第四章 贝塞尔函数

合集下载

贝塞尔函数的有关公式

贝塞尔函数的有关公式

贝塞尔函数的有关公式贝塞尔函数是数学中一类特殊的函数,广泛应用于物理学、工程学和数学物理学等领域。

贝塞尔函数一族的定义包括第一类贝塞尔函数、第二类贝塞尔函数以及修正的贝塞尔函数。

本文将介绍这些贝塞尔函数的基本定义和性质,并给出一些常见的贝塞尔函数公式。

一、第一类贝塞尔函数(Bessel Function of the First Kind)第一类贝塞尔函数是非负整数阶的解特殊二阶常微分方程贝塞尔方程的解。

第一类贝塞尔函数通常用J_n(x)表示,其中n是阶数,x是实数。

它的定义为:J_n(x) = (1/π) ∫[0,π] cos(nθ - xsinθ) dθ其中,J_0(x)是常数函数。

第一类贝塞尔函数有一些重要的性质:1.对于所有的实数x和n≥0,J_n(x)是实函数。

2.J_0(x)在x=0处取得最大值,而在其他地方有若干个零点。

3.J_n(x)在x→0时的行为类似于x^n,即J_n(x)~(x/2)^n/(n!)。

第一类贝塞尔函数的递推公式:J_{n+1}(x)=(2n/x)J_n(x)-J_{n-1}(x)其中J_{1}(x)=(2/x)J_0(x)。

第一类贝塞尔函数的导数计算公式:dJ_n(x)/dx = J_{n-1}(x) - (n/x) J_n(x)利用这个公式可以计算贝塞尔函数的导数。

二、第二类贝塞尔函数(Bessel function of the second kind)第二类贝塞尔函数是贝塞尔方程的另一类解,通常用Y_n(x)表示,其中n是阶数,x是实数。

第二类贝塞尔函数的定义为:Y_n(x) = (1/π) ∫[0,π] sin(nθ - xsinθ) dθ其中,Y_0(x)是称作“诺依曼函数”。

第二类贝塞尔函数的性质如下:1.对于所有的实数x和n≥0,Y_n(x)是实函数。

2.Y_0(x)在x=0处不取得最大值,而在其他地方有若干个零点。

3. Y_n(x)在x→0时的行为类似于(2/π)(ln(x/2) + γ) + O(x^2)。

贝塞尔函数PPT演示课件

贝塞尔函数PPT演示课件


1
r 2 sin 2
2u
2
k 2u
0
设u(r, ,) R(r)( )(),代入原方程
''() m2() 0
1
s in
d
d
s in

d ( 2 d
m2
sin 2 ) 0
d r 2 dR (k 2r 2 2 )R 0
要使等式两边成立,则x各次幂的系数为零
(1) (c2 v2 ) C0 0 (k 0)
(c2 v2 ) 0
c v
(2) [(c 1)2 v2 ]C1 0 (k 1)
(3) [(c k)2 v2 ]Ck Ck2 0 (k 2)
将c=v代入(2),得C1=0
k 2u

0
u(,, z) R()()Z(z)
''() m2() 0
Z''(z) 2Z(z) 0
2
d 2R
d 2


dR
d

(k 2
2 ) 2

m2
R

0
x (k 2 2) y(x) R()
贝塞尔方程
x2
0
0
0
0

(1) etdt et 1 0 0
(2) 1 (1) 1
(3) 2 (2) 2!
(4) 3(3) 3! (n 1) n!
求证: 1 2

(x) ett x1dt
令t=u2

(1)m
2(2mv) m ! (m 1 v)

第四章 贝塞尔函数讲解

第四章 贝塞尔函数讲解
贝塞尔的主要贡献在天文学,以《天文学基础》(1818)为标志发展了 实验天文学 ,还编制基本星表 ,测定恒星视差, 预言伴星的存在,导出用 于天文计算的贝塞尔公式,较精确地计算出岁差常数等几个天文常数值,还 编制大气折射表和大气折射公式,以修正其对天文观测的影响。他在数学研 究中提出了贝塞尔函数,讨论了该函数的一系列性质及其求值方法,为解决 物理学和天文学的有关问题提供了重要工具。此外,他在大地测量学方面也 做出一定贡献,提出贝塞尔地球椭球体等观点。贝塞尔重新订正了《布拉德 莱星表》,并加上了岁差和章动以及光行差的改正 ; 还编制了包括比九等星 更亮的75000多颗恒星的基本星表,后来由他的继承人阿格兰德扩充成著名的 《波恩巡天星表》。
深圳大学电子科学与技术学院
定义:

(x) ett x1dt (x 0)
0
基本性质: (x 1) x(x)
证明:


