA=时,k P E E =。
三、计算题1、一振动质点的振动曲线如右图所示, 试求:(l)运动学方程; (2)点P 对应的相位;(3)从振动开场到达点P 相应位置所需的时间。
2、一质量为10g 的物体作简谐运动,其振幅为24 cm ,周期为4.0s ,当t=0时,位移为+24cm 。
大学物理习题册
班级 姓名 学号 批阅日期 月 日第一章 质点运动学一、选择题 1、分别以r 、s 、v 和a 表示质点运动的位矢、路程、速度和加速度,下列表述正确的是A 、r r ∆=∆B 、v dtds dt r d == C 、dt dv a = D 、v dt dr = [ ] 2、一质点沿Y 轴运动,其运动学方程为324t t y -=, 0=t 时质点位于坐标原点,当质点返回原点时,其速度和加速度分别为 [ ]A 、116-⋅s m ,216-⋅sm B 、116-⋅-s m ,216-⋅s m C 、 116-⋅-s m ,216-⋅-s m D 、116-⋅s m ,216-⋅-s m3、质点在平面内运动,位矢为)(t r ,若保持0=dt dr ,则质点的运动是 [ ]A 、 匀速直线运动B 、 变速直线运动C 、圆周运动D 、匀速曲线运动4、一质点沿x 轴运动的规律是542+-=t t x (SI 制)。
则前三秒内它的 [ ](A)位移和路程都是3m ;(B)位移和路程都是-3m ;(C)位移是-3m ,路程是3m ;(D)位移是-3m ,路程是5m 。
5、以下五种运动形式中,a 保持不变的运动是 [ ](A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动.(E) 圆锥摆运动.6、下列说法正确的是 [ ]A 、质点作圆周运动时的加速度指向圆心;B 、匀速圆周运动的加速度为恒量;C 、只有法向加速度的运动一定是圆周运动;D 、只有切向加速度的运动一定是直线运动。
二、填空题1、一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点的位移大小为 ___________,在t 由0到4s 的时间间隔内质点走过的路程为_________________.2、质点的运动方程为j t t i t t r )3121()21(32+++-=,(SI )当t =2s 时,其加速度=a ____________________。
大学物理习题册及解答_第二版_第一章_质点的运动
( A ) 3i 3 j (C) - 3i 3 j
(B) - 3i 3 j ( D) 3i 3 j
二、填空题
1.一质点沿x轴运动,其加速度a与位置坐标的关系为 a 3 6 x 2 (SI), 如果质点在原点处的速度为零,试求其在任意位置的速度 为 .
d d dx d a dt dx dt dx
8. 半径为R的圆盘在固定支撑面上向右滚动,圆盘质心C的运动速 度为 ,圆盘绕质心转动的角速度为 ,如图所示.则圆盘边 缘上A点的线速度为 ;B点的线速度为 ;O点的 线速度为 . A
分析:刚体上某质点的运动可看为随质心的 平动和绕质心转动的合成
B
C O
A C R
B R
1
消去t得轨道方程为 y M
o
o dr (2) A sinωt i A cosωt j d t d a A cosωt i A sinωt j r dt
x y 2 1 2 A1 A2
2
(椭圆)
1 2
x
2
2
2
1
2
上式表明:加速度恒指向椭圆中心。
质点在通过图中M点时,其速率是增大还是减小?
