2019高考数学考点突破——不等式基本不等式学案
2019年高考数学总复习专题基本不等式及其应用导学案理
第四节 基本不等式及其应用最新考纲1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 知识梳理 1.重要不等式a 2+b 2≥2ab (a ,b ∈R )(当且仅当a =b 时等号成立).2.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数. 基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 3.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.(3)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +a b≥2(a ,b 同号),当且仅当a =b 时取等号. 4.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).5.不等式的恒成立、能成立、恰成立问题(1)恒成立问题:若f (x )在区间D 上存在最小值,则不等式f (x )>A 在区间D 上恒成立⇔f (x )min >A ;若f (x )在区间D 上存在最大值,则不等式f (x )<B 在区间D 上恒成立⇔f (x )max <B .(2)能成立问题:若f (x )在区间D 上存在最大值,则在区间D 上存在实数x 使不等式f (x )>A 成立⇔f (x )max >A ;若f (x )在区间D 上存在最小值,则在区间D 上存在实数x 使不等式f (x )<B 成立⇔f (x )min <B . (3)恰成立问题:不等式f (x )>A 恰在区间D 上成立⇔f (x )>A 的解集为D ; 不等式f (x )<B 恰在区间D 上成立⇔f (x )<B 的解集为D . 典型例题考点一 利用基本不等式证明不等式的方法【例1】 已知x >0,y >0,z >0,求证:⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥8.【证明 】∵x >0,y >0,z >0,∴y x +z x≥2yz x>0,x y +z y≥2xz y>0,x z +y z≥2xyz>0,∴⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥8yz ·xz ·xy xyz =8,当且仅当x =y =z 时等号成立.规律方法 (1)利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式.对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等.(2)利用基本不等式对所证明的不等式中的某些部分放大或者缩小,在含有三个字母的不等式证明中要注意利用对称性.【变式训练1】已知a >0,b >0,c >0,且a +b +c =1,求证:1a +1b +1c≥9.【证明 】∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.考点二 直接法或配凑法求最值【例2】(1)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A .13 B .12 C .34 D .23【答案】C【解析】∵0<x <1,∴x (3-3x )=3x (1-x )≤3⎣⎢⎡⎦⎥⎤x +-x 22=34,当且仅当x =1-x ,即x =12时,“=”成立.(2)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ) A .1+ 2 B .1+ 3 C .3 D .4 【答案】C【解析】∵x >2,∴x -2>0, ∴f (x )=x +1x -2=(x -2)+1x -2+2≥2·x -1x -2+2=2+2=4,当且仅当x -2=1x -2,即(x -2)2=1时,等号成立, ∴x =1或3.又∵x >2,∴x =3,即a =3.(3)已知x <54,求f (x )=4x -2+14x -5的最大值;(4) 设0<x <52,则函数y =4x (5-2x )的最大值为________.【答案】252【解析】因为0<x <52,所以5-2x >0,所以y =4x (5-2x )=2×2x (5-2x )≤2⎝ ⎛⎭⎪⎫2x +5-2x 22=252,当且仅当2x =5-2x ,即x =54时等号成立,故函数y =4x (5-2x )的最大值为252.规律方法 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.【变式训练2】(1)[2015·湖南高考]若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4【答案】C【解析】由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.(2)若对任意的x ≥1,不等式x +1x +1-1≥a 恒成立,则实数a 的取值范围是________. 【答案】⎝⎛⎦⎥⎤-∞,12. (3)函数y =x 2+2x -1(x >1)的最小值为________.【答案】23+2.【解析】y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立. 考点三 常数代换或消元法求最值【例3】(1)已知m >0,n >0,2m +n =1,则1m +2n的最小值为____.【答案】8.【解析】∵2m +n =1,∴1m +2n =(1m +2n )·(2m +n )=4+n m +4mn≥4+2n m ·4mn=8. 当且仅当n m =4m n ,即n =12,m =14时,“=”成立. (2)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值为________. 【答案】5.【解析】法一 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )⎝⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+125=5,当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立,∴3x +4y 的最小值是5.法二 由x +3y =5xy ,得x =3y 5y -1,∵x >0,y >0,∴y >15,∴3x +4y =9y 5y -1+4y =13⎝ ⎛⎭⎪⎫y -15+95+45-4y5⎝ ⎛⎭⎪⎫y -15+4y =135+95·15y -15+4⎝ ⎛⎭⎪⎫y -15≥135+23625=5,当且仅当y =12时等号成立,∴(3x +4y )min =5. (3)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【答案】6.【解析】)由已知得x =9-3y1+y .法一 (消元法)因为x >0,y >0,所以0<y <3,所以x +3y =9-3y1+y +3y=121+y+3(y +1)-6≥2121+y·3(y +1)-6=6, 当且仅当121+y =3(y +1),即y =1,x =3时,(x +3y )min =6.法二 ∵x >0,y >0,9-(x +3y )=xy =13x ·(3y )≤13·⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y 时等号成立.设x +3y =t >0,则t 2+12t -108≥0, ∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6.故当x =3,y =1时,(x +3y )min =6 (4)已知a >0,b >0,a +b =1,则1a +1b的最小值为________.【答案】4.【解析】 ∵a >0,b >0,a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b≥2+2b a ·a b =4,即1a +1b 的最小值为4,当且仅当a =b =12时等号成立. 【题点发散1】本例的条件不变,则⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b 的最小值为____【答案】9.【解析】⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎫1+a +b a ·⎝⎛⎭⎪⎫1+a +b b =⎝⎛⎭⎪⎫2+b a ·⎝⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9,当且仅当a =b=12时,取等号. 【题点发散2】若将本例中的“a +b =1”换为“a +2b =3”,如何求解? 【答案】1+223.【解析】∵a +2b =3,∴13a +23b =1.∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b ⎝ ⎛⎭⎪⎫13a +23b =13+23+a 3b +2b3a≥1+22ab 9ab =1+223. 当且仅当a =2b =32-3时,取等号. 故1a +1b 的最小值为1+223. 规律方法 求条件最值注意的问题(1)要敏锐的洞察到已知条件与要求式子的联系,并能灵活进行转化; (2)常用的技巧有:“1”的代换,配凑法,放缩法,换元法.y =x +100x+1.5≥2x ·100x+1.5=21.5,当且仅当x =100x,即x =10时取等号.故该企业10年后需要重新更换新的污水处理设备. 课堂总结1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,ab ≤a +b 2≤a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件.3.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +mx(m >0)的单调性. 课后作业1.已知a >0,b >0,且4a +b =1,则ab 的最大值为________.【答案】116.【解析】法一:∵a >0,b >0,4a +b =1,∴1=4a +b ≥24ab =4ab ,当且仅当4a =b =12,即a =18,b =12时,等号成立.∴ab ≤14,∴ab ≤116.∴ab 的最大值为116.法二:∵4a +b =1,∴ab =14·4a ·b ≤14⎝ ⎛⎭⎪⎫4a +b 22=116, 当且仅当4a =b =12,即a =18,b =12(满足a >0,b >0)时,等号成立,∴ab 的最大值为116.2.[2017·山东高考]若直线x a +yb=1(a >0,b >0)过点(1,2),则2a +b 的最小值为________. 【答案】8.【解析】∵直线x a +y b=1(a >0,b >0)过点(1,2),∴1a +2b =1,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =4+4a b +b a ≥4+24a b·ba=8,当且仅当b a =4ab,即a =2,b =4时,等号成立.故2a +b 的最小值为8. 3.已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是________.【答案】3.【解析】由x 2+2xy -3=0得y =3-x 22x =32x -12x ,则2x +y =2x +32x -12x =3x 2+32x≥23x 2·32x=3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.4.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 【答案】C. 【解析】xy ≤⎝⎛⎭⎪⎫x +y 22=⎝ ⎛⎭⎪⎫1822=81,当且仅当x =y =9时等号成立,故选C.5.若2x+4y=4,则x +2y 的最大值是___. 【答案】2.【解析】因为4=2x+4y=2x+22y≥22x ×22y =22x +2y,所以2x +2y≤4=22,即x +2y ≤2,当且仅当2x =22y=2,即x =2y =1时,x +2y 取得最大值2.6.[2017·江苏高考]某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________. 