(x 1) ett x11dt t xd (et ) t xet x ett x1dt x(x)
令t=u2
0

1



ett
1
2dt


eu2
三维热传导方程: t

a
2

2
x2

2
y 2

2
z 2


a22
分离变量: (r,t) u(r)T (t)
对u(r),
得到: 2u k 2u (0 亥姆霍兹方程)
球坐标下:
z
r

x
深圳大学电子科学与技术学院
x r sin cos
x
d dx

贝塞尔函数表0~2rad

贝塞尔函数表0~2rad

贝塞尔函数表0~2rad摘要:一、贝塞尔函数简介1.贝塞尔函数的定义2.贝塞尔函数在数学和工程领域的应用二、贝塞尔函数表0~2rad1.贝塞尔函数表的构成2.贝塞尔函数值的变化规律3.贝塞尔函数的性质和特点三、贝塞尔函数表在实际问题中的应用1.贝塞尔函数表在数学问题中的应用2.贝塞尔函数表在工程问题中的应用正文:贝塞尔函数是一类在数学和工程领域有着广泛应用的函数。

它们以瑞士数学家卡尔·沃尔夫冈·贝塞尔的名字命名,并因其独特的性质和特点而受到学者们的关注。

贝塞尔函数可以表示为:BesselFunction(x, n, λ) = (1 / (2 * π * √(x^2 + n^2 * λ^2))) * ∫(exp(-(x^2 + n^2 * λ^2) / 2) * (x^2 - n^2 * λ^2) ^ (n - 1/2)) dλ其中,x表示函数的变量,n表示函数的阶数,λ表示函数的参数。

贝塞尔函数表0~2rad是一份详细列出贝塞尔函数值的表格,其中包含了不同阶数和参数下的贝塞尔函数值。

这个表格可以帮助学者们快速查找和计算贝塞尔函数值,为他们的研究和工程应用提供便利。

贝塞尔函数表0~2rad的构成主要包括两部分:一是表格的标题和表头,包括函数名、阶数、参数和函数值;二是表格的主体,详细列出了不同阶数和参数下的贝塞尔函数值。

这个表格是通过对贝塞尔函数进行数值积分计算得到的,因此具有较高的精度和可靠性。

贝塞尔函数值的变化规律可以通过观察贝塞尔函数表0~2rad得出。

一般来说,随着参数λ的增大,贝塞尔函数值会先增大后减小,呈现出一个波浪形的变化趋势。

而随着阶数n的增大,贝塞尔函数值会呈现出一个指数增长的趋势。

这些变化规律对于理解和掌握贝塞尔函数的性质和特点具有重要意义。

贝塞尔函数表0~2rad在实际问题中的应用非常广泛。

在数学领域,贝塞尔函数表可以帮助学者们快速计算贝塞尔函数值,为他们的理论研究和数值模拟提供数据支持。

贝塞尔函数

贝塞尔函数

xn1Jn1 ax C
7. 证明y Jn (ax)满足 x2 y '' xy ' (a2x2 n2 ) y 0
Jn (t )满足以下Bessel方程
t 2Jn(t ) tJn (t ) (t 2 n2 )Jn(t ) 0
令 t ax, 即可
a2 x2Jn(ax) axJn (ax) (a2 x2 n2 )Jn(ax) 0
在求特征值问题时推导出常微分方程:
ห้องสมุดไป่ตู้
r2F "r r F 'r r2 n2 F r 0
令x r

y(
x)
F
r
x2
d2y dx 2
x
dy dx
x2 n2
yx 0
n 阶贝塞尔方程:
方程的一个特解(n 阶第一类贝塞尔函数)
Jn
x
1m
m0
1 2n2m
m!
n
1 m
1
xn2m
1
lim
m
1m
4(m 1) n m 1
2n2m m!n m!
可以判定这个级数在整个数轴上收敛.

J n
x
m0
2n2m
1m m! n
m
1
xn2m
4.
d dx
J
0
ax
a
d
d (ax)
J
0
ax
aJ1
ax
5.
d dx
[ xJ1
ax
]
d
d (ax)
[axJ1
ax
]
axJ
0
ax
6. (1) xJ2 xdx ?

第4章-贝塞尔函数

第4章-贝塞尔函数

级数解的导数为: y '
k 0
(
k )ck
x k1
y"
k 0
(
k
)(
k
1)ck
x k 2
20
y x cn xn n0
( c0 0, 为常数)
代入方程(2),
y 1 y (1 2 ) y 0 (2)
x
x2
( v 为任意实数)
得到
(n )(n 1)cn xn2 (n )cn xn2 cn xn
利用级数的比值判别法(或达朗贝尔判别法)
可以判定这个级数在除 x=0 点外的整个实数轴 上收敛,因此,级数式是贝塞尔方程的解.
28
下面我们分两种情况,找出方程贝塞尔的两个线性无 关的解,得到方程贝塞尔的通解:
(1) 1 及 2 不是整数, 将 1 代入式
y(x) (1)n
1
( x)2n
n0
n!(n 1) 2
18
由定理2知, 在 x=0点的邻域 x 0 内至少存在
一个下面形式的级数解
y x cn xn n0
( c0 0, 为常数)
将此式代入方程
y
1 x
y
2
(1 x2
)y
0
(2)
( v 为任意实数)
19
y
1 x
y
(1
x
2 2
)y
0
(2)
( v 为任意实数)
y x cn xn n0
( c0 0, 为常数)
31
我们可用
J
(x)
(1) n
n0
1
n!(n
( x )2n 1) 2
统一表示第一类贝塞尔函数(也称为第一类柱函数)。