x A cos t y A sin t
1 2
at
M
y
Q
a
o
V an
P
o
x
(3)当t=0时,x=A1,y=0,质点位于图中P点
质点位于
t 2
时, x A1 cos
y A sin
2
解:(1)从运动方程中消去时间就得到轨道方程
大学物理习题集
说明:字母为黑体者表示矢量练习一 库仑定律 电场强度一.选择题1. 关于试验电荷以下说法正确的是:(A) 试验电荷是电量极小的正电荷; (B) 试验电荷是体积极小的正电荷; (C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2. 关于点电荷电场强度的计算公式E = q r / (4 π ε 0 r 3),以下说法正确的是(A) r →0时, E →∞;(B) r →0时,q 不能作为点电荷,公式不适用; (C) r →0时,q 仍是点电荷,但公式无意义;(D) r →0时,q 已成为球形电荷,应用球对称电荷分布来计算电场.3. 在点电荷激发的电场中,如以点电荷为中心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E 处处不等;(B) 球面上的电场强度矢量E 处处相等,故球面上的电场是匀强电场; (C) 球面上的电场强度矢量E 的方向一定指向球心;(D) 球面上的电场强度矢量E 的方向一定沿半径垂直球面向外.4. 图1.1所示为一沿X 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和−λ ( x > 0),则XOY 坐标平面上(0, a )点处的场强为: 图1.1(A ) 0. (B)i a02πελ. (C)i a 04πελ. (D) )(40j i +aπελ.5. 在没有其它电荷存在的情况下,一个点电荷q 1受另一点电荷 q 2 的作用力为f 12 ,当放入第三个电荷Q 后,以下说法正确的是(A) f 12的大小和方向都不会改变, 但q 1受的总电场力发生了变化;(B) f 12的大小、方向均发生改变, q 1受的总电场力也发生了变化. (C) f 12的大小不变,但方向改变, q 1所受的总电场力不变; (D) f 12的大小改变了,但方向没变, q 1受的总电场力不变; 二.填空题11. 如图1.2所示,真空中一半径为R 的均匀带电球面,Q ( Q > 0). 今在球面上挖去一非常小的面积ΔS(连同电荷设不影响原来的电荷分布,则挖去ΔS E = , 其方向为 .2. 两个电量都是+q 的点电荷, 相距为2a , 连线中点为O . 线的中垂线上放另一点电荷-q 0, 距O 点为x 。
大学物理习题册及解答(第二版)第二章 质点的运动定律
µgR
(D) 还应由汽车的质量M决定
解:汽车不发生侧向打滑的条件是,它所受的摩擦力 不得小于向心力,即有:
υ f = µN = µmg ≥ m R υ ≤ µgR
2
5.质量为m的质点,以不变速率v沿图中正三角形ABC 的水平光滑轨道运动.质点越过A角时,轨道作用于质 点的冲量的大小为 A
(A) mυ (C) 3mυ
M g =G R
E 2
F −m g a= m +m
2 1 2
v F
v T
m1 m2
m T= (F + m g) m +m
2 1 1 2
6.质量为m的小球自高为y0处沿水平方向以速率v0抛出, 与地面碰撞后跳起的最大高度为y0/2,水平速率为v0/2. 则碰撞过程中 (1)地面对小球的竖直冲量的大小为___________; (2) 地面对小球的水平冲量的大小为_________. 解:碰前小球沿x和y方向的速度分别为:
第二章 质点的运动定律(二) 质点的运动定律( 一 选择题
1. 一小珠可在半径为R竖直的圆环上无摩擦地滑动,且圆环能以 其竖直直径为轴转动.当圆环以一适当的恒定角速度ω转动,小珠 偏离圆环转轴而且相对圆环静止时,小珠所在处圆环半径偏离竖 直方向的角度为 g
Rω (C) θ = arctg( ) g
dυ k dυ = d υ ⋅ dx F =υ ∴a = = − 2 = dx dt mx dt m dx
k vdv = − dx 2 mx
k dx ∫ vdv = ∫ − 2 mx 0 x
v x
0
v2 k 1 1 = − 2 m x x0
v=
k 1 − 1 2 m x x 0
大学物理习题集(下)习题解答
单元一 简谐振动一、 选择、填空题1. 对一个作简谐振动的物体,下面哪种说法是正确的? 【 C 】(A) 物体处在运动正方向的端点时,速度和加速度都达到最大值;(B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π34,则t=0时,质点的位置在: 【 D 】(A) 过A 21x =处,向负方向运动; (B) 过A 21x =处,向正方向运动; (C) 过A 21x -=处,向负方向运动;(D) 过A 21x -=处,向正方向运动。