【答案】 307.函数y =2x +1x -1(x >1)的最小值为________. 【答案】 22+2 【解析】 因为y =2x +1x -1(x >1),所以y =2x +1x -1=2(x -1)+1x -1+2≥2+2x -1x -1=22+2.当且仅当x =1+22时取等号,故函数y =2x +1x -1(x >1)的最小值为22+2. 8.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是 ( )A.43B.53C .2D.54【答案】C【解析】由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.9.函数y =^x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2【答案】A【解析】 ∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+x -+3x -1=x -2+x -+3x -1=x -1+3x -1+2≥2x -⎝ ⎛⎭⎪⎫3x -1+2=23+2. 当且仅当x -1=3x -1,即x =1+3时,取等号. 10.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x -2x 的最大值.【答案】(1)-52;(2) 2.【解析】 (1)∵x <32,∴2x -3<0,∴3-2x >0,∴y =12(2x -3)+82x -3+32=-12⎣⎢⎡⎦⎥⎤-2x +163-2x +32≤-12·2-2x163-2x +32=-4+32=-52, 当且仅当3-2x =163-2x ,即x =-12时,y max =-52.∴函数y 的最大值为-52.(2)∵0<x <2,4-2x >0, ∴y =x-2x =12·2x -2x ≤12⎝ ⎛⎭⎪⎫2x +4-2x 22=2, 当且仅当2x =4-2x ,即x =1时,y max = 2. 11.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值. 【答案】(1)64;(2)18.【解析】(1)∵x >0,y >0,2x +8y -xy =0, ∴xy =2x +8y ≥216xy =8xy ,∴xy (xy -8)≥0,又xy ≥0,∴xy ≥8即xy ≥64.当且仅当x =4y 即8y +8y -4y 2=0时,即y =4,x =16时取等号,∴xy 的最小值为64. (2)∵2x +8y =xy >0,∴2y +8x=1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫2y +8x =10+2x y +8y x≥10+22x y ·8yx=18.当且仅当2x y =8y x,即x =2y 即4y +8y -2y 2=0时,即y =6,x =12时取等号,∴x +y 的最小值为18.12.若正数a ,b 满足ab =a +b +3,求: (1)ab 的取值范围; (2)a +b 的取值范围.13.某地需要修建一条大型输油管道通过240 km 宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程是在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的费用为400万元,铺设距离为x km 的相邻两增压站之间的输油管道的费用为(x 2+x )万元.设余下工程的总费用为y 万元. (1)试将y 表示成x 的函数;(2)需要修建多少个增压站才能使y 最小,其最小值为多少?【答案】(1) y =96 000x+240x -160(0<x <240);(2) 需要修建11个增压站才能使y 最小,其最小值为9440万.【解析】 (1)设需要修建k 个增压站, 则(k +1)x =240,即k =240x-1,所以y =400k +(k +1)(x 2+x )=400·⎝⎛⎭⎪⎫240x -1+240x(x 2+x )=96 000x +240x -160.因为x 表示相邻两增压站之间的距离,则0<x <240. 故y 与x 的函数关系是y =96 000x+240x -160(0<x <240).(2)y =96 000x+240x -160≥296 000x ·240x -160=2×4 800-160=9 440,当且仅当96 000x=240x ,即x =20时等号成立,此时k =240x -1=24020-1=11.故需要修建11个增压站才能使y 最小,其最小值为9 440万。
高中数学人教A版2019课标版必修一公开课教案基本不等式
2.2基本不等式教材分析:“基本不等式” 是必修1的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.教学目标【知识与技能】1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.掌握基本不等式2a b ab +≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题【过程与方法】通过实例探究抽象基本不等式;【情感、态度与价值观】通过本节的学习,体会数学来源于生活,提高学习数学的兴趣. 教学重难点【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式2a b ab +≤的证明过程; 【教学难点】 1.基本不等式2a b ab +≤等号成立条件; 2.利用基本不等式2a b ab +≤求最大值、最小值. 教学过程1.课题导入前面我们利用完全平方公式得出了一类重要不等式:一般地,,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立特别地,如果a >0,b >0,我们用,分别代替上式中的a ,b ,可得①当且仅当a =b 时,等号成立.通常称不等式(1)为基本不等式(basicinequality ).其中,叫做正数a ,b 的算术平均数,叫做正数a ,b 的几何平均数. 基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.思考:上面通过考察a 2+b 2=2ab 的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下.2.讲授新课1)2a b ab +≤ 特别的,如果a >0,b >0,我们用分别代替a 、b ,可得2a b ab +≥, (a>0,b>0)2a b ab +≤2)2a b ab +≤ 用分析法证明:要证 2a b ab +≥ (1) 只要证 a +b ≥ (2)要证(2),只要证 a +b -≥0 (3)要证(3),只要证 (-)2≥0 (4)显然,(4)是成立的.当且仅当a =b 时,(4)中的等号成立.探究1:在右图中,AB 是圆的直径,点C 是AB 上的一点,AC =a ,BC =b .过点C 作垂直于AB 的弦DE ,连接AD 、BD .2a b ab +的几何解释吗? 易证Rt △A CD ∽Rt △D CB ,那么CD 2=CA ·CB即CD =ab .这个圆的半径为2b a +,显然,它大于或等于CD ,即ab b a ≥+2,其中当且仅当点C 与圆心重合,即a =b 时,等号成立.因此:基本不等式2a b ab +≤几何意义是“半径不小于半弦” 评述:1.如果把2b a +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项. 2. 在数学中,我们称2b a +为a 、b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.【设计意图】老师引导,学生自主探究得到结论并证明,锻炼了学生的自主研究能力和研究问题的逻辑分析能力.例1 已知x >0,求x +的最小值.分析:求x +的最小值,就是要求一个y 0(=x 0+),使x >0,都有x +≥y .观察x +,发现x =1.联系基本不等式,可以利用正数x 和的算术平均数与几何平均数的关系得到y 0=2. 解:因为x >0,所以x +=2当且仅当x = ,即x 2=1,x =1时,等号成立,因此所求的最小值为2.在本题的解答中,我们不仅明确了x >0,有x +≥2,而且给出了“当且仅当x =,即=1,x =1时,等号成立”,这是为了说明2是x +(x >0)的一个取值,想一想,当y 0<2时,x +=y 0成立吗?这时能说y .是x +(x >0)的最小值吗?例2 已知x ,y 都是正数,求证:(1)如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值;(2)如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值. 证明:因为x ,y 都是正数,所以.(1)当积xy 等于定值P 时,,所以,当且仅当x=y时,上式等号成立.于是,当x=y时,和x+y有最小值.(2)当和x+y等于定值S时,,所以,当且仅当x=y时,上式等号成立.于是,当x=y时,积xy有最大值例3(1)用篱笆围一个面积为100m2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36m的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?分析:(1)矩形菜园的面积是矩形的两邻边之积,于是问题转化为:矩形的邻边之积为定值,边长多大时周长最短.(2)矩形菜园的周长是矩形两邻边之和的2倍,于是问题转化为:矩形的邻边之和为定值,边长多大时面积最大.解:设矩形菜园的相邻两条边的长分别为xm,ym,篱笆的长度为2(x+y)m.(1)由已知得xy=100.由,可得x+y≥2=20,所以2(x+y)≥40,当且仅当x=y=10时,上式等号成立因此,当这个矩形菜园是边长为10m的正方形时,所用篱笆最短,最短篱笆的长度为40m.(2)由已知得2(x+y)=36,矩形菜园的面积为xym2.由,可得xy ≤81,当且仅当x =y =9时,上式等号成立.因此,当这个矩形菜园是边长为9m 的正方形时,菜园的面积最大,最大面积是81m 2. 例4 某工厂要建造一个长方体形无盖贮水池,其容积为4800m 2,深为3m .如果池底每平方米的造价为150元,池壁每平方米的造价为120元,那么怎样设计水池能使总造价最低?最低总造价是多少?分析:贮水池呈长方体形,它的高是3m ,池底的边长没有确定.如果池底的边长确定了,那么水池的总造价也就确定了.因此,应当考察池底的边长取什么值时,水池的总造价最低. 解:设贮水池池底的相邻两条边的边长分别为xm ,ym ,水池的总造价为2元.根据题意,有z =150×+120(2×3x +2×3y )=240000+720(x +y ).由容积为4800m 3,可得3xy =4800,因此xy =1600.所以z ≥240000+720×2, 当x =y =40时,上式等号成立,此时z =297600.所以,将贮水池的池底设计成边长为40m 的正方形时总造价最低,最低总造价是297600元.【设计意图】例题讲解,学以致用.3.随堂练习1.已知a 、b 、c 都是正数,求证:(a +b )(b +c )(c +a )≥8abc 分析:对于此类题目,选择定理:ab b a ≥+2(a >0,b >0)灵活变形,可求得结果. 解:∵a ,b ,c 都是正数∴a +b ≥2>0 b +c ≥2>0 c +a ≥2>0∴(a+b)(b+c)(c+a)≥2·2·2=8abc即(a+b)(b+c)(c+a)≥8abc.【设计意图】讲练结合,熟悉新知.4.课时小结本节课,我们学习了重要不等式a2+b2≥2ab;两正数a、b的算术平均数(),几何平均数()及它们的关系().它们成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab≤,ab≤()2.我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题.在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等.。
高考数学《基本不等式》专题复习教学案