贝塞尔函数的推导

贝塞尔函数的推导

贝塞尔函数的推导一、什么是贝塞尔函数贝塞尔函数是一类特殊的数学函数,以法国数学家皮埃尔-西蒙·拉普拉斯的朋友雅各布-路易·贝塞尔(Jacob Ludwig Carl Bessel)之名命名。

贝塞尔函数在物理学、工程学、计算机图形学等领域都有广泛应用。

贝塞尔函数可以由贝塞尔微分方程推导而来,表达式中包含了贝塞尔函数的阶数和自变量。

贝塞尔函数包括贝塞尔第一类函数(记作Jn(x))和贝塞尔第二类函数(记作Yn(x)),它们是贝塞尔微分方程的两个线性无关解。

二、贝塞尔函数的推导贝塞尔函数的推导是从贝塞尔微分方程出发,通过一系列变换和求解得到的结果。

下面将详细介绍贝塞尔函数的推导过程。

2.1 贝塞尔微分方程贝塞尔微分方程是一个二阶常微分方程,表示为:x^2y’’ + xy’ + (x^2 - n^2)y = 0其中,y’’表示y对x的二阶导数,y’表示y对x的一阶导数,n为贝塞尔函数的阶数。

2.2 贝塞尔函数的级数解通过将贝塞尔微分方程进行级数展开,得到贝塞尔函数的级数解。

假设贝塞尔函数的级数解表示为:y(x) = Σ An*x^(n+r)代入贝塞尔微分方程,得到:Σ (n+r)(n+r-1)An x^(n+r) + Σ (n+r)An*x^(n+r) + Σ (x^2 - n2)An x(n+r) = 0整理得到:Σ [(n+r)*(n+r-1) + (n+r) + (x^2 - n^2)] * An*x^(n+r) = 0由于An与x无关,所以方程中每一项系数都必须为零,即:(n+r)*(n+r-1) + (n+r) + (x^2 - n^2) = 0化简得到:(n+r)^2 - n^2 = 0解得:r = ±n所以,贝塞尔函数的级数解可以表示为:y(x) = Σ A*x^(n+r)其中,r为贝塞尔函数的阶数。

2.3 贝塞尔函数的通解贝塞尔函数的通解是将级数解带入初始条件得到的。

贝塞尔函数

贝塞尔函数

贝塞尔函数基本概念编辑是数学上的一类特殊函数的总称。

一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:这类方程的解无法用初等函数系统地表示。

贝塞尔函数的具体形式随上述方程中任意实数变化而变化(相应地,被称为其对应贝塞尔函数的阶数)。

实际应用中最常见的情形为是整数,对应解称为n阶贝塞尔函数。

尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。

基本内容编辑贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。

一般贝塞尔函数是下列常微分方程(一般称为'''贝塞尔方程''')的标准解函数。

这类方程的解无法用初等函数系统地表示。

但是可以运用自动控制理论中的相平面法对其进行定性分析。

这里,被称为其对应贝塞尔函数的阶数。

实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。

尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。

定义贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。

针对各种具体情况,人们提出了这些解的不同形式。

下面分别介绍不同类型的贝塞尔函数。

历史几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。

雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。

1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。

贝塞尔方程

贝塞尔方程

第四章-贝塞尔方程
3
3
2u 2 u 回顾:二维拉普拉斯方程 u 2 2 0 x y 在极坐标系 (r , ) x r cos , y r sin ,
下转化为
u 1 u 1 u 2 0. 2 2 r r r r
2
2
于是在极坐标系下, 圆形膜瞬时温度的定解问题变为
4 3a4 2 a2 0 5 4a5 2 a3 0 2 (k 2)( k 1) ak 2 ak 0
第四章-贝塞尔方程
14
2 得递推关系 a2 a0 2 1 2 2 a4 a2 a0 43 4!
2k a2 k ( 1) k a0 (2k )!
贝塞尔方程
1. 贝塞尔方程的引出 2. 贝塞尔方程的求解 3. 贝塞尔函数的性质 4. 贝塞尔函数的应用
第四章-贝塞尔方程
2
贝塞尔方程的引出
问题:考虑固定边界的圆膜瞬时温度的定解问题. 设 有一半径为 R0 的圆形薄膜, 其上下两面绝热, 圆膜边 界上的温度始终保持为零度, 初始温度分布为已知, 则圆膜的瞬时温度分布归结为下面的定解问题
第四章-贝塞尔方程
6
R (r ) R (r ) ( ) 2 r r b 则有 r R(r ) R (r ) ( )
2
于是又得到下面两个方程:
( ) b( ) 0, r 2 R(r ) rR(r ) ( r 2 b) R(r ) 0
2 2 u u u 2 2 2 2 a 0 x y R 2 0, 2 t x y u ( x, y, t ) x2 y 2 R02 0, t 0 u ( x, y, t ) t 0 ( x, y ), t 0

贝塞尔函数表

贝塞尔函数表

貝塞爾函數(Bessel Function),它們的數值可由查有關貝塞爾函數曲線或查表得出,貝塞爾函數值與m f的關係如圖4-6所示。

表4-1載頻、邊頻振幅與關係表圖4-1第一類貝塞爾函數根據式(4-18),可以得出如下結論︰1.一個調頻波除了載波頻率外,還包含無窮多的邊頻,相鄰邊頻之間的頻率間隔仍是。