3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为: 【 B 】(A) θ; (B) 0; (C)π/2; (D) -θ4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: 【 B 】(A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: 【 C 】(A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: 【 C 】)4(填空选择)5(填空选择A2332,3)D (;A 22,43or ,4)C (;A 23,65,6)B (;A 21,32or ,3)A (±±±±±±±±±±±±,ππππππππ7. 如果外力按简谐振动的规律变化,但不等于振子的固有频率。
大学物理下册习题及答案
大学物理练习册物理教研室遍热力学(一)1、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示。
(B)不是平衡过程,但它能用P—V图上的一条曲线表示。
(C)不是平衡过程,它不能用P—V图上的一条曲线表示。
(D)是平衡过程,但它不能用P—V图上的一条曲线表示。
[ ]2、在下列各种说法中,哪些是正确的? [ ](1)热平衡就是无摩擦的、平衡力作用的过程。
(2)热平衡过程一定是可逆过程。
(3)热平衡过程是无限多个连续变化的平衡态的连接。
(4)热平衡过程在P—V图上可用一连续曲线表示。
(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程: [ ](1)用活塞缓慢的压缩绝热容器中的理想气体。
(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升。
(3)冰溶解为水。
(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动。
其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断: [ ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的? [ ](1)可逆过程一定是平衡过程。
(2)平衡过程一定是可逆的。
(3)不可逆过程一定是非平衡过程。
(4)非平衡过程一定是不可逆的。
(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态 [ ](A)一定都是平衡态。
7.12 大学物理(上)练习题
11
7-23 如图 已知 r =6cm, d =8cm,q1= 3×10-8C , 如图,已知 q2=-3×10-8C .求:(1)将电荷量为 ×10-8C的点电荷 将电荷量为2 求 将电荷量为 的点电荷 电场力作功多少? 从A点移到B点,电场力作功多少? (2) 将此点电荷从 电场力作功多少 .B .C A C点移到 点,电场力作功多少? . 点移到D点 电场力作功多少? 点移到 电场力作功多少 r r r d/2 d/2 q2 q1 .D 7-36 点电荷 =4.0×10-10C,处在导体球壳的中心 点电荷q ,处在导体球壳的中心, 壳的内外半径分别为R 壳的内外半径分别为 1=2.0cm和R2=3.0cm,求: 和 求 (1)导体球壳的电势; )导体球壳的电势; 处的电势; (2)离球心 =1.0cm处的电势; )离球心r 处的电势 后导体球壳的电势. (3)把点电荷移开球心 )把点电荷移开球心1.0cm后导体球壳的电势 后导体球壳的电势
昆明理工大学物理习题册带答案
7.当火车静止时,乘客发现雨滴下落方向偏向车头,偏角为 ,当火车以 的速率沿水平直线行驶时,发现雨滴下落方向偏向车尾,偏角为 ,假设雨滴相对于地的速度保持不变,试计算雨滴相对于地的速度大小.
4.在一个转动的齿轮上,一个齿尖P沿半径为 的圆周运动,其路程 随时间的规律为 ,其中 和 都是正的常量,则 时刻齿尖P的速度大小为____________,加速度大小为______________.
5.质点沿半径为 的圆周运动,运动方程为 ,则 时刻质点的法向加速度大小为 _________;角加速度 __________.
12.试说明质点作何种运动时将出现下述各种情况( ):
(1) , ;___________.
(2) , ;__________.
13.一物体作如右图所示的斜抛运动,测得在轨道A点处速度 的大小为 ,其方向与水平方向成 的夹角,则物体在A点的切向加速度 __________,轨道的曲率半径 _____________.
三.计算题:
1.有一质点沿X轴作直线运动, 时刻的坐标为 .试求:(1)第2秒内的平均速度;(2)第2秒末的瞬时速度;(3)第2秒内的路程.
2.一质点沿X轴运动,其加速度为 ,已知 时,质点位于 处,初速度 ,试求其位置和时间的关系式.
3.由楼窗口以水平初速度 射出一发子弹,取枪口为坐标原点,沿 方向为X轴,竖直向下为Y轴,并取发射时 ,试求:
(A) . (B) .
(C) . (D) .
二.填空题:
1.质量为 的质点,受力 的作用,式中 为时间. 时,该质点以 的速度通过坐标原点,则该质点任意时刻的位置矢量是____________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 气体动理论三、计算题1.两个相同的容器装有氢气,以一细玻璃相连通,管中用 一滴水银做活塞,如图。