基本不等式【知识梳理】一、基本不等式ab ≤a +b21.基本不等式成立的条件:a >0,b >0.2.等号成立的条件:当且仅当a =b 时取等号. 二、几个重要的不等式a 2+b 2≥2ab (a ,b ∈R );b a +a b ≥2(a ,b 同号).ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ).三、算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.四、利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)【基础自测】1.函数y =x +1x(x >0)的值域为________解析: ∵x >0,∴y =x +1x ≥2,当且仅当x =1时取等号.答案:[2,+∞)2.已知m >0,n >0,且mn =81,则m +n 的最小值为_______解析: ∵m >0,n >0,∴m +n ≥2mn =18.当且仅当m =n =9时,等号成立. 3.已知0<x <1,则x (3-3x )取得最大值时x 的值为_______解析:选B 由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.4.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:55.已知x >0,y >0,lg x +lg y =1,则z =2x +5y 的最小值为________.解析:由已知条件lg x +lg y =1,可得xy =10.则2x +5y ≥2 10xy=2,故⎝⎛⎭⎫2x +5y min =2,当且仅当2y =5x 时取等号.又xy =10,即x =2,y =5时等号成立. 答案:21.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.2.对于公式a +b ≥2ab ,ab ≤⎝⎛⎭⎫a +b 22,要弄清它们的作用和使用条件及内在联系,两个公式也体现了ab 和a +b 的转化关系.3.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)逆用就是ab ≤⎝⎛⎭⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.【考点探究】考点一利用基本不等式求最值【例1】 (1)已知x <0,则f (x )=2+4x+x 的最大值为________.(2)(2012·浙江高考)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是_______ [解] (1)∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎡⎦⎤4-x +(-x ).∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎡⎦⎤4-x +(-x )≤2-4=-2,∴f (x )的最大值为-2.(2)∵x >0,y >0,由x +3y =5xy 得15⎝⎛⎭⎫1y +3x =1. ∴3x +4y =15·(3x +4y )·⎝⎛⎭⎫1y +3x =15⎝⎛⎭⎫3x y +4+9+12y x =135+15⎝⎛⎭⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5. 【一题多变】本例(2)条件不变,求xy 的最小值.解:∵x >0,y >0,则5xy =x +3y ≥2x ·3y ,∴xy ≥1225,当且仅当x =3y 时取等号.【由题悟法用基本不等式求函数的最值,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.在求条件最值时,一种方法是消元,转化为函数最值;另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值,但无论哪种方法在用基本不等式解题时都必须验证等号成立的条件. 【以题试法】1.(1)当x >0时,则f (x )=2xx 2+1的最大值为________.(2)(2011·天津高考)已知log 2a +log 2b ≥1,则3a +9b 的最小值为________.(3)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x ≤22=1,当且仅当x =1x ,即x =1时取等号.(2)由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时取等号).又∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号),∴3a +9b ≥2×32=18. 即当a =2b 时,3a +9b 有最小值18.(3)由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.考点二 多元均值不等式问题【例2】设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2xz 的最小值是________.解析:由已知条件可得y =x +3z2,所以y 2xz =x 2+9z 2+6xz 4xz =14⎝⎛⎭⎫x z +9z x +6≥14⎝⎛⎭⎫2x z ×9z x +6=3, 当且仅当x =y =3z 时,y 2xz取得最小值3.【以题试法】若,,0a bc >且()4a a b c bc +++=-求2a b c ++的最小值 .,,0,2()()2,,1.2 2.a b c a b c a b a c b c b c a a b c >++=+++≥======-++解:由知当且仅当即时,等号成立故的最小值为考点三 基本不等式的实际应用【例3】 (2012·江苏高考)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.[解] (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k2=20k +1k ≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根 ⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0 ⇔a ≤6. 所以当a 不超过6千米时,可击中目标.【由题悟法】 利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.【以题试法】2.(2012·福州质检)某种商品原来每件售价为25元,年销售8万件. (1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.解:(1)设每件定价为t 元,依题意,有⎝⎛⎭⎫8-t -251×0.2t ≥25×8,整理得t 2-65t +1 000≤0,解得25≤t ≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2 150x ·16x =10(当且仅当x =30时,等号成立),∴a ≥10.2. 因此当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.【巩固练习】1.函数y =x 2+2x -1(x >1)的最小值是_______解析:∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2≥2(x -1)3x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.2.设a >0,b >0,且不等式1a +1b +ka +b ≥0恒成立,则实数k 的最小值等于_______解析:由1a +1b +ka +b ≥0得k ≥-(a +b )2ab ,而(a +b )2ab =b a +a b +2≥4(a =b 时取等号),所以-(a +b )2ab ≤-4,因此要使k ≥-(a +b )2ab 恒成立,应有k ≥-4,即实数k 的最小值等于-4.3.求函数2y =的值域.(2)t t =≥,则2y =1(2)t t t ==+≥因10,1t t t >⋅=,但1t t=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性. 因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥. 所以,所求函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭.4、求函数21(1)2(1)y x x x =+>-的最小值.解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52.5.求函数23(32)(0)2y x x x =-<< 的最大值解:30,3202x x <<->∴,∴23(32)(0)(32)2y x x x x x x =-<<=⋅⋅-3(32)[]13x x x ++-≤=,当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是16.已知x ,y 为正实数,且x 2+y 22 =1,求x 1+y 2 的最大值.解:x ·12 +y22≤x 2+(12 +y 22 )22 =x 2+y 22 +122 =34即x 1+y 2= 2 ·x12 +y22≤ 34 2 7.已知a>b>0,求a+)(1b a b -的最小值.8.已知函数f (x )=x +px -1(p 为常数,且p >0)若f (x )在(1,+∞)上的最小值为4,则实数p的值为________.解析:由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号,因为f (x )在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94.9.已知x >0,a 为大于2x 的常数, (1)求函数y =x (a -2x )的最大值; (2)求y =1a -2x-x 的最小值. 解:(1)∵x >0,a >2x , ∴y =x (a -2x )=12×2x (a -2x )≤12×⎣⎡⎦⎤2x +(a -2x )22=a 28,当且仅当x =a 4时取等号,故函数的最大值为a 28. (2)y =1a -2x+a -2x 2-a 2≥212-a 2=2-a2. 当且仅当x =a -22时取等号.故y =1a -2x-x 的最小值为2-a2.10.正数x ,y 满足1x +9y =1. (1)求xy 的最小值; (2)求x +2y 的最小值.解:(1)由1=1x +9y ≥21x ·9y 得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝⎛⎭⎫1x +9y =19+2y x +9xy≥19+2 2y x ·9xy=19+62,当且仅当2y x =9xy,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2. 11.若x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值范围;(2)求x +y 的取值范围. 解:由x +2y +xy =30,(2+x )y =30-x , 则2+x ≠0,y =30-x2+x >0,0<x <30.(1)xy =-x 2+30x x +2=-x 2-2x +32x +64-64x +2=-x -64x +2+32=-⎣⎡⎦⎤(x +2)+64x +2+34≤18,当且仅当x =6时取等号,因此xy 的取值范围是(0,18]. (2)x +y =x +30-x 2+x =x +32x +2-1=x +2+32x +2-3≥82-3,当且仅当⎩⎨⎧x =42-2,y =42-1时等号成立,又x +y =x +2+32x +2-3<30,因此x +y 的取值范围是[82-3,30).。
基本不等式(学案)-高中数学人教A版(2019)必修—(Word含解析)