第條譜線與載頻之差為。

2.每一個分量的最大振幅等於。

而由貝塞爾函數決定。

理論上,相角調變信號的邊頻分量是無限多的,也就是說,它的頻譜是無限寬的。

一路信號要佔用無限寬的頻帶,是我們不希望的。

實際上,已調信號的能量絕大部分是集中在載頻附近的一些邊頻分量上,從某一邊頻起,它的幅度便非常小(工程上習慣,凡是振幅小於未調變載波振幅的10%的邊頻分量可以忽略不計)。

根據貝塞爾函數的特點,當階數時,貝塞爾函數的數值隨著n的增加而迅速減小。

所以,實際上我們可以認為,也即高低邊頻的總數等於個,因此調頻波的頻譜有效寬度為,即頻帶寬度可以方便地算出,為(4-19)由於,所以式(4-19)也可寫成下列形式,即(4-20)這與調變頻率相同的調幅波比起來,調角波的頻帶要寬。

通常,所以相角調變的頻帶要比調幅波寬得多。

因此,在同樣的波段中,能容納相角調變信號的數目,要少於調幅信號的數目。

因此,調頻只宜用於頻率較高的、甚高頻和超高頻段中。

關於頻帶寬度區分以下兩點說明:3.當,也就是寬頻帶FM(WBFM)情況,式(4-19)及式(4-20)適用之。

4.當,為窄頻帶FM(NBFM),此時式(4-19)及(4-20)不再適用,由表6-1可以看出,邊頻只取一對就夠了,即窄頻帶調頻頻譜寬度為。

贝塞尔函数

贝塞尔函数

贝塞尔函数1.贝塞尔方程及解:令()()()(),,=R ,u ϕτϕτΦZ 为分离变量的解,则()R ,满足本征值问题的方程,2222210R dy dR m R dx d ω⎛⎫∂++-= ⎪∂⎝⎭(17.1.1)其中2ω是分量的本征值问题的本征值。

若作变换()R()R()y(x);m xx x ωλνω=====或; 则上面方程可以变换:2//2/2(x )y 0x y x y ν++-= (17.1.1a )当ν≠整数时,贝塞尔方程的通解为:(x)AJ (x)BJ (x)y νν-=+当ν=整数时,由于J m -=(1)(x)m m J -,因此通解为 (x)AJ (x)BY (x)m m y =+式中A 与B 为任意常数,J (x)m 与Y (x)m 分别定义为 m 阶第一类与m 阶第二类贝塞尔函数。

2.贝塞尔方程的的级数解二阶线性齐次常微分方程2'''22(x )y 0,0x y xy x b υ++-=≤≤ 为贝塞尔方程现在x=0的领域求解贝塞尔方程的解 2.1级数解的形式由p(x)=1x,q(x)=1-22x ν可见,x=0是p=(x )的一阶极点,是q(x)的二阶极点。

因此,x=0是方程的正则奇点,方程的第一解具有形式;nkk p k k k k y x C x C x ∞∞+===∑=∑ 2.1.12.2指标方程将2.1.1代入贝塞尔方程可得:22300(k )0k p k k k k k C x C x ρρν∞∞+++==⎡⎤∑+-+∑=⎣⎦ 2.1.2 由x 的最低次幂x ρ的系数为0,即得:220()C 0x ρρν-=因0C 0≠,即得指标方程220ρν-=。

由此得指标1,ρν= 2ρν=-2.3.系数递推公式为确定起见,令ν>0,并将ρ=1ρ=ν代入2.1.2中得到22200(k )0k k k k k k C x C x νννν∞∞+++==⎡⎤∑+-+∑=⎣⎦ 改变第二项的求和指标,可得202k(k 2)0k k k k k k C xC xννν∞∞++-==∑++∑=由x的同次幂数之和为0,1(12)0C ν+=2k(k 2)0k k k C C ν-++=由此得10C =2(1)k(k 2)k k C C ν--=+2.4.推公式求系数得特解 ………将系数代入1.1中的贝塞尔方程的一个特解为20120(1)(1)C (x)2!(n 1)n n n n y x n ννν∞+=-Γ-+=∑Γ++2.5.另一个特解同理,令2ρρν==-可得另一个特解为20220(1)(1)C (x)2!(n 1)n n n n y xn ννν∞-=-Γ-+=∑Γ-++3.第一类贝塞尔函数第一类贝塞尔函数(x)J ν的级数形式为21(x)(1)()!(1)2kkk dy x J k νννκ+∞==-Γ++∑经过证明可得:,(x)(1)(x)mm m J J -=-同理可得:,(x)(x)m m J J -=因此:,(x)(1)(x)mmm J J -=-4.第二类贝塞尔函数:第二类贝塞尔函数是Weber 和Schlafli ,通常把它定义为 cos (x)(x)Y (x)sin J J νννπνπ--Y (x)m 的级数形式为Y (x)m ={}1220021(m k 1)!1(1)ln (x)()(k)(m )()2!2!(m k)2k m m k m m k k k x x x J k k κγϕϕκπππ-∞-++==---⎡⎤+--++⎢⎥+⎣⎦∑∑式中γ=0.577216,而 (k)ϕ=11n nκ=∑当x 很小时,可得 0Y ≈2lnx π(0ν=)当x 很大时,(x)(x )42xY νπν≈-- (17.1.12)5.第三类贝塞尔函数 通常定义为(1)H (x)iY (x)J ννν=+ (2)H (x)iY (x)J ννν=-则方程(17.1.1 a)的通解可以写成为(1)(2)y(x)AH H (x)B νν=+ 当x →∞时其渐进展开式为3(x )(1)22H (x )x i o νν--=+ (17.1.14a )3(x )(2)242H (x )x i o νπν----=+ (17.1.14b ) 当x 0→时其渐进展开式为 (1)!2(x)()H ix ννπ-≈- (ν>0) (2)2H (x)iln x νπ≈-总结上述,ν阶贝塞尔方程2/22(x )y 0x y xy ν++-= 的通解有三种形式: (1)y(x)AJ(x)(x)BJ =+ (ν0≠)(2)y(x)AJ(x)(x)BY ν=+ (ν可取任意整数) (3)(1)(2)y(x)AH (x)(x)BH νν=+ (ν可取任意整数) 其中A,B 为常数。

