九年级中考数学《圆证明题》专题复习试卷及解析

合集下载

2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)

2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)

2022-2023学年九年级数学中考复习《圆综合压轴题》解答题专题训练(附答案)1.如图.在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD.以CD为直径作⊙O,分别与AC,BC相交于点M,N.过点N作⊙O的切线交AB于点E.(1)求证:∠BEN=90°.(2)若AB=10,请填空:①迮接OE,ON,当NE=时,四边形OEBN是平行四边形;②连接DM,DN,当AC=时,四边形CMDN为正方形.2.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD =OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求的值.3.如图,△ABC内接于⊙O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PF=CF.(1)求证:CF是⊙O的切线;(2)连接AP与⊙O相交于点G,若∠ABC=2∠P AC,求证:AB=BP;(3)在(2)的条件下,若AC=4,BC=3,求CF的长.4.如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.5.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F,连接AD.(1)求证:EF是⊙O的切线.(2)求证:△FBD∽△FDA.(3)若DF=4,BF=2,求⊙O的半径长.6.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,DG=2.5时,求DE的长.7.已知:△ABC内接于⊙O,连接AO并延长交BC于点D,且AD⊥BC于点D.(1)如图1,求证:∠B=∠C;(2)如图2,点E在上,连接AE,CE,∠ACE=∠ACB,求证:∠CAE=2∠ACE;(3)如图3,在(2)的条件下,过点A作AF⊥CE交CE的延长线于点F,若AE=5,AB=13,求AF的长.8.在Rt△ABC中,∠ACB=90°,AC=6,∠B=30°,点M是AB上的动点,以M为圆心,MB为半径作圆交BC于点D,(1)若圆M与AC相切,如图1,求圆的半径;(2)若AM=2MB,连接AD,如图2.①求证:AD与圆M相切;②求阴影部分的面积.9.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)求证:△OAC∽△ECF;(3)若BD=4,BC=8,圆的半径OB=5,求EC的长.10.如图,已知以BC为斜边的Rt△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,过点D作DE∥BC交AB的延长线于点E,连接DB,DC.(1)求证:ED为⊙O的切线;(2)求证:BC2=2ED•FC;(3)若tan∠ABC=2,AD=,求BC的长.11.已知△ABC内接于⊙O,D是弧AC上一点,连接BD、AD,BD交AC于点M,∠BMC =∠BAD.(1)如图1,求证:BD平分∠ABC;(2)如图2,过点D作⊙O的切线,交BA的延长线于点F,求证:DF∥AC;(3)如图3,在(2)的条件下,BC是⊙O的直径,连接DC,AM=1,DC=,求四边形BFDC的面积.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,P为弧AD上一点.(1)如图1,连接AC、PC、P A,求证:∠APC=∠ACD;(2)如图2,连接PB,PB交CD于E,过点P作⊙O的切线交CD的延长线于点F,求证:FE=PF;(3)如图3,在(2)的条件下,连接AE,且∠P AE=∠F,过点A作AG⊥PF,垂足为G,若PG=6,,求BH的长.13.如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.14.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF ⊥PC于点F,连接CB.(1)求证:AC平分∠F AB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).15.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,连接CE,BD是⊙O的切线与OE的延长线相交于点D.(1)求证:∠D=∠AEC;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,,求FH的长.16.如图,在平面直角坐标系xOy中,已知点A(0,8),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若∠ABE=∠FDE,求EF的值.(3)若AB﹣BO=4,求tan∠AFC的值.17.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF∽GDF;(2)求证:BC是⊙O的切线;(3)若cos∠CAE=,DF=10,求线段GF的长.18.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AC2=4OD•OP;(3)若BC=6,,求AC的长.19.如图,AB是半圆O的直径,AB=10.C是弧AB上一点,连接AC,BC,∠ACB的平分线交AB于点P,过点P分别作PE⊥AC,PF⊥BC,垂足分别为E、F.(1)求证:四边形CEPF是正方形;(2)当sin A=时,求CP的长;(3)设AP的长为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出y 的最大值.20.问题提出(1)如图①,△ABC为等边三角形,若AB=2,则△ABC的面积为.问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=3,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,求图中阴影部分的面积.问题解决(3)如图③,是某公园的一个圆形施工区示意图,其中⊙O的半径是4米,公园开发部门计划在该施工区内设计一个四边形绿化区域ABCD,连接AC、BD,现准备在△ADC 区域种植花卉供游人欣赏.按设计要求,A、B、C、D四个点都在圆上,∠ADB=∠BDC =60°.设BD的长为x米,△ADC的面积为y平方米.①求y与x之间的函数关系式;②按照设计要求,为让游人有更好的观赏体验,△ADC花卉区域的面积越大越好,那么请求出花卉区域△ADC面积的最大值.参考答案1.(1)证明:如图,连接ON,DN,∵CD是⊙O的直径,∴∠CND=∠DNB=90°,∵NE是⊙O的切线,∴∠ONE=90°,∴∠BNE=∠OND,∵ON=OD,∴∠ODN=∠OND,∴∠ODN=∠BNE,∵D是斜边AB的中点,∴CD=AD=BD,∴∠B=∠BCD,∵∠BCD+∠ODN=90°,∴∠B+∠BNE=90°,∴∠NEB=90°;(2)解:①∵四边形OEBN是平行四边形,∴BE=ON=,∵E为BD的中点,∴N为BC的中点,∴NE为△BCD的中位线,∴NE∥CD,且NE=CD=.故答案为:;②∵四边形CMDN为正方形,∴∠MCD=∠MDC=45°,∠CMD=90°,∴MC=MD=CD,∵AD=DC,∴M是AC的中点,AC=2MC=CD,∴CD=AB=5,∴AC=5.故答案为:5.2.(1)证明:①∵CD∥AB,∴∠F AB=∠D,∵∠AFB=∠DFC,∴△ABF∽△DCF;②∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵CD∥AB,∴∠DCO=∠AOC=90°,∵OC是半圆的半径,∴CD是⊙O的切线;(2)解:过点F作FH∥AB交OC于H,设圆的半径为2a,∵CD=OB=OA,CD∥AB,∴CE=OE=a,AE=DE,由勾股定理得:AE==a,∴AD=2a,∵△ABF∽△DCF,∴==,∵FH∥AB,∴==,∵FH∥AB,∴==,∴EF=,∵CD是⊙O的切线,∴DC2=DG•DA,即(2a)2=DG•2a,解得:DG=,∴FG=a﹣﹣=,∴==.3.(1)证明:连接OC,∵PF=FC,OC=OB,∴∠PCF=∠CPF,∠OCB=∠OBC,∵PD⊥AB,∴∠PDB=90°,∴∠CPF+∠OBC=90°,∴∠PCF+∠OCB=90°,∴∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.(2)证明:连接BG,∵,∴∠P AC=∠PBG,∵∠PBA=2∠P AC,∴∠PBA=2∠PBG,∵AB为⊙O的直径,∴∠AGB=∠PGB=90°,∴∠APB=∠P AB,∴AB=BP;(3)解:∵AB为⊙O的直径,∴∠ACB=90°,∵AC=4,BC=3,∴AB===5,∴AB=BP=5,∴PC=2,∵∠PDA=∠PCA=90°,P A=P A,∠APB=∠P AB,∴△APC≌△APD(AAS),∴AD=PC=2,PD=AC=4,∠P AC=∠APD,∴AE=PE,设DE=x,AE=PE=4﹣x,在Rt△AED中,AD2+DE2=AE2,即22+x2=(4﹣x)2,解得x=,∴EP=4﹣x=,∵∠PEC=90°﹣∠EPC,∠FCE=90°﹣∠PCF,即∠PEC=∠FCE,∴EF=CF=PF,∴CF=.4.解:(1)直线AF与⊙O相切.理由如下:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,∴AF⊥OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)∵∠AOF=∠COF,OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵∠OAF=90°,OA=6,AF=2,∴tan∠AOF=,∴∠AOF=30°,∴AE=OA=3,∴AC=2AE=6;(3)∵AC=OA=6,OC=OA,∴△AOC是等边三角形,∴∠AOC=60°,OC=6,∵∠OCP=90°,∴CP=OC=6,∴S△OCP=OC•CP==18,S扇形AOC==6π,∴阴影部分的面积为S△OCP﹣S扇形AOC=18﹣6π.5.(1)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC.∵EF⊥AC,∴EF⊥OD.∵OD是半径,∴EF与⊙O相切.(2)证明:∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵OD⊥DE,∴∠FDB+∠ODB=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠BAD=∠FDB,∵∠F=∠F,∴△FBD∽△FDA;(3)解:设⊙O的半径为r,则AB=2r,∵△FBD∽△FDA,∴,∵DF=4,BF=2,∴,∴r=3.6.解:(1)CG与⊙O相切,理由如下:如图1,连接CO,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∵OC是圆的半径,∴CG与⊙O相切;(2)证明:∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DCE=∠AOD=45°,∴∠EGC=45°,又∵∠OCG=90°,∴△OCG为等腰直角三角形,∴GC=OC,OG=OC,∴OD+DG=OC,即OC+2.5=OC,解得OC=,∵GF=GE=GC=OC,∴DE=GE﹣DG=OC﹣DG=.7.(1)证明:∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC,∴∠B=∠C;(2)证明:连接BE,设∠ACE=α,则∠ACB=3α,∴∠ABC=∠ACB=3α,∵∠ABE=∠ACE=α,∴∠CBE=∠ABC﹣∠ABE=3α﹣α=2α,∴∠CAE=∠CBE=2α=2∠ACE;(3)解:过点E作EG⊥AC于点G,在CG上截取GH=AG,连接EH,∴EH=AE=5,∴∠AHE=∠EAH=2α,∴∠CEH=∠AHE﹣∠ECH=2α﹣α=α=∠ECH,∴CH=EH=5,∵AC=AB=13,∴AH=AC﹣CH=13﹣5=8,∴AG=GH=4,∴CG=4+5=9,在Rt△AEG中,EG===3,在Rt△CEG中,CE===3,∵,∴,∴.8.解:(1)过点M作MN⊥AC于点N,∵圆M与AC相切,∴MN=MB,∵∠ACB=90°,AC=6,∠B=30°,∴AB=12,设MN=MB=R.∴AM=12﹣R,∵∠ACB=90°,MN⊥AC,∴MN∥BC,∴∠B=∠AMB=30°,∴,∴,解得R=24﹣36.(2)①连接DM,由题意可知MB=MD,∴∠B=∠MDB=30°,∴∠AMD=60°,∵AM=2MB,∴AM=2MD,∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°,∴△AMD∽△ABC,∴∠ADM=∠ACB=90°,∴AD与圆M相切;②∵AB=12,AM=2MB,∴BM=4,AM=8,∵∠ADM=90°,∴AD==4,∴S阴影部分=4.9.(1)证明:∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF;(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵△OAC∽△ECF,∴,∴EC==.10.(1)证明:如图1,连接OD.∵BC为⊙O的直径,∴∠BAC=90°.∵AD平分∠BAC,∴.∴OD⊥BC,∵DE∥BC,∴OD⊥ED,又∵OD为半径,∴ED为⊙O的切线;(2)证明:由(1)可得△BCD为等腰直角三角形.∵DE∥BC,∴∠E=∠ABC=∠ADC,∠BDE=∠DBC=∠DCB=45°.∴△BED∽△FDC,∴,即BD2=DE•FC,又,∴BC2=2ED•FC;(3)解:如图2,过点D作DG⊥AD,交AC的延长线于点G.∴∠CDG+∠ADC=90°,∠DGC=∠DAG=45°.又∵∠ADB+∠ADC=90°,∴∠ADB=∠GDC,∵DB=DC,∠BAD=∠DGC=45°,∴△ABD≌△GCD(AAS),∴AB=CG.∵∠DAG=45°,∠ADG=90°,∴△ADG为等腰直角三角形,∴AB+AC=AG=AD==3,∵tan∠ABC=2,∴设AB=x,则AC=2x.∴3x=3,∴x=1.即AB=1,AC=2.∴BC===.11.(1)证明:∵∠BMC=∠BAD,又∵∠BMC=∠BAC+∠ABD,∠BAD=∠BAC+∠DAM,∴∠ABD=∠DAC,又∵弧DC=弧DC,∴∠DAC=∠DBC,∴∠ABD=∠CBD,∴BD平分∠ABC;(2)证明:连接OA、OB、OD,OD交AC于点N,∵FD是⊙O的切线,D为切点,OD是⊙O的半径,∴OD⊥FD,∴∠FDO=90°,又∵∠AOD=2∠ABD,∠DOC=2∠DBC,∠ABD=∠CBD,∴∠AOD=∠COD,又∵AO=CO,∴ON⊥AC,∴∠ANO=90°,∴∠ANO=∠FDO,∴AC∥FD;(3)解:连接OD,交AC于N,∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∴∠F AC=180°﹣∠BAC=90°,又∵∠ANO=∠FDN=90°,∴四边形ANDF是矩形,∴AF=DN,∠F=90°,又∵ON⊥AC,∴AN=CN,∴设MN=a,则AN=CN=MN+AM=a+1,∴CM=MN+CN=2a+1,在Rt△MDC中,cos∠ACD=,在Rt△NDC中,cos∠ACD=,∴,解得a1=﹣(舍去),a2=1,∴MN=1,CN=a+1=2,∴DN=AF==,又∵MN=AM=1,∠AMB=∠NMD,∠BAM=∠MND=90°,∴△BAM≌△DNM(AAS),∴BA=ND=,∴BF=AB+AF=2,∴AN=FD=a+1=2,∴BD==2,∴S△BFD=,S△DBC=BD•CD==3,∴S四边形BFDC=S△BFD+S△BDC=2.12.(1)证明:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴,∴∠ACD=∠DC,∵,∴∠APC=∠ADC,∴∠APC=∠ACD;(2)证明:连接OP,∵PF是⊙O的切线,∴OP⊥PF,即∠EPF+∠OPE=90°,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠HEB+∠HBE=90°,∵∠PEF=∠HEB,∴∠PEF=∠FPE,∴FE=PF;(3)解:过E作EM⊥PF,垂足为M,∵AG⊥PF,∴∠GAP+∠GP A=90°,∵∠APE=90°,∴∠GP A+∠EPM=90°,∵∠AGP=∠EMP=90°,∴△GP A∽△MEP,∴,∵∠P AE=∠F,∴tan∠P AE=tan∠F,则,∵,∴,∴MF=PG=6,设PM=x,∵PE2﹣PM2=EF2﹣FM2,∴,解得:x1=﹣10,x2=4,即PM=4,∴EM==8,∵,即,∴P A=3,∵CD⊥AB,AB是直径,∴∠BHE=∠APB=90°,∴∠HEB=∠BAP,∵∠MPE=∠HEB,∴tan∠P AB=,即,∴PB=6,∴BE=PB﹣PE=2,∵sin∠HEB=,即,∴BH=4.13.(1)证明:连接OC,如图1,∵AD=CD,∠A=30°,∴∠ACD=30°,∴∠CDB=60°,∵OD=OC,∴∠OCD=60°,∴∠ACO=∠ACD+∠OCD=90°,∵OC是半径,∴直线AC是⊙O的切线;(2)解:∵∠OCD=60°,OC=OD,∴△DCO是等边三角形,∴CD=AD=OD=1,作CH⊥BD于点H,则DH=,如图2,∴CH===,∵AB=AD+BD=3,∴S△ABC==.(3)①当点E运动到与点C关于直径AB对称时,CE⊥AB于点K,如图3,∵BD为⊙O的直径,CK=,∴CE=2CK=,∵CF⊥CE,∴∠ECF=90°,∵∠CDB=∠CEB=60°,∴CF=CE•tan60°==3,②∵点E在上运动过程中,∠CDB=∠CEB=60°,在Rt△ECF中,tan60°=,∴CF=CE,∴当CE最大时,CF取得最大值,∴当CE为直径,即CE=2时,CF最大,最大值为2.14.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠F AC=∠OCA,∴∠F AC=∠OAC,∴CA平分∠F AB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.15.(1)证明:∵BD是⊙O的切线,∴∠OBD=90°,∠ABC+∠DBC=90°,∵BC⊥OD,∴∠D+∠DBC=90°,∴∠ABC=∠D,∵∠AEC=∠ABC,∴∠D=∠AEC;(2)证明:连接AC,如图所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,过O作OG⊥BE于G,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,∴AB=10,∵cos∠BCE=,∴cos∠BAE==,∴AE=8,∴BE===6,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH=,在Rt△BEH中,BH=.∵OG⊥BE,OB=OE,∴BG=3,∴OG===4,∴BF•OE,∴BF=,∴HF=BH﹣BF=.16.解:(1)∵点A(0,8),∴AO=8,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD,∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS),∴AE=AO=8;(2)∵∠ABE=∠FDE,∴AB∥DF,∴△CAB∽△CDF,∴,又∵∠ABE=∠FDE,∠AEB=∠FED∴△DEF∽△BEA,∴,∴EF=2AE=16;(3)设BO=x,则AB=x+4,在Rt△ABO中,由AO2+OB2=AB2得:82+x2=(x+4)2,解得:x=6,∴OB=BE=6,AB=10,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC,∴;设EF=m,则AF=8+m,BF=(8+m),∵在Rt△BEF中,BE2+EF2=BF2,∴62+m2=[(8+m)]2,解得:m=,即EF=,∴tan∠AFC=.17.(1)证明:如图1,∵EF平分∠AED,∴∠AEF=∠FED,∵∠AEF=∠ADF,∴∠FED=∠ADF,∵∠GFD=∠DFE,∴△GFD∽△DFE;(2)证明:如图2,∵AE平分∠BAC,∴∠BAE=∠EAO,∵OA=OE,∴∠EAO=∠OEA,∴∠BAE=∠OEA,∴AB∥OE,∴∠OEC=∠B,∵∠B=90°,∴∠OEC=90°,∵OE为半径,∴BC是⊙O的切线;(3)解:如图3,连接OF、AF,∵AD为直径,∴∠AFD=∠AED=90°,∵EF平分∠AED,∴∠AEF=∠FED=45°,∴∠AFD=∠AEF=45°,∴△AFD为等腰直角三角形,∵DF=10,OA=OD∴AD=DF=×10=20,OF⊥AD,OA=OD=OF=10,∵cos∠CAE=,∴AE=AD•cos∠CAE=20×=10,∵∠AEF=∠ADF,∠AGE=∠FGD,∴△AGE∽△FGD,∴,∴AG=GF,∵AG=AO+OG=10+OG,∴10+OG=GF,∴OG=GF﹣10,在Rt△FOG中,GF2=OF2+OG2,∴GF2=102+(GF﹣10)2,解得:GF=或(不符合题意,舍去),∴线段GF的长为.18.(1)证明:连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,又∵PO=PO,∴△P AO≌△PBO(SAS),∴∠P AO=∠PBO=90°,∵OA为圆的半径,∴直线P A为⊙O的切线;(2)证明:∵∠P AO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OP A+∠AOP=90°,∴∠OAD=∠OP A,∴△OAD∽△OP A,∴,∴OA2=OD•OP,又∵AC=2OA,∴AC2=4OD•OP;(3)解:∵OA=OC,AD=BD,BC=6,∴OD=BC=3,设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3,在Rt△AOD中,由勾股定理,得,(2x﹣3)2=x2+32,解之得,x1=4,x2=0(不合题意,舍去),∴AD=4,OA=2x﹣3=5,∵AC是⊙O的直径,∴AC=2OA=10.∴AC的长为10.19.(1)证明:∵∠ACB=90°,PE⊥AC,PF⊥BC,∴四边形PECF是矩形,∵CP平分∠ACB,PE⊥AC,PF⊥BC,∴PE=PF,∴四边形CEPF是正方形;(2)解:∵sin A=,AB=10,∴,∴BC=8,∴AC===6,∴tan A=,设PE=CE=m,则AE=6﹣m,∴tan A=,∴m=,∴PC=PE=;(3)解:∵四边形CEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P顺时针旋转90°,得到△A′PF,P A′=P A,如图所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(10﹣x),∴y与x之间的函数关系式为y=﹣+5x,∵y=﹣+5x=﹣,∴x=5时,y有最大值为.20.解:(1)如图①,AD⊥BC,∵△ABC为等边三角形,AB=2,∴∠B=60°,BC=AB=2,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,=sin B=sin60°,∴=,∴AD=,∴△ABC的面积=AB•AD=×2×=,故答案为:;(2)如图②,过点D作DH⊥BC于点H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠DBC=∠ABD=45°,∵DE⊥BD,∴∠BDE=90°,∴∠DEB+∠DBE=90°,∴∠DEB=90°﹣∠DBE=90°﹣45°=45°,∴BD=ED,∵DH⊥BC,∴BH=EH,∴DH=BE=BH=EH,设DH=BH=EH=a,∵∠ABC=90°,∴AB⊥BC,∵DH⊥BC,∴AB∥DH,∴△CDH∽△CAB,∴==,∵AD=1,AC=3,∴CD=3﹣1=2,∴==,∴AB=a,CE=a,∴BC=CE+BE=a+2a=3a,∵AB2+BC2=AC2,∴a2+9a2=9,∴a2=1,∴S阴影=S△ABC﹣S△BDE=AB•BC﹣BE•DH=×a•3a﹣×2a•a=a2﹣a2=a2=1;(3)①设AC与BD相交于点E,连接OB,OA,OC,过点O作OH⊥AB于点H,∵∠ADB=∠BDC=60°,∴AB=BC,∠BAC=∠BDC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AB=AC=BC,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),同理△ABO≌△CBO(SSS),∴S△ABO=S△ACO=S△CBO,∴S△ABC=3S△ABO,∵∠AOB=2∠ACB,∴∠AOB=120°,在Rt△OAH和Rt△OBH中,,∴Rt△OAH≌Rt△OBH(HL),∴∠AOH=∠BOH,AH=BH,在Rt△OAH中,OA=4,∠AOH=∠AOB=60°,∴cos∠AOH=cos60°==,sin∠AOH=sin60°==,∴OH=OA=2,AH=OA=2,∴AB=2AH=4,∴S△ABC=3S△ABO=3××4×2=12,∵∠ABE=∠DBA,∠BAE=∠BDA=60°,∴△ABE∽△DBA,∴===,即S△DBA=S△ABE,∵∠CBE=∠DBC,∠BCE=∠BDC=60°,∴△CBE∽△DBC,∴===,即S△DBC=S△CBE,∴S四边形ABCD=S△DBA+S△DBC=S△ABE+S△CBE,=(S△ABE+S△CBE)=S△ABC=×12=x2,∴S△ADC=S四边形ABCD﹣S△ABC=x2﹣12,即y=x2﹣12;∵BD的长度大于AB,小于等于直径,∴4<x≤8,∴y与x之间的函数关系式为y=x2﹣12(4<x≤8);②由①知,y与x之间的函数关系式为y=x2﹣12,则对称轴为y轴,∵>0,∴x>0时,y随x的增大而增大,∵4<x<8,∴当x=8时,y有最大值,即当BD为⊙O的直径时,y取最大值,即y=×82﹣12=4,∴花卉区域△ADC面积的最大值是4.。