第二章 一元二次函数、方程和不等式2.2 基本不等式学案一、学习目标1. 通过对基本不等式的学习,能够对其进行证明,并会用几种语言来进行解释.2. 能够运用基本不等式来求代数式的最值.3. 能够使用基本不等式解决实际生活中的最值问题,提高用数学手段解答现实生活中的问题的能力.二、基础梳理1. 若00a b >>,≤2a b +,当且仅当a b =时,等号成立. 其中,2a b +叫做正数a ,ba ,b 的几何平均数.2. 基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.三、巩固练习1.已知正数a ,b 满足4a b +=,则1113a b +++的最小值为( ) A.1 B.2 C.4 D.122.如果实数,x y 满足4x y +=,则222x y ++的最小值是( )A .4B .6C .8D .10 3.已知实数0,0a b >>,若21a b +=,则12a b +的最小值是( ) A .83 B .113 C . 4 D .84.已知0x >,0y >,228x y xy ++=,则2x y +的最小值是( )A.3B.4C.92D.1125.若111111M a b c ⎛⎫⎛⎫⎛⎫=--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,且1a b c ++=(其中a ,b ,c 均为正实数),则M 的取值范围是( ) A.10,8⎡⎫⎪⎢⎣⎭ B.1,18⎡⎫⎪⎢⎣⎭C.[1,8)D.[8,)+∞6.已知0a >,0b >,则11a b ++的最小值是( )A.2B.C.4D.57.若x,y均为正实数,且111223x y+=++,则xy的最小值为( )A.2B.12C.14D.168.已知01x<<,则1221x x+-的最小值为( )A.9B.92C.5D.52参考答案巩固练习1.答案:D解析:因为4a b +=,所以(1)(3)8a b +++=, 所以11111[(1)(3)]13813a b a b a b ⎛⎫+=++++ ⎪++++⎝⎭ 1312813b a a b ++⎛⎫=++ ⎪++⎝⎭128⎛≥+ ⎝ 11(22)82=⨯+=, 当且仅当13a b +=+且4a b +=,即3a =,1b =时,等号成立,所以1113a b +++的最小值为12. 2.答案:D 解析:因222()422x y x y ++=,故22x y +,所以应选D 3.答案:D解析:∵实数0,0a b >>,21a b +=,则()121242448b a a b a b a b a b ⎛⎫==++=++≥+ ⎪⎝⎭,,当且仅当122b a ==时取等号。
2019届高考数学一轮复习:《基本不等式》教学案(含解析)
第四节基本不等式[知识能否忆起]一、基本不等式ab ≤a +b21.基本不等式成立的条件:a>0,b>0. 2.等号成立的条件:当且仅当a =b 时取等号. 二、几个重要的不等式a 2+b 2≥2ab(a ,b ∈R);b a +a b≥2(a ,b 同号).ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R);⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R). 三、算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.四、利用基本不等式求最值问题 已知x>0,y>0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p.(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p24.(简记:和定积最大)[小题能否全取]1.(教材习题改编)函数y =x +1x (x >0)的值域为( )A .(-∞,-2]∪[2,+∞)B .(0,+∞)C .[2,+∞)D .(2,+∞)解析:选C ∵x >0,∴y =x +1x ≥2,当且仅当x =1时取等号.2.已知m>0,n>0,且mn =81,则m +n 的最小值为( ) A .18 B .36 C .81D .243解析:选A ∵m>0,n>0,∴m +n≥2mn =18.当且仅当m =n =9时,等号成立. 3.(教材习题改编)已知0<x<1,则x(3-3x)取得最大值时x 的值为( )A.13 B.12 C.34D.23解析:选B 由x(3-3x)=13×3x(3-3x)≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.4.若x>1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:55.已知x >0,y >0,lg x +lg y =1,则z =2x +5y 的最小值为________.解析:由已知条件lg x +lg y =1,可得xy =10. 则2x +5y ≥2 10xy =2,故⎝ ⎛⎭⎪⎫2x +5y min =2,当且仅当2y =5x 时取等号.又xy =10,即x =2,y =5时等号成立. 答案:21.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.2.对于公式a +b≥2ab ,ab≤⎝ ⎛⎭⎪⎫a +b 22,要弄清它们的作用和使用条件及内在联系,两个公式也体现了ab和a +b 的转化关系.3.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab≤a 2+b22;a +b 2≥ab(a ,b>0)逆用就是ab≤⎝ ⎛⎭⎪⎫a +b 22(a ,b>0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.典题导入[例1] (1)已知x <0,则f(x)=2+4x+x 的最大值为________.(2)(2018·浙江高考)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285C .5D .6[自主解答] (1)∵x <0,∴-x >0,∴f(x)=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x+-.∵-4x +(-x)≥24=4,当且仅当-x =4-x,即x =-2时等号成立.∴f(x)=2-⎣⎢⎡⎦⎥⎤4-x+-≤2-4=-2, ∴f(x)的最大值为-2.(2)∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15·(3x+4y)·⎝ ⎛⎭⎪⎫1y +3x =15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝ ⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12y x=5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.[答案] (1)-2 (2)C本例(2)条件不变,求xy 的最小值.解:∵x >0,y >0,则5xy =x +3y≥2x·3y, ∴xy≥1225,当且仅当x =3y 时取等号.∴xy的最小值为1225.由题悟法用基本不等式求函数的最值,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.在求条件最值时,一种方法是消元,转化为函数最值;另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值,但无论哪种方法在用基本不等式解题时都必须验证等号成立的条件.以题试法1.(1)当x >0时,则f(x)=2xx 2+1的最大值为________. (2)(2018·天津高考)已知log 2a +log 2b≥1,则3a+9b的最小值为________.(3)已知x >0,y >0,xy =x +2y ,若xy≥m-2恒成立,则实数m 的最大值是________. 解析:(1)∵x >0,∴f(x)=2x x 2+1=2x +1x ≤22=1,当且仅当x =1x ,即x =1时取等号.(2)由log 2a +log 2b≥1得log 2(ab)≥1, 即ab≥2,∴3a+9b=3a+32b≥2×3a +2b 2(当且仅当3a =32b,即a =2b 时取等号). 又∵a +2b≥22ab ≥4(当且仅当a =2b 时取等号), ∴3a+9b≥2×32=18.即当a =2b 时,3a+9b有最小值18.(3)由x >0,y >0,xy =x +2y≥22xy ,得xy≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m≤10.故m 的最大值为10.答案:(1)1 (2)18 (3)10典题导入[例2] (2018·江苏高考)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.[自主解答] (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0, 故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根 ⇔判别式Δ=(-20a)2-4a 2(a 2+64)≥0 ⇔a≤6.所以当a 不超过6千米时,可击中目标.由题悟法利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.以题试法2.(2018·福州质检)某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.解:(1)设每件定价为t 元,依题意,有⎝ ⎛⎭⎪⎫8-t -251×0.2t≥25×8,整理得t 2-65t +1 000≤0,解得25≤t≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意,x >25时,不等式ax≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a≥150x +16x +15有解.∵150x +16x≥2150x ·16x =10(当且仅当x =30时,等号成立),∴a≥10.2. 因此当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.1.已知f(x)=x +1x -2(x <0),则f(x)有 ( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4解析:选C ∵x <0,∴f(x)=- ⎣⎢⎡⎦⎥⎤-+1--2≤-2-2=-4,当且仅当-x =1-x ,即x =-1时取等号.2.(2018·太原模拟)设a 、b ∈R ,已知命题p :a 2+b 2≤2ab;命题q :⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,则p 是q 成立的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件解析:选B3.函数y =x 2+2x -1(x>1)的最小值是( )A .23+2B .23-2C .2 3D .2解析:选A ∵x>1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+-+3x -1=-2+-+3x -1=x -1+3x -1+2≥2-3x -1+2=23+2. 当且仅当x -1=3x -1,即x =1+3时,取等号.4.(2018·陕西高考)小王从甲地到乙地往返的时速分别为a 和b(a<b),其全程的平均时速为v ,则( ) A .a<v<abB .v =ab C.ab<v<a +b2D .v =a +b 2解析:选A 设甲、乙两地的距离为s ,则从甲地到乙地所需时间为s a ,从乙地到甲地所需时间为sb ,又因为a<b ,所以全程的平均速度为v =2s s a +s b=2ab a +b <2ab2ab =ab ,2ab a +b >2ab2b=a ,即a<v<ab. 5.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( )A.32 B.53 C.256D .不存在解析:选A 设正项等比数列{a n }的公比为q ,由a 7=a 6+2a 5,得q 2-q -2=0,解得q =2. 由a m a n =4a 1,即2m +n -22=4,得2m +n -2=24,即m +n =6. 故1m +4n =16(m +n)⎝ ⎛⎭⎪⎫1m +4n =56+16⎝ ⎛⎭⎪⎫4m n +n m ≥56+46=32,当且仅当4m n =n m 时等号成立. 6.设a>0,b>0,且不等式1a +1b +k a +b ≥0恒成立,则实数k 的最小值等于( )A .0B .4C .-4D .-2解析:选 C 由1a +1b +ka +b ≥0得k≥-+2ab,而+2ab=b a +ab+2≥4(a=b 时取等号),所以-+2ab≤-4,因此要使k≥-+2ab恒成立,应有k≥-4,即实数k 的最小值等于-4.7.