贝塞尔函数求导

贝塞尔函数求导

贝塞尔函数求导一、什么是贝塞尔函数贝塞尔函数(Bessel function)是应用广泛的一类特殊函数,它们最早由德国数学家费迪南德·弗朗茨·恩斯特·贝塞尔(Friedrich Ernst Bessel)在19世纪初引入并研究。

贝塞尔函数可以描述电磁波的传播、量子力学的行为、热传导等各种自然现象。

在数学上,贝塞尔函数涉及到一类方程,称为贝塞尔方程。

该方程形式简单,但是解析解并不容易求得,因此科学家们对贝塞尔函数的性质进行了详细研究,并发展出了一系列的逼近方法和数值计算方法。

二、贝塞尔函数的定义贝塞尔函数分为第一类贝塞尔函数(Bessel function of the first kind)和第二类贝塞尔函数(Bessel function of the second kind)两类。

两类贝塞尔函数的定义如下:1. 第一类贝塞尔函数第一类贝塞尔函数通常用符号J_n(x)表示,其中n为贝塞尔函数的阶数,x为自变量。

第一类贝塞尔函数可以通过以下定义得到:J_n(x) = (1/π) ∫[0, π] cos(nθ - x sinθ) dθ其中θ为积分变量。

2. 第二类贝塞尔函数第二类贝塞尔函数通常用符号Y_n(x)表示,其定义如下:Y_n(x) = (1/π) ∫[0, π] sin(nθ - x sinθ) dθ三、贝塞尔函数的性质贝塞尔函数具有许多有趣的性质,下面我们来逐一介绍一些重要的性质。

1. 递归关系贝塞尔函数有一种重要的递归关系,可以用来计算不同阶数的贝塞尔函数:J_{n+1}(x) = (2n/x) J_n(x) - J_{n-1}(x)Y_{n+1}(x) = (2n/x) Y_n(x) - Y_{n-1}(x)2. 趋于无穷大和零点当自变量x趋于无穷大时,贝塞尔函数的行为有一定的规律,可以用渐近展开式来描述。

同样地,贝塞尔函数的零点也是研究的重要问题之一。

贝塞尔函数课件

贝塞尔函数课件

3
正交性
贝塞尔函数之间具有正交性质,适合用于展开函数。
贝塞尔函数的计算方法
级数展开求解
可以使用贝塞尔函数的级数展开 式近似求解。
径向波动方程求解
使用贝塞尔函数表(示例)
贝塞尔函数是径向波动方程的解, 可用于求解相关问题。
通过查表,可以直接获取贝塞尔 函数的数值。
贝塞尔函数的在物理学中的应用
电磁场问题中的应用
贝塞尔函数用于描述电磁场分 布、辐射和散射等问题。
圆形共振问题中的应 用
贝塞尔函数用于解决圆形共振 腔中的电磁波问题。
量子力学中的应用
贝塞尔函数用于描述量子力学 中的球对称问题和径向波函数。
总结
在本课件中,我们介绍了贝塞尔函数的定义和基本类型,讨论了贝塞尔函数的性质和计算方法,以及它在物理 学中的应用。希望通过这些内容,您对贝塞尔函数有更全面的了解。
贝塞尔函数PPT课件
贝塞尔函数是一种数学函数,常用于解决各种科学领域中的物理和数学问题。 本课件将介绍贝塞尔函数的定义、类型、性质、计算方法以及在物理学中的 应用。
什么是贝塞尔函数
贝塞尔函数是一类特殊的数学函数,它是贝塞尔微分方程的解。它广泛应用 于物理学、工程学和数学等领域,例如波动理论、振动问题和量子力学。
下一步研究方向
贝塞尔函数作为一种重要的数学工具,在各个领域中仍有许多未解决的问题 和有待深入研究的方向。我们鼓励您继续探索和应用贝塞尔函数。
参考文献
1. Jiang, X., & Li, X. (2019). Applications of Bessel functions in physics. Physics Education, 54(6), 065010.