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。

初三数学圆试题答案及解析

初三数学圆试题答案及解析

初三数学圆试题答案及解析1.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.【考点】1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.2.如图,AB是⊙O的直径,点C是圆上一点,,则 °.【答案】20.【解析】∵AB是⊙O的直径,∴.∵OA=OC,,∴.∴.【考点】1.圆周角定理;2.等腰三角形的性质.3.已知一个圆锥的底面半径为3 cm,母线长为10 cm,则这个圆锥的侧面积为 ()A.15π cm2B.30π cm2C.60π cm2D.3cm2【答案】B【解析】圆锥的侧面积=π×3×10=30π cm2.故选B.4.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长是A.4cm B.6cm C.8cm D.10cm【答案】C.【解析】连接OB;∵CD=10cm,∴OC=5cm;∵OM:OC=3:5,∴OM=3cm;Rt△OCP中,OC=OA=5cm,OM=3cm;由勾股定理,得:所以AB=2AM=8cm,故选C.考点: 1.垂径定理;2.勾股定理.5.如图,点A是半圆上一个三等分点,点B是的中点,点P是直径MN上一动点,若⊙O的半径为1,则AP+BP的最小值是.【答案】.【解析】本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.试题解析:作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN^的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.考点: 1.垂径定理;2.勾股定理;3.圆心角、弧、弦的关系;4.轴对称-最短路线问题.6.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(秒)(0≤t<3),连结EF,当t值为________秒时,△BEF是直角三角形.【答案】t=1或或.【解析】∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=,此时点E走过的路程是或,则运动时间是s或s.故答案是t=1或或.【考点】圆周角定理.7.如图,边长为1的小正方形构成的网格中,⊙O的半径为1,则图中阴影部分两个小扇形的面积之和为(结果保留π)【答案】.【解析】如图,根据正方形和圆的对称性,上方的小扇形与下方的红色小扇形面积相等,所以图中阴影部分两个小扇形的面积之和为四分之一半径为1的圆的面积,即.【考点】1.网格问题;2. 正方形和圆的对称性;3. 扇形的面积;4.转换思想的应用.8.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是A.猫先到达B地;B.老鼠先到达B地;C.猫和老鼠同时到达B地;D.无法确定.【答案】C.【解析】以AB为直径的半圆的长是:•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+b+c+d=(a+b+c+d)=•AB.故猫和老鼠行走的路径长相同.故选C.【考点】弧长公式.9.如图,已知在⊙O中,弦AB的长为8cm,半径为5 ㎝,过O作OC AB求点O与AB的距离.【答案】3cm.【解析】连接OA.根据垂径定理求得AC的长,再进一步根据勾股定理即可求得OC的长.试题解析:连接OA.如图:∵OC⊥AB,弦AB长为8cm,∴AC=4(cm).根据勾股定理,得OC=考点: 1.垂径定理;2.勾股定理.10.如图所示,内接于,,,则______.【答案】.【解析】由圆周角定理知:,由于,得到,所以:.故答案是.【考点】圆周角定理.11.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【答案】(1)详见解析;(2)6【解析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长.试题解析:(1)连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6-x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(6-x)2=25,化简得x2-11x+18=0,解得x1=2,x2=9.∵CD=6-x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5-2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.【考点】1.切线的判定和性质;2.勾股定理;3.矩形的判定和性质4.垂径定理12.如图MN=10是⊙O的直径,AE⊥MN于E,CF⊥MN于F,AE=4,CF=3,(1)在MN上找一点P,使PA+PC最短;(2)求出PA+PC最短的距离。

九年级中考数学《圆证明题》专题复习试卷及解析

九年级中考数学《圆证明题》专题复习试卷及解析

九年级中考数学《圆证明题》专题复习试卷及分析九年级中考数学《圆证明题》专题复习试卷及分析1、如图,点 A,B 在⊙ O上,直线 AC是⊙ O的切线, OC⊥OB,连结 AB交 OC于点 D.求证: AC=CD.2、如图, AD是⊙ O的切线,切点为 A,AB是⊙ O的弦.过点 B 作 BC∥AD,交⊙ O于点 C,连结AC,过点 C作 CD∥AB,交 AD于点 D.连结 AO并延伸交 BC于点 M,交过点 C的直线于点P,且∠BCP=∠ ACD.(1)判断直线 PC与⊙ O的地点关系,并说明原因;(2)若 AB=9,BC=6.求 PC的长.3、如图,在△ ABC中,∠ ACB=90°,点 D 是 AB上一点,以 BD为直径的⊙ O和 AB相切于点 P.(1)求证: BP均分∠ ABC;(2)若 PC=1,AP=3,求 BC的长.14、已知:如图, AC是⊙ O的直径, BC是⊙ O的弦,点 P 是⊙ O外一点,∠ PBA=∠ C.(1)求证: PB是⊙ O的切线.(2)若 OP∥BC,且 OP=8,∠ C=60°,求⊙ O的半径.5、如图,在△ ABC中, AB=AC,以 AB为直径的⊙ O交 BC于点 M,MN⊥AC于点 N.求证: MN是⊙ O的切线.6、如图, AB是⊙ O的直径,点 C 在 AB的延伸线上, CD与⊙ O相切于点 D,CE⊥AD,交 AD的延伸线于点 E.(1)求证:∠ BDC=∠A;(2)若 CE=4,DE=2,求⊙ O的直径.7、已知: AB是⊙ O的直径, BD是⊙ O的弦,延伸 BD到点 C,使 AB=AC,连结 AC,过点 D 作DE⊥AC,垂足为 E.( 1)求证: DC=BD( 2)求证: DE为⊙ O的切线.8、如图, AB是⊙ O的直径, C为⊙ O上一点,经过点 C 的直线与 AB的延伸线交于点 D,连结AC,BC,∠BCD=∠CAB.E 是⊙ O上一点,弧 CB=弧 CE,连结 AE并延伸与 DC的延伸线交于点 F.( 1)求证: DC是⊙ O的切线;( 2)若⊙ O的半径为 3,sin D=,求线段AF的长.9、如图,已知 MN是⊙ O的直径,直线 PQ与⊙ O相切于 P 点, NP均分∠MNQ.( 1)求证: NQ⊥PQ;( 2)若⊙ O的半径 R=2,NP=,求NQ的长.10、已知: AB是⊙ O的直径, BD是⊙ O的弦,延伸 BD到点 C,使 AB=AC;连结 AC,过点 D作DE⊥AC,垂足为 E.(1)求证: DC=BD(2)求证: DE为⊙ O的切线11、如图,以 Rt△ABC的 AC边为直径作⊙ O交斜边 AB于点 E,连结 EO并延伸交 BC的延伸线于点 D,点 F 为 BC的中点,连结 EF和 AD.(1)求证: EF是⊙ O的切线;(2)若⊙ O的半径为 2,∠ EAC=60°,求 AD的长.12、如图, AB是⊙ O的直径,点 E 是上的一点,∠ DBC=∠ BED.⑴求证: BC是⊙ O的切线;⑵已知 AD=3, CD=2,求 BC的长.13、如图,已知 AB是⊙ O的直径,点 C、D在⊙ O上,点 E 在⊙ O外,∠ EAC=∠D=60°.(1)求∠ ABC的度数;(2)求证: AE是⊙ O的切线;(3)当 BC=4时,求劣弧 AC的长.14、已知△ ABC,以 AB为直径的⊙ O分别交 AC于 D, BC于 E,连结 ED,若 ED=EC.(1)求证: AB=AC;(2)若 AB=4,BC=2 ,求 CD的长.15、如图,以△ ABC的边 AB上一点 O为圆心的圆经过 B、C两点,且与边 AB订交于点 E,D是弧 BE的中点, CD交 AB于 F,AC=AF.( 1)求证: AC是⊙ O的切线;( 2)若 EF=5,DF= ,求⊙ O的半径.参照答案1、∵直线 AC与⊙ O相切,∴ OA⊥ AC,∴∠ OAC=90°,即∠ OAB+∠CAB=90°,∵OC⊥OB,∴∠BOC=90°,∴∠B+∠ODB=90°,而∠ODB=∠ADC,∴∠ADC+∠B=90°,∴OA=OB,∴∠ OAB=∠B,∴∠ ADC=∠CAB,∴ AC=CD.2、( 1)解: PC与圆 O相切,原因为:过C点作直径CE,连结EB,如图,∵CE为直径,∴∠ EBC=90°,即∠ E+∠BCE=90°,∵ AB∥DC,∴∠ ACD=∠BAC,∵∠ BAC=∠E,∠ BCP=∠ACD.∴∠ E=∠ BCP,∴∠ BCP+∠BCE=90°,即∠ PCE=90°,∴ CE⊥ PC,∴ PC与圆 O相切;( 2)解:∵ AD是⊙ O的切线,切点为 A,∴ OA⊥AD,∵BC∥AD,∴ AM⊥BC,∴ BM=CM= BC=3,∴ AC=AB=9,在 Rt△ AMC中,AM= =6,设⊙ O的半径为 r ,则 OC=r,OM=AM﹣r=6 ﹣r ,2 2 2 2 2 2在 Rt△ OCM中, OM+CM=OC,即 3 +(6 ﹣ r ) =r,解得 r= ,∴ CE=2r= ,OM=6 ﹣= ,∴ BE=2OM= ,∵∠ E=∠ MCP,∴ Rt △PCM∽Rt△ CEB,∴=,即=,∴ PC= 3、( 1)证明:连结 OP,∵OP=OB,∴∠ OPB=∠OBP,∴∠ PBC=∠ OBP,∴ BP均分∠ ABC(2)作 PH⊥AB于 H.∵ PB均分∠ ABC,PC⊥BC, PH⊥AB,∴ PC=PH=1,在 Rt△ APH中, AH==2,∵∠ A=∠A,∠ AHP=∠ C=90°,∴△ APH∽△ ABC,∴=,∴=,∴ AB=3,∴ BH=AB﹣AH=,在 Rt△ PBC和 Rt△PBH中,,∴ Rt△PBC≌Rt△PBH,∴ BC=BH=.4、( 1)证明:连结 OB,∵ AC是⊙ O直径,∴∠ ABC=90°,∵OC=OB,∴∠ OBC=∠C,∵∠ PBA=∠C,∴∠ PBA=∠OBC,即∠ PBA+∠ OBA=∠ OBC+∠ ABO=∠ABC=90°,∴ OB⊥PB,∵ OB为半径,∴ PB是⊙ O的切线;(2)解:∵ OC=OB,∠ C=60°,∴△ OBC为等边三角形,∴ BC=OB,∵ OP∥BC,∴∠ CBO=∠ POB,∴∠ C=∠POB,在△ ABC和△ PBO中∵,∴△ ABC≌△ PBO(ASA),∴ AC=OP=8,即⊙ O的半径为4.5、证明:连结 OM,∵ AB=AC,∴∠ B=∠ C,∵ OB=OM,∴∠ B=∠OMB,∴∠ OMB=∠C,∴OM∥AC,∵ MN⊥AC,∴ OM⊥MN.∵点 M在⊙ O上,∴ MN是⊙ O的切线.6、( 1)证明:连结 OD,∵CD是⊙ O切线,∴∠ ODC=90°,即∠ ODB+∠ BDC=90°,∵AB为⊙ O的直径,∴∠ ADB=90°,即∠ ODB+∠ADO=90°,∴∠ BDC=∠ADO,∵OA=OD,∴∠ ADO=∠A,∴∠ BDC=∠A;(2)∵ CE⊥ AE,∴∠ E=∠ADB=90°,∴DB∥EC,∴∠ DCE=∠ BDC,∴∠ DCE=∠A,∵ CE=4, DE=2∴在 Rt △ACE中,可得 AE=8∴ AD=6在在 Rt △ADB中可得BD=3∴依据勾股定理可得7、证明:( 1)连结 AD,∵ AB是⊙ O的直径,∴∠ ADB=90°,又∵ AB=AC,∴ DC=BD;(2)连结半径 OD,∵ OA=OB, CD=BD,∴ OD∥AC,∴∠ ODE=∠CED,又∵ DE⊥ AC,∴∠ CED=90°,∴∠ ODE=90°,即 OD⊥DE.∴ DE是⊙ O的切线.8、( 1)证明:连结 OC,BC,∵ AB是⊙ O的直径,∴∠ ACB=90°,即∠ 1+∠3=90°.∵OA=OC,∴∠ 1=∠ 2.∵∠ DCB=∠BAC=∠1.∴∠ DCB+∠ 3=90°.∴ OC⊥ DF.∴ DF 是⊙ O的切线;( 2)解:在 Rt△ OCD中, OC=3,sin D=.∴ OD=5,AD=8.∵=,∴∠ 2=∠4.∴∠ 1=∠4.∴ OC∥AF.∴△ DOC∽△ DAF.∴.∴ AF=.9、( 1)证明:连结 OP,如图,∴直线PQ与⊙ O相切,∴ OP⊥PQ,∵OP=ON,∴∠ ONP=∠ OPN,∵ NP均分∠ MNQ,∴∠ ONP=∠ QNP,∴∠ OPN=∠QNP,∴OP∥ NQ,∴ NQ⊥PQ;( 2)解:连结 PM,如图,∵ MN是⊙ O的直径,∴∠ MPN=90°,∵NQ⊥PQ,∴∠ PQN=90°,而∠ MNP=∠ QNP,∴ Rt △NMP∽Rt△ NPQ,∴=,即=,∴ NQ=3.10、( 1)证明:( 1)连结 AD;∵ AB是⊙ O的直径,∴∠ ADB=90°.又∵ AB=AC∴ DC=BD(2)连结半径 OD;∵ OA=OB, CD=BD,∴ OD∥AC.∴∠ 0DE=∠CED.又∵ DE⊥ AC,∴∠ CED=90°.∴∠ ODE=90°,即 OD⊥DE.∴ DE是⊙ O的切线.11、( 1)证明:连结 CE,如下图:∵AC为⊙ O的直径,∴∠ AEC=90°.∴∠ BEC=90°.∵点F 为 BC的中点,∴ EF=BF=CF.∴∠ FEC=∠FCE.∵OE=OC,∴∠ OEC=∠OCE.∵∠ FCE+∠ OCE=∠ ACB=90°,∴∠ FEC+∠OEC=∠OEF=90°.∴ EF是⊙ O的切线.( 2)解:∵ OA=OE,∠EAC=60°,∴△ AOE是等边三角形.∴∠ AOE=60°.∴∠COD=∠AOE=60°.∵⊙ O的半径为 2,∴ OA=OC=2在 Rt △OCD中,∵∠ OCD=90°,∠ COD=60°,∴∠ ODC=30°.∴ OD=2OC=4,∴ CD=.在Rt△ ACD中,∵∠ ACD=90°,AC=4,CD=.∴AD==.12、1)AB是⊙ O的直径,得∠ ADB=90°,进而得出∠ BAD=∠DBC,即∠ ABC=90°,即可证明BC是⊙ O的切线;( 2)可证明△ ABC∽△ BDC,则=,即可得出BC=;13、解:( 1)∵∠ ABC与∠ D 都是弧 AC所对的圆周角,∴∠ ABC=∠D=60°;( 2)∵ AB是⊙ O的直径,∴∠ ACB=90°.∴∠ BAC=30°,∴∠ BAE=∠BAC+∠EAC=30°+60°=90°,即 BA⊥AE,∴ AE是⊙ O的切线;( 3)如图,连结 OC,∵∠ ABC=60°,∴∠ AOC=120°,∴劣弧 AC的长为.14、( 1)证明:∵ ED=EC,∴∠ EDC=∠ C,∵∠ EDC=∠B,∴∠ B=∠C,∴ AB=AC;(2)解:连结 AE,∵ AB为直径,∴ AE⊥BC,由( 1)知 AB=AC,∴ BE=CE= BC=,九年级中考数学《圆证明题》专题复习试卷及分析九年级中考数学《圆证明题》专题复习试卷及分析∵△ CDE∽△ CBA,∴,∴ CE?CB=CD?CA,AC=AB=4,∴?2 =4CD,∴ CD= .15、( 1)证明:连结 OD、 OC,如图,∵ D 是弧 BE的中点,∴ OD⊥BE,∴∠ D+∠3=90°,∵∠ 3=∠ 2,∴∠ D+∠2=90°,∵ AF=AC,OD=OC,∴∠ 1=∠2,∠ D=∠ 4,∴∠ 1+∠ 4=90°,∴ OC⊥AC,∴ AC是⊙ O的切线;( 2)解:设⊙ O的半径为 r ,则 OF=OE﹣ EF=r﹣5,22222 2在 Rt△ ODF中,∵ OD+OF=DF,∴ r +( r ﹣ 5) =(),整理得 r 2﹣5r ﹣ 6=0,解得 r 1 =6,r 2=﹣1,∴,⊙ O的半径为 6.10。

中考数学专题复习《圆的证明与计算》检测题(含答案)

中考数学专题复习《圆的证明与计算》检测题(含答案)