已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________.解析:∵12=4x +3y≥24x×3y,∴xy≤3.当且仅当⎩⎪⎨⎪⎧4x =3y ,4x +3y =12,即⎩⎪⎨⎪⎧x =32,y =2时xy 取得最大值3.答案:38.已知函数f(x)=x +px -1(p 为常数,且p >0)若f(x)在(1,+∞)上的最小值为4,则实数p 的值为________.解析:由题意得x -1>0,f(x)=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号,因为f(x)在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94.答案:949.(2018·朝阳区统考)某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y =-x 2+18x -25(x ∈N *).则当每台机器运转________年时,年平均利润最大,最大值是________万元.解析:每台机器运转x 年的年平均利润为y x =18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x ≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元.答案:5 810.已知x >0,a 为大于2x 的常数, (1)求函数y =x(a -2x)的最大值; (2)求y =1a -2x -x 的最小值.解:(1)∵x >0,a >2x , ∴y =x(a -2x)=12×2x(a-2x)≤12×⎣⎢⎡⎦⎥⎤2x +-22=a 28,当且仅当x =a 4时取等号,故函数的最大值为a 28. (2)y =1a -2x +a -2x 2-a2≥2 12-a 2=2-a2. 当且仅当x =a -22时取等号.故y =1a -2x -x 的最小值为2-a2. 11.正数x ,y 满足1x +9y =1.(1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y≥21x ·9y 得xy≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36. (2)由题意可得x +2y =(x +2y)⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+22y x ·9x y =19+62,当且仅当2y x =9xy,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.12.为了响应国家号召,某地决定分批建设保障性住房供给社会.首批计划用100万元购得一块土地,该土地可以建造每层1 000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元.已知建筑第5层楼房时,每平方米建筑费用为800元.(1)若建筑第x 层楼时,该楼房综合费用为y 万元(综合费用是建筑费用与购地费用之和),写出y =f(x)的表达式;(2)为了使该楼房每平方米的平均综合费用最低,应把楼层建成几层?此时平均综合费用为每平方米多少元?解:(1)由题意知建筑第1层楼房每平方米建筑费用为720元, 建筑第1层楼房建筑费用为720×1 000=720 000(元)=72 (万元), 楼房每升高一层,整层楼建筑费用提高20×1 000=20 000(元)=2(万元), 建筑第x 层楼房的建筑费用为72+(x -1)×2=2x +70(万元), 建筑第x 层楼时,该楼房综合费用为 y =f(x)=72x +-2×2+100=x 2+71x +100,综上可知y =f(x)=x 2+71x +100(x≥1,x ∈Z). (2)设该楼房每平方米的平均综合费用为g(x),则g(x)=×10 0001 000x=x=2+71x +x=10x +1 000x+710≥2 10x·1 000x+710=910. 当且仅当10x =1 000x,即x =10时等号成立.综上可知应把楼层建成10层,此时平均综合费用最低,为每平方米910元.1.(2018·浙江联考)已知正数x ,y 满足x +22xy ≤λ(x +y)恒成立,则实数λ的最小值为( ) A .1 B .2 C .3D .4解析:选B 依题意得x +22xy ≤x+(x +2y)=2(x +y),即x +22xyx +y ≤2(当且仅当x =2y 时取等号),即x +22xy x +y 的最大值是2;又λ≥x +22xyx +y,因此有λ≥2,即λ的最小值是2.2.设x ,y ,z 为正实数,满足x -2y +3z =0,则y2xz 的最小值是________.解析:由已知条件可得y =x +3z2, 所以y 2xz =x 2+9z 2+6xz 4xz=14⎝ ⎛⎭⎪⎫x z +9z x +6 ≥14⎝⎛⎭⎪⎫2 x z ×9z x +6=3, 当且仅当x =y =3z 时,y2xz 取得最小值3.答案:33.某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)某提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?请说明理由.解:(1)设该厂应每隔x 天购买一次面粉,其购买量为6x 吨,由题意可知,面粉的保管等其他费用为3[6x +6(x -1)+6(x -2)+…+6×1]=9x(x +1),设平均每天所支付的总费用为y 1元, 则y 1=++900]x+1 800×6=900x +9x +10 809≥2900x·9x+10 809=10 989, 当且仅当9x =900x,即x =10时取等号.即该厂应每隔10天购买一次面粉,才能使平均每天所支付的总费用最少. (2)因为不少于210吨,每天用面粉6吨,所以至少每隔35天购买一次面粉.设该厂利用此优惠条件后,每隔x(x≥35)天购买一次面粉,平均每天支付的总费用为y 2元, 则y 2=1x [9x(x +1)+900]+6×1 800×0.90=900x+9x +9 729(x≥35).令f(x)=x +100x (x≥35),x 2>x 1≥35,则f(x 1)-f(x 2)=⎝⎛⎭⎪⎫x 1+100x 1-⎝ ⎛⎭⎪⎫x 2+100x 2=2-x 1-x 1x 2x 1x 2.∵x 2>x 1≥35,∴x 2-x 1>0,x 1x 2>0,100-x 1x 2<0, 故f(x 1)-f(x 2)<0,f(x 1)<f(x 2), 即f(x)=x +100x ,当x≥35时为增函数.则当x =35时,f(x)有最小值,此时y 2<10 989. 因此该厂应接受此优惠条件.1.函数y =a 1-x(a >0,且a≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(mn >0)上,则1m +1n的最小值为________.解析:因y =a x 恒过点(0,1),则A(1,1),又A 在直线上,所以m +n =1(mn >0). 故1m +1n =m +n mn =1mn ≥1⎝ ⎛⎭⎪⎫m +n 22=4,当且仅当m =n =12时取等号.答案:42.已知直线x +2y =2分别与x 轴、y 轴相交于A 、B 两点,若动点P(a ,b)在线段AB 上,则ab 的最大值是________.解析:∵A(2,0),B(0,1),∴0≤b≤1, 由a +2b =2,得a =2-2b , ab =(2-2b)b =2(1-b)·b≤2·⎣⎢⎡⎦⎥⎤-+b 22=12. 当且仅当1-b =b ,即b =12时等号成立,此时a =1,因此当b =12,a =1时,(ab)max =12.答案:123.若x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值范围; (2)求x +y 的取值范围.解:由x +2y +xy =30,(2+x)y =30-x , 则2+x≠0,y =30-x2+x>0,0<x <30. (1)xy =-x 2+30xx +2=-x 2-2x +32x +64-64x +2=-x -64x +2+32=-⎣⎢⎡⎦⎥⎤++64x +2+34≤18,当且仅当x =6时取等号, 因此xy 的取值范围是(0,18]. (2)x +y =x +30-x 2+x =x +32x +2-1 =x +2+32x +2-3≥82-3,当且仅当⎩⎨⎧x =42-2,y =42-1时等号成立,又x +y =x +2+32x +2-3<30,因此x +y 的取值范围是[82-3,30).。
高中数学基本不等式教案设计(优秀3篇)
高中数学基本不等式教案设计(优秀3篇)篇一:高中数学教学设计篇一教学目标1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。
教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。
这两个公式从不同的角度反映数列的特点,下面看一些例子。
(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。
具有这种特点的数列,我们把它叫做等差数。
一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。
若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。
2019年高考数学一轮复习 基本不等式
答案:D
复习目标 课前预习 高频考点 课时小结
课后练习
3.周长为 60 的矩形面积的最大值为( A.225 C.500 B.450 D.900
)
解:设矩形的长为 x,宽为 y, 则 2(x+y)=60,所以 x+y=30, x +y 2 所以 S=xy≤( 2 ) =225,即 Smax=225. 当且仅当 x=y=15 时取“=”,故选 A.
)
复习目标
课前预习
高频考点
课时小结
课后练习
解:易知 A、B 成立, 对于 C,因为 a2+b2≥2ab,所以 2(a2+b2)≥(a+b)2, a2+b2 a+b 2 所以 2 ≥( 2 ) ,所以 D 不成立. 由以上分析可知,应选 D. a2+b2 a+b 2 ≥ 2 ,故 C 成立.
对于 D,取 a=4,b=1,代入可知,不等式不成立,故
定值 ,当且仅当它们 定值 ,当且仅当它们
利用这两个结论可以求某些函数的最值,求最值时, 要注意“一正、二定、三相等”的条件.
复习目标
课前预习
高频考点
课时小结
课后练习
1.若 a,b∈R,且 ab>0,则下列不等式中,恒成立的 是( ) A.a2+b2>2ab 1 1 2 C.a+b> ab B.a+b≥2 ab b a D.a+b≥2
高频考点
课时小结
课后练习
点评:运用基本不等式判断大小关系,要注意基本不 等式成立的条件及取等号的条件,同时要注意特例的运 用.
复习目标
课前预习
高频考点
课时小结
课后练习
考点二· 利用基本不等式求最值
5 1 【例 2】 (1)已知 x<4,求函数 y=4x-2+ 的最 4x-5 大值. 1 9 (2)已知 x>0,y>0,且x + y=1,求 x+y 的最小值.
2019版高考数学一轮复习第6章不等式第4讲基本不等式课件【优质ppt版本】
触类旁通 利用基本不等式求最值问题的解题策略
(1)利用基本(均值)不等式解题一定要注意应用的前提: “一正”“二定”“三相等”.
(2)在利用基本(均值)不等式求最值时,要根据式子的特 征灵活变形,配凑出积、和为常数的形式,然后再利用基本 (均值)不等式.
【变式训练 1】 (1)已知 0<x<1,则 x(3-3x)取得最大
值时 x 的值为( )
1132 A.3 B.2 C.4 D.3
解析
∵
0<x<1
,
∴
x·(3
-
3x)
=
1 3
·3x·(3
-
3x)≤
1 3
3x+23-3x2=34,当 3x=3-3x,即 x=12时,x(3-3x)取得 最大值34.选 C.
3.其中a+2 b叫做正数 a,b 的 做正数 a,b 的 几何平均数 .
算术平均数
, ab叫
考点 3 利用基本不等式求最大、最小值问题 1.如果 x,y∈(0,+∞),且 xy=P(定值), 那么当 x=y 时,x+y 有最小值 2 P.(简记:“积定 和最小”) 2.如果 x,y∈(0,+∞),且 x+y=S(定值), 那么当 x=y 时,xy 有最大值S42.(简记:“和定积最大”)
触类旁通 求条件最值注意的问题
(1)要敏锐的洞察到已知条件与要求式子的联系,并能 灵活进行转化;
(2)常用的技巧有:“1”的代换,配凑法,放缩法,换元 法.