贝塞尔函数的应用

贝塞尔函数的应用

贝塞尔函数的应用1ω1二、按贝塞尔函数展开求定解问题的解下面将举例说明如何用贝塞尔函数求定解问题的解。

例2:有一质量均匀的金属圆柱体,半径为,0r 柱高为l ,圆柱侧面绝热,而上下两底面的温度分别保持为和,)(2r f )(1r f 试求圆柱体内部稳定时的温度分布。

解:由于温度分布趋于稳定,圆柱体内部温度函数),,(z r u 满足定解问题由于边界条件与无关,所以定解问题的解也与无关,只能取常数,这对应于m=0的情况。

ϕϕ)(ϕΦ事实上把),,(z r u ϕ代入边界条件可得12()()(0)(),()()()().R r Z f r R r Z l f r ϕϕΦ=Φ=根据上两个等式可知()ϕΦ只能取常数。

2''()()0(4.3)()(2),'()'(2)m ϕϕϕϕϕϕππ⎧Φ+Φ=⎨Φ=Φ+Φ=Φ+⎩固有值问题求解可得固有值为22,0,1,2,...n n m ==求解可得固有函数为()cos sin n n n n n A B ϕϕϕ=+Φ方程(4.5)的解为),3,2,1(,)(:0,)(:00000 =+=≠+==-n eD eC z ZD z C z Z zn zn n n n n ωωωω根据线性叠加原理,原定解问题(4.2)的一般解为''()()0,(4.5)Z z Z z λ-=2000,0,n nn λλωω=≥==0001(,,)()(),(4.6)n n zzn n n n u r z C z D C eD eJ r ωωϕω∞-==+++∑其中系数将由上下两底面的边界条件确定。

n n D C ,注:例3:设有半径为1的均匀薄圆盘,边界温度为零,ϕ1⎧11441 1比较等式两边系数,得22 21R tω。

贝塞尔函数的基本概念及其实际应用

贝塞尔函数的基本概念及其实际应用

贝塞尔函数的基本概念及其实际应用贝塞尔函数是数学分析中的一类特殊函数,是解决物理、工程、数学等领域中一些具有圆对称性问题的有力工具。

在本文中,我们将介绍贝塞尔函数的基本概念及其实际应用。

一、贝塞尔函数的定义及性质贝塞尔函数最初是由德国数学家贝塞尔在求解一个普遍的圆形问题时发现的。

贝塞尔函数有两类,即第一类和第二类,一般用Jn(x)和Yn(x)表示。

其中Jn(x)表示第一类贝塞尔函数,Yn(x)表示第二类贝塞尔函数。

贝塞尔函数和它们的导数满足贝塞尔微分方程:x^2*d^2y/dx^2 + x*dy/dx + (x^2-n^2)y = 0其中n为贝塞尔函数的度数,它的值可以是任意实数或零。

当n为整数时,贝塞尔函数是一种完整的函数,当n为小数或分数时,贝塞尔函数是一种不完整的函数。

贝塞尔函数具有一些特殊的性质,例如:对于第一类贝塞尔函数Jn(x),当x→0时Jn(x)≠0;当x→∞时,Jn(x)是振荡型函数,即Jn(x)近似于sin(x-nπ/2)。

而对于第二类贝塞尔函数Yn(x),当x→0时Yn(x)是无穷大;当x→∞时,Yn(x)也是振荡型函数。

二、贝塞尔函数的实际应用1.电学中的应用:贝塞尔函数可以用来描述无限长圆筒形导线和矩形波导内部电磁场的分布。

此外,在计算电磁波在介质中传播时,也可以用到第一类贝塞尔函数。

2.声学中的应用:贝塞尔函数可以用来表示大气中声波的传播过程。

同时,它还可以描述圆形共振腔内空气的压力分布和管道内的声波传输。

3.视觉中的应用:贝塞尔函数可以用来刻画景深和焦距。

此外,它还可以指导图像的锐化和去噪。

4.计算机图形学中的应用:贝塞尔函数可以被用来构建连续的Bézier曲线,从而描述出计算机图形学中重要的对于帧的插值和物体的平滑变形。

结语贝塞尔函数是一种特殊的函数,在各个领域中都有着重要的应用,特别是在电学中、声学中、视觉中以及计算机图形学中。

了解贝塞尔函数的基本概念和性质,对于掌握这些领域的相关知识非常重要。

第4章贝塞尔函数_728908945

第4章贝塞尔函数_728908945

[2(2 k )uk (s) k (22 k )uk (s)]eks uk 2 (s)e ks 0
k n2 0 .比较系数,可得
0 22u0 (22 1)u1 0 2(2 1)u1 k (22 k )uk uk 2 0, k 2 2(2 k )uk
0, k 2n 1 k(k2n1)= 0, k 2n 1
(4.1.14)
于是,当 k 2n 1 时,由(4.1.9)
k (k 2n 1)ck ck 2 0
解出
(4.1.15)
c1 c3 = c5 =
= c2 n 1 =0
(4.1.16)
(4.1.25)
对 k 2n ,我们有
n 0u2n u2n2 0 2nu2
5
由此解出
u2n 0 (s 0 )
其中
c0 1
当取 1 时,(4.1.5)式写成
(4.1.8)
k (k 2 )ck ck 2 0, k 2
由此可见
ck
可令
ck 2 0, k 0 k (k 2 )
(4.1.9)
c0 1 , c2 m
c2 c2 m
c2( m1) 4m(m )
将 2 n 代入. (4.1.23a)
0 2nu0 (1 2n)u1 0 2(1 n)u1 k (k 2n)uk uk 2 0, k 2 2(k n)uk
显然,
(4.1.23b)
u1 0
并因此有
u1 u3 = u5 =
=0
(4.1.24)
k (k 2 )ck ck 2 0, k 2