专题二 圆的证明与计算类型一 圆基本性质的证明与计算1.如图,⊙O 的半径为5,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. (1)求证:P A ·PB =PD ·PC ;(2)若P A =454,AB =194,PD =DC +2,求点O 到PC 的距离.第1题图2. 如图,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是AB ︵的中点,连接P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AC =3AP ; (2)如图②,若sin ∠BPC =2425,求tan ∠P AB 的值.第2题图3. 已知⊙O 中弦AB ⊥弦CD 于E ,tan ∠ACD =32. (1)如图①,若AB 为⊙O 的直径,BE =8,求AC 的长;(2)如图②,若AB 不为⊙O 的直径,BE =4,F 为BC ︵上一点,BF ︵=BD ︵,且CF =7,求AC 的长.第3题图4.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交CA 的延长线于点E ,连接AD 、DE .(1)求证:D 是BC 的中点;(2)若 DE =3,BD -AD =2,求⊙O 的半径; (3)在(2)的条件下,求弦AE 的长.第4题图5.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点, ∠APC =∠CPB =60°.(1)判断△ABC 的形状:________;(2)试探究线段P A ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?求出最大面积.第5题图 备用图类型二与切线有关的证明与计算(一、与三角函数结合1.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD 交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sin C=35时,求⊙O的半径.第1题图2.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin ∠P =35,CF =5,求BE 的长.第2题图3. 如图①,在⊙O 中,直径AB ⊥CD 于点E ,点P 在BA 的延长线上,且满足∠PDA =∠ADC .(1)判断直线PD 与⊙O 的位置关系,并说明理由;(2)延长DO 交⊙O 于M (如图②),当M 恰为BC ︵的中点时,试求DE BE 的值;(3)若P A =2,tan ∠PDA =12,求⊙O 的半径.第3题图二、与相似三角形结合1.如图,在Rt △ABC 中,∠ACB =90°,E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE . (1)求证:△ABC ∽△CBD ; (2)求证:直线DE 是⊙O 的切线.第1题图2. 如图,⊙O 的圆心在Rt △ABC 的直角边AC 上,⊙O 经过C 、D 两点,与斜边AB 交于点E ,连接BO 、ED ,有BO ∥ED ,作弦EF ⊥AC 于G ,连接DF .(1)求证:CO ·CD =DE ·BO ;(2)若⊙O 的半径为5,sin ∠DFE =35,求EF 的长.第2题图3. 如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为5,sin ∠ADE =45,求BF 的长.第3题图4.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形;(2)若AC=6,AB=10,连接AD,求⊙O的半径和AD的长.第4题图5.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD =DC,延长CB交⊙O于点E.(1)图①的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图②,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)第5题图6.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,OF延长线交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH·EA;(3)若⊙O 的半径为5,sin A =35,求BH 的长.第6题图7.如图①,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD =2 3.过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC =60°,DE =7,求图中阴影部分的面积;(3)若AB AC =43,DF +BF =8,如图②,求BF 的长.第7题图三、与全等三角形结合1.如图,已知PC 平分∠MPN ,点O 是PC 上任意一点,PM 与⊙O 相切于点E ,交PC 于A 、B 两点. (1)求证:PN 与⊙O 相切;(2)如果∠MPC =30°,PE =23,求劣弧BE ︵的长.第1题图2.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M是⊙O上一点,并且∠BMC =60°.(1)求证:AB是⊙O的切线;(2)若E、F分别是边AB、AC上的两个动点,且∠EDF=120°,⊙O 的半径为2.试问BE+CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.第2题图3. 已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接AE.(1)求证:AE与⊙O相切;(2)连接BD,若ED∶DO=3∶1,OA=9,求AE的长和tan B的值.第3题图4. 如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O 交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.第4题图5. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠ACB 的平分线CD 交⊙O 于点D ,过点D 作⊙O 的切线PD ,交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F . (1)求证:PD ∥AB ; (2)求证:DE =BF ;(3)若AC =6,tan ∠CAB =43,求线段PC 的长.第5题图6.如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =163,AC =8,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长.第6题图7. 如图①,AB是⊙O的直径,OC⊥AB,弦CD与半径OB相交于点F,连接BD,过圆心O作OG∥BD,过点A作⊙O的切线,与OG 相交于点G,连接GD,并延长与AB的延长线交于点E.(1)求证:GD=GA;(2)求证:△DEF是等腰三角形;(3)如图②,连接BC,过点B作BH⊥GE,垂足为点H,若BH=9,⊙O的直径是25,求△CBF的周长.第7题图专题二圆的证明与计算类型一圆基本性质的证明与计算1. (1)证明:如解图,连接AD,BC,∵四边形ABCD内接于⊙O,∴∠P AD=∠PCB,∠PDA=∠PBC,∴△P AD ∽△PCB , ∴P A PD =PC PB , ∴P A ·PB =PD ·PC ;(2)解:如解图,连接OD ,过O 点作OE ⊥DC 于点E , ∵P A =454,AB =194,PD =DC +2,∴PB =P A +AB =16,PC =PD +DC =2DC +2, ∵P A ·PB =PD ·PC ,∴454×16=(DC +2)(2DC +2), 解得DC =8或DC =-11(舍去), ∴DE =12DC =4, ∵OD =5,∴在Rt △ODE 中,OE =OD 2-DE 2=3, 即点O 到PC 的距离为3.2. (1)证明:∵∠BAC 与∠BPC 是同弧所对的圆周角, ∴∠BAC =∠BPC =60°, 又∵AB =AC ,∴△ABC 为等边三角形, ∴∠ACB =60°, ∵点P 是AB ︵的中点, ∴P A ︵=PB ︵,∴∠ACP =∠BCP =12∠ACB =30°,而∠APC =∠ABC =60°, ∴△APC 为直角三角形, ∴tan ∠APC =AC AP , ∴AC =AP tan60°=3AP ;(2)解:连接AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG ⊥AC 于点G ,连接OC ,BO ,如解图,∵AB =AC , ∴AF ⊥BC , ∴BF =CF , ∵点P 是AB ︵中点, ∴∠ACP =∠PCB , ∴EG =EF .∵∠BPC =∠BAC =12∠BOC =∠FOC , ∴sin ∠FOC =sin ∠BPC =2425, 设FC =24a ,则OC =OA =25a ,∴OF =OC 2-FC 2=7a ,AF =25a +7a =32a , 在Rt △AFC 中,∵AC 2=AF 2+FC 2, ∴AC =(32a )2+(24a )2=40a , ∵∠EAG =∠CAF , ∴△AEG ∽△ACF , ∴EG CF =AE AC ,又∵EG =EF ,AE =AF -EF ,第2题解图∴EG 24a =32a -EG 40a , 解得EG =12a ,在Rt △CEF 中,tan ∠ECF =EF FC =12a 24a =12, ∵∠P AB =∠PCB ,∴tan ∠P AB =tan ∠PCB =tan ∠ECF =12. 3. 解:(1)如解图①,连接BD , ∵直径AB ⊥弦CD 于点E , ∴CE =DE ,∵∠ACD 与∠ABD 是同弧所对的圆周角, ∴∠ACD =∠ABD , ∴tan ∠ABD =tan ∠ACD =32, ∴ED EB =AE CE =32,即ED 8=32, ∴ED =12, ∴CE =ED =12, 又∵AE =32CE =18, ∴AC =AE 2+CE 2=613;(2)连接CB ,过B 作BG ⊥CF 于G ,如解图②, ∵BF ︵=BD ︵, ∴∠BCE =∠BCG , 在△CEB 和△CGB 中第3题解图①⎩⎪⎨⎪⎧∠BCE =∠BCG ∠BEC =∠BGC BC =BC, ∴△CEB ≌△CGB (AAS), ∴BE =BG =4,∵四边形ACFB 内接于⊙O , ∴∠A +∠CFB =180°, 又∵∠CFB +∠BFG =180°, ∴∠BFG =∠A , ∵∠FGB =∠AEC =90°, ∴△BFG ∽△CAE , ∴FG BG =AE CE =32, ∴FG =32BG =6, ∴CE =CG =13, ∴AE =32CE =392,∴AC =AE 2+CE 2=13213. 4. (1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°, 即AD ⊥BC , ∵AB =AC ,∴等腰△ABC ,AD 为BC 边上的垂线, ∴BD =DC , ∴D 是BC 的中点; (2)解:∵AB =AC ,∴∠ABC =∠C ,∵∠ABC 和∠AED 是同弧所对的圆周角, ∴∠ABC =∠AED , ∴∠AED =∠C , ∴CD =DE =3, ∴BD =CD =3, ∵BD -AD =2, ∴AD =1,在Rt △ABD 中,由勾股定理得AB 2=BD 2+AD 2=32+12=10, ∴AB =10,∴⊙O 的半径=12AB =102; (3)解:如解图,连接BE , ∵AB =10, ∴AC =10,∵∠ADC =∠BEA =90°,∠C =∠C , ∴△CDA ∽△CEB , ∴AC BC =CD CE ,由(2)知BC =2BD =6,CD =3, ∴106=3CE , ∴CE =9510,∴AE =CE -AC =9510-10=4510. 5. 解:(1)等边三角形.第4题解图【解法提示】∵∠APC =∠CPB =60°,又∵∠BAC 和∠CPB 是同弧所对的圆周角,∠ABC 和∠APC 是同弧所对的圆周角,∴∠BAC =∠CPB =60°,∠ABC =∠APC =60°, ∴∠BAC =∠ABC =60°, ∴AC =BC ,又∵有一个角是60°的等腰三角形是等边三角形, ∴△ABC 是等边三角形. (2)P A +PB =PC .证明如下:如解图①,在PC 上截取PD =P A ,连接AD , ∵∠APC =60°, ∴△P AD 是等边三角形, ∴P A =AD =PD ,∠P AD =60°, 又∵∠BAC =60°, ∴∠P AB =∠DAC , 在△P AB 和△DAC 中, ∵⎩⎪⎨⎪⎧AP =AD ∠P AB =∠DAC ,AB =AC ∴△P AB ≌△DAC (SAS), ∴PB =DC , ∵PD +DC =PC , ∴P A +PB =PC ,(3)当点P 为AB ︵的中点时,四边形APBC 的面积最大. 理由如下:如解图②,过点P 作PE ⊥AB ,垂足为E ,第5题解图①第5题解图②过点C 作CF ⊥AB ,垂足为F , ∵S △P AB =12AB ·PE ,S △ABC =12AB ·CF , ∴S 四边形APBC =12AB ·(PE +CF ).当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 的直径, 此时四边形APBC 的面积最大, 又∵⊙O 的半径为1,∴其内接正三角形的边长AB = 3 , ∴四边形APBC 的最大面积为12×2×3= 3 . 类型二 与切线有关的证明与计算 一、与三角函数结合 针对演练1. (1)证明:连接OE ,如解图, ∵AB =BC 且D 是AC 中点, ∴BD ⊥AC , ∵BE 平分∠ABD , ∴∠ABE =∠DBE , ∵OB =OE , ∴∠OBE =∠OEB , ∴∠OEB =∠DBE , ∴OE ∥BD ,第1题解图∵BD ⊥AC , ∴OE ⊥AC , ∵OE 为⊙O 半径, ∴AC 与⊙O 相切;(2)解:∵BD =6,sin C =35,BD ⊥AC , ∴BC =BDsin C =10, ∴AB =BC =10.设⊙O 的半径为r ,则AO =10-r , ∵AB =BC , ∴∠C =∠A , ∴sin A =sin C =35, ∵AC 与⊙O 相切于点E , ∴OE ⊥AC ,∴sin A =OE OA =r 10-r =35,∴r =154, 即⊙O 的半径是154.2. (1)证明:连接OC ,如解图, ∵PC 切⊙O 于点C , ∴OC ⊥PC , ∴∠PCO =90°, ∴∠PCA +∠OCA =90°, ∵AB 为⊙O 的直径,第2题解图∴∠ACB =90°, ∴∠ABC +∠OAC =90°, ∵OC =OA , ∴∠OCA =∠OAC , ∴∠PCA =∠ABC ; (2)解:∵AE ∥PC , ∴∠PCA =∠CAF , ∵AB ⊥CG , ∴AC ︵=AG ︵, ∴∠ACF =∠ABC , ∵∠PCA =∠ABC , ∴∠ACF =∠CAF , ∴CF =AF , ∵CF =5, ∴AF =5, ∵AE ∥PC , ∴∠F AD =∠P , ∵sin ∠P =35, ∴sin ∠F AD =35,在Rt △AFD 中,AF =5,sin ∠F AD =35, ∴FD =3,AD =4, ∴CD =CF +FD =8, 在Rt △OCD 中,设OC =r , ∴r 2=(r -4)2+82,∴r =10, ∴AB =2r =20, ∵AB 为⊙O 的直径, ∴∠AEB =90°,在Rt △ABE 中,sin ∠EAD =35, ∴BE AB =35, ∵AB =20, ∴BE =12.3. 解:(1)直线PD 与⊙O 相切, 理由如下:如解图①,连接DO ,CO , ∵∠PDA =∠ADC , ∴∠PDC =2∠ADC , ∵∠AOC =2∠ADC , ∴∠PDC =∠AOC , ∵直径AB ⊥CD 于点E , ∴∠AOD =∠AOC , ∴∠PDC =∠AOD , ∵∠AOD +∠ODE =90°, ∴∠PDC +∠ODE =90°, ∴OD ⊥PD , ∵OD 是⊙O 的半径, ∴直线PD 与⊙O 相切; (2)如解图②,连接BD , ∵M 恰为BC ︵的中点,第3题解图①∴∠CDM =∠BDM , ∵OD =OB , ∴∠BDM =∠DBA , ∴∠CDM =∠DBA , ∵直线PD 与⊙O 相切, ∴∠PDA +∠ADO =90°, 又∵AB 是⊙O 的直径,∴∠ADB =90°,即∠ADO +∠BDM =90°, ∴∠PDA =∠BDM , ∴∠PDA =∠DBA =∠CDM , 又∵∠PDA =∠ADC , ∴∠PDM =3∠CDM =90°, ∴∠CDM =30°, ∴∠DBA =30°, ∴DE BE =tan30°=33; (3)如解图③,∵tan ∠PDA =12,∠PDA =∠ADC , ∴AE DE =12,即DE =2AE ,在Rt △DEO 中,设⊙O 的半径为r , DE 2+EO 2=DO 2, ∴(2AE )2+(r -AE )2=r 2, 解得r =52AE ,在Rt △PDE 中,DE 2+PE 2=PD 2,第3题解图②第3题解图③∴(2AE )2+(2+AE )2=PD 2, ∵直线PD 与⊙O 相切,连接BD , 由(2)知∠PDA =∠DBA ,∠P =∠P , ∴△P AD ∽△PDB , ∴PD PB =P A PD ,∴PD 2=P A ·PB ,即PD 2=2×(2+2r ), ∴(2AE )2+(2+AE )2=2×(2+2r ), 化简得5AE 2+4AE =4r , ∵r =52AE , 解得r =3. 即⊙O 的半径为3. 二、与相似三角形结合 针对演练1. 证明:(1)∵AC 为⊙O 的直径, ∴∠ADC =90°, ∴∠CDB =90°, 又∵∠ACB =90°, ∴∠ACB =∠CDB , 又∵∠B =∠B , ∴△ABC ∽△CBD ; (2)连接DO ,如解图,∵∠BDC =90°,E 为BC 的中点, ∴DE =CE =BE , ∴∠EDC =∠ECD ,第1题解图又∵OD =OC , ∴∠ODC =∠OCD ,而∠OCD +∠DCE =∠ACB =90°, ∴∠EDC +∠ODC =90°,即∠EDO =90°, ∴DE ⊥OD , ∵OD 为⊙O 的半径, ∴DE 与⊙O 相切.2. (1)证明:连接CE ,如解图, ∵CD 为⊙O 的直径, ∴∠CED =90°, ∵∠BCA =90°, ∴∠CED =∠BCO , ∵BO ∥DE , ∴∠BOC =∠CDE , ∴△CBO ∽△ECD , ∴CO DE =BO CD , ∴CO ·CD =DE ·BO ;(2)解:∵∠DFE =∠ECO ,CD =2·OC =10,∴在Rt △CDE 中,ED =CD ·sin ∠ECO =CD ·sin ∠DFE = 10×35=6,∴CE =CD 2-ED 2=102-62=8, 在Rt △CEG 中,EG CE =sin ∠ECG =35, ∴EG =35×8=245,第2题解图根据垂径定理得:EF =2EG =485. 3. (1)证明:如解图,连接OD , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∵AB =AC ,∴AD 垂直平分BC ,即DC =DB , ∴OD 为△BAC 的中位线, ∴OD ∥AC . 而DE ⊥AC , ∴OD ⊥DE , ∵OD 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)解:∵∠DAC =∠DAB ,且∠AED =∠ADB =90°, ∴∠ADE =∠ABD ,在Rt △ADB 中,sin ∠ADE =sin ∠ABD =AD AB =45,而AB =10, ∴AD =8,在Rt △ADE 中,sin ∠ADE =AE AD =45, ∴AE =325, ∵OD ∥AE , ∴△FDO ∽△FEA ,∴OD AE =FO F A ,即5325=BF +5BF +10,第3题解图∴BF =907.4. (1)证明:如解图①,连接OD 、OE 、ED . ∵BC 与⊙O 相切于点D , ∴OD ⊥BC ,∴∠ODB =90°=∠C , ∴OD ∥AC , ∵∠B =30°, ∴∠A =60°, ∵OA =OE ,∴△AOE 是等边三角形, ∴AE =AO =OD ,∴四边形AODE 是平行四边行, ∵OA =OD ,∴平行四边形AODE 是菱形; (2)解:设⊙O 的半径为r . ∵OD ∥AC , ∴△OBD ∽△ABC ,∴OD AC =OBAB ,即10r =6(10-r ). 解得r =154, ∴⊙O 的半径为154.如解图②,连接OD 、DF 、AD . ∵OD ∥AC , ∴∠DAC =∠ADO ,第4题解图①∵OA =OD , ∴∠ADO =∠DAO , ∴∠DAC =∠DAO , ∵AF 是⊙O 的直径, ∴∠ADF =90°=∠C , ∴△ADC ∽△AFD , ∴AD AC =AF AD , ∴AD 2=AC ·AF ,∵AC =6,AF =154×2=152, ∴AD 2=152×6=45,∴AD =45=3 5.(9分) 5. 解:(1)存在,AE =CE . 理由如下:如解图①,连接AE ,ED , ∵AC 是△ABC 的斜边, ∴∠ABC =90°, ∴AE 为⊙O 的直径, ∴∠ADE =90°, 又∵D 是AC 的中点, ∴ED 为AC 的中垂线, ∴AE =CE ;(2)①如解图②,∵EF 是⊙O 的切线, ∴∠AEF =90°.第5题解图①由(1)可知∠ADE=90°,∴∠AED+∠EAD=90°,∵∠AED+∠DEF=90°,∴∠EAD=∠DEF.又∵∠ADE=∠EDF=90°∴△AED∽△EFD,∴ADED=EDFD,∴ED2=AD·FD.又∵AD=DC=CF,∴ED2=2AD·AD=2AD2,在Rt△AED中,∵AE2=AD2+ED2=3AD2,由(1)知∠AED=∠CED,又∵∠CED=∠CAB,∴∠AED=∠CAB,∴sin∠CAB=sin∠AED=ADAE=13=33.②sin∠CAB=a+2 a+2.【解法提示】由(2)中的①知ED2=AD·FD,∵CF=aCD(a>0),∴CF=aCD=aAD,∴ED2=AD·DF=AD(CD+CF)=AD(AD+aAD)=(a+1)AD2,在Rt△AED中,AE2=AD2+ED2=(a+2)AD2,∴sin ∠CAB =sin ∠AED =ADAE =1a +2=a +2a +2. 6. (1)证明:∵∠ODB =∠AEC ,∠AEC =∠ABC , ∴∠ODB =∠ABC , ∵OF ⊥BC , ∴∠BFD =90°,∴∠ODB +∠DBF =90°, ∴∠ABC +∠DBF =90°, 即∠OBD =90°, ∴BD ⊥OB , ∵OB 为⊙O 的半径, ∴BD 是⊙O 的切线;(2)证明:连接AC ,如解图①所示: ∵OF ⊥BC , ∴BE ︵=CE ︵, ∴∠ECH =∠CAE , ∵∠HEC =∠CEA , ∴△CEH ∽△AEC , ∴CE EH =EA CE , ∴CE 2=EH ·EA ;(3)解:连接BE ,如解图②所示: ∵AB 是⊙O 的直径, ∴∠AEB =90°,∵⊙O 的半径为5,sin ∠BAE =35,第6题解图①第6题解图②∴AB =10,BE =AB ·sin ∠BAE =10×35=6, 在Rt △AEB 中,EA =AB 2-BE 2=102-62=8, ∵BE ︵=CE ︵, ∴BE =CE =6, ∵CE 2=EH ·EA , ∴EH =CE 2EA =628=92,在Rt △BEH 中,BH =BE 2+EH 2=62+(92)2=152.7. (1)证明:连接OD ,如解图①, ∵AD 平分∠BAC 交⊙O 于D , ∴∠BAD =∠CAD , ∴BD ︵=CD ︵, ∴OD ⊥BC , ∵BC ∥DF , ∴OD ⊥DF , ∴DF 为⊙O 的切线;(2)解:连接OB ,连接OD 交BC 于P ,作BH ⊥DF 于H ,如解图①,∵∠BAC =60°,AD 平分∠BAC , ∴∠BAD =30°,∴∠BOD =2∠BAD =60°, 又∵OB =OD ,∴△OBD 为等边三角形, ∴∠ODB =60°,OB =BD =23,第7题解图①∴∠BDF =30°, ∵BC ∥DF , ∴∠DBP =30°,在Rt △DBP 中,PD =12BD =3,PB =3PD =3, 在Rt △DEP 中, ∵PD =3,DE =7,∴PE =(7)2-(3)2=2, ∵OP ⊥BC , ∴BP =CP =3,∴CE =CP -PE =3-2=1, 易证得△BDE ∽△ACE , ∴BE AE =DE CE ,即5AE =71, ∴AE =577. ∵BE ∥DF , ∴△ABE ∽△AFD ,∴BE DF =AE AD ,即5DF =5771277,解得DF =12,在Rt △BDH 中,BH =12BD =3, ∴S 阴影=S △BDF -S 弓形BD =S △BDF -(S 扇形BOD -S △BOD )=12·12·3-60·π·(23)2360+34·(23)2=93-2π;(7分)(3)解:连接CD ,如解图②,由AB AC =43可设AB =4x ,AC =3x ,BF =y , ∵BD ︵=CD ︵, ∴CD =BD =23, ∵DF ∥BC ,∴∠F =∠ABC =∠ADC , ∴∠FDB =∠DBC =∠DAC , ∴△BFD ∽△CDA , ∴BD AC =BF CD ,即233x =y 23,∴xy =4,∵∠FDB =∠DBC =∠DAC =∠F AD , 而∠DFB =∠AFD , ∴△FDB ∽△F AD , ∴DF AF =BF DF , ∵DF +BF =8, ∴DF =8-BF =8-y , ∴8-y y +4x =y 8-y , 整理得:16-4y =xy , ∴16-4y =4,解得y =3, 即BF 的长为3.(10分) 三、与全等三角形结合第7题解图②针对演练1. (1)证明:连接OE ,过点O 作OF ⊥PN ,如解图所示, ∵PM 与⊙O 相切, ∴OE ⊥PM ,∴∠OEP =∠OFP =90°, ∵PC 平分∠MPN , ∴∠EPO =∠FPO , 在△PEO 和△PFO 中, ⎩⎪⎨⎪⎧∠EPO =∠FPO ∠OEP =∠OFP OP =OP, ∴△PEO ≌△PFO (AAS), ∴OF =OE ,∴OF 为圆O 的半径且OF ⊥PN, 则PN 与⊙O 相切;(2)解:在Rt △EPO 中,∠MPC =30°,PE =23, ∴∠EOP =60°,OE =PE ·tan30°=2, ∴∠EOB =120°,则劣弧BE ︵的长为120π×2180=4π3.2. (1)证明:如解图①,连接BO 并延长交⊙O 于点N ,连接CN , ∵∠BMC =60°, ∴∠BNC =60°, ∵∠BNC +∠NBC =90°, ∴∠NBC =30°,又∵△ABC 为等边三角形,第1题解图∴∠BAC =∠ABC =∠ACB =60°, ∴∠ABN =30°+60°=90°, ∴AB ⊥BO ,即AB 为⊙O 的切线.(2)解:BE +CF =3,是定值. 理由如下:如解图②,连接D 与AC 的中点P , ∵D 为BC 中点, ∴AD ⊥BC , ∴PD =PC =12AC , 又∵∠ACB =60°,∴PD =PC =CD =BD =12AC , ∴∠DPF =∠PDC =60°, ∴∠PDF +∠FDC =60°, 又∵∠EDF =120°, ∴∠BDE +∠FDC =60°, ∴∠PDF =∠BDE , 在△BDE 和△PDF 中, ⎩⎪⎨⎪⎧∠EBD =∠DPF BD =PD∠BDE =∠PDF, ∴△BDE ≌△PDF (ASA), ∴BE =PF ,∴BE +CF =PF +CF =CP =BD , ∵OB ⊥AB ,∠ABC =60°,第2题解图②∴∠OBC =30°, 又∵OB =2,∴BD =OB ·cos30°=2×32=3, 即BE +CF = 3.3. (1)证明:连接OC ,如解图①, ∵OD ⊥AC ,OC =OA , ∴∠AOD =∠COD . 在△AOE 和△COE 中, ⎩⎪⎨⎪⎧OA =OC ∠AOE =∠COE OE =OE, ∴△AOE ≌△COE (SAS), ∴∠EAO =∠ECO . 又∵EC 是⊙O 的切线, ∴∠ECO =90°, ∴∠EAO =90°. ∴AE 与⊙O 相切;(2)解:设DO =t ,则DE =3t ,EO =4t , 在△EAO 和△ADO 中,⎩⎪⎨⎪⎧∠EOA =∠AOD ∠EAO =∠ADO, ∴△EAO ∽△ADO , ∴AO DO =EO AO ,即9t =4t 9, ∴t =92,即EO =18.第3题解图①∴AE =EO 2-AO 2=182-92=93;延长BD 交AE 于点F ,过O 作OG ∥AE 交BD 于点G , 如解图②, ∵OG ∥AE , ∴∠FED =∠GOD 又∵∠EDF =∠ODG , ∴△EFD ∽△OGD , ∴EF OG =ED OD =31,即EF =3GO . 又∵O 是AB 的中点, ∴AF =2GO ,∴AE =AF +FE =5GO , ∴5GO =93, ∴GO =935, ∴AF =1835, ∴tan B =AF AB =35.4. (1)证明:如解图,连接OB , ∵PB 是⊙O 的切线, ∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D , ∴AD =BD ,∠POA =∠POB , 又∵PO =PO ,∴△P AO ≌△PBO (SAS), ∴∠P AO =∠PBO =90°,第3题解图②第4题解图∴OA ⊥P A ,∴直线P A 为⊙O 的切线;(2)解:线段EF 、OD 、OP 之间的等量关系为EF 2=4OD ·OP . 证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴ OD OA =OA OP ,即OA 2=OD ·OP ,又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3,设AD =x ,∵tan ∠F =12,∴FD =2x ,OA =OF =FD -OD =2x -3,在Rt △AOD 中,由勾股定理,得(2x -3)2=x 2+32,解之得,x 1=4,x 2=0(不合题意,舍去),∴AD =4,OA =2x -3=5,∵AC 是⊙O 直径,∴∠ABC =90°,又∵AC =2OA =10,BC =6,∴ cos ∠ACB =610=35.∵OA 2=OD ·OP ,∴3(PE +5)=25,∴PE =103.5. (1)证明:连接OD ,如解图,∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠ACB 的平分线交⊙O 于点D ,∴∠ACD =∠BCD =45°,∴∠DAB =∠ABD =45°,∴△DAB 为等腰直角三角形,∴DO ⊥AB ,∵PD 为⊙O 的切线,∴OD ⊥PD ,∴PD ∥AB ;(2)证明:∵AE ⊥CD 于点E ,BF ⊥CD 于点F ,∴AE ∥BF ,∴∠FBO =∠EAO ,∵△DAB 为等腰直角三角形,∴∠EDA +∠FDB =90°,∵∠FBD +∠FDB =90°,∴∠FBD =∠EDA ,在△FBD 和△EDA 中,⎩⎪⎨⎪⎧∠BFD =∠DEA ∠FBD =∠EDA BD =DA, ∴△FBD ≌△EDA (AAS),∴DE =BF ;第5题解图(3)解:在Rt △ACB 中,∵AC =6,tan ∠CAB =43,∴BC =6×43=8,∴AB =AC 2+BC 2=62+82=10,∵△DAB 为等腰直角三角形,∴AD =AB 2=52, ∵AE ⊥CD ,∴△ACE 为等腰直角三角形,∴AE =CE =AC 2=62=32, 在Rt △AED 中,DE =AD 2-AE 2=(52)2-(32)2=42,∴CD =CE +DE =32+42=72,∵AB ∥PD ,∴∠PDA =∠DAB =45°,∴∠PDA =∠PCD ,又∵∠DP A =∠CPD ,∴△PDA ∽△PCD ,∴PD PC =P A PD =AD DC =5272=57, ∴P A =57PD ,PC =75PD ,又∵PC =P A +AC ,∴57PD +6=75PD ,解得PD =354,∴PC =57PD +6=57×354+6=254+6=494.6. (1)证明:如解图①,连接OC ,∵P A 切⊙O 于点A ,∴∠P AO =90°,∵BC ∥OP ,∴∠AOP =∠OBC ,∠COP =∠OCB ,∵OC =OB ,∴∠OBC =∠OCB ,∴∠AOP =∠COP ,在△P AO 和△PCO 中,⎩⎪⎨⎪⎧OA =OC ∠AOP =∠COP OP =OP, ∴△P AO ≌△PCO (SAS),∴∠PCO =∠P AO =90°,∴OC ⊥PC ,∵OC 为⊙O 的半径,∴PC 是⊙O 的切线;(2)解:由(1)得P A ,PC 都为圆的切线,∴P A =PC ,OP 平分∠APC ,∠ADO =∠P AO =90°, ∴∠P AD +∠DAO =∠DAO +∠AOD ,又∵∠ADP =∠ADO ,∴∠P AD =∠AOD ,∴△ADP ∽△ODA ,∴AD PD =DO AD ,第6题解图①∴AD 2=PD ·DO ,∵AC =8,PD =163, ∴AD =12AC =4,OD =3,在Rt △ADO 中,AO =AD 2+OD 2=5,由题意知OD 为△ABC 的中位线,∴BC =6,AB =BC 2+AC 2=10.∴S 阴影=12S ⊙O -S △ABC =12·π·52-12×6×8=25π2-24;(3)解:如解图②,连接AE 、BE ,作BM ⊥CE 于点M , ∴∠CMB =∠EMB =∠AEB =90°,∵点E 是AB ︵的中点,∴AE =BE ,∠EAB =∠EBA =45°,∴∠ECB =∠CBM =∠ABE =45°,CM =MB =BC ·sin45°=32,BE =AB ·cos45°=52,∴EM =BE 2-BM 2=42,则CE =CM +EM =7 2.7. (1)证明:连接OD ,如解图①所示,∵OB =OD ,∴∠ODB =∠OBD .∵OG ∥BD ,∴∠AOG =∠OBD ,∠GOD =∠ODB ,∴∠DOG =∠AOG ,在△DOG 和△AOG 中,第6题解图②第7题解图①⎩⎪⎨⎪⎧OD =OA ∠DOG =∠AOG OG =OG, ∴△DOG ≌△AOG (SAS),∴GD =GA ;(2)证明:∵AG 切⊙O 于点A ,∴AG ⊥OA ,∴∠OAG =90°,∵△DOG ≌△AOG ,∴∠OAG =∠ODG =90°,∴∠ODE =180°-∠ODG =90°,∴∠ODC +∠FDE =90°,∵OC ⊥AB ,∴∠COB =90°,∴∠OCD +∠OFC =90°,∵OC =OD ,∴∠ODC =∠OCD ,∴∠FDE =∠OFC ,∵∠OFC =∠EFD ,∴∠EFD =∠EDF ,∴EF =ED ,∴△DEF 是等腰三角形;(3)解:过点B 作BK ⊥OD 于点K ,如解图②所示: 则∠OKB =∠BKD =∠ODE =90°,∴BK ∥DE ,∴∠OBK =∠E ,∵BH ⊥GE ,∴∠BHD =∠BHE =90°, ∴四边形KDHB 为矩形, ∴KD =BH =9,∴OK =OD -KD =72,在Rt △OKB 中,∵OK 2+KB 2=OB 2,OB =252, ∴KB =12,∴tan ∠E =tan ∠OBK =OK KB =724,sin ∠E =sin ∠OBK =OK OB =725,∵tan ∠E =OD DE =724,∴DE =3007,∴EF =3007,∵sin ∠E =BH BE =725,∴BE =2257,∴BF =EF -BE =757,∴OF =OB -BF =2514,在Rt △COF 中,∠COB =90°, ∴OC 2+OF 2=FC 2,∴FC =125214,在Rt △COB 中,∵OC 2+OB 2=BC 2,OC =OB =252, ∴BC =2522,∴BC +CF +BF =1502+757, ∴△CBF 的周长=1502+757.。