【变式训练 2】 (1)[2018·珠海模拟]已知 x>0,y>0,x +3y+xy=9,则 x+3y 的最小值为( )
人教A版(2019)高中数学必修第一册2.2基本不等式教案
2.2 基本不等式学习目标:1.知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题;2.过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养;3.情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过程中,体会数学的严谨性,发现数学的实用性教学重点:基本不等式的定义,证明方法和几何解释;用基本不等式解决简单的最值问题.教学难点:基本不等式的几何解释,用基本不等式解决简单最值问题.教学过程:教学内容师生活动设计意图情境导学探新知情境1:展示第24届国际数学家大会的会标,介绍赵爽弦图历史渊源.情境2:介绍知名校友国际数学新秀韦东奕.师:展示部分北京数学家大会的图片,介绍发展史.生:欣赏和感受数学历史文华,榜样就在我们身边.渗透德育,激发学生的民族自豪感,调动学生数学学习积极性.合作探究释问题1:你能否从数学家的角度来欣赏会标,由哪些几何图形构成?蕴含怎样的不等关系?师:提出问题1,留给学生一分钟时间独立思考.生:整个图案由正方形和四个全等的直角三角形构成.生:大正方形面积不小于四个直角三角形面积和.激发学生探究欲望,引导学生从几何图形出发抽象出重要不等式,为接下来基本不等式做铺垫,体会数疑难重要不等式:222a b ab+≥当且仅当a b=时,等号成立. 师:设直角三角形的直角边分别为a,b,如何表示上述不等关系?师:观察数学模型,当a,b,满足什么条件时,大正方形面积等于四个直角三角形面积和?生:a b=时取得相等学建模,数形结合的思想.合作探究释疑难问题2:由重要不等式出发,如何才能得到两个正数和与积的不等关系?基本不等式:0,0a b>>2a bab+≥当且仅当a=b时取得等号.2a b+是两个正数a,b的算术平均数,ab是两个正数a, b的几何平均数师:重要不等式体现了平方和与积的关系,你能想到哪些方法使其转变成两个正数和与积的关系?生:小组交流讨论,时长3分钟.生:可用正数,a b代替原式中的a,b,即得到2a b ab+≥生:原不等式两边同时加2ab2224a b ab ab++≥即()24a b ab+≥即2a b ab+≥师:何时取等?生:当且仅当a b=等号成立.师:板书基本不等式体会代换方法在数学学习中的作用,感受数学知识间的联系,通过分析基本不等式的结构特征得到基本不等式的代数解释,加深对基本不等式的认识,多种方法下,培养学生的发散思维.合问题3:是否还有其它方式证明师:有哪些方式可以比较两个代数式的大小?从几何和代数两个角度实现基本作探究释疑难(),02a bab a b+≥>?做差法证明基本不等式.生:做差法.生:一人黑板板书做差法证明基本不等式,其余同学练习本证明.生:黑板上讲解证明思路,过程.师:结合板书同学证明步骤,讲强调取等的重要性.不等式的证明,培养学生逻辑推理能力,实现从感性认识到理性认识升华.合作探究释疑难问题4:“当a b=时等号成立”“仅当a b=时等号成立”含义分别是什么?师:结合第一章我们研究的常用逻辑用语,你能否发现,“a b=”和“等号成立”之间的关系?生:“当a b=时等号成立”是说“a b=”是“等号成立”的充分条件; “仅当a b=时等号成立”是说“a b=”是“等号成立”的必要条件,也就是“a b=”和“等号成立”互为充要条件.师:肯定学生能够前后知识融会贯通.强调基本不等式取等条件,加深学生对于等号是否成立的理性认识.加强学生前后知识间的联系和数学应用意识.合作探究释疑难问题5:如图AB是圆的直径,点C是AB上一点,AC=a,BC=b,过点C做垂直于AB的弦DE,连接AD,BD,你能利用这个图形得到基本不等式的几何解释吗?师:前后4人小组,4分钟时间讨论交流.生:小组讨论,选派小组代表上台为同学展示交流成果,其他同学做补充.师:肯定小组交流成果.师:几何画板动态演示,使学生直观感受变与不变.师:引导学生总结,半径即为2a b+,CD ab=,圆中直径不小于任意一条弦,当且仅当弦过圆心时,学生自己发现基本不等式的几何解释相对较困难,给出几何图形后,引导学生将ab和2a b+与图中的几何元素建立起联系,再观察这些几何元素在变化中表现得大小关系,从而得到基。
高中数学第三章不等式 基本不等式:ab≤a+b2学案含解析新人教A版必修
3.4 基本不等式:ab≤a+b 2[目标] 1.了解基本不等式的代数式和几何背景;2.会用基本不等式进行代数式大小的比较及证明不等式;3.会用基本不等式求最值和解决简单的实际问题.[重点] 基本不等式的简单应用.[难点] 基本不等式的理解与应用.知识点一 两个不等式[填一填]1.重要不等式:对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式:如果a ,b ∈R +,那么ab ≤a +b 2,当且仅当a =b 时,等号成立.其中a +b2为a ,b 的算术平均数,ab a ,b 的几何平均数.所以两个正数的算术平均数不小于它们的几何平均数.[答一答]1.不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b2成立的条件有什么不同?提示:不等式a 2+b 2≥2ab 对任意实数a ,b 都成立;ab ≤a +b2中要求a ,b 都是正实数.知识点二 基本不等式与最值[填一填]已知x ,y 都是正数,(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值.(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值.[答一答]2.利用基本不等式求最值时,我们应注意哪些问题?提示:(1)在利用基本不等式具体求最值时,必须满足三个条件:①各项均为正数;②含变数的各项的和(或积)必须是常数;③当含变数的各项均相等时取得最值.三个条件可简记为:一正、二定、三相等.这三个条件极易遗漏而导致解题失误,应引起足够的重视.(2)记忆口诀:和定积最大,积定和最小.3.在多次使用基本不等式求最值时,我们应注意什么问题?提示:在连续多次应用基本不等式时,我们要注意各次应用时不等式取等号的条件是否一致,若不能同时取等号,则需换用其他方法求出最值.4.两个正数的积为定值,它们的和一定有最小值吗?提示:不一定.应用基本不等式求最值时还要求等号能取到.如sin x 与4sin x ,x ∈(0,π2),两个都是正数,乘积为定值.但是由0<sin x <1,且sin x +4sin x 在(0,1)上为减函数,所以sin x +4sin x>1+41=5,等号不成立,取不到最小值.类型一 利用基本不等式证明不等式[例1] (1)已知a ,b ,c 为不全相等的正实数,求证:a +b +c >ab +bc +ca . (2)已知a ,b ,c 为正实数,且a +b +c =1, 求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.[分析] (1)左边是和式,右边是带根号的积式之和,所以用基本不等式,将和变积,并证得不等式.(2)不等式右边数字为8,使我们联想到左边因式分别使用基本不等式,可得三个“2”连乘,又1a -1=1-a a =b +c a ≥2bc a,可由此变形入手. [证明] (1)∵a >0,b >0,c >0,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0. ∴2(a +b +c )≥2(ab +bc +ca ), 即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故等号不成立. ∴a +b +c >ab +bc +ca . (2)∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=1-a a =b +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c.由上述三个不等式两边均为正,分别相乘,得⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1 ≥2bc a ·2ac b ·2ab c=8.当且仅当a =b =c =13时,等号成立.1.利用基本不等式证明不等式,关键是所证不等式中必须有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而达到放缩的效果.2.注意多次运用基本不等式时等号能否取到.3.解题时要注意技巧,当不能直接利用不等式时,可将原不等式进行组合、构造,以满足能使用基本不等式的形式.[变式训练1] 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c≥9.证明:因为a >0,b >0,c >0,且a +b +c =1, 所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +b c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,取等号. 类型二 利用基本不等式求最值[例2] (1)若x >0,求f (x )=4x +9x 的最小值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值;(4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.[分析] 利用基本不等式求最值,当积或和不是定值时,通过变形使其和或积为定值,再利用基本不等式求解.[解] (1)∵x >0,∴由基本不等式得 f (x )=4x +9x ≥24x ·9x=236=12, 当且仅当4x =9x,即x =32时,f (x )=4x +9x 取最小值12.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎡⎦⎤2x +(3-2x )22=92.当且仅当2x =3-2x ,即x =34时取“=”.∴y 的最大值为92.(3)∵x >2,∴x -2>0,∴x +4x -2=(x -2)+4x -2+2≥2(x -2)·4x -2+2=6.当且仅当x -2=4x -2,即x =4时,x +4x -2取最小值6.(4)∵x >0,y >0,1x +9y=1,∴x +y =(x +y )⎝⎛⎭⎫1x +9y =10+y x +9x y ≥10+29=16.当且仅当y x =9x y 且1x +9y =1时等号成立.即x =4,y =12时等号成立. ∴当x =4,y =12时,x +y 有最小值16.求最值问题第一步就是“找”定值,观察、分析、构造定值是问题的突破口.找到定值后还要看“=”是否成立,不管题目是否要求写出符号成立的条件,都要验证“=”是否成立.[变式训练2] (1)已知lg a +lg b =2,求a +b 的最小值; (2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. 解:(1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100=20, 当且仅当a =b =10时,a +b 取到最小值20. (2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎫2x +3y 22=16·⎝⎛⎭⎫622=32, 当且仅当2x =3y ,且2x +3y =6时等号成立, 即x =32,y =1时,xy 取到最大值32.类型三 基本不等式的实际应用[例3] 特殊运货卡车以每小时x 千米的速度匀速行驶130千米,按规定限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升6元,而送货卡车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时140元.(1)求这次行车总费用y 关于x 的表达式.(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. [解] (1)设所用时间为t =130x(小时),y =130x ×6×⎝⎛⎭⎫2+x 2360+140×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×152x +13x 6,x ∈[50,100].(2)y =130×152x +13x 6≥525703,当且仅当130×152x =13x6,即x =4570∈[50,100]时,等号成立.故当x =4570千米/时,这次行车的总费用最低,最低费用的值为525703元.解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.用基本不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,求出函数的最大值或最小值. (4)正确写出答案.