当左边容器的温度为0℃、而右边 容器的温度为20℃时,水银滴刚好在管的中央。
问当左边 容器温度由0℃增到5℃、而右边容器温度由20℃增到30℃时,水银滴是否会移动?如何移动?2.温度为27℃时,1摩尔氦气、氢气和氧气各有多少内能?1克的这些气体各有多少内能?3.一容器为10cm 3的电子管,当温度为300K 时,用真空泵把管内空气抽成压强为5×10-6mmHg 的高真空,问此时管内有多少个空气分子?这些空气分子的平均平动能的总和是多少?平均转动动能的总和是多少?平均动能的总和是多少?(760mmHg =1.013×105 Pa ,空气分子可认为是刚性双原子分子)4.一瓶氢气和一瓶氧气温度相同,若氢气分子的平均平动动能为6.21×10-21 J 。
试求: (1)氧气分子的平均平动动能和方均根速率;(2)氧气的温度。
(阿伏伽德罗常数N A = 6.022×1023 mol -1 ,氧气分子摩尔质量m = 32 g ,玻耳兹曼常量k = 1.38×10-23 J·K -1)第十一章 热力学基础 三、计算题1、一定量的理想气体,由状态a 经b 到达c (abc 为一直线),如图。
求此过程中: (1)气体对外作的功;(2)气体内能的增量;(3)气体吸收的热量。
(Pa 10013.1atm 15⨯=)2、一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A 。
求:(1)B A →、C B →、A C →各过程中系统对外所作的功W ,内能的增量ΔE 以及所吸收的热量Q 。
(2)整个循环过程中系统对外所作的总功以及从外界吸收的总热量(各过程吸热的代数和)。
3、今有温度为27°C ,压强为1.013×105Pa ,质量为2.8g 的氮气,首先在等压的情况下加热,使体积增加1倍,其次在体积不变的情况下加热,使压强增加1倍,最后等温膨胀使压强降回到1.013×105Pa ,(1)作出过程的p —V 图;(2)求在3个过程中气体吸收的热量,所作的功和内能的改变。
4、一定量的某单原子分子理想气体装在封闭的气缸里,此气缸有可活动的活塞(活塞与气缸壁之间无摩擦且无漏气)。
已知气体的初压强p 1 = 1atm ,体积V 1 = 1升,现将该气体在等压下加热直到体积为原来的2倍,然后在等容下加热到压强为原来的2倍,最后作绝热膨胀,直到温度下降到初温为止。
试求:(1)在 p - V 图上将整个过程表示出来;(2)在整个过程中气体内能的改变;(3)在整个过程中气体所吸收的热量;(4)在整个过程中气体所作的功。
(1 atm = 1.013×105 Pa )5、如图所示,有一定量的理想气体,从初态) ,( 11V p a 开始,经过一个等容过程达到压强为41p 的b 态,再经过一个等压过程达到状态c ,最后经等温过程而完成一个循环。
求该循环过程中系统对外作的功W 和所吸收的热量Q 。
6、1mol 理想气体在T 1=400K 的高温热源与T 2=300K 的低温热源间作正卡诺循环(可逆的),在400K 的等温线上起始体积为V 1=0.001m 3,终止体积为V 2=0.005m 3,试求此气体在每完成一次循环的过程中:(1)从高温热源吸收的热量Q 1;(2)该循环的热机效率η;(3)气体对外所做的净功W ;(4)气体传给低温热源的热量Q 2 。
(摩尔气体常数R =8.31 J/mol·K )1p 1p 1p第十二章 振动三、计算题1.一物体沿x 轴作简谐振动,振幅为0.24m ,周期为2s ,当t =0时x 0=0.12m ,且向x 轴正方向运动,试求:(1)振动方程;(2)从x =-0.12m 且向x 轴负方向运动这一状态,回到平衡位置所需的时间。
2.一简谐振动的振动曲线如图所示,求振动方程。
3.一质点沿x 轴作简谐振动,振幅为12cm ,周期为2s 。
当t =0时,位移为6cm ,且向x 轴正方向运动。
求:(1)振动表达式;(2)t =0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =-6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
4.一定滑轮的半径为R ,转动惯量为J ,其上挂一轻绳,绳的一端系一质量为m 的物体,另一端与一固定的轻弹簧相连,如图所示。
设弹簧的劲度系数为k ,绳与滑轮间无摩擦,且忽略轴的摩擦力和空气阻力。
现将物体m 从平衡位置拉下一小段距离后放手,证明物体作简谐振动,并求出其角频率。
5.有两个振动方向相同的简谐振动,其振动方程分别为:cm )2cos(41ππ+=t x 和 cm )2/2cos(32ππ+=t x(1)求它们的合振动方程;(2)若另有一同方向的简谐振动:cm )2cos(333ϕπ+=t x ,问当ϕ3为何值时,x 1+x 3的振动为最大值?当ϕ3为何值时,x 1+x 3的振动为最小值?第十三章 波动 三、计算题1.已知一平面简谐波波函数为y =0.2cos π(2.5t -x ),式中x ,y 以m 为单位,t 以s 为单位,试求:(1)该简谐波的波长、周期、波速;(2)在x =1m 处质点的振动方程;(3)在t =0.4s 时,该处质点的位移和速度。