2023 年九年级数学中考专题训练——圆的计算和证明(附答案)

2023 年九年级数学中考专题训练——圆的计算和证明(附答案)

1.如图,在ABC中,AB AC=,以AB为直径作O,交BC于点D,交AC于点E,过点B作O 的切线交OD的延长线于点F.(1)求证:A BOF∠=∠;(2)若4AB=,1DF=,求AE的长.2.如图,AB是O的直径,点C在O上,ABC∠的平分线与AC相交于点D,与O过点A的切线相交于点E.(1)猜想EAD的形状,并证明你的猜想;(2)若8AB=,6AD=,求BD的长.3.如图所示,Rt△ABC中∠ACB=90°,斜边AB与⊙O相切于D,直线AC过点O并于⊙O相交于E、F两点,BC与DF交于点G,DH⊥AC于H.(1)求证:∠B=2∠F;(2)若HE=4,cos B=35,求DF的长.4.如图,O的直径23AB=点C为O上一点,CF为O的切线,OE AB⊥于点O,分别交AC,CF于D,E两点.(1)求证:ED EC=;(2)若30∠=︒,求图中两处(点C左侧与点C右侧)阴影部分的面积之和.A5.已知PA,PB分别与O相切于点A,B,C为O上一点,连接AC,BC.∠的大小;(1)如图①,若70∠=︒,求ACBAPB∠的大小.(2)如图②,AE为O的直径交BC于点D,若四边形PACB是平行四边形,求EAC6.如图,AB是O的直径,点C在AB的延长线上,BDC A⊥,交AD的延长线于∠=∠,CE AD点E.(1)求证:CD与O相切:(2)若4CE=,2DE=,求AD的长,7.如图,四边形ABCD为平行四边形,边AD是O的直径,O交AB于F点,DE为O的切线交BC于E,且BE BF=,BD和O交于G点.(1)求证:四边形ABCD为菱形.(2)若O半径52r=,5BG=BF长.8.如图,O为ABC的外接圆,AB为直径,ABC∠的角平分线BD交O于点D,过点D作O 的切线DE,交BC的延长线于点E.(1)求证:DE BC⊥;(2)若1CE=,3DE=O的半径.9.如图,AB是O的直径,CA与O相切于点A,且AB AC=.连接OC,过点A作AD OC⊥于点E,交O于点D,连接DB.(1)求证:ACE BAD△△≌;(2)连接BC交O于点F.若6AD=,求BF的长.10.在Rt ABC中,90C∠=︒,以AC为直径的O与AB相交点D、E是BC的中点.(1)判断ED与O的位置关系,并说明理由;(2)若O的半径为3,DEC A∠=∠,求DC的长.11.如图,在ABC中,以ABC的边AB为直径作O,交AC于点D,DE是O的切线,且DE BC⊥,垂足为点E.(1)求证AB BC=;(2)若3DE=,610AC=O的半径.12.如图,⊙O是△ABC的外接圆,O在AC上,过点C作⊙O的切线,与AB延长线交于点D,过点O作OE BC,交⊙O于点E,连接CE交AB于点F.(1)求证:CE平分∠ACB;(2)连接OD,若CF=CD=6,求OD的长.13.如图,△ABC中,AB=AC,以AB为直径⊙O的交BC于点D,过点D作⊙O的切线DE,交BA 延长线于点E,延长CA交⊙O于点F,交DE于点G,连接DF.(1)求证:点E为线段CF垂直平分线上一点;,BE=8,求AF的长.(2)若sin∠E=3514.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点D是AC的中点,连接OD,交AC于点E ,作BF ∥CD ,交DO 的延长线于点F .(1)求证:四边形BCDF 是平行四边形.(2)若AC =8,连接BD ,tan∠DBF =34,求直径AB 的长及四边形ABCD 的周长.15.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,交AC 于点F ,交BC 于点D ,过点D 作⊙O 的切线DE ,交AC 于点E .(1)求证:DE ⊥AC ;(2)若⊙O 的直径为5,25sin B =EF 的长. 16.如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:△CBE ∽△CPB ;(2)当43AB =34CF CP =时,求扇形COB 的面积. 17.如图,AB 为O 的直径,ACB ∠的角平分线交O 于点D ,交AB 于点E ,CAB ∠的角平分线交CD 于点F .(1)求证:ADB 为等腰直角三角形;(2)求证:2DF DE DC =⋅.18.如图,AB 是圆O 的直径,C ,D 是圆上的点(在AB 同侧),过点D 的圆的切线交直线AB 于点E .(1)若2AB =,1BC =,求AC 的长;(2)若四边形ACDE 是平行四边形,证明:BD 平分ABC ∠.19.如图,AB 与O 相切于点B ,BC 为O 的弦,OC OA ⊥,OA 与BC 相交于点P .(1)求证:AP AB =; (2)若4OB =,3AB =,求线段BP 的长.20.如图,ABC ∆为O 的内接三角形,AD BC ⊥,垂足为D ,直径AE 平分BAD ∠,交BC 于点F ,连接BE .(1)求证:AEB AFD ∠=∠;(2)若10AB =,5BF =,求DF 的长;(3)若点G 为AB 的中点,连接DG ,若点O 在DG 上,求:BF FC 的值.参考答案:1.(1)见解析 (2)83AE =【分析】(1)首先根据等边对等角可证得C ODB ∠=∠,再根据平行线的判定与性质,即可证得结论;(2)首先根据圆周角定理及切线的性质,可证得AEB OBF ∠=∠,即可证得ABE OFB △∽△,再根据相似三角形的性质即可求得.(1)证明:AB AC =C ABC ∴∠=∠ OB OD =ODB OBD ∴∠=∠C ODB ∴∠=∠AC OD ∴∥A BOF ∴∠=∠(2)解:如图:连接BEAB 是O 的直径,AB =490AEB ∴∠=︒,122OB OD AB === BF 是O 的切线90OBF ∴∠=︒AEB OBF ∴∠=∠又A BOF ∠=∠ABE OFB ∴△∽△AE AB OB OF∴=又213OF OD DF =+=+=423AE ∴=,解得83AE = 【点评】本题考查了等腰三角形的性质,平行线的判定与性质,圆周角定理,切线的性质,相似三角形的判定与性质,作出辅助线,证得ABE OFB △∽△是解决本题的关键.2.(1)等腰三角形,证明见解析; (2)145.【分析】(1)利用角平分线和∠C =∠BAE =90°,得出∠E =∠4,从而得到AD =AE 可得三角形的形状;(2)先证明△BCD ∽△BAE ,利用相似比得到得出即34AE DC AB BC ==,若设CD =3x ,则BC =4x ,BD =5x ,再利用勾股定理得到(4x )2+(6+3x )2=82,然后解方程求出x 后计算5x 即可.(1)猜想:△EAD 是等腰三角形,证明:∵BE 平分∠ABC ,∴∠1=∠2,∵AB 为直径,∴∠C =90°,∴∠2+∠3=90°,∵AE 为切线,∴AE ⊥AB ,∴∠E +∠1=90°,∴∠E =∠3,而∠4=∠3,∴∠E =∠4,∴AE =AD ,∴△EAD 是等腰三角形;(2)∵∠2=∠1,∴Rt △BCD ∽Rt △BAE ,∴CD :AE =BC :AB , 即34AE DC AB BC ==, 设CD =3x ,BC =4x ,则BD =5x ,在Rt △ABC 中,AC =AD +CD =3x +6,∵(4x )2+(6+3x )2=82,解得x 1=1425,x 2=-1(舍去), ∴BD =5x =145. 【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径;也考查了利用勾股定理和相似比进行几何计算.3.(1)见解析; (2)85【分析】(1)连接OD ,由题意可得:90ODA =∠°,再根据∠ACB =90°,可得B AOD ∠=∠,由圆周角定理可得2AOD F ∠=∠,即可求解;(2)由(1)可得B AOD ∠=∠,则3cos 5OH AOD OD ∠==,设OD OE r ==,求得半径r ,由勾股定理求得DH ,再由勾股定理即可求得DF .(1)解:连接OD ,如下图:∵AB 与⊙O 相切于D ,∴OD AB ⊥,即90ODA =∠°,∴90A AOD ∠+∠=︒,又∵∠ACB =90°,∴A B ∠∠=︒+90,∴B AOD ∠=∠,由圆周角定理可得:2AOD F ∠=∠,∴2B F ∠=∠;(2)解:∵DH ⊥AC∴90DHO ∠=︒,由(1)得B AOD ∠=∠, ∴3cos cos 5OH B AOD OD =∠==, 设OD OE OF r ===,则4OH r =-, 则435r r -=,解得10r =, 则6OH =,16HF OH OF =+= 由勾股定理可得:228DH OD OH -=, 由勾股定理可得:2285DF DH HF +=【点评】此题考查了圆的综合应用,涉及了切线的性质定理,圆周角定理,三角形内角和的性质,解直角三角形,勾股定理,解题的关键是灵活运用相关性质进行求解.4.(1)见解析 3π-【分析】(1)连接OC ,则OC CF ⊥,故90ACE ACO ∠+∠=︒,又90ADO A ∠+∠=︒,且A ACO ∠=∠,可得ACE ADO EDC ∠=∠=∠,故ED EC =; (2)过点C 作CG AB ⊥于G ,结合三角函数的知识求得CG 与CE 的长,从而利用COE BOC COB COH S S S S S =+--△△阴影扇形扇形求得阴影部分的面积之和.(1)证明:连接OC ,CF 是O 的切线,∴OC CF ⊥,∴90ACO ACE ∠+∠=︒,OE AB ⊥,∴90ADO A ∠+∠=︒,OA OC =,∴A ACO ∠=∠,∴ACE ADO ∠=∠, 又ADO CDE ∠=∠,∴ACE CDE ∠=∠,∴ED EC =.(2)解:过点C 作CG AB ⊥于G ,30A ACO ∠=∠=︒,∴260BOC A ∠=∠=︒, ∴33sin 6032CG OC =︒==, 9030COE BOC ∠=︒-∠=︒,90OCE ∠=︒,∴3tan 3031CE OC =︒==. 1133122COE S OC CE =⨯⨯==△, 260(3)3602COB S ππ=⨯⨯=扇形, 230(3)3604COH S ππ=⨯⨯=扇形, 113333222BOC S OB CG =⨯⨯==△ ∴333324COE BOC COB COH S S S S S πππ-=+--=-=△△阴影扇形扇形 【点评】本题属于圆的综合题,涉及到了圆的切线的性质,扇形面积的计算方法,以及三角函数相关知识,解题的关键是学会常用辅助线的作法.5.(1)55°(2)30°【分析】(1)连接OA 、OB ,根据切线的性质可得∠OAP =∠OBP =90°,再根据四边形内角和等于360度求出AOB ∠,再由圆周角定理即可求出结果;(2)连接AB ,EC ,由切线长定理以及平行四边形的性质可证明四边形PACB 是菱形,进而证明△ABC 是等边三角形,进一步可得结论.(1)如图①,连接OA 、OB ,∵P A ,PB 是⊙O 的切线,∴∠OAP =∠OBP =90°,∵∠APB =70°,∴∠AOB =360°-90°-90°-70°=110°∴∠ACB =12∠AOB =11102⨯︒=55°; (2)如图②,连接AB ,EC ,∴,BAE BCE ∠=∠∵PA ,PB 分别与O 相切于点A ,B ,∴,PA PB =∵四边形PACB 是平行四边形,∴四边形PACB 是菱形,∴,AC BC =∵PA 是O 的切线,且AE 是O 的直径,∴,AE PA ⊥∵四边形APBC 是平行四边形,∴PA //BC∴,AE BC ⊥即∠90,ADB ︒=∴∠90,BAD ABD ︒+∠=∵AE 是O 的直径,∴∠90,ACE ︒=即∠90,ACD BCE ︒+∠=∵∠,BAD BCE =∠∴∠,ABD ACB =∠∴,AB AC =∴,AB AC BC ==即△ABC 是等边三角形,∴∠60,ABC BAC ACB ︒=∠=∠=∵,AE BC ⊥ ∴116030.22EAC BAC ︒︒∠=∠=⨯= 【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的判定与性质,平行四边形的性质,菱形的判定与性质等知识,掌握圆的切线垂直于经过切点的半径是解题的关键.6.(1)见解析(2)6【分析】(1) 连接OD ,然后根据圆的性质和已知可以得到90ODC ∠=︒,即可证得CD 与O 相切;(2)由已知可以得到AEC CED ∽,再根据三角形相似的性质和已知条件即可求出AD 的值.(1)证明:连接OD ,∵AB 为O 的直径,∴90ADB ∠=︒,即90ODB ADO ∠+∠=︒,∵OA OD =,∴ADO A ∠=∠,又∵BDC A ∠=∠;∴90ODB BDC ∠+∠=︒,即90ODC ∠=︒∴CD 是O 切线.(2)∵CE AE ⊥,∴90∠=∠=︒E ADB ,∴DB //EC ,∴DCE BDC ∠=∠,∵BDC A ∠=∠,∴A DCE ∠=∠,∵E E ∠=∠,∴AEC CED ∽, ∴CE AE DE CE=, ∴2CE DE AE =⋅,∴162(2)AD =+,∴6AD =.【点评】本题考查圆的综合应用,熟练掌握圆切线的判定方法、三角形相似的判定和性质是解题关键.7.(1)证明过程见解析(2)2【分析】(1)连接DF ,通过证明Rt △DFB ≌Rt △DEB (HL )得到DF =DE ,证明△ADF ≌△CDE (ASA )得到AF =CE ,即可证明四边形ABCD 是菱形;(2)连接AG,根据等腰三角形三线合一的性质得到DG=GB,设BF=x,则AF=5-x,利用勾股定理可得2222-=-,列出方程求解即可得到BF的长.AD AF DB BF(1)证明:连接DF,如图所示∵DE是切线,AD是直径∴∠ADE=90°,∠DF A=90°∵四边形ABCD是平行四边形∴∠DEB=90°,∠CDF=90°∴∠DFB=∠DEB=90°又∵BF=BE,DB=DB∴Rt△DFB≌Rt△DEB(HL)∴DF=DE∵四边形ABCD是平行四边形∴∠A=∠C又∵∠AFD=∠DEC∴△ADF≌△CDE(AAS)∴AF=CE∴AB=CB∴四边形ABCD是菱形(2)解:连接AG,如图所示∵AD是直径∴∠AGD=90°,即AG⊥BD∵四边形ABCD是菱形∴AB=AD∴DG=GB5∴DB5设BF=x,则AF=5-x∵2222AD AF DB BF -=-∴()(2222555x x --=-,解得x =2∴BF 的长为2【点评】本题考查了菱形的判定、平行四边形的性质、直径所对圆周角是直角、全等三角形的判定与性质、勾股定理等知识,正确作出辅助线,掌握这些知识点是解答本题的关键.8.(1)见解析(2)2【分析】(1)根据切线性质得90ODE ∠=︒,再根据圆及角平分线的性质,证得//OD BC ,最后根据平行线的性质,证得结论.(2)连接OD 交AC 于点F ,证明四边形CEDF 是矩形,再设O 的半径r ,在Rt AOF 中运用勾股定理,建立关于r 的方程,求解即可.(1)证明:如图,连接OD ,DE 与O 相切于点D ,DE OD ∴⊥,90ODE ∴∠=︒,OD OB =,ODB OBD ∴∠=∠, BD 平分ABC ∠,OBD DBC , ODB DBC ,//OD BC ∴,18090E ODE ∴∠=︒-∠=︒,DE BC ∴⊥.(2)解:如图,连接OD 交AC 于点F ,AB 是O 的直径,90ACB ∴∠=︒,18090ECF ACB ∴∠=︒-∠=︒,90ECF E EDF ∴∠=∠=∠=︒,∴四边形CEDF 是矩形.90AFO CFD ∴∠=∠=︒,1DF CE ==,FO AC ∴⊥,3AF CF DE ∴===设O 的半径为r ,则OA OD r ==,222OA OF AF =+,1OF r =-,()22213r r ∴=-+, 解得2r =,O ∴的半径为2.【点评】本题考查了与圆有关的综合问题,灵活运用切线性质,勾股定理进行推理求值是解题的关键.9.(1)证明见解析 310【分析】(1)根据切线的性质可得90BAD CAE ∠+∠=︒,根据圆周角定理的推论可得90BAD ABD ∠+∠=︒,即得出CAE ABD ∠=∠.结合题意即可利用“AAS ”证明ACE BAD △△≌;(2)连接AF .由垂径定理可得132AE ED AD ===.再根据全等三角形的性质可得6CE AD ==,3AE ED BD ===,利用勾股定理可求出35AC AB ==.再根据圆周角定理的推论结合等腰三角形“三线合一”的性质即可求出13102BF BC ==.(1)证明:∵CA 与O 相切于点A ,∴90BAC ∠=︒,∴90BAD CAE ∠+∠=︒.∵AB 为直径,∴90BDA ∠=︒,∴90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠.∵AD OC ⊥,∴90AEC ADB ∠=∠=︒.又∵AB AC =,∴()ACE BAD AAS ≌△△;(2)如图,连接AF .∵AD OC ⊥, ∴132AE ED AD ===. ∵ACE BAD △△≌,∴6CE AD ==,3AE ED BD ===∴在Rt AEC 中,22223635AC AE CE AB ++=, ∴2310BC ==∵AB 为直径,∴90AFB ∠=︒.∵AB =AC , ∴13102BF BC ==. 【点评】本题为圆的综合题.考查切线的性质,圆周角定理,三角形全等的判定和性质,等腰直角三角形的性质以及勾股定理.掌握与圆相关的知识点是解题关键.10.(1)相切;理由见解析(2)2π【分析】(1)连接OD,CD,再根据直径所对的圆周角是直角及直角三角形斜边上的中线性质证明OD⊥DE即可;(2)根据DEC A∠=∠证明三角形DEC是等边三角形,即可得到DC的圆心角是120°,再根据弧长公式计算即可.(1)ED与⊙O相切.理由:连接OD,CD.∵AC是直径,∴∠ADC=90°,在Rt△BDC中,E为BC的中点,∴DE=EC,∴∠3=∠2,又∵OD=OC,∴∠1=∠4,∵∠1+∠2=90°,∴∠ODE=∠3+∠4=90°,∴ED与⊙O相切;(2)∵∠A+∠1=90°,∠1+∠2=90°,∴∠A=∠2,∵∠DEC=∠A,∴∠2=∠3=∠DEC=60°,∴∠A=60°,∴∠DOC=2∠A=120°,∴弧DC的长=12032 180ππ⨯=.【点评】本题考查圆的性质及弧长公式,熟记直径所对的圆周角是直角、切线的证明、弧长公式是解题的关键.11.(1)见解析;(2)5【分析】(1)连接OD、BD,根据切线的性质得到OD⊥DE,推出OD∥BC,证得∠ODB=∠CBD,由此推出∠OBD=∠CBD,根据AB为O的直径,得到∠ADB=∠CDB=90°,证得△ABD≌△CBD(ASA),即可得到AB=BC;(2)根据AB=BC,BD⊥AC,求出AD=CD=13102AC=CE=9,证得△CDE∽△CBD,求出CB,即可得到O的半径.(1)证明:连接OD、BD,∵DE是O的切线,∴OD⊥DE,∵DE BC⊥,∴OD∥BC,∴∠ODB=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠OBD=∠CBD,∵AB为O的直径,∴∠ADB=∠CDB=90°,∵BD=BD,∴△ABD≌△CBD(ASA),∴AB=BC;(2)∵AB=BC,BD⊥AC,∴AD=CD=1310 2AC=∵DE=3,∴()222293103 CE CD DE=--,∵∠C=∠C,∠CED=∠CDB=90°,∴△CDE∽△CBD,∴2CD CE CB=⋅,∴(22109310CDCBCE===,∴AB=CB=10,∴O的半径为5.【点评】此题考查了切线的性质定理,圆周角定理,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,熟记各知识点并综合应用是解题的关键.12.(1)见解析(2)37【分析】(1)根据OC=OE,可得∠OCE=∠E,再由OE BC,可得∠E=∠BCE,从而得到∠OCE=∠BCE,即可求证;(2)根据CD=CF,可得∠BCD=∠BCE=∠OCE,再由CD是⊙O的切线,可得∠BCD=30°,再证得∠A=∠BCD=30°,根据直角三角形的性质,即可求解.【解析】(1)证明:∵OC=OE,∴∠OCE=∠E,∵OE BC,∴∠E=∠BCE,∴∠OCE=∠BCE,∴CE平分∠ACB;(2)解:如图,∵CD=CF,∴∠BCD=∠BCE,∵CE平分∠ACB,∴∠BCD=∠BCE=∠OCE,∵CD是⊙O的切线,∴∠ACD=90°,即∠BCD+∠ACB=90°,∴∠BCD=30°,∵AC是⊙O的直径,∴∠ABC=90°,∴∠A+∠ACB=90°,∴∠A=∠BCD=30°,∵CD=6,∴AD=2CD=12,∴2263AC AD CD-=∴33OC=∴2237OD OC CD=+=【点评】本题主要考查了切线的性质,圆周角定理,直角三角形的性质,勾股定理,熟练掌握切线的性质,圆周角定理,直角三角形的性质,勾股定理是解题的关键.13.(1)见解析(2)AF=185.【分析】(1)根据圆周角定理可得AD⊥BC,再由等腰三角形的性质可得BD=CD,进而得出OD是三角形的中位线,由切线的性质可得OD∥FC,证出三角形DFC是等腰三角形即可;(2)在Rt△ODE中,根据锐角三角函数可求出半径OD,进而得出直径AB,在Rt△ABF 中,由锐角三角函数可求出AF.(1)证明:如图,连接OC,AD,∵AB=AC,∴∠ABC=∠ACB,又∵∠ABC=∠F,∴∠F=∠ACB,∴DF=DC,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴FC⊥DE,∵DF=DC,∴DE是FC的垂直平分线,即点E为线段CF垂直平分线上一点;(2)解:连接BF,在Rt△ODE中,设OD=x,则OE=BE-OB=8-x,∵sin∠E=35=ODOE,∴8xx=35,解得x=3,经检验x=3是原方程的根,∴AB=2OD=6,∵AB是⊙O的直径,∴∠AFB=90°,∴DG∥BF,∴∠E=∠ABF,在Rt△ABF中,AB=6,sin∠ABF=sin∠E=35,∴AF =AB •sin ∠ABF =6×35=185. 【点评】本题考查切线的性质,圆周角定理,等腰三角形的判断和性质,直角三角形的边角关系,掌握切线的性质,圆周角定理,等腰三角形的判断和性质,直角三角形的边角关系是正确解答的前提.14.(1)见解析(2)AB =10,周长16+45【分析】(1)根据AB 是⊙O 的直径,得∠C =90°,根据点D 是AC 的中点,得CA ⊥DF ,即有∠AEO =90°,则有BC DF ∥,即可得证;(2)先利用平行及圆周角定理证得∠DBF =∠BAC ,则根据正切值和勾股定理即可求出CB 、AB ,在Rt △AEO 中,利用勾股定理得OE =3,在Rt △AED 中,利用勾股定理,得AD 5则四边形的周长可得.(1)证明:∵AB 是⊙O 的直径,∴∠C =90°,∵点D 是AC 的中点,∴DO 垂直平分AC ,且AD =DC ,∴CA ⊥DF ,AE =EC ,∴∠AEO =90°,∴BC DF ∥,∵BF CD ∥,∴四边形BCDE 是平行四边形;(2)∵BC DF ∥,∴∠DBF =∠CDB ,又∵根据圆周角定理有∠CDB =∠BAC ,∴∠DBF =∠BAC ,即tan ∠BAC =34, ∵AC =8,∴CB =6,则在Rt △ACB 中,利用勾股定理可得AB =10,即AO =5=OD ,∵AE =EC =12AC ,∴AE=EC=4,在Rt△AEO中,利用勾股定理得OE=3,∴DE=OD-OE=5-3=2,在Rt△AED中,利用勾股定理,得AD5CD5∴四边形ABCD的周长=AB+BC+CD+AD5545【点评】本题考查了平行四边的判定与性质、同弧所对的圆周角相等、同弧所对的弦相等、勾股定理以及解直角三角形的知识,利用正切值以及同弧所对的圆周角相等是解答本题的关键.15.(1)见解析(2)1【分析】(1)连接OD,由AB=AC,OB=OD,则∠B=∠ODB=∠C,则OD∥AC,由DE为切线,即可得到结论成立;(2)如图所示,连接BF,AD,先解直角三角形ACD求出AD的长,从而求出CD的长,然后分别解直角三角形BCF,直角三角形DCE,求出BF,DE,进而求出CF,CE,即可得到EF.(1)解:连接OD,如图:∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠ODB=∠C,∴OD∥AC,∵DE是切线,∴OD⊥DE,∴AC⊥DE;(2)解:如图所示,连接BF,AD,∵AB是圆O的直径,∴∠AFB=∠ADB=90°,∴∠BFC=90°,∵DE⊥AC,∴∠DEC=90°∵AB=AC,∴BC=2CD,∠ABD=∠C,∴25 sin sinADABD CAC∠===∴2525 AD AC==∴225CD AC AD-∴5BC=∴sin2DE CD C=⋅=,sin=4BF BC C=⋅,∴221CE CD DE=-=,222CF BC BF=-=,∴EF=CF-CE=1.【点评】本题主要考查的是切线的性质、等腰三角形的性质、平行线的性质与判定,解直角三角形、勾股定理,解题的关键是熟练掌握所学的性质定理,正确的求出边的长度..16.(1)见解析(2)2π【分析】(1)先证明∠CEB=∠CBP=90°,再由∠D+∠P=90°,∠CAB+∠CBE=90°,∠CAB=∠D,推出∠CBE=∠P,即可证明结论;(2)设CF=3k,CP=4k,先证明∠F AC=∠CAB,得到CE=CF=3k,再由相似三角形的性质得到BC2=CE•CP;从而求出sin∠CBE323k∠CBE=60°,即可证明△OBC是等边三角形,得到∠COB=60°,据此求解即可.(1)解:∵CE⊥OB,CD为圆O的直径,∴∠CEB=∠DBC=90°,∴∠CEB=∠CBP=90°,∵PF是切线,∴∠DCP=90°,∴∠D+∠P=90°,∵AB是直径,∴∠ACB=90°∴∠CAB+∠CBE=90°,∵∠CAB=∠D,∴∠CBE=∠P,∴△CBE∽△CPB;(2)解:∵34 CFCP=,∴设CF=3k,CP=4k,∵PF是切线,∴OC⊥PF,∵AF⊥PF,∴AF∥OC.∴∠F AC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠F AC=∠CAB,∴CE=CF=3k,∵△CBE∽△CPB,∴CB CE CP CB=,∴BC2=CE•CP;∴BC =23k∴sin ∠CBE 323k= ∴∠CBE =60°,∵OB =OC ,∴△OBC 是等边三角形,∴∠COB =60°, ∵43AB =∴扇形COB 的面积260232360ππ⨯=() 【点评】本题主要考查了圆切线的性质,相似三角形的性质与判定,圆周角定理,角平分线的性质,解直角三角形,扇形面积,等边三角形的性质与判定等等,熟练掌握圆的相关知识是解题的关键.17.(1)证明见解析(2)证明见解析【分析】(1)根据AB 为O 的直径,可得90ADB ACB ∠=∠=︒,由ACB ∠的角平分线交O 于点D ,可得45ACD BCD ∠=∠=︒,AD BD =,AD BD =,进而结论得证;(2)由CAB ∠的角平分线交CD 于点F ,得到CAF BAF ∠=∠,结合(1)可得ACD BAD ∠=∠,再由∠=∠+∠DFA CAF ACD ,∠=∠+∠DAF BAF BAD ,得到DFA DAF ∠=∠,从而说明DA DF =,最后再证明ADE CDA △∽△,利用相似三角形的性质即可得证.(1)证明:∵AB 为O 的直径,∴90ADB ACB ∠=∠=︒,∵ACB ∠的角平分线交O 于点D ,∴45ACD BCD ∠=∠=︒,∴AD BD =,∴AD BD =,∴ADB 为等腰直角三角形;(2)证明:∵CAB ∠的角平分线交CD 于点F ,∴CAF BAF ∠=∠,由(1)可知:45ACD ∠=︒,AD BD =,90ADB ∠=︒∴45BAD ABD ∠=∠=︒,∴ACD BAD ∠=∠,∵∠=∠+∠DFA CAF ACD ,∠=∠+∠DAF BAF BAD ,∴DFA DAF ∠=∠,∴DA DF =,在ADE 和CDA 中DAE DCA ADE CDA ∠=∠⎧⎨∠=∠⎩, ∴ADE CDA △∽△, ∴AD DE CD AD=, ∴2AD DE DC =⋅,∴2DF DE DC =⋅.【点评】本题考查的是圆和三角形的综合题,考查了直径所对的圆周角为90°,角平分线,圆周角,等腰三角形的判定,相似三角形的判定与性质等知识.对知识的熟练掌握与灵活运用是解题的关键.18.(1)3AC =(2)见解析【分析】(1)根据直径所对的圆周角是直角可得90ACB ∠=︒,再根据勾股定理进行计算即可;(2)连结BD ,连结OD 与AC 交于F 点.根据切线的性质及平行四边形的性质可证明四边形OBCD 是菱形,即可得到结论.(1)∵AB 是圆O 的直径,∴90ACB ∠=︒∴2223AC AB BC =-=,∴3AC =.(2)连结BD ,连结OD 与AC 交于F 点.∵ED 与圆O 相切于D 点,∴OD ED ⊥,∵四边形ACDE 是平行四边形,∴ED AC ∥, CD EA ∥,∴OD AC ⊥,90OFA ACB ∠=︒=∠,∴OD BC ∥,∵CD EB ∥,OD OB =,∴四边形OBCD 是菱形,∴BD 平分ABC ∠.【点评】本题考查了圆周角定理、切线的性质、勾股定理、平行四边形的性质及菱形的判定和性质,熟练掌握知识点是解题的根据.19.(1)见解析 65【分析】(1)根据等角的余角相等,ABP CPO ∠=∠,进而证得APB ABP ∠=∠,最后结论得证;(2)作OH BC ⊥于H ,在Rt POC △中,求出OP ,PC ,OH ,CH 即可解决问题.(1)证明:∵OC OB =,∴OCB OBC ∠=∠,∵AB 是O 的切线,∴OB AB ⊥,∴90OBA ∠=︒,∴90ABP OBC ∠+∠=︒,∵OC AO ⊥,∴=90AOC ∠︒,∴90OCB CPO ∠+∠=︒,∴ABP CPO ∠=∠,∵APB CPO ∠=∠,∴APB ABP ∠=∠,∴AP AB =.(2)解:作OH BC ⊥于H ,在Rt OAB 中,∵4OB =,3AB =, ∴22345OA +,∵3AP AB ==,∴2PO =.在Rt POC △中,∵4OC OB == ∴2225PC OC OP =+=1122POC S PC OH OC OP ==△, ∴455OC OP OH PC == ∴2285CH OC OH =- ∵OH BC ⊥,∴CH BH =,∴1652BC CH = ∴165655PB BC PC =-=-=. 【点评】本题考查切线的性质、解直角三角形、勾股定理、等腰三角形的判定和性质、垂径定理等知识,学会添加适当的辅助线,构造直角三角形解决问题是解本题的关键.20.(1)见解析(2)3DF =22【分析】(1)由题意得BAE DAE ∠=∠,且90ABE ︒∠=,即90BAE AEB ︒∠+∠=,根据AD BC ⊥得90DAE AFD ︒∠+∠=,即可得;(2)根据AEB AFD ∠=∠,AFD BFE ∠=∠得BEF BFE ∠=∠,即BE BF =,根据BAE DAF ∠=∠,90ABE ADF ︒∠=∠=得ΔΔABE ADF ∽,根据10AB =,5BF =得12BE AB =,设DF x =,则2AD x =,在Rt ABD ∆中,根据勾股定理, 即()()2221052x x =++,即可得;(3)根据点G 为AB 中点,点O 在DG 上得OG 是ABE ∆的中位线,即OG BE ∥,12OG BE =,根据90ABE ︒∠=得OD DF =,AEB ∠和ACB ∠是AB 所对的圆周角得AEB ACB ∠=∠,即ACB AFC ∠=∠,即有AC AF =,设BF a =,DF b =, 有11222BE OD a b DG BD BF DF a b ++===++,即可得. (1)解:∵直径AE 平分BAD ∠,∴BAE DAE ∠=∠,且90ABE ︒∠=,∴90BAE AEB ︒∠+∠=,∵AD BC ⊥,∴90DAE AFD ︒∠+∠=,∴AEB AFD ∠=∠.(2)解:∵AEB AFD ∠=∠,AFD BFE ∠=∠,∴BEF BFE ∠=∠,∴BE BF =,∵BAE DAF ∠=∠,90ABE ADF ︒∠=∠=,∴ΔΔABE ADF ∽,∵10AB =,5BF =, ∴51102BE BF DF AB AB AD ====, 设DF x =,则2AD x =,在Rt ABD ∆中,根据勾股定理,222AB BD AD =+,即()()2221052x x =++,解得:13x =,25x =-,舍去负值,得到3DF =.(3)解:如图所示,∵点G 为AB 中点,点O 在DG 上,∴OG 是ABE ∆的中位线,∴OG BE ∥,12OG BE =, ∵90ABE ︒∠=,∴DG AB ⊥,ABD ∆是等腰直角三角形,AOG AEB AFD ∠=∠=∠,∴OD DF =,∵AEB ∠和ACB ∠是AB 所对的圆周角,∴AEB ACB ∠=∠,∴ACB AFC ∠=∠,即有AC AF =,∵AD CF ⊥,∴DF CD =.设BF a =,DF b =, 有11222BE OD a b DG BD BF DF a b ++===++, 解得2a b =, ∴::222BF FC a b ==.【点评】本题考查了圆与三角形,解题的关键是掌握垂径定理,相似三角形的判断与性质,中位线,勾股定理.。