贝塞尔函数的性质

贝塞尔函数的性质

利用递推关系可以证明, N
1 也是初等函数。 m 2
第四章-贝塞尔函数的性质
13
13
三、贝塞尔方程的固有值问题 考虑贝塞尔方程的固有值问题
r 2 R(r ) rR( r ) ( r 2 2 ) R( r ) 0 | R(0) | R( R0 ) 0, (13)
m 2
m 2
证明:由于
1 2n x J 1 ( x ) (1) n ( ) 2 1 2 n 0 2 n ! ( n ) 2
1
1 2n 1 x ( 1) n ( ) 2 (2n 1)!! 2 n 0 n! 2n 1 1 1 2n 1 2n 3 1 1 (2n 1)!! ( n ) ( n ) ( n ) ( ) n 2 2 2 2 2 2 2 2
由(3)和(4)式相加减分别可得
2 J 1 ( x) J 1 ( x) J ( x) (5) x
J 1 ( x) J 1 ( x) 2 J ( x) (6)
第四章-贝塞尔函数的性质
4
4
注:从这些递推关系可以得到 ( x ) J1 ( x ) J0 (把 0 代入(3)即得) 注:对所有正整数m, J m ( x) 都可以用 J 0 ( x) 和
贝塞尔函数的性质
贝塞尔函数的性质

J ( x)
n 0 一、递推公式 J 1 ( x) d J ( x) ( ) (1) dx x x

(1) n
1 x ( ) 2 n n!(n 1) 2
2n d J ( x) d 1 x 证明: ( ) [ (1) n ] 2 n dx x dx n 0 n !( n 1) 2 2 n 1 2 n x (1) n 2 n n ! ( n 1) 2 n 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

!
C0 (1 v)(2 v)(3 v)L
(m 1 v)(m v)
2v
1 (1
v)
(1)m
22m m
!
1 (1 v)(2 v)(3 v)L
(m 1 v)(m v)
2(2mv) m
!
(1)m (1 v)(1 v)(2 v)(3 v)L
(m 1 v)(m v)
(1)m
2(2mv) m ! (m 1 v)
C0 (c2 v2 ) xc C1[(c 1)2 v2 ]xc1 {Ck [(c k )2 v2 ] Ck2}xck 0 k 2
要使等式两边成立,则x各次幂的系数为零
深圳大学电子科学与技术学院
(1) (c2 v2 ) C0 0 (k 0)
(c2 v2 ) 0
(2) [(c 1)2 v2 ]C1 0 (k 1)
v阶贝塞尔方程的通解: y AJv (x) BYv (x) 如果v不是整数,其通解还可表示为
y AJ v (x) BJ v (x)
深圳大学电子科学与技术学院
贝塞尔函数的图象
第二类贝塞尔函数的图象 贝塞尔、牛曼函数的图象
深圳大学电子科学与技术学院
深圳大学电子科学与技术学院
深圳大学电子科学与技术学院
J
v
(
x)
m0
m
!
(1)m (m 1
v)
x 2
2mv
v阶第一类 贝塞尔函数
深圳大学电子科学与技术学院