2.一平面波传播经过媒质空间某点时,该点振动的初相位为ϕ0,已知该波的振幅为A ,角频率为ω,媒质中的传播速度为u ,(1)写出该点的振动方程,(2)如果以该点为x 轴坐标原点,波的传播方向为x 轴正向,写出该波的波函数表达式。
3.已知波长为的平面简谐波沿x 轴负方向传播,x =0处质点的振动方程为:)(2cosSI ut A y λπ=,其中λ为波长,u 为波速。
试写出该平面简谐波的表达式;并画出t =T时刻的波形图。
4.一平面简谐波在媒质中以波速u =5m/s 沿x 轴正向传播,原点O 处质元的振动曲线如图所示。
求(1)该波的波动方程;(2)25m 处质元的振动方程,并画出该处质元的振动曲线;(3)t =3s 的波形曲线方程,并画出该时刻的波形曲线。
5.图示为一平面简谐波在时刻的波形图,求(1)该波的波动表达式;(2)P处质点的振动方程。
6.两列波在同一直线上传播,波速均为1m/s,它们的波函数分别为y1=0.05cosπ(x-t),y2=0.05cosπ(x+t),式中各均采用国际单位制。
(1)写出在直线上形成驻波方程,(2)给出驻波的波腹、波节的坐标位置;(3)求在x=1.2m处的振幅。
第十四章 光学 三、计算题1. 双缝干涉实验装置如图所示,双缝与屏之间的距离D =120cm ,两缝之间的距离d =0.50mm ,用波长λ=5000Å的单色光垂直照射双缝。
(1)求原点O (零级明条纹所在处)上方的第五级明条纹的坐标。
(2)如果用厚度e =1.0×10-2mm ,折射率n =1.58的透明薄膜覆盖在图中的s 1缝后面,上求述第五级明条纹的坐标x '。
2. 波长为500nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边l =1.56cm 的A 处是从棱边算起的第四条暗条纹中心。
(1)求此空气劈尖的劈尖角θ 。
(2)改用600nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹,还是暗条纹?3. 在牛顿环装置的平凸透镜和平板玻璃之间充满折射率n=1.33的透明液体(设平凸透镜和平板玻璃的折射率都大于1.33),凸透镜的曲率半径为300cm ,波长λ=650nm 的平行单色光垂直照射到牛顿环装置上,凸透镜的顶部刚好与平玻璃板接触。
求: (1)从中心向外数第十个明环所在处液体厚度e 10; (2)第十个明环的半径r 10。
4. 波长为500nm 的平行光垂直地入射于一宽为1mm 的狭缝,若在缝的后面有一焦距为100cm 的薄透镜,使光线会聚于一屏幕上,试求:中央明纹宽度;第一级明纹的位置,两侧第二级暗纹之间的距离。
5. 用一束具有两种波长12600,400nm nm λλ==的平行光垂直入射在光栅上,发现距中央明纹5cm 处,1λ光的第k 级主极大与2λ光的第(k +1)级主极大相重合,放置在光栅与屏之间的透镜的焦距f =50cm ,试问:(1)上述k =?;(2)光栅常数d =?6. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为3210a cm -=⨯,在光栅后放一焦距f =1m 的凸透镜,现以600nm λ=单色平行光垂直照射光栅,求:(1)透光缝a 的单缝衍射中央明条纹宽度为多少?(2)在该宽度内,有几个光栅衍射主极大?7. 波长为600nm λ=的单色光垂直入射到光栅上,测得第2级主极大的衍射角为30°,且第三级缺级,问:(1)光栅常数(a +b )是多少?透光缝可能的最小宽度a 是多少? (2)在选定了上述(a +b )与a 值后,屏幕上可能出现的全部主极大的级数。
8. (1)在单缝夫琅和费衍射实验中,垂直入射的光有两种波长,12400,760nm nmλλ==已知单缝宽度21.010a cm -=⨯,透镜焦距f =50cm 。
求两种光第一级衍射明纹中心之间的距离。
(2)若用光栅常数31.010d cm -=⨯的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离。
9. 两偏振片叠在一起,欲使一束垂直入射的线偏振光经过这两个偏振片之后振动方向转过90°,且使出射光强尽可能大,那么入射光振动方向和两偏振片的偏振化方向间的夹角应如何选择?这种情况下的最大出射光强与入射光强的比值是多少?10. 将三块偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45°和90°角。
(1)光强为I 0的自然光垂直地射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态;(2第十六章 量子物理基础三、计算题1.已知钾的逸出功为2.0eV ,如果用波长为360nm 的光照射钾做成的阴极K ,求光电效应的遏止电压和光电子的最大速率。
2.处于基态的氢原子应获得多少能量才能激发到3=n 的能级?氢原子从3=n 能级跃迁回到低能级可产生几条谱线?相应光子的频率和能量等于多少?3.电子初速率为零,经电势差U=10kV 的电场加速获得动能,试计算加速后电子的德布罗意波长。
4、已知粒子在一维无限深势阱中运动,其波函数为)0(sin 2)(a x ax n a x ≤≤=πψ,求发现粒子概率最大的位置,并讨论结果与n 的关系.。