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25圆的有关计算与证明(20道)一、填空题1.(2023·江苏徐州·统考中考真题)如图,在O 中,直径AB 与弦CD 交于点 ,2E AC BD=.连接AD ,过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠=°.【答案】66【分析】连接BD ,则有90ADB ∠=︒,然后可得22,68A ABD ∠=︒∠=︒,则44ADE =︒∠,进而问题可求解.【详解】解:连接BD ,如图所示:∵AB 是O 的直径,且BF 是O 的切线,∴90ADB ABF ∠=∠=︒,∵68AFB ∠=︒,∴22A ∠=︒,∴68ABD ∠=︒,∵ 2AC BD=,∴244ADC A ∠=∠=︒,【答案】0.1【分析】由已知求得AB 与而即可得解.【详解】∵2OA OB AOB ==∠,∴22AB =,∵C 是弦AB 的中点,D 在∴延长DC 可得O 在DC 上,∴22CD OD OC =-=-,∴()22222322CD s AB OA-=+=+=,9022360l ππ⨯⨯==,∴30.1l s π-=-≈.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。

弧长公式是关键.二、解答题3.(2023·辽宁盘锦·统考中考真题)如图,ABC 内接于O ,AB 为O 的直径,延长AC 到点G ,使得CG CB =,连接GB ,过点C 作CD GB ∥,交AB 于点F ,交点O 于点D ,过点D 作DE AB ∥.交GB 的延长线于点E .(1)求证:DE 与O 相切.(2)若4AC =,2BC =,求BE 的长.【答案】(1)见详解(2)523【分析】(1)连接OD ,结合圆周角定理,根据CG CB =,可得45CGB CBG ∠=∠=︒,再根据平行的性质45ACD CGB ∠=∠=︒,即有290AOD ACD ∠=∠=︒,进而可得90ODE AOD ∠=∠=︒,问题随之得证;(2)过C 点作CK AB ⊥于点K ,先证明四边形BEDF 是平行四边形,即有BE DF =,求出2225AB AC BC =+=,即有152OD AO OB AB ====,利用三角形函数有2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,即可得4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,进而有35OK OB KB =-=,再证明CKF DOF ∽,可得55445OF OD FK CK ===,即可得55359935OF OK ==⨯=,在Rt ODF △中,有∵AB 为O 的直径,∴90ACB ∠=︒,∴90GCB ∠=︒,∵CG CB =,∴45CGB CBG ∠=∠=︒,∵CD GB ∥,∴45ACD CGB ∠=∠=︒,∴290AOD ACD ∠=∠=︒,即∵DE AB ∥,∴90ODE AOD ∠=∠=︒,∴半径OD DE ⊥,∴DE 与O 相切;(2)过C 点作CK AB ⊥∵CD GB ∥,DE AB ∥,∴四边形BEDF 是平行四边形,∴BE DF =,∵4AC =,2BC =,∴222AB AC BC =+=∴152OD AO OB AB ====,∵CK AB ⊥,∴90CKB ACB ∠=︒=∠,∴在Rt ACB △,2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,∵在Rt KCB 中,2CB =,∴4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,∴35OK OB KB =-=,∵CK AB ⊥,OD AB ⊥,∴OD CK ∥,∴CKF DOF ∽,∴55445OF OD FK CK ===,∴59OF OF FK OF OK ==+,∴55359935OF OK ==⨯=,∴在Rt ODF △中,22523DF OD OF =+=,∴523BE DF ==.【点睛】本题是一道综合题,主要考查了圆周角定理,切线的判定,相似三角形的判定与性质,平行四边形的判定与性质,三角函数以及勾股定理等知识,掌握切线的判定以及相似三角形的判定与性质,是解答本题的关键.4.(2023·江苏南通·统考中考真题)如图,等腰三角形OAB 的顶角120AOB ∠=︒,O 和底边AB 相切于点C ,并与两腰OA ,OB 分别相交于D ,E 两点,连接CD ,CE .(1)求证:四边形ODCE 是菱形;(2)若O 的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)4233S π=-阴影【分析】(1)连接OC ,根据切线的性质可得60AOC BOC ∠=∠=︒,从而可得ODC 和△OD CD CE OE ===,即可解答;(2)连接DE 交OC 于点F ,利用菱形的性质可得利用勾股定理求出DF 的长,从而求出DE ODCE 的面积,进行计算即可解答.【详解】(1)证明:连接OC ,O 和底边AB 相切于点C ,OC AB ∴⊥,OA OB = ,120AOB ∠=︒,1602AOC BOC AOB ∴∠=∠=∠=︒,OD OC = ,OC OE =,ODC ∴ 和OCE △都是等边三角形,OD OC DC \==,OC OE CE ==,OD CD CE OE ∴===,∴四边形ODCE 是菱形;(2)解:连接DE 交OC 于点F ,四边形ODCE 是菱形,112OF OC ∴==,2DE DF =,90OFD ∠=︒,在Rt ODF 中,2OD =,2222213DF OD OF ∴=-=-=,223DE DF ∴==,∴图中阴影部分的面积=扇形ODE 的面积-菱形ODCE 的面积2120213602OC DE π⨯=-⋅4122332π=-⨯⨯4233π=-,∴图中阴影部分的面积为4233π-.【点睛】本题考查了切线的性质,扇形面积的计算,等腰三角形的性质,菱形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2023·辽宁鞍山·统考中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.∵EAD BDF ∠+∠=∴BDF BAD ∠=∠,∵AB 为O 的直径,∴90ADB ∠=︒,BFD ∠∴BDF DBF ∠+∠=∴DBF ABD ∠=∠,∵OB OD =,∴DBF ABD ∠=∠=∴OD BF ∥,∴90ODE F ∠=∠=又OD 为O 的半径,∴EF 为O 的切线;(2)连接AC ,则:∵AB 为O 的直径,∴90ACB F ∠=︒=∠,∴AC EF ,∴E BAC BDC ∠=∠=∠,在Rt BFE △中,10BE =,2sin sin 3E BDC =∠=,∴220sin 1033BF BE E =⋅=⨯=,设O 的半径为r ,则:,10OD OB r OE BE OB r ===-=-,∵OD BF ∥,∴ODE BFE ∽,∴OD OE BF BE =,即:1020103r r -=,∴4r =;∴O 的半径为4.【点睛】本题考查圆与三角形的综合应用,重点考查了切线的判定,解直角三角形,相似三角形的判定和性质.题目的综合性较强,熟练掌握相关知识点,并灵活运用,是解题的关键.6.(2023·辽宁阜新·统考中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【答案】(1)见解析(2)233π-【分析】(1)连接OD ,根据OB OD =,得出OBD ODB ∠=∠.根据BD 平分ABE ∠,得出OBD EBD ∠=∠,则EBD ODB ∠=∠.根据DE CB ⊥得出90EBD EDB ∠+∠=︒,进而得出90ODB EDB ∠+∠=︒,即可求证;(3)连接OC ,过点O 作OF BC ⊥于点F ,通过证明OBC △为等边三角形,得出60BOC ∠=︒,【点睛】本题主要考查了切线的判定,等边三角形的判定和性质,解直角三角形,求扇形面积,解题的关键是掌握经过半径外端切垂直于半径的直线是圆的切线;扇形面积公式7.(2023·黑龙江哈尔滨·统考中考真题)已知ABC 内接于O ,AB 为O 的直径,N 为 AC 的中点,连接ON 交AC 于点H .(1)如图①,求证2BC OH =;(2)如图②,点D 在O 上,连接DB ,DO ,DC ,DC 交OH 于点E ,若DB DC =,求证OD AC ∥;(3)如图③,在(2)的条件下,点F 在BD 上,过点F 作FG DO ⊥,交DO 于点G .DG CH =,过点F 作FR DE ⊥,垂足为R ,连接EF ,EA ,32EF DF =::,点T 在BC 的延长线上,连接AT ,过点T 作TM DC ⊥,交DC 的延长线于点M ,若42FR CM AT ==,,求AB 的长.【答案】(1)见解析(2)见解析(3)213【分析】(1)连接OC ,根据N 为 AC 的中点,易证AH HC =,再根据中位线定理得出结论;(2)连接OC ,先证DOB DOC ≌V V 得BDO CDO ∠=∠,再根据OB OD =得DBO BDO ∠=∠,根据ACD ABD ∠=∠即可得出结论;(3)连接AD ,先证DOB DOC ≌V V ,再证四边形ADFE 是矩形,过A 作AS DE ⊥垂足为S ,先证出FR AS =,再能够证出CAS TCM ≌V V 从而CT AC =,得到等腰直角ACT ,利用三角函数求出AC ,再根据EDF BAC ∠=∠求出BC ,最后用勾股定理求出答案即可.【详解】(1)证明:如图,连接OC ,设2BDC α∠=,BD DC = ,DO DO =DOB DOC \≌V V ,12BDO CDO \Ð=Ð=OB OD = ,DBO \ÐACD ABD a Ð=Ð=Q DO AC \∥;(3)解:连接AD ,FG OD ^Q ,90DGF ∴∠=︒,90CHE ∠=︒ ,DGF CHE \Ð=Ð,FDG ECH Ð=ÐQ ,DG CH =,DGF CHE \≌V V ,DF CE ∴=,AH CH = ,OH AC \^,CE AE DF \==,EAC ECA a Ð=Ð=Q ,2AED EAC ECA a Ð=Ð+Ð=,BDC AED ∴∠=∠,DF AE ∴∥,∴四边形ADFE 是平行四边形,AB 是O 的直径,90ADB ∴∠=︒,∴四边形ADFE 是矩形,90EFD ∴∠=︒,3tan 2EF EDF FD \Ð==,过点A 作AS DE ⊥垂足为S ,sin AS AES AE\Ð=,FR DC ^Q ,sin FR FDR FD\Ð=,FD AE ∥ ,FDR AES \Ð=Ð,sin sin FDR AES \Ð=Ð,FR AS \=,AB 是O 的直径,(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.【答案】(1)32:27(2)①符合,图见详解;②图见详解【分析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.【详解】(1)解:由图1可知:璧的“肉”的面积为()22318ππ⨯-=;环的“肉”的面积为()223 1.5 6.75ππ⨯-=,∴它们的面积之比为8:6.7532:27ππ=;故答案为32:27;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A 、B 、C ,则分别以A 、B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段,AB AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可由作图可知满足比例关系为1:2:1的关系;②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以A 为圆心,适当长为半径画弧,把射线三等分,交点分别为C 、D 、E ,连接BE ,然后分别过点C 、D 作BE 的平行线,交AB 于点F 、【点睛】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的基本性质及平行线所截线段成比例是解题的关键.9.(2023·辽宁·统考中考真题)的延长线上,且AFE ABC ∠=∠(1)求证:EF 与O (2)若1sin BF AFE =∠,【答案】(1)见解析(2)245BC =∵ =BEBE ,∴EOB ∠∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴22245BC AB AC =-=.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.10.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD△(2)证明见详解(3)四边形OAEB 是菱形【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形.【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.11.(2023·湖北鄂州·统考中考真题)如图,AB 为O 的直径,E 为O 上一点,点C 为»EB 的中点,过点C 作CD AE ⊥,交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若1DE =,2DC =,求O 的半径长.【答案】(1)证明见解析(2)52【分析】(1)连接OC ,根据弦、弧、圆周角的关系可证DAC CAF ∠=∠,根据圆的性质得OAC OCA ∠=∠,∵点C 为»EB的中点,∴ ECCB =,∴DAC CAF ∠=∠,∵OA OC =,∴OAC OCA∠=∠∵CD AD ⊥,∴90D Ð=°,∵1DE =,2DC =,∴2222215CE CD DE =+=+=,∵D 是 BC的中点,∴ ECCB =,∴EC CB ==5,∵AB 为O 的直径,∴90ACB ∠=︒,∵180DEC AEC ∠+∠=︒,180ABC AEC ∠+∠=︒,∴DEC ABC ∠=∠,∴DEC CBA ∽ ,∴DE CE BC AB=,∴155AB =,∴5AB =,1522AO AB ==∴O 的半径长为52.【点睛】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.12.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、P 均在O 上,90AOB ∠=︒,则锐角APB ∠的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即2PE PB =,PE PA AE PA PC =+=+ ,2PA PC PB ∴+=,22PB PA = ,2224PA PC PA PA ∴+=⨯=,3PC PA ∴=,222233PB PA PC PA ∴==,故答案为:223.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA ≌,进行转换求解.13.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径, BCBD =,DE AC ⊥于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F ∠=∠,连接BD .(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.【答案】(1)见解析(2)DGB 是等腰三角形,理由见解析(3)4FG =【分析】(1)连接CO ,根据圆周角定理得出2BOD BOC BAC ∠=∠=∠,根据已知得出F BAC ∠=∠,根据DE AC ⊥得出90AEG ∠=︒,进而根据对等角相等,以及三角形内角和定理可得90FBG AEG ∠=∠=︒,即可得证;(2)根据题意得出 AD AC=,则ABD ABC ∠=∠,证明EF BC ∥,得出AGE ABC ∠=∠,等量代换得出FGB ABD ∠=∠,即可得出结论;(3)根据FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,等边对等角得出DB DF =,则224FG DG DB ===.【详解】(1)证明:如图所示,连接CO ,∵ BCBD =,∴2BOD BOC BAC ∠=∠=∠,∵2BOD F ∠=∠,∴F BAC ∠=∠,∵DE AC ⊥,∴90AEG ∠=︒,∵AGE FGB∠=∠∴90FBG AEG ∠=∠=︒,即AB BF ⊥,又AB 是O 的直径,∴BF 是O 的切线;(2)∵ BCBD =,AB 是O 的直径,∴ AD AC =,BC AC ⊥,∴ABD ABC ∠=∠,∵DE AC ⊥,BC AC ⊥,∵EF BC ∥,∴AGE ABC ∠=∠,又AGE FGB ∠=∠,∴FGB ABD ∠=∠,∴DGB 是等腰三角形,(3)∵FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求 BD的长.【答案】(1)见解析(2)43π∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴OD AC ∥,∴ODE DEC ∠=∠。

2023年中考九年级数学高频考点拔高训练--圆的切线的证明综合题(含答案)

2023年中考九年级数学高频考点拔高训练--圆的切线的证明综合题(含答案)