y1
Jv
(x)
um
m0
(x)
m0
m
(1)m !(m 1
v)
x 2
2mv
对于任意x(-,+),
lim
um1 ( x)
x
2
lim
1
0
m um (x) 2 m (m 1)(m 1 v)
深圳大学电子科学与技术学院
第四章:贝塞尔函数
深圳大学电子科学与技术学院
本章提要:
• 几个微分方程的引入 • 伽马函数的基本知识 • 贝塞尔方程的求解 • 贝塞尔函数的基本性质 • 贝塞尔函数应用举例
深圳大学电子科学与技术学院
参考了孙秀泉教授的课件
深圳大学电子科学与技术学院
贝塞尔函数是贝塞尔方程的解。除初等函数外, 在物理和工程中贝塞尔函数是最常用的函数,它们 以19世纪德国天文学家 F.W.Bessel 的姓氏命名,他 在1824年第一次描述过它们。
d dx
(1
x2
)
dy dx
y
0
勒让德方程
二、伽马函数的基本知识
深圳大学电子科学与技术学院
定义:
(x) ett x1dt (x 0)
0
基本性质: (x 1) x(x)
证明: (x 1) ett x11dt t xd (et ) t xet x ett x1dt x(x) 0
贝塞尔的主要贡献在天文学,以《天文学基础》(1818)为标志发展了 实验天文学 ,还编制基本星表 ,测定恒星视差, 预言伴星的存在,导出用 于天文计算的贝塞尔公式,较精确地计算出岁差常数等几个天文常数值,还 编制大气折射表和大气折射公式,以修正其对天文观测的影响。他在数学研 究中提出了贝塞尔函数,讨论了该函数的一系列性质及其求值方法,为解决 物理学和天文学的有关问题提供了重要工具。此外,他在大地测量学方面也 做出一定贡献,提出贝塞尔地球椭球体等观点。贝塞尔重新订正了《布拉德 莱星表》,并加上了岁差和章动以及光行差的改正 ; 还编制了包括比九等星 更亮的75000多颗恒星的基本星表,后来由他的继承人阿格兰德扩充成著名的 《波恩巡天星表》。
2
d 2R
d 2
dR
d
(k 2
2 ) 2
m2
R
0
x (k 2 2) y(x) R()
贝塞尔方程
x2
d2y dx2
x
dy dx
x2
m2
y0
另一途径:
d dx
k(x)
d d
y x
q
(
x)
y
(x)
y
0
,
(a x b)
深圳大学电子科学与技术学院
Sturm-Liouville( 施 图姆-刘维尔)型方程
因此级数y1的收敛区间为 (-,+) 在x=0时,
Jv (0) 1 (v 0) Jv (0) 0 (v 0)
深圳大学电子科学与技术学院
再考虑c=-v情况,得到
y2
Jv (x)
m0
(1)m m !(m 1
v)
x 2
2mv
贝塞尔方程的通解为:
y AJ v (x) BJ v (x)
其中v为实数(不是整数),A、B为待定系数
对于变系数方程y+p(x)y+q(x)y=0,如果xp(x)、x2q(x)
都能在x=0附近展开成幂级数,则在这个邻域内方程有
广义幂级数解 y Ck xck k 0
(C0 0)
Ck是展开系数, c是待定常数
深圳大学电子科学与技术学院
y(x) xc (C0 C1x C2 x2 Ck xk ) Ck xck k 0
C0 22 (1 v)
深圳大学电子科学与技术学院
C4
C42 4(4 2v)
C2 4(4 2v)
C0 242!(1 v)(2
v)
C6
C62 6(6 2v)
C4 6(6 2v)
263!(1
C0 v)(2
v)(3 v)
C2m
(1)m
C0 22m m!(1 v)(2 v)(3
v)
k=0
d r 2 dR 2R 0
dr dr
球贝塞尔方程
k=0
欧拉方程
深圳大学电子科学与技术学院
1
s in
d
d
s in
d ( 2 d
s
m2
in 2
)
0
x cos y(x) ( )
连带勒让德方程:
d dx
(1
x2)
dy dx
( 2
m2 1 x2
)y
0
m=0
勒让德方程:
(2n)! 22n n!
n
1 2
1
(2n 1)! 22n1 n!
三、贝塞尔方程的求解
深圳大学电子科学与技术学院
x2
d2y dx2
x
dy dx
(x2
2)y
0
(x 0)
阶贝塞尔方程
变系数的二阶线性常微分方程,其解称为贝塞尔函数
y'' 1 x
y'
x2 2
x2
y
0
不能在x=0附近展开成幂级数,因为x=0是它的 正则奇点
y(x) Ck (c k)xck1 k 0
y(x) Ck (c k 1) (c k)xck2 k 0
代入贝塞尔方程
x2
d2y dx2
x
dy dx
(x2
v2)y
0
x2 Ck (c k 1) (c k)xck2 x Ck (c k)xck1 (x2 v2 ) Ck xck 0
Jv (x)和Jv (x)称为第一类贝塞尔函数
深圳大学电子科学与技术学院
当 v 为正整数或零时, (m 1 n) (m n)!,故有
J
n
(
x)
m0
m
(1)m !(m n)
!
x 2
2mn
(n 0,1,2, )
(1)m
Jn (x) m0 m ! (m 1 n)
x
2mn
2
(n 0,1, 2,L )
d dx
(1
x
2
)
dy dx
2
y
0
柱坐标下:
z
r
x
深圳大学电子科学与技术学院
x cos
y
sin
y
z z
2u k 2u 0
1
(
u )
1
2
2u
2
2u z2
k 2u
0
u(,, z) R()()Z(z)
深圳大学电子科学与技术学院
''() m2() 0
Z''(z) 2Z(z) 0
s in
u
1
r 2 sin 2
2u
2
k 2u
0
深圳大学电子科学与技术学院
设u(r, ,) R(r)( )(),代入原方程
''() m2() 0
1
s in
d
d
s in
d ( 2 d
m2
sin 2 ) 0
d r 2 dR (k 2r 2 2 )R 0
dr dr
取:k(x) 1、q (x) 0、 (x) 1
d2y dx2
y
0
亥姆霍兹方程
取:k(x) x、q (x) m2 、 (x) x
x
d dx
x
dy dx
m2 x
y xy
0
参数形式的 贝塞尔方程
=1
d dx
x
dy dx
m2 x
y xy
0
贝塞尔方程
取: k(x) 1 x2、q 0、 1
(m
v)
一个特解为
y
Ck xck
k 0
C0
m0
(1)m 22m m!(1 v)(2 v)(3 v)
(m v)
x2mv
C0为任意常数,通常取
C0
2v
1 (1
v)
相关文档
最新文档