[变式训练3] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是160(单位:元).解析:设该长方体容器的长为x m,则宽为4x m .又设该容器的总造价为y 元,则y =20×4+2⎝⎛⎭⎫x +4x ×10,即y =80+20⎝⎛⎭⎫x +4x (x >0).因为x +4x≥2x ·4x=4⎝⎛⎭⎫当且仅当x =4x ,即x =2时取“=”,所以y min =80+20×4=160(元).1.给出下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +ab ≥2成立的条件有( C )A .1个B .2个C .3个D .4个解析:当b a ,a b 均为正数时,b a +ab≥2,故只须a 、b 同号即可.所以①、③、④均可以.2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( D ) A .a 2+b 2>2ab B .a +b ≥2ab C .1a +1b >2abD .b a +a b≥2解析:∵a ,b ∈R ,且ab >0, ∴b a >0,a b >0, ∴b a +a b≥2b a ×ab=2. 当且仅当b a =ab,即a =b 时取等号.3.设a ,b 为实数,且a +b =3,则2a +2b 的最小值为( B ) A .6 B .4 2 C .2 2D .8解析:2a +2b ≥22a +b =223=4 2.4.已知0<x <1,则当x =12时,x (3-3x )取最大值为34.解析:3x (1-x )≤3(x +1-x 2)2=34,当且仅当x =1-x 即x =12时等号成立.5.已知a >0,b >0,c >0,求证: (1)b +c a +c +a b +a +b c ≥6;(2)b +c a ·c +a b ·a +b c≥8.证明:(1)b +c a +a +c b +a +b c =b a +c a +c b +a b +a c +b c =(b a +a b )+(c a +a c )+(c b +b c )≥2+2+2=6(当且仅当a =b =c 时取“=”).(2)b +c a ·c +a b ·a +b c ≥2bc a ·2ac b ·2abc=8abc abc=8(当且仅当a =b =c 时取“=”).——本课须掌握的两大问题1.基本不等式成立的条件:a >0且b >0;其中等号成立的条件:当且仅当a =b 时取等号,即若a ≠b 时,则ab ≠a +b 2,即只能有ab <a +b2. 2.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,即 (1)一正:符合基本不等式a +b2≥ab 成立的前提条件,a >0,b >0;(2)二定:化不等式的一边为定值;(3)三相等:必须存在取“=”号的条件,即“=”号成立.以上三点缺一不可.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分项或配凑因式.。
2019年高考数学(理)热点题型和提分秘籍专题28基本不等式及其应用(教学案)含解析
)
A . 9 B. 12
C. 18 D. 24
【提分秘籍】 基本不等式综合问题的解题策略
(1)应用基本不等式判断不等式是否成立:对所给不等式
(或式子 )变形,然后利用基本不等式求解。
(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解。
(3)求参数的值域范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围。
(2)当该企业的年平均污水处理费用最低时,企业需要重新更换新的污水处理设备。则该企业几年后需要
重新更换新的污水处理设备。
【解析】 (1)由题意得,
100+ 0.5x+ + 4+6+ … + 2x
y=
x
,
100 即 y=x+ x +1.5(x∈ N *) 。
(2)由基本不等式得:
100
100
y= x+ x + 1.5≥2 x·x + 1.5= 21.5,
【提分秘籍】
利用基本不等式求最值的常用技巧
(1)若直接 满足基本不等式条件,则直接应用基 本不等式。 (2)若不直接满足基本不等式条件,则需要创造条件对式子进行恒等变形,如构造
“ 1的”代换等。
(3)若一次应用基本不等式不能达到要求,需多次应用基本不等式,但要注意等号成立的条件必须要一致。 提醒:若可用基本不 等式,但等号不成立,则一般是利用函数单调性求解。
100 当且仅当 x= x ,即 x=10 时取等号。
故该企业 10 年后需要重新更换新的污水处理设备。
热点题型三 基本不等式的综合应用
11 例 3.(1) 若点 A(1,1)在直线 mx+ny- 2= 0 上,其中 mn>0 ,则 m+ n的最小值为 ________ 。
人教A版(2019)高中数学必修第一册2.2基本不等式 学案
2.2 基本不等式学习目标:1.了解基本不等式的证明过程. 2.熟练掌握基本不等式及变形的应用. 3. 能够运用基本不等式求函数或代数式的最值 核心素养:1.通过不等式的证明,培养逻辑推理素养.2.借助基本不等式求简单的最值问题,提升数学运算素养. 学习过程:【知识导学】 知识点一 重要不等式∀a ,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 知识点二.基本不等式 如果a >0,b >0,则ab ≤a +b2,当且仅当a =b 时,等号成立.我们把这个不等式称为基本不等式在基本不等式中, a +b2叫做正数a ,b 的算术平均数, ab 叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数. 名师点拨(1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是不同的.前者要求a ,b 是实数即可,而后者要求a ,b 都是正实数(实际上后者只要a ≥0,b ≥0即可).(2)两个不等式a 2+b 2≥2ab 和a +b2≥ab 都是带有等号的不等式,都是“当且仅当a =b 时,等号成立”.知识点三.基本不等式与最值已知x >0,y >0,则(1)若x +y =S (和为定值),则当x =y 时,积xy 取得最大值S 24.(2)若xy =P (积为定值),则当x =y 时,和x +y 取得最小值 记忆口诀:两正数的和定积最大,两正数的积定和最小 名师点拨(1)利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,即:①一正:符合基本不等式a +b2≥ab 成立的前提条件,a >0,b >0;②二定:化不等式的一边为定值;③三相等:必须存在取“=”号的条件,即“=”号成立. 以上三点缺一不可.(2)由基本不等式求最值常见形式x x y 1+= 当x >0时xx 1+≥2,当且仅当x=1时“=”成立 x <0时xx 1+≤-2当且仅当x=-1时“=”成立 初试身手1.判一判(正确的打“√”,错误的打“×”) (1)a +b2≥ab 对于任意实数a ,b 都成立.( )(2)若a >0,b >0,且a ≠b ,则a +b >2ab .( ) (3)若a >0,b >0,则ab ≤⎝⎛⎭⎪⎫a +b 22.( )(4)若a >0,b >0,且a +b =16,则ab ≤64.( ) 【答案】 (1)× (2)√ (3)√ (4)√ 2.如果a >0,那么a +1a+2的最小值是( )A .2B .2 2C .3D .4【答案】:选D.【解析】因为a >0,所以a +1a+2≥2a ·1a+2=2+2=4,当且仅当a =1时取等号 3.已知ab =1,a >0,b >0,则a +b 的最小值为( ) A .1 B .2 C .4 D .8 【答案】:B【解析】 ∵a >0,b >0,∴a +b ≥2ab =2,当且仅当a =b =1时取等号,故a +b 的最小值为24.(2020·吉林南关长春市实验中学高一月考(理))已知x ,()0,y ∈+∞,1x y +=,则xy 的最大值为( ) A .1 B .12C .13D .14【答案】D【解析】因为x ,()0,y ∈+∞,1x y +=,所以有21112()24x y xy xy =+≥⇒≤=,当且仅当12x y ==时取等号,故本题选D 5.(2020·全国高一课时练习)设0<a <b ,则下列不等式中正确的是( ) A .a <b << B .a <<<b C .a <<b < D .<a <<b 【答案】B 【解析】因为0<a <b ,所以由基本不等式得<, 且<=b ,又a =<,故a <<<b ,故选B.对基本不等式的理解例1.下列结论正确的是( )A .若x ∈R,且x ≠0,则4x+x ≥4B .当x >0时,x +1x≥2C .当x ≥2时,x +1x的最小值为2D .当0<x ≤2时,x -1x无最大值【答案】 B【解析】 对于选项A ,当x <0时,4x+x ≥4显然不成立;对于选项B ,符合应用基本不等式的三个基本条件“一正,二定,三相等”;对于选项C ,忽视了验证等号成立的条件,即x =1x ,则x =±1,均不满足x ≥2;对于选项D ,x -1x在0<x ≤2的范围内单调递增,有最大值2-12=32.[方法技巧]应用基本不等式a +b2≥ab (a >0,b >0)时的三个关注点(1)a ,b 都是正实数(2)ab或a+b 有一个为定值(3)“当且仅当”的含义:当a =b 时。
2.2基本不等式(教案)——高中数学人教A版(2019)必修第一册
专题2:基本不等式1.≤a +b 2(1)基本不等式成立的条件:a >0,b >0 ;(2)等号成立的条件:当且仅当a =b 时取等号.注意:(1)a +b 2和ab 分别叫a ,b 的算术平均数和几何平均数 ;(2)两种重要变形:①a +b ab ≤⎝⎛⎭⎫a +b 22 ;2.利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,则x +y x =y 时,和x +y 有最小 值2p .(简记:积定和最小 )(2)如果和x +y 是定值p ,则xy ≤⎝⎛⎭⎫a +b 22 ,那么当且仅当x =y 时,xy 有最大 值p 24.(简记:和定积最大 ) 3.几个重要的不等式(1)a 2+b 2≥ 2ab (a ,b ∈R); (2)b a +a b≥2 (a ,b 同号 ); (3)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0).※考点自测1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数y =x +1x的最小值是2.( × ) (2)当x >1时,函数y =x +1x的最小值等于2.( × ) (3)“x >0且y >0”是“x y +y x≥2”的充要条件.( × ) (4)若a >0,则a 3+1a2的最小值为2a .( × ) 2.设x >0,y >0,且x +y =18,则xy 的最大值为( )A .80B .77C .81D .82答案 C3.若函数y =x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3 D .4答案 C4.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.答案 25 m 25.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________.答案 116※题型讲练题型一 利用基本不等式求最值命题点1 配凑法求最值例1 (1)已知x <54,则f (x )=4x -2+14x -5的最大值为________. (2)函数y =x 2+2x -1(x >1)的最小值为________. 答案 (1)1 (2)23+2命题点2 “1”字代换法求最值例2 (1)已知x >0,y >0,且1x +9y =1,则x +y 的最小值为 .(2)已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是 .答案 (1)16 (2)92命题点3 换元法求最值例3 (1)函数y =x -1x +3+x -1的最大值为________.(2)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.答案 (1)15 (2)6(2)已知0<x <12,则y =12x (1-2x )的最大值为 .(3)已知x ,y 满足x 2+y 2-xy =1,则x +y 的最大值为_____.答案 (1)C (2)116 (3)2题型二 利用基本不等式解决恒成立问题例4 (1)已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为() A .9 B .12 C .18 D .24(2)若对任意x >0,xx 2+3x +1≤a 恒成立,则实数a 的取值范围是________.答案 (1)B (2)a ≥15.变式训练2:(1)当x <32时,不等式a ≥x +82x -3恒成立,则实数a 的取值范围是________.(2)若对于任意x ∈N *,x 2+ax +11x +1≥3恒成立,则a 的取值范围_______.答案 (1) a ≥-52 (2)[-83,+∞)变式训练3:(1)如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.现有36 m 长的钢筋网材料,则每间虎笼的长= ,宽= 时,可使每间虎笼面积最大,最大面积为 . 答案 长为4.5 m ,宽为3 m 时,面积最大272. (2)已知a >0,b >0,a +b =1,求证:(1+1a )(1+1b)≥9. 证明: 因为a >0,b >0,a +b =1,所以1+1a =1+a +b a =2+b a. 同理1+1b =2+a b. 所以(1+1a )(1+1b )=(2+b a )(2+a b) =5+2(b a +a b)≥5+4=9. 所以(1+1a )(1+1b )≥9(当且仅当a =b =12时等号成立).※课后练习(时间:45分钟)1.下列不等式中,一定正确的是( )A .a +4a≥4 B .a 2+b 2≥4ab C .ab ≥a +b 2 D .x 2+3x2≥2 3 答案:D2.已知x >0,y >0,x +y =3,若1x +m y(m >0)的最小值为3,则m 等于( ) A .2 B .2 2 C .3 D .4答案 D3.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( )A .1ab ≤14B .1a +1b≤1 C .ab ≥2 D .a 2+b 2≥8 答案 D4.正数a ,b 满足a +b =2,则1a +1+4b +1的最小值是( ) A .1 B .94C .9D .16 答案 B5.设a >0,b >0,且不等式1a +1b +k a +b≥0恒成立,则实数k 的最小值等于( ) A .0 B .4 C .-4 D .-2答案 C6.若y =x +1x -2(x >2)在x =a 处取最小值,则a 等于 . 答案 37.已知x ,y >0,且4x +3y =12,则xy 的最大值为_______.答案:38.设0<x <2,则函数y =x (4-2x )的最大值为 .答案 29.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.(单位:元)答案:16010.已知不等式(x +y )()1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值是________.答案: 411.已知正数x ,y 满足:x +2y -xy =0,则x +2y 的最小值为 .答案 812.正数x ,y 满足1x +9y=1. (1)求xy 的最小值; (2)求x +2y 的最小值.解:(1)由1=1x +9y ≥2 1x ·9y 得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )()1x +9y =19+2y x +9x y ≥19+2 2y x ·9x y =19+62,当且仅当2y x =9x y ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.13.已知a 、b 、c 都是正实数,且满足9a +b =ab ,求使4a +b ≥c 恒成立的c 的取值范围.解:9a +b =ab ,故9b +1a=1, 所以4a +b =(4a +b )(9b +1a )=13+36a b +b a ≥13+236a b ·b a=25,即4a +b ≥25, 当且仅当36a b =b a,即b =6a 时等号成立. 而c >0,所以要使4a +b ≥c 恒成立,c 的取值范围为0<c ≤25.14.求函数y =x 2+7x +10x +1(x >-1)的最小值. 解析 ∵x >-1,∴x +1>0.∴y =x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5≥2 (x +1)4x +1+5=9. 当且仅当x +1=4x +1,即x =1时,等号成立. ∴当x =1时,函数y =x 2+7x +10x +1(x >-1)的最小值为9.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式
【考点梳理】
1.基本不等式ab ≤
a +b
2
(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2
+b 2
≥2ab (a ,b ∈R ); (2)b a +a b
≥2(a ,b 同号且不为零); (3)ab ≤⎝
⎛⎭
⎪⎫a +b 22(a ,b ∈R );
(4)⎝ ⎛⎭
⎪⎫a +b 22≤a 2
+b 2
2(a ,b ∈R ). 3.算术平均数与几何平均数
设a >0,b >0,则a ,b 的算术平均数为
a +b
2
,几何平均数为ab ,基本不等式可叙述为:
两个正数的算术平均数不小于它们的几何平均数.
4.利用基本不等式求最值问题 已知x >0,y >0,则
(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2
4(简记:和定积最大).
【考点突破】
考点一、配凑法求最值
【例1】(1)若x <
54,则f (x )=4x -2+145
x -的最大值为________. (2)函数y =
x -1
x +3+x -1
的最大值为________.
[答案] (1) 1 (2) 1
5
[解析] (1)因为x <5
4
,所以5-4x >0,
则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2(5-4x )1
5-4x
+3
=-2+3=1.
当且仅当5-4x =1
5-4x ,即x =1时,等号成立.
故f (x )=4x -2+1
4x -5的最大值为1.
(2)令t =x -1≥0,则x =t 2
+1, 所以y =
t
t 2
+1+3+t =
t
t 2
+t +4
.
当t =0,即x =1时,y =0; 当t >0,即x >1时,y =
1
t +4t
+1
, 因为t +4
t
≥24=4(当且仅当t =2时取等号),
所以y =
1t +4t
+1
≤1
5, 即y 的最大值为1
5(当t =2,即x =5时y 取得最大值). 【类题通法】
1.应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.
2.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 【对点训练】 1.若函数f (x )=x +
1
x -2
(x >2)在x =a 处取最小值,则a 等于( ) A .1+2 B .1+3 C .3 D .4 [答案] C
[解析] 当x >2时,x -2>0,f (x )=(x -2)+1
x -2
+2≥2(x -2)×
1
x -2
+2=4,当且仅当x -2=
1
x -2
(x >2),即x =3时取等号,即当f (x )取得最小值时,即a =3,选C. 2.函数y =x 2+2
x -1
(x >1)的最小值为________.
[答案] 23+2
[解析] y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3
x -1
=(x -1)2
+2(x -1)+3
x -1
=(x -1)+
3
x -1
+2≥23+2. 当且仅当x -1=
3
x -1
,即x =3+1时,等号成立. 考点二、常数代换或消元法求最值
【例2】(1)已知x ,y 均为正实数,且
1x +2+1y +2=16
,则x +y 的最小值为( ) A .24 B .32 C .20 D .28 (2)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. [答案] (1) C (2) 6
[解析] (1)∵x ,y 均为正实数,且1x +2+1y +2=16
, 则x +y =(x +2+y +2)-4 =6⎝
⎛⎭⎪
⎫1x +2+1y +2(x +2+y +2)-4
=6⎝
⎛⎭
⎪⎫
2+
x +2y +2+y +2x +2-4 ≥6×⎝
⎛⎭
⎪⎫
2+2
x +2y +2·y +2x +2-4=20, 当且仅当x =y =10时取等号. ∴x +y 的最小值为20. (2)由已知得x =9-3y
1+y .
法一 (消元法)
因为x >0,y >0,所以0<y <3, 所以x +3y =9-3y
1+y +3y
=
12
1+y
+3(y +1)-6≥212
1+y
·3(y +1)-6=6, 当且仅当12
1+y =3(y +1),
即y =1,x =3时,(x +3y )min =6. 法二 ∵x >0,y >0,
9-(x +3y )=xy =13x ·(3y )≤13·⎝ ⎛⎭⎪⎫x +3y 22
,
当且仅当x =3y 时等号成立.
设x +3y =t >0,则t 2
+12t -108≥0, ∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6. 故当x =3,y =1时,(x +3y )min =6. 【类题通法】
条件最值的求解通常有三种方法:
一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;
二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值;
三是对条件使用基本不等式,建立所求目标函数的不等式求解. 【对点训练】
1.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值为________. [答案] 5
[解析] 法一 由x +3y =5xy 可得15y +3
5x =1,
∴3x +4y =(3x +4y )⎝
⎛⎭
⎪⎫15y +35x
=95+45+3x 5y +12y 5x ≥135+125=5(当且仅当3x 5y =12y 5x ,即x =1,y =1
2时,等号成立), ∴3x +4y 的最小值是5.
法二 由x +3y =5xy ,得x =3y 5y -1,
∵x >0,y >0,∴y >1
5
,
∴3x +4y =9y 5y -1+4y =13⎝ ⎛⎭⎪⎫y -15+95+4
5-4y 5⎝ ⎛⎭⎪⎫y -15+4y =135+95·15y -15+4⎝ ⎛⎭⎪⎫y -15≥13
5+2
3625
=5,
当且仅当y =1
2
时等号成立,∴(3x +4y )min =5.
2.已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________. [答案] 5+2 6
[解析] 因为直线l 经过点(2,3),所以2a +3b -ab =0,所以b =2a
a -3
>0,所以a -3>0,所以a +b =a +
2a a -3=a -3+6a -3
+5≥5+2(a -3)·
6
a -3
=5+26,当且仅当a -3=6
a -3
,即a =3+6,b =2+6时等号成立. 考点三、基本不等式的实际应用
【例3】某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费为5万元,当工厂和仓库之间的距离为________千米时,运费与仓储费之和最小,最小为________万元.
[答案] 2 20
[解析] 设工厂和仓库之间的距离为x 千米,运费为y 1万元,仓储费为y 2万元,则y 1=
k 1x (k 1≠0),y 2=k 2
x
(k 2≠0),
∵工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元,
∴k 1=5,k 2=20,∴运费与仓储费之和为⎝ ⎛⎭
⎪⎫5x +20x 万元,
∵5x +20
x
≥2
5x ×20x =20,当且仅当5x =20
x
,即x =2时,运费与仓储费之和最小,为
20万元. 【类题通法】
1.设变量时一般要把求最大值或最小值的变量定义为函数.
2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.
3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)求解. 【对点训练】
一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为______m ,宽为________m 时菜园面积最大.
[答案] 15
15
2
[解析] 设矩形的长为x m ,宽为y m ,则x +2y =30.
所以S =xy =12x ·(2y )≤⎝ ⎛⎭
⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.。