2023年中考九年级数学高频考点拔高训练--圆的切线的证明综合题1.如图,已知:射线PO与⊙O交于A、B两点,PC、PD分别切⊙O于点C、D.(1)请写出两个不同类型的正确结论;(2)若CD=12,tan⊙CPO= 12,求PO的长.2.如图,⊙ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作DG//BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,⊙A=⊙D.(1)求证:BD与⊙O相切;(2)若AE=OE,CF平分⊙ACB,BD=12,求DE的长.3.如图,已知⊙O的直径为AB,AC⊙AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线.(2)当OA=3,AE=4时,求BC的长度.4.如图,AB是⊙O的直径,点F,C是⊙O上两点,且点C是弧FB̀的中点,连接AC,AF,过点C作CD⊙AF,垂足为点D.(1)求证:CD是⊙O的切线;(2)若AB=10,AC=8,求DC的长.5.如图,⊙O是⊙ABC的外接圆,点O在BC边上,⊙BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:AB·CP=BD·CD;(3)若tan∠ABC=2,AB=2√5,求线段DP的长.6.如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且⊙CAD=⊙D,给出下列三个信息:①sin⊙CAB=12;②BO=BD;③DC是⊙O的切线.(1)请在信息①或②中选择一个作为条件,剩下的两个信息中选择一个作为结论,组成一个真命题....你选择的条件是,结论是(只要填写序号).(2)证明(1)中你写出的真命题.7.如图,AB是⊙O的直径,点C在⊙O上,点D在AB的延长线上,且⊙BCD =⊙A.(1)求证:CD是⊙O的切线;(2)若AC =2,AB =32CD,求⊙O半径.8.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB 交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:ΔDAF≌ΔDCE.(2)求证:DE是⊙O的切线.(3)若BF=2,DH=√5,求四边形ABCD的面积.9.如图,在矩形ABCD中,点E是BC边上一点,且AD=DE,以AB为半径作⊙A,交AD边于点F,连接EF.(1)求证:DE是⊙A的切线;(2)若AB=2,BE=1,求AD的长;(3)在(2)的条件下,求tan⊙FED.10.等腰三角形ABC,AB=AC,CD⊥AB于点D,AE⊥BC于点E,AE、CD交于点F,⊙O为⊙ADF的外接圆,连接DE.(1)求证:DE是⊙O的切线:(2)若CF=5,DF=3,求⊙O的直径.11.如图,在Rt△OAB中,∠AOB=90°,OA=OB=4,以点O为圆心、2为半径画圆,过点A作⊙O的切线,切点为P,连接OP.将OP绕点O按逆时针方向旋转到OH时,连接AH,BH.设旋转角为α(0°<α<360°).(1)当α=90°时,求证:BH是⊙O的切线;(2)当BH与⊙O相切时,求旋转角α和点H运动路径的长;(3)当△AHB面积最大时,请直接写出此时点H到AB的距离.12.如图,AB是⊙O的直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且OEEB=23,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.13.如图,AB是 ⊙O的直径,点C是 ⊙O上一点,AC平分⊙DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分⊙ACB,交AB于点F,交 ⊙O于点E.(1)求证:PC与⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan⊙ABC=43,求线段BE的长.14.如图,已知二次函数图象的对称轴为直线x=2,顶点为点C,直线y=x+m与该二次函数的图象交于点A,B两点,其中点A的坐标为(5,8),点B在y轴上.(1)求m的值和该二次函数的表达式.P为线段AB上一个动点(点P不与A,B 两点重合),过点P作x轴的垂线,与这个二次函数的图象交于点E.①设线段PE的长为h,求h与x之间的函数关系式,并写出自变量x的取值范围.②若直线AB与这个二次函数图象的对称轴的交点为D,求当四边形DCEP是平行四边形时点P的坐标.(2)若点P(x,y)为直线AB上的一个动点,试探究:以PB为直径的圆能否与坐标轴相切?如果能请求出点P的坐标,如果不能,请说明理由.15.如图,PA为⊙O的切线,A为切点,点B在⊙O上,且PA=PB,连AO并延长交PB的延长线于点C,交⊙O于点D.(1)求证:PB为⊙O的切线;(2)连接OB、DP交于点E.若CD=2,CB=4,求PEDE的值.16.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E 是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,⊙B=50°,AC=4.8,求图中阴影部分的面积.答案解析部分1.【答案】(1)解:不同类型的正确结论有:①PC=PD ,②⊙CPO=⊙DP ,③CD⊙BA ,④⊙CEP=90°,⑤PC 2=PA•PB(2)解:连接OC ∵PC 、PD 分别切⊙O 于点C 、D ∴PC=PD ,⊙CPO=⊙DPA∴CD⊙AB∵CD=12∴DE=CE= 12CD=6. ∵tan⊙CPO= 12, ∴在Rt⊙EPC 中,PE=12∴由勾股定理得CP=6 √5∵PC 切⊙O 于点C∴⊙OCP=90°在Rt⊙OPC 中,∵tan⊙CPO= 12, ∴OC PC =12∴OC=3 √5 ,∴OP= √OC 2+PC 2 =152.【答案】(1)证明:如图1,延长 DB 至 H ,∵DG//BC ,∴∠CBH =∠D ,∵∠A=∠D,∴∠A=∠CBH,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∴∠CBH+∠ABC=90°,∴∠ABD=90°,∴AB⊙BD,∴BD与⊙O相切;(2)解:如图2,连接OF,∵CF平分∠ACB,∴∠ACF=∠BCF,∴AF=BF,∴⊙AOF=⊙BOF=90°,∴OF⊥AB,∵BD⊥AB,∴OF//BD,∴△EFO∽△EDB,∴OFBD=OE BE,∵AE=OE,∴OEEB=1 3,∴OF12=13,∴OF=4,∴OA=OB=OF=4,∴BE =OE +OB =2+4=6 ,∴DE =√BD 2+BE 2=√122+62=6√5 .3.【答案】(1)证明:如图:首先连接OD .∵AC⊙AB ,∴⊙BAC=90°,即⊙OAE=90°.在⊙AOE 与⊙DOE 中,OA=OD ,ED=EA ,OE=OE ,∴⊙AOE⊙⊙DOE (SSS ),∴⊙OAE=⊙ODE=90°,即OD⊙ED .又∵OD 是⊙O 的半径,∴ED 是⊙O 的切线;(2)解:如图,在⊙OAE 中,⊙OAE=90°,OA=3,AE=4,∴由勾股定理求得OE=5.∵AB 是直径,∴⊙ADB=90°(直径所对的圆周角是直角),即AD⊙BC .又∵OA=OD ,AE=DE ,∴OE 垂直平分AD (到线段两个端点距离相等的点在这条线段的垂直平分线上), ∴OE⊙AD ,∴OE⊙BC ,∴OA AB =OE BC =12(平行线分线段成比例定理). ∴BC=2OE=2×5=10,即BC 的长度是10.4.【答案】(1)解:如图1,连接OC ,∵C 是弧FB ̀的中点, ∴弧FC=弧BC ̀̀,∴⊙FAC=⊙BAC ,∵OA=OC ,∴⊙OCA=⊙BAC ,∴⊙FAC=⊙OCA ,∴AD⊙OC ,∵CD⊙AF ,∴CD⊙OC ,即CD 是⊙O 的切线;(2)解:如图2,连接BC ,∵AB 是⊙O 的直径,∴⊙ACB=90°,∴⊙D=⊙ACB ,又⊙DAC=⊙CAB ,∴⊙DAC⊙⊙CAB ,∴AD AC =AC AB, 解得,AD= AC 2AB=6.4, 在Rt⊙ADC 中,CD= √AC 2−AD 2 =4.8.5.【答案】(1)证明:如图,连接OD ,∵BC 是⊙O 的直径,∴⊙BAC=90°,∵AD 平分⊙BAC ,∴⊙BAC=2⊙BAD ,∵⊙BOD=2⊙BAD ,∴⊙BOD=⊙BAC=90°,∵DP⊙BC ,∴⊙ODP=⊙BOD=90°,∴PD⊙OD ,∵OD 是⊙O 半径,∴PD 是⊙O 的切线;(2)证明:∵PD⊙BC ,∴⊙ACB=⊙P ,∵⊙ACB=⊙ADB ,∴⊙ADB=⊙P ,∵⊙ABD+⊙ACD=180°,⊙ACD+⊙DCP=180°,∴⊙DCP=⊙ABD ,∴⊙ABD⊙⊙DCP ,∴AB CD =BD CP∴AB•CP=BD•CD.(3)解:在 RtΔABC 中,∵tan∠ABC =2 , AB =2√5 ,∴AC =2AB =4√5 ,∴BC =√AB 2+AC 2=10 ,∴OD =5 ,过点 C 作 CG ⊥DP ,垂足为 G ,则四边形 ODGC 为正方形,∴DG =CG =OD =5 ,∵BC ∥PD ,∴∠CPG =∠ACB ,∴tan∠CPG =tan∠ACB ,∴CG GP =AB AC,即 5GP =2√54√5 , 解得, GP =10 ,∴DP =DG +GP =15 .6.【答案】(1)①;②(或①,③;或②,①;或②,③;答案不唯一) (2)解:条件:①,结论:②;连接BC ,∵AB是⊙O的直径,∴⊙ACB=90°,∵sin⊙CAB= 1 2,∴BC= 12AB=BO,⊙D=⊙CAB=30°,∴⊙ABC=60°,∴⊙BCD=⊙ABC-⊙D=30°=⊙D,∴BD=BC,∴BD=BO;条件:①,结论:③;连接CO,∵sin⊙CAB= 1 2,∴⊙D=⊙CAB=30°,∵OA=OC,∴⊙OCA=⊙CAB=30°,在⊙DCA中,⊙DCO =180°-⊙D-⊙CAB-⊙OCA =180°-30°-30°-30°=90°,∴OC⊙DC,∴DC是⊙O的切线;条件:②,结论:①;连接BO、CO,∵AB是⊙O的直径∴⊙ACB=90°∵BO=BD,BO=AO,∴DO=AB,在⊙DCO与⊙ACB中,{CD=CA∠D=∠CAD DO=AB,∴⊙DCO⊙⊙ACB,∴BC=CO= 12AB,∴sin⊙CAB= 1 2;条件:②,结论:③;连接BO、CO,∵AB是⊙O的直径,∴⊙ACB=90°,∵BO=BD,BO=AO,∴DO=AB,在⊙DCO与⊙ACB中,{CD=CA ∠D=∠CAD DO=AB∴⊙DCO⊙⊙ACB,∴⊙DCO=⊙ACB=90°,∴CO⊙DC,∴DC是⊙O的切线.7.【答案】(1)证明:如图,连接OC.∵AB 是⊙O 的直径,C 是⊙O 上一点,∴⊙ACB=90°,即⊙ACO+⊙OCB=90°.∵OA=OC ,⊙BCD=⊙A ,∴⊙ACO=⊙A=⊙BCD ,∴⊙BCD+⊙OCB=90°,即⊙OCD=90°,∴CD 是⊙O 的切线.(2)解:设CD 为x ,则AB= 32 x ,OC=OB= 34x , ∵⊙OCD=90°,∴OD= √OC 2+CD 2=√(34x)2+x 2 = 54 x , ∴BD=OD ﹣OB= 54x ﹣ 34 x= 12 x , ∵⊙BCD =⊙A ,⊙BDC =⊙CDA ,∴⊙ADC⊙⊙CDB ,∴AC CB =CD BD, 即 2CB =x 12, 解得CB=1,∴AB= √AC 2+BC 2 =√5∴⊙O 半径是 √52. 8.【答案】(1)证明:如图1,连接 DF ,∵四边形 ABCD 为菱形,∴AB =BC =CD =DA , AD//BC , ∠DAB =∠C ,∵BF=BE,∴AB−BF=BC−BE,即AF=CE,∴ΔDAF≌ΔDCE(2)解:∵ΔDAF≌ΔDCE∴∠DFA=∠DEC.∵AD是⊙O的直径,∴∠DFA=90°,∴∠DEC=90°.∵AD//BC,∴∠ADE=∠DEC=90°,∴OD⊥DE.∵OD是⊙O的半径,∴DE是⊙O的切线(3)解:如图2,连接AH,∵AD是⊙O的直径,∴∠AHD=∠DFA=90°,∴∠DFB=90°,∵AD=AB,DH=√5,∴DB=2DH=2√5,在RtΔADF和RtΔBDF中,∵DF2=AD2−AF2,DF2=BD2−BF2,∴AD2−AF2=DB2−BF2,∴AD2−(AD−BF)2=DB2−BF2,∴AD2−(AD−2)2=(2√5)2−22,∴AD=5.∴AF=3∴DF=√AD2−AF2=4∴四边形ABCD的面积=AB⋅DF=5×4=20.9.【答案】(1)证明:过点A作AG⊙DE,∴⊙AGD=90°在矩形ABCD 中,AD⊙BC ,⊙C=90°,∴⊙AGD=⊙C ,⊙ADG=⊙DEC∵AD=DE ,∴⊙ADG⊙⊙DEC∴AG=DC ,DG=EC ,∵AB=DC ,∴AG=AB ,即AG 为⊙A 的半径∴DE 是⊙A 的切线(2)解:连接AE ,由(1)可知,AG=AB ,⊙ABE=⊙AGE=90°,AE=AE ,∴⊙ABE⊙⊙AGE (HL ),∴BE=EG ,设DG=EC=x ,∵AB=2,BE=1,∴DE=x+1,DC=AB=2,在Rt⊙DEC 中,由勾股定理可得,x 2+22=(x +1)2解得,x =32, ∴AD=DE=52(3)解:过点F 作FH⊙DE ,∵AD =52,AF =AB =2, ∴DF =AD −AF =52−2=12, ∵FH⊙DE ,AG ⊥DE ,∴FH ∥AG ,∴⊙DFH⊙⊙DAG ,∴DF AD =FH AG ,即1252=FH 2, 解得FH =25, ∵DH =√(12)2−(25)2=310,DE =√(32)2−22=52, ∴EH =52−310=115∴tan⊙FED =FH EH =211, 10.【答案】(1)证明:如下图所示,连接OD .∵AB =AC ,AE⊙BC ,∴CE =EB ,⊙DCE +⊙CFE =90°.∴CE =12BC . ∵CD⊙AB ,∴DE =12BC ,⊙ADF=90°. ∴DE=CE ,⊙FAD +⊙AFD =90°,⊙ODA +⊙ODF =90°.∴∠DCE =∠CDE .∵⊙AFD 和⊙CFE 是对顶角,∴⊙AFD =⊙CFE .∴⊙FAD =⊙DCE .∴⊙FAD=⊙CDE .∵OA =OD ,∴⊙FAD =⊙ODA .∴⊙ODA =⊙CDE .∴⊙ODE=⊙ODF +⊙CDE =⊙ODF+⊙ODA=90°.∴OD⊙DE .∵OD 为半径,∴DE 是⊙O 的切线.(2)解:如下图所示,连接BF .∵CE =BE ,AE⊙BC ,CF=5,∴BF =CF =5.∵DF=3,∴DB =√BF 2−DF 2=4,CD =CF +DF =8.∵CD⊙AB ,∴⊙ADF=⊙CDB=90°.∴AF 是⊙O 直径.∵⊙FAD=⊙DCE ,即⊙FAD=⊙BCD ,∴⊙ADF⊙⊙CDB .∴AD CD =DF DB. ∴AD 8=34. ∴AD =6.∴AF =√AD 2+DF 2=√62+32=3√5.11.【答案】(1)解: ∵α=90°=∠AOB ,∴∠AOP =∠BOH ,又 ∵OP =OH, OA =OB ,∴△AOP ≌△BOH ,∴∠OPA =∠OHB ,∵AP 是⊙O 的切线,∴∠OPA =90° ,∴∠OHB =90° ,即 OH ⊥BH 于点H ,∴BH是⊙O的切线;(2)解:如图,过点B作⊙O的切线BC、BD,切点分别为C、D,连接OC,OD,则有OC⊥BC,OD⊥BD,∵OC=2,OB=4,∴cos∠BOC=OCOB=24=12,∴∠BOC=60°,同理∠BOD=60°,当点H与点C重合时,由(1)知:α=90°,∴∠OHB=90°,∵OP=2,∴PH的长为90π×2180=π;当点H与点D重合时,α=∠POC+∠BOC+∠BOD=90°+2×60°=210°,∴PH的长为210π×2180=73π,∴当BH与⊙O相切时,旋转角α=90°或210°,点H运动路径的长为π或73π.(3)2+2√212.【答案】(1)解:连接OC,∵AB是⊙O的直径,点C是AB的中点,∴⊙AOC=90°,∵OA=OB,CD=AC,∴OC是⊙ABD是中位线,∴OC⊙BD,∴⊙ABD =⊙AOC =90°,∴AB⊙BD ,∵点B 在⊙O 上,∴BD 是⊙O 的切线(2)解:由(1)知,OC⊙BD ,∴⊙OCE⊙⊙BFE ,∴OC BF =OE EB, ∵OB =2,∴OC =OB =2,AB =4, OE EB =23, ∴2BF =23, ∴BF =3,在Rt⊙ABF 中,⊙ABF =90°,根据勾股定理得,AF =5, ∵S ⊙ABF = 12 AB•BF = 12AF•BH , ∴AB•BF =AF•BH ,∴4×3=5BH ,∴BH = 125. 13.【答案】(1)证明:连接OC ,∵AC 平分⊙DAB ,∴⊙DAC =⊙CAB ,∵OA =OC ,∴⊙OCA =⊙CAB ,∴⊙DAC =⊙OCA ,∴OC⊙AD ,又AD⊙PD ,∴OC⊙PD ,∴PC 与⊙O 相切(2)证明:∵CE 平分⊙ACB ,∴⊙ACE =⊙BCE ,∴AE =BE ,∴⊙ABE =⊙ECB ,∵OC =OB ,∴⊙OCB =⊙OBC ,∵AB 是⊙O 的直径,∴⊙ACB =90°,∴⊙CAB+⊙ABC =90°,∵⊙BCP+⊙OCB =90°,∴⊙BCP =⊙BAC ,∵⊙BAC =⊙BEC ,∴⊙BCP =⊙BEC ,∵⊙PFC =⊙BEC+⊙ABE ,⊙PCF =⊙ECB+⊙BCP ,∴⊙PFC =⊙PCF ,∴PC =PF(3)解:连接AE ,在Rt⊙ACB 中,tan⊙ABC = 43,AC =8, ∴BC =6,由勾股定理得,AB = √AC 2+BC 2=√82+62=10 ,∵AE =BE ,∴AE =BE ,则⊙AEB 为等腰直角三角形,∴BE = √22AB =5 √2 . 14.【答案】(1)解: A 的坐标为(5,8)在直线y=x+m 上,∴8=5+m ,∴m=3,∴直线AB 解析式为y=x+3,∴B (0,3),设抛物线解析式为y=a (x ﹣2)2+k ,∵点A ,B 在抛物线上,∴{9a +k =8a +k =0, ∴{a =1k =−1, ∴抛物线解析式为y=(x ﹣2)2﹣1=x 2﹣4x+3,顶点C (2,﹣1)①∵点P在线段AB上,∴P(x,x+3)(0≤x≤5),∵PE⊙x轴,交抛物线与E,P (x,x+3),∴E(x,x2﹣4x+3),∴h=PE=x+3﹣(x2﹣4x+3)=﹣x2+5x,(0≤x≤5)②∵直线AB与这个二次函数图象的对称轴的交点为D,∴D(2,5),∴DC=6,∵四边形DCEP是平行四边形,∴PE=DC=6,∵PE=|﹣x2+5x|,⊙、当0≤x≤5时,﹣x2+5x=6,∴x1=2(舍),x2=3,∴P(3,6),⊙、当x<0,或x>5时,x2﹣5x=6,∴x3=﹣1,x4=6,∴P(﹣1,2)或P(6,9),(舍)即:点P的坐标为(3,6)(2)解:∵点P(x,y)为直线AB上的一个动点,∴P(x,x+3),∴点P到x轴的距离为|x+3|,到y轴的距离为|x|,∵点B(0,3),∴BP= √x2+(x+3−3)2=√2 |x|,∵以PB为直径的圆能与坐标轴相切,∴①以PB为直径的圆能与y轴相切,∴|x|= √22|x|,∴x=0(舍),②以PB为直径的圆能与x轴相切,∴|x+3|= √22|x|,∴x=﹣6﹣3 √2或x=﹣6+3 √2,∴P(﹣6﹣3 √2,﹣3+3 √2)或P(﹣6﹣3√2,﹣3﹣3 √2).故存在点P,坐标为P(﹣6+3 √2,﹣3+3 √2)或P(﹣6﹣3 √2,﹣3﹣3 √2)时,以PB为直径的圆能与坐标轴相切15.【答案】(1)证明:连接OB,OP,∵PA为⊙O的切线,∴OA⊥PA,∠OAP=90°,∵OA=OB,PA=PB,OP=OP,∴∠OBP=∠OAP=90°∴OB⊥PB∴PB为⊙O切线;(2)解:设OB=OD=r,在Rt△OBC中,BC2+OB2=OC2∴r2+42=(2+r)2,∴r=3,∴OB=OD=3,AC=OA+OD+CD=3,设PB=PA=x,在Rt△PAC中,AC2+PA2=PC2∴x2+82=(x+4)2,解得x=6,∴PB=PA=6,在Rt△PAO中,OP=√OA2+AP2=3√5,连接AB与OP交于G,连接BD,∵OA=OB,PA=PB,∴AB⊙OP,AG=BG,∴S△AOP=12AG⋅OP=12OA⋅AP,即S△AOP=12AG⋅3√5=12×3×6,∴AG=65√5,在Rt△OAG中,OG=√OA2−AG2=35√5,∵OA=OD,AG=BG,∴BD=2OG=65√5,∵AD为直径,∴∠ABD=90°,∴OP//BD,∴∠BDP=∠OPD,∠DBO=∠POE,∴PEDE=OPDB=52.16.【答案】(1)解:直线DE与⊙O相切.理由如下:连接OE、OD,如图,∵AC是⊙O的切线,∴AB⊙AC,∴⊙OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE⊙BC,∴⊙1=⊙B,⊙2=⊙3,∵OB=OD,∴⊙B=⊙3,∴⊙1=⊙2,在⊙AOE和⊙DOE中{OA=OD∠1=∠2 OE=OE,∴⊙AOE⊙⊙DOE,∴⊙ODE=⊙OAE=90°,∴OA⊙AE,∴DE为⊙O的切线(2)解:∵点E是AC的中点,∴AE=12AC=2.4,∵⊙AOD=2⊙B=2×50°=100°,∴图中阴影部分的面积=2• 12×2×2.4﹣100⋅π⋅22360=4.8﹣109π。

2023年九年级数学中考专题训练——圆的计算和证明 (1)

2023年九年级数学中考专题训练——圆的计算和证明 (1)

中考专题训练——圆的计算和证明1.如图1,AB 是O 的直径,点C 在O 上,D 为AC AC 的中点,连接BC ,OD .(1)求证:∥OD BC ;(2)如图2,过点D 作AB 的垂线与O 交于点E ,作直径EF 交BC 于点G .若G 为BC 中点,O 的半径为2,求弦BC 的长.2.如图,在Rt ABC 中,∠C =90°,∠BAC 的平分线AD 交BC 于点D ,点E 是AB 上一点,以AE 为直径的∠O 过点D ,且交AC 于点F .(1)求证:BC 是∠O 的切线;(2)若CD =6,AC =8,求AE .3.在扇形AOB 中,半径=6OA ,75O ∠=︒,点P 在半径OA 上,连结PB ,将∠OBP 沿PB 折叠得到O BP '.且BO '与AB 所在的圆相切于点B .(1)求APO '∠的度数;(2)求AP 的长.线段AC 于点G ,交AB 于点E ,交O 于点F ,连接DB ,CF ,A D ∠=∠.(1)求证:BD 与O 相切;(2)若AE OE =,CF 平分ACB ∠,12BD =,求DE 的长.5.如图,正方形ABCD 内接于∠O ,P 为BC 上的一点,连接DP ,CP .(1)求∠CPD 的度数;(2)当点P 为BC 的中点时,CP 是∠O 的内接正n 边形的一边,求n 的值.6.如图,△ABC 内接于∠O ,且AB 为∠O 的直径,∠ACB 的平分线交∠O 于点D ,过点D 作直线l 交CB 的延长线于点E ,且∠DCE =∠BDE ,过点B 作BF ∠CD 于点F .(1)求证:DE 是∠O 的切线;(2)若∠O 的半径为52,AC =4,求线段DE 的长.7.如图,在等腰ABC中,AB=AC,D,E分别是BC,AC的中点,过B,D两点的O 与AC相切于点E,AB与O交于点G.(1)求证:DEC CBE∠=∠;(2)求tan ABE∠的值.8.如图,AB是∠O的直径,DE与∠O相切于D点,AD CD=,BC交DE于点E.(1)求证:2BD=AB•BE;(2)若AB=5,BE=4,求CE的长.9.如图,AB是∠O的直径,BD是弦,弧DC=弧BC,CE是∠O的切线交AD的延长线于点E.(1)求证:AE∠EC;(2)若AB=4,EDAD=12,求弧BD的长.10.如图,AB为∠O的直径,弦CD∠AB于E,点F在DC的延长线上,AF交∠O于G.(1)求证:∠FGC=∠ACD;(2)若AE=CD=8,试求∠O的半径.11.如图,圆O中两条互相垂直的弦AB,CD交于点E.(1)M是CD的中点,OM=4,CD=24,求圆O的半径长;(2)点F在CD上,连接AC,若CE=EF,∠B=∠C,求证:AF∠BD.12.如图,AB是∠O的直径,AC是∠O的弦,过点C的直线交AB的延长线于点D,且∠A=∠D=30°.(1)求证:直线CD为∠O的切线;(2)若CD=3,求图中阴影部分的面积.13.若∠ABC的三个顶点都在∠O上,AD是△ABC的高,AE是∠O的直径.(1)求证:AC AB AD AE⋅=⋅;14.如图,已知P,PB分别与∠O相切于点AB,∠APB=60°,C为∠O上一点.(1)如图∠求∠ACB的度数;(2)如图∠AE为∠O的直径,AB与BC相交于点D,若AB=AD,求∠BAC的度数.15.如图,四边形ABCD是∠O的内接四边形,∠ABC=90°,AD=CD,过A作∠O的切线交CD的延长线于点P.(1)求∠P的度数;(2)若AB=6,BC=8,求P A、PD的长.16.如图,CD是∠O的切线,切点为D,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若tan∠BDC=2,AC=3,求CD的长.317.如图,AB是∠O的直径,BD平分∠ABC,DE∠BC(1)求证:DE是∠O的切线:18.如图,AB 是O 的直径,AC 是弦,D 是AB 的中点,CD 与AB 交于点E .F 是AB 延长线上的一点,且CF EF =.(1)求证:CF 为O 的切线;(2)连接BD ,取BD 的中点G ,连接AG .若4CF =,2BF =,求AG 的长.19.如图,AB 是∠O 的直径,E 为AB 延长线上一点,EC 切∠O 于C ,AD ∠CE 于点D .(1)求证:∠DAC =∠EAC ;(2)如果BE =2,CE =4,求线段AD 的长.20.如图,以AB 为直径的∠O 是ACD 的外接圆,连接OC ,OD ,AC CD =,AB 交CD 于点E ,PB 与O 相切于点B .(1)求证:P PAD ∠=∠(2)若O 的半径为3,2OE =,求CE 的长.参考答案:1.(1)证明见解析 (2)22【分析】(1)连接BD ,由D 为AC 的中点,得=AD CD ,则ABD CBD ∠=∠,由等腰三角形的性质得ABD BDO ∠=∠,推出CBD BDO ∠=∠,即可得证;(2)由垂径定理得OF BC ⊥,由平行线的性质得DO EF ⊥,则DOE △是等腰直角三角形,45OED ∠=︒,易证OGB △是等腰直角三角形,得2BG =,再由2BC BG =,即可得出结果.【解析】(1)证明:连接BD ,如图1所示:∠D 为AC 的中点,∠=AD CD ,∠ABD CBD ∠=∠,∠OD OB =,∠ABD BDO ∠=∠,∠CBD BDO ∠=∠,∠∥OD BC ;(2)解:∠G 为BC 中点,∠OF BC ⊥,由(1)得:∥OD BC ,∠DO EF ⊥,∠DOE △是等腰直角三角形,∠45∠=︒,OED∠DE AB⊥,∠45∠=∠=︒,EOA BOG∠OGB△是等腰直角三角形,∠2BG==∠==.2BC BG【点评】本题考查了垂径定理、圆周角定理、等腰三角形的判定与性质、平行线的判定与性质、等腰直角三角形的判定与性质,熟练掌握垂径定理和平行线的判定与性质是解题的关键.2.(1)见解析(2)12.5【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD∠BC,根据切线的判定推出即可;(2)求出AD,连接DE,证DCA∠EDA,得出比例式,代入数值求解即可.(1)证明:连接OD,∠OA=OD,∠∠OAD=∠ODA,∠AD平分∠BAC,∠∠BAD=∠CAD,∠∠ODA=∠CAD,∠OD∥AC,∠∠C=90°,∠∠ODC=90°,∠OD∠BC,∠OD为半径,∠BC是∠O切线;(2)解:在Rt ADC 中,AC =8,CD =6,由勾股定理得:AD =10.连接DE ,∠AE 为直径,∠∠EDA =∠C =90°,∠∠CAD =∠EAD , ∠DCA ∠EDA , ∠AE AD AD AC =, ∠10108AE =, AE =12.5.【点评】本题考查了切线的判定,相似三角形的性质和判定,平行线的判定与性质,勾股定理,圆周角定理等知识点的应用,主要考查学生的推理能力.3.(1)60APO '∠=︒ (2)626AP =-【分析】(1)根据折叠的性质、切线的性质和四边形内角和度数可求得OPO ∠'的度数,再根据平角的定义即可求得APO '∠的度数;(2)连接OO '交PB 于点G ,由折叠的性质知,BP 垂直平分OO ',BO BO '=.OBP O BP '∠=∠,则45BOO '∠=︒,62OO '=再说明30POO '∠=︒,利用含30°角的直角三角形的性质可得答案;(1)由折叠可得:75O O '∠=∠=︒,∠BO '与AB 所在的圆相切于点B ,∠90OBO '∠=︒,∠四边形内角和为360︒,∠360757590120OPO '∠=︒-︒-︒-︒=︒,∠18012060APO '∠=︒-︒=︒;(2)连接OO '交PB 于点G ,由折叠可知,BP 垂直平分OO ',6BO BO '==,OBP O BP '∠=∠, ∠BO '与圆相切,∠90OBO '∠=︒,∠OO '∠12OG OO '== ∠∠AOB =75°,18090452BOO ︒-︒'∠==︒, ∠30POO '∠=︒, ∠12PG OP =, ∠222OP PG OG =+, ∠221184OP OP =+,∠OP =∠6AP =-【点评】本题是圆的综合题,主要考查了圆的切线的性质,折叠的性质,含30°角的直角三角形的性质,四边形和三角形内角和定理和勾股定理等知识,根据折叠的性质、三角形内角和定理和四边形内角和定理求得30POO '∠=︒是解题的关键.4.(1)见解析 (2)65【分析】(1)根据直径所对的圆周角是直角可得90ACB ∠=︒,再由平行线的性质可得90DGA ∠=︒,结合A D ∠=∠与三角形内角和定理即可得到90DBE ∠=︒,即可得证; (2)如图2,连接OF ,先根据垂径定理证明OF AB ⊥,再证明EFO △∠EDB △,列比例式可得4OF =,即O 的半径为4,根据勾股定理可得DE 的长.(1)证明:AB 是O 的直径90ACB ∴∠=︒,DG BC ∥,90AGE ACB ∴∠=∠=︒,A D ∠=∠,AEG DEB ∠=∠,90DBE AGE ∴∠=∠=︒,A DB B ∴⊥,BD ∴与O 相切;(2)解:如图2,连接OF ,CF 平分ACB ∠,45ACF BCF ∴∠=∠=︒,290AOF ACF ∴∠=∠=︒OF AB ∴⊥,BD AB ⊥,OF BD ∴∥,EFO ∴∠EDB △,OF OE BD BE∴=, AE OE =,13OE EB ∴=, 1123OF ∴=, 4OF ∴=,246BE OE OB ∴=+=+=,DE ∴=【点评】此题考查了相似三角形的判定与性质,切线的判定,圆周角定理,勾股定理等知识,解答本题需要我们熟练掌握切线的判定,第2问关键是证明EFO △∠EDB △.5.(1)45DPC ∠=︒(2)8n =【分析】(1)连接OD,OC,根据正方形ABCD内接于∠O,结合圆周角定理可得∠CPD;(2)结合正多边形的性质以及圆周角定理得出∠COP的度数,进而得出答案.【解析】(1)解:连接OD,OC,∠正方形ABCD内接于∠O,∠∠DOC=90°,∠1452DPC DOC∠=∠=︒.(2)解:连接PO,OB,如图所示:∠正方形ABCD内接于∠O,∠∠COB=90°,∠点P为BC的中点,∠CP BP=,∠1452COP COB∠=∠︒=,∠n=360÷45=8.【点评】本题主要考查了正多边形和圆以及圆周角定理、正方形的性质,解题的关键是熟练掌握同弧所对的圆周角等于圆心角的一半.6.(1)证明见解析;(2)ED=358.【分析】(1)连接OD,先证∠DAB是等腰直角三角形,得OD∠AB,根据已知条件得到OD∠PD,即可得出结论;(2)先由勾股定理求得BC,再由等腰直角三角形的性质求出BD、BF、CF的长,然后由勾股定理和相似三角形的性质即可解决问题.(1)证明:连接OD,BD,如图所示∠AB为∠O的直径,∠∠ACB=90°,∠∠ACB的平分线交∠O于点D,∠∠ACD=∠BCD=45°,∠∠DAB=∠ABD=45°,∠∠DAB是等腰直角三角形,∠OA=OB,∠OD∠AB,∠∠ODB=∠DCB=45°,∠∠DCB=∠BDE,∠∠BDE=45°,∠∠ODE=90°,∠PD是∠O的切线;(2)解:∠∠O的半径为52,∠AB=5,∠AC=4,∠BC3,∠∠DAB为等腰直角三角形,∠BD 252 ∠BF ∠CD ,∠∠BCF 为等腰直角三角形,∠BF =CF 232 在Rt △DBF 中,DF 22BD BF -225232()()22-22 ∠CD =CF +DF 322272, ∠∠BDE =∠DCE ,∠E =∠E ,∠∠BDE ∠∠DCE , ∠DE CE =BE DE =BD CD =57, ∠BE =57ED ,CE =75ED , ∠EC =EB +BE , ∠57ED +3=75ED , 解得:ED =358. 【点评】本题考查了切线的判定与性质、圆周角定理定理、等腰直角三角形的判定与性质、勾股定理以及三角形相似的判定与性质等知识;熟练掌握切线的判定与性质和等腰直角三角形的判定与性质是解题的关键.7.(1)见解析 7【分析】(1)连接OD 、OE ,根据等腰三角形的性质及切线的性质可得结论;(2)根据相似三角形的判定与性质可得2CB CA CE =⋅,设BD CD a ==,则2BC a =,过E 作EH AB ⊥,连接AD ,然后通过解直角三角形可得答案.(1)证明:连接OD 、OE ,OD OE =,1(180)2ODE OED DOE ∴∠=∠=︒-∠, 2DOE DBE ∠=∠,90ODE DBE ∴∠=︒-∠, E 是切点,CE AC ∴⊥,90OEC ∴∠=︒,90OED DEC ∴∠=︒-∠,ODE OED ∠=∠,DEC CBE ∴∠=∠.(2) D ,E 分别是BC ,AC 的中点,DE ∴为ABC ∆的中位线,DE AB ∴∥,CED CAB ∴∠=∠,CED CBE ∠=∠,CBE CAB ∴∠=∠,BCE ACB ∠=∠,CBE CAB ∴∆∆∽, ∴CB CE CA CB=, 2CB CA CE ∴=⋅,设BD CD a ==,则2BC a =,2224CE a ∴=,2CE a ∴, ∴22AC a AB ==,过E 作EH AB ⊥,垂足为H ,连接AD ,AB AC =,D 为BC 中点,AD BC ∴⊥,2222(22)7AD AC CD a a a ∴--,2172ABC S BC AD a ∆∴=⋅, E 为AC 中点,2172ABE ABC S S ∆∆∴==, 即2172AB EH ⋅, 14EH ∴=, 2232AH AE EH ∴=-, 52BH AB AH ∴=-=, 7tan EH ABE BH ∴∠= 【点评】此题考查的是切线的性质,圆周角定理、等腰三角形性质、三角形中位线定理等知识,通过判定相似三角形得线段成比例从而得到答案是解决此题关键.8.(1)见解析(2)1【分析】(1)连接OD ,证明△ABD ∠∠DBE ,得到AB DB DB BE=,结论得证; (2)先求出BD 、AD 、DE ,再证明△ADB ∠∠CED ,得到EC DE AD DB =,代入数值即可得到答案.(1)证明:连接OD ,∠DE与∠O相切于D点,∠DE∠OD,∠∠ODE=90°,∠AD CD=,∠∠ABD=∠CBD,∠OD=OB,∠∠ODB=∠ABD,∠∠ODB=∠CBD,∠OD BE,∠∠E=180°-∠ODE=90°,∠AB是∠O的直径,∠∠ADB=90°,∠∠ABD∠∠DBE,∠AB DB DB BE=,∠2BD=AB•BE;(2)∠AB=5,BE=4,2BD=AB•BE,∠2BD=20,∠BD=∠AD DE2=,∠四边形ABCD是圆内接四边形,∠∠A+∠BCD=180°,∠∠DCE+∠BCD=180°,∠∠DCE =∠A ,又∠∠E =∠ADB =90°,∠∠ADB ∠∠CED , ∠EC DE AD DB=, 525=, ∠EC =1.【点评】此题主要考查了圆的切线的性质定理、圆周角定理及推论、圆内接四边形的性质、相似三角形的判定和性质、勾股定理等知识,证明三角形的相似是解题的关键.9.(1)见解析(2)BD 的长为4π3【分析】(1)连接OC 交BD 于点F ,利用切线的性质可得90OCE ∠=︒,利用垂径定理可得90DFC ∠=︒,利用直径所对的圆周角是直角可得90BDE ∠=︒,从而可得四边形DECF 是矩形,即可解答;(2)连接OD ,利用垂径定理可得DF BF =,从而可得OF 是ABD ∆的中位线,进而可得2AD OF =,然后根据结合已知和矩形的性质可得2AD CF =,从而可得OF CF =,然后在Rt ΔDOF 中,利用锐角三角函数的定义求出60DOF ∠=︒,再利用垂径定理可得60DOF BOF ∠=∠=︒,最后利用弧长公式进行计算即可解答.(1)证明:连接OC 交BD 于点F , CE 是O 的切线,90∴∠=︒OCE ,DC BC =,OC BD ∴⊥,90DFC ∴∠=︒, AB 是O 的直径,90ADB ∴∠=︒,18090BDE ADB ∴∠=︒-∠=︒,∴四边形DECF 是矩形, 90E ∴∠=︒,AE EC ∴⊥;(2)解:连接OD ,OC BD ⊥,DF BF ∴=,122OA OB AB ===, OF ∴是ABD ∆的中位线, 2AD OF ∴=,12ED AD =, 2AD DE ∴=,DE CF ∴=,2AD CF ∴=,12OF CF OC ∴==, 在Rt ΔDOF 中,12OF OD =, 1cos 2OF DOF OD ∴∠==, 60DOF ∴∠=︒,DC BC =,60DOF BOF ∴∠=∠=︒,120DOB DOF BOF ∴∠=∠+∠=︒,∴BD的长120241803ππ⨯==,∴BD的长为43π.【点评】本题考查了矩形的判定与性质,圆周角定理,切线的性质,垂径定理,三角形的中位线定理,弧长的计算,解直角三角形,根据题目的已知条件并结合图形添加的辅助线是解题的关键.10.(1)见解析(2)5【分析】(1)根据垂径定理可得AC=AD,即有∠ACD=∠D,再根据四边形AGCD内接于∠O,可证明∠D=∠FGC,则问题得解;(2)连接OC,设OA=OC=r,则OE=8-r,在Rt∠COE中,利用222OE CE OC+=,即可求解.(1)证明:∠AB为∠O的直径,CD∠AB,∠AB垂直平分CD,∠AC=AD,∠∠ACD=∠D,∠四边形AGCD内接于∠O,∠∠AGC+∠D=180°,∠∠AGC+∠FGC=180°,∠∠D=∠FGC,∠∠ACD=∠FGC;(2)连接OC ,∠AB 为∠O 的直径,CD ∠AB ,AE =CD =8,∠CE =ED =4,设OA =OC =r ,则OE =8-r ,在Rt ∠COE 中,222OE CE OC +=,即()22284r r -+=,解得r =5,即∠O 的半径为5.【点评】本题考查了垂径定理、圆内接四边形的性质、圆周角定理以及勾股定理等知识,掌握垂径定理是解答本题的关键.11.(1)(2)证明见解析【分析】(1)连接OD ,OM ∠CD ,根据垂径定理得出DM =CM =CD =12,根据勾股定理求出OD 即可;(2)延长AF 交BD 于Q ,求出AF =AC ,根据等腰三角形的性质得出∠C =∠AFC ,根据圆周角定理得出∠B =∠C ,求出∠B =∠DFQ ,求出∠B +∠D =90°,求出∠DFQ +∠D =90°即可.(1)解:连接OD ,∠M 是CD 的中点,∠OM ∠CD ,又∠OM 过圆心O ,CD =24,∠DM=CM=1CD=12,∠OMD=90°,2由勾股定理得:2222OD OM DM++412410即圆O的半径长是410(2)解:证明:延长AF交BD于Q,∠AB∠CD,CE=EF,∠AF=AC,∠∠C=∠AFC,∠∠DFQ=∠AFC,∠B=∠C,∠∠B=∠DFQ,∠AB∠CD,∠∠DEB=90°,∠∠B+∠D=90°,∠∠DFQ+∠D=90°,∠∠DQF=180°﹣(∠DFQ+∠D)=90°,∠AF∠BD.【点评】本题考查了垂径定理,圆周角定理,等腰三角形的性质,直角三角形的性质等知识点,能熟记垂径定理是解答(1)的关键,能求出∠B=∠DFQ是解(2)的关键.12.(1)证明见解析-33π【分析】(1)连接OC ,由∠A =∠D =30°,可得∠COD =2∠D ,从而求得∠OCD =90°,可证得直线CD 为∠O 的切线;(2)先求△OCD 和扇形OCB 的面积,进而可求出图中阴影部分的面积.(1)证明:连接OC ,∠∠A =∠D =30°,∠∠COD =2∠D ,∠3∠D =90°,∠∠OCD =90°,∠过点C 的直线交AB 的延长线于点D ,∠OC ∠CD ,∠CO 为圆的半径,∠ 直线CD 为圆的切线.(2)由(1)可知∠COD =60°在Rt △COD 中,∠CD =3,∠OC∠阴影部分的面积=260132360π⨯=【点评】本题主要考查切线的性质及扇形面积的计算,掌握过切点的半径与切线垂直是解题的关键,学会用分割法求阴影部分面积.13.(1)见解析(2)r =【分析】(1)先证明∠AB E=∠ADC ,∠AEB =∠ACB ,然后根据两个角相等的两个三角形相似,证明ABE ADC △∽△,得出AB AE AD AC=,即可得出结论; (2)根据AC AB AD AE ⋅=⋅,代入数据求出AE 的长,即可得出半径的长.(1)证明:连接BE ,如图所示:∠AE 是∠O 的直径,∠∠ABE =90°,∠AD 是△ABC 的高,∠∠ADC =90°,∠∠AB E=∠ADC ,∠AB AB =,∠∠AEB =∠ACB ,∠ABE ADC △∽△, ∠AB AE AD AC=, ∠AC AB AD AE ⋅=⋅.(2)解:∠10AB =,6AD =,35AC =AC AB AD AE ⋅=⋅, ∠103555AC AB AE AD ⋅⨯=== ∠∠O 的半径为:1552r AE == 【点评】本题主要考查圆周角定理,三角形相似的判定和性质,证明ABE ADC △∽△是解题的关键.14.(1)60°(2)45°【分析】(1)连接OA 、OB ,根据切线的性质得到∠OAP =∠OBP =90°,根据四边形内角和等于360°计算;(2)连接CE,根据圆周角定理得到∠ACE=90°,由(1)知∠ACB=60°,则∠BCE=90°-60°=30°,根据圆周角定理可得∠BAE=∠BCE=30°,再根据等腰三角形的性质、三角形的外角性质可计算出∠EAC =15°,然后由∠BAC=∠BAE+∠EAC即可求解.(1)解:连接OA、OB,∠P A,PB是∠O的切线,∠∠OAP=∠OBP=90°,∠∠AOB=360°-90°-90°-60°=120°,∠AOB=60°;由圆周角定理得,∠ACB=12(2)解:连接CE,∠AE为∠O的直径,∠∠ACE=90°,由(1)知∠ACB=60°,∠∠BCE=90°-60°=30°,∠∠BAE=∠BCE=30°,∠AB=AD,∠∠ABD=∠ADB=75°,∠∠EAC=∠ADB-∠ACB=15°.∠∠BAC=∠BAE+∠EAC=30°+15°=45°.【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.15.(1)45°(2)P A=10,PD=52【分析】(1)连接AC,利用圆周角定理得到AC为∠O的直径,则∠ADC=90°,再证明∠ACD=∠CAD=45°,接着根据切线的性质得到∠P AC=90°,从而得到∠P=45°;(2)先利用勾股定理计算出AC=10,则利用∠P=∠ACP=45°得到AP=10,然后利用∠APD 为等腰直角三角形得到PD的长度.(1)解:连接AC,如图,∠∠ABC=90°,∠AC为∠O的直径,∠∠ADC=90°,∠AD=CD,∠∠ACD=∠CAD=45°,∠P A为∠O的切线,∠CA∠P A,∠∠P AC=90°,∠∠P=90°-∠ACD=45°;(2)解:在Rt∠ABC中,2222++=,AC AB BC6810∠∠P=∠ACP=45°,∠AP=AC=10,∠∠ADC =90°,∠∠APD 为等腰直角三角形,∠1022===PD AP 【点评】本题考查了切线的性质、圆周角定理、勾股定理、等腰直角三角形的判定和性质等知识,熟练掌握相关定理是解题的关键.16.(1)见解析(2)2【分析】(1)根据切线的性质得到∠CDB +∠ODB =90°,由AB 是∠O 的直径,推出∠ODB +∠ADO =90°,得到∠CDB =∠ADO ,再利用OA =OD ,推出∠ADO ∠DAO ,即可证得; (2)证明∠CBD ∠∠CDA ,推出BD CD AD AC ,根据tan∠BDC =23,得到tan∠CAD =23=BD CD AD AC,代入AC =3,即可求出CD .(1)证明:连接OD ,∠CD 是∠O 的切线,∠OD ∠CD ,即∠ODC =90°,∠∠CDB +∠ODB =90°,∠AB 是∠O 的直径,∠∠ADB =90°,即∠ODB +∠ADO =90°,∠∠CDB =∠ADO ,∠OA =OD ,∠∠ADO=∠DAO ,∠∠CAD =∠BDC ;(2)∠∠CAD =∠BDC ,∠C =∠C ,∠∠CBD∠∠CDA,∠BD CD AD AC,∠tan∠BDC=23,∠tan∠CAD=23=BD CD AD AC,∠2 33 CD,解得:CD=2.【点评】此题考查了切线的性质,直径所对的圆周角是直角,相似三角形的判定和性质,利用正切值求边长,熟练掌握各知识点是解题的关键.17.(1)见解析(2)5【分析】(1)连接OD,根据等腰三角形的性质和角平分线得出OD∠BE,再根据垂线和平行线的性质得出OD∠DE,进而得出DE是∠O的切线;(2)根据圆周角定理和垂径定理得出AF=FC=DE=4,在Rt∠OAF中,由勾股定理列方程求解即可.【解析】(1)解:如图,连接OD,∠BD平分∠ABC,∠∠ABD=∠DBC,又∠OB=OD,∠∠ABD=∠ODB,∠∠ODB=∠DBC,∠OD∠BE,∠DE∠BE,∠OD∠DE,∠DE 是∠O 的切线;(2)如图,连接AC ,交OD 于F ,∠AB 是∠O 的直径,∠∠ACB =90°,又∠∠FDE =90°,∠DEC =90°,∠四边形FDEC 是矩形,∠DF =CE =2,FC =DE =4.由垂径定理可知4AF CF ==设∠O 的半径为r ,在Rt ∠OAF 中,由勾股定理得,222OF AF OA +=即(r -2)2+42=r 2,解得r =5.即半径为5.【点评】本题考查切线的判定和性质,圆周角定理、垂径定理以及勾股定理,掌握切线的判定方法,掌握圆周角定理、垂径定理以及勾股定理是正确解答的关键.18.(1)见解析(2)AG =【分析】(1)方法一:如图1,连接OC ,OD .由OCD ODC ∠=∠,FC FE =,可得OED FCE ∠=∠,由AB 是O 的直径,D 是AB 的中点,90DOE ∠=︒,进而可得90OCF ∠=︒,即可证明CF 为O 的切线;方法二:如图2,连接OC ,BC .设CAB x ∠=︒.同方法一证明90OCF ∠=︒,即可证明CF 为O 的切线;(2)方法一:如图3,过G 作GH AB ⊥,垂足为H .设O 的半径为r ,则2OF r =+.在Rt ∠OCF 中,勾股定理求得3r =,证明GH DO ∥,得出BHG BOD ∽,根据BH BG BO BD =,求得,BH GH ,进而求得AH ,根据勾股定理即可求得AG ;方法二:如图4,连接AD .由方法一,得3r =.6AB =,D 是AB 的中点,可得AD BD ==根据勾股定理即可求得AG .【解析】(1)(1)方法一:如图1,连接OC ,OD .∠OC OD =,∠OCD ODC ∠=∠.∠FC FE =,∠FCE FEC ∠=∠.∠OED FEC ∠=∠,∠OED FCE ∠=∠.∠AB 是O 的直径,D 是AB 的中点,∠90DOE ∠=︒.∠90OED ODC ∠+∠=︒.∠90FCE OCD ∠+∠=︒,即90OCF ∠=︒.∠OC CF ⊥.∠CF 为O 的切线.方法二:如图2,连接OC ,BC .设CAB x ∠=︒.∠AB 是O 的直径,D 是AB 的中点,∠45ACD DCB ∠=∠=︒.∠()45CEF CAB ACD x ∠=∠+∠=+︒.∠FC FE =,∠()45FCE FEC x ∠=∠=+︒.∠BCF x ∠=︒.∠OA OC =,∠ACO OAC x ∠=∠=︒.∠BCF ACO ∠=∠.∠AB 是O 的直径,∠90ACB ∠=︒.∠90OCB ACO ∠+∠=︒.∠90OCB BCF ∠+∠=︒,即90OCF ∠=︒.∠OC CF ⊥.∠CF 为O 的切线.(2)解:方法一:如图3,过G 作GH AB ⊥,垂足为H .设O 的半径为r ,则2OF r =+.在Rt ∠OCF 中,()22242r r +=+,解之得3r =.∠GH AB ⊥,∠90GHB ∠=︒.∠90DOE ∠=︒,∠GHB DOE ∠=∠.∠GH DO ∥. BHG BOD ∴∽ ∠BH BG BO BD=. ∠G 为BD 中点, ∠12BG BD =. ∠1322BH BO ==,1322GH OD ==.∠39622AH AB BH =-=-=. ∠222239310222AG GH AH ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭方法二:如图4,连接AD .由方法一,得3r =.∠AB 是O 的直径,∠90ADB ∠=︒.∠6AB =,D 是AB 的中点, ∠32AD BD ==∠G 为BD 中点, ∠13222DG BD == ∠()2222333221022AG AD DG ⎛⎫=+=+= ⎪⎝⎭【点评】本题考查了切线的判定,勾股定理,相似三角形的性质与判定,综合运用以上知识是解题的关键.19.(1)见解析 (2)245【分析】(1)连接OC ,利用切线的性质,先证明OC AD ∥,即有DAC OCA ∠=∠,再根据OA OC =,可得ACO CAO ∠=∠,即有DAC EAC ∠=∠;(2)设∠O 的半径为r ,即有2OE r =+,在Rt ∠COE 中,222OC CE OE +=,即()22242r r +=+即可求出r ,根据OC AD ∥,可得OEC AED ∽,则有OE OC AE AD=,则问题得解. (1)(1)连接OC ,如图,∠EC 是∠O 的切线,∠OC CE ⊥,∠AD CE ⊥,∠OC AD ∥,∠DAC OCA ∠=∠,∠OA OC =,∠ACO CAO ∠=∠,∠DAC EAC ∠=∠;(2)设∠O 的半径为r ,∠2BE =,4CE =,∠2OE r =+,∠在Rt ∠COE 中,222OC CE OE +=,∠()22242r r +=+,解得3r =,∠5OE =,8AE =,∠OC AD ∥,∠OEC AED ∽, ∠OE OC AE AD =,即538AD=, 解得245AD =, ∠线段AD 的长为245. 【点评】本题考查了切线的性质、平行的判定与性质、勾股定理、相似三角形的判定与性质等知识,灵活利用平行线的判定与性质是解答本题的关键.20.(1)见解析(2)5【分析】(1)利用直径所对圆周角是直角得出190ADC ∠+∠=︒,再由切线的性质得出90ABP ∠=︒,则290P ∠+∠=︒,又由圆周角定理得12∠=∠,则P ADC ∠=∠,最后由等腰三角形性质得CAD ADC ∠=∠,即可得出结论;(2)先证明AOC DOC ≌△△,得到2345∠=∠=∠=∠,又因为12∠=∠,则14∠=∠,得出OC BD ∥,从而得CE OE DE BE =,即2232CE DE ==-,即12DE CE =,再证明AEC DEB △∽△,得AE CE DE BE=,即3232CE DE +=-,代入即可求解. (1)证明:如图,∠AB 是O 的直径,∠190ADC ∠+∠=︒,∠PB 与O 相切于点B ,∠90ABP ∠=︒,∠290P ∠+∠=︒,∠12∠=∠,∠P ADC ∠=∠,∠AC CD =,∠CAD ADC ∠=∠,∠P CAD ∠=∠,即P PAD ∠=∠,(2)解:如图,∠AC CD =,OC OC =,OA OD =∠AOC DOC ≌△△,∠2345∠=∠=∠=∠,∠12∠=∠,∠14∠=∠,∠OC BD ∥, ∠CE OE DE BE=,即2232CE DE ==-, ∠12DE CE =, ∠AEC DEB ∠=∠,12∠=∠,∠AEC DEB △∽△, ∠AE CE DE BE=,即3232CE DE +=-, ∠5CE DE ⋅=即152CE CE ⋅=,解得10CE .【点评】本题考查圆周角定理及其推论,切线的性质,全等三角形判定和性质,相似三角形△∽△是解题的关键.的判定与性质,证明AEC DEB。

人教版九年级数学中考圆的综合专项练习及参考答案

人教版九年级数学中考圆的综合专项练习及参考答案

人教版九年级数学中考圆的综合专项练习类型一 与全等结合1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.第1题图(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;第1题解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°, ∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB , ∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中,⎩⎪⎨⎪⎧AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL).2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ;(3)若sin B =45,求cos ∠BDM 的值.第2题图(1)证明:如解图,连接OD ,∵CA 、CD 分别与⊙O 相切于点A 、D , ∴OA ⊥AC ,OD ⊥CD , 在Rt △OAC 和Rt △ODC 中,⎩⎪⎨⎪⎧OA =OD OC =OC,∴Rt△OAC≌Rt△ODC(HL),∴AC=DC;(2)证明:由(1)知,△OAC≌△ODC,∴∠AOC=∠DOC,∴∠AOD=2∠AOC,∵∠AOD=2∠OBD,∴∠AOC=∠OBD,∴BD∥CM;(3)解:∵BD∥CM,∴∠BDM=∠M,∠DOC=∠ODB,∠AOC=∠B,∵OD=OB=OM,∴∠ODM=∠OMD,∠ODB=∠B=∠DOC,∵∠DOC=2∠DMO,∴∠DOC=2∠BDM,∴∠B=2∠BDM,如解图,作OE平分∠AOC,交AC于点E,作EF⊥OC于点F,第2题解图∴EF =AE ,在Rt △EAO 和Rt △EFO 中,∵⎩⎪⎨⎪⎧OE =OE AE =EF , ∴Rt △EAO ≌Rt △EFO (HL), ∴OA =OF ,∠AOE =12∠AOC ,∴点F 在⊙O 上,又∵∠AOC =∠B =2∠BDM , ∴∠AOE =∠BDM , 设AE =EF =y , ∵sin B =45,∴在Rt △AOC 中,sin ∠AOC =AC OC =45,∴设AC =4x ,OC =5x ,则OA =3x ,在Rt △EFC 中,EC 2=EF 2+CF 2, ∵EC =4x -y ,CF =5x -3x =2x , ∴(4x -y )2=y 2+(2x )2, 解得y =32x ,∴在Rt △OAE 中,OE =OA 2+AE 2=(3x )2+(32x )2=352x ,∴cos ∠BDM =cos ∠AOE =OA OE =3x 352x=255.3. 如图,⊙O 是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E . (1)求证:∠1=∠BCE ; (2)求证:BE 是⊙O 的切线; (3)若EC =1,CD =3,求cos ∠DBA .第3题图(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵, ∴AB =BD在△ABF 与△DBE 中, ⎩⎪⎨⎪⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB, ∴△ABF ≌△DBE (AAS), ∴BF =BE , ∵BE ⊥DC ,BF ⊥AC , ∴∠1=∠BCE ; (2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°, ∵∠BCE +∠EBC =90°,且∠1=∠BCE , ∴∠BAC =∠EBC , ∵OA =OB , ∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°, ∴∠EBO =90°, 又∵OB 为⊙O 的半径, ∴BE 是⊙O 的切线;第3题解图(3)解:在△EBC 与△FBC 中,⎩⎪⎨⎪⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS), ∴CE =CF =1.由(1)可知:AF =DE =1+3=4, ∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.类型二 与相似结合4. 如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.第4题图(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,∴∠AFB =∠ACB =72°, ∵BD 平分∠ABC , ∴∠DBC =36°, ∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA ,∴AE DE =EF EA, ∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC , ∴AG 垂直平分BC , ∴AG 过圆心O , ∵AD ∥BC , ∴AD ⊥AG , ∴AD 是⊙O 的切线.第4题解图5. 如图,AB 为半圆的直径,O 为圆心,OC ⊥AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F .(1)求证:∠CED =45°;(2)求证:AE =BD ;(3)求AO OF的值.第5题图(1)证明:∵∠CDA =12∠COA =12×90°=45°, 又∵CE ⊥DC ,∴∠DCE =90°,∴∠CED =180°-90°-45°=45°;(2)解:如解图,连接AC ,∵D 为BC ︵的中点,∴∠BAD =∠CAD =12×45°=22.5°, 而∠CED =∠CAE +∠ACE =45°,∴∠CAE =∠ACE =22.5°,∴AE =CE ,∵∠ECD =90°,∠CED =45°,∴CE =CD ,又∵CD ︵=BD ︵,∴CD =BD ,∴AE =CE =CD =BD ,∴AE =BD ;第5题解图(3)解:设BD =CD =x ,∴AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x ,又∵AB 是直径,则∠ADB =90°,∴△AOF ∽△ADB ,∴AO OF =AD DB =x +2x x=1+ 2. 6. 如图,AB 为⊙O 的直径,P 点为半径OA 上异于点O 和点A 的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE ⊥AB ,OE //AD 交BE 于E 点,连接AE 、DE ,AE 交CD 于点F .(1)求证:DE 为⊙O 的切线;(2)若⊙O 的半径为3,sin ∠ADP =13,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.第6题图(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE,∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;第6题解图(3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB ,∴PF =AP ·BE AB ,在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE∠PAD =∠BOE ,∴△APD ∽△OBE ,∴PD BE =AP OB ,∴PD =AP ·BE OB ,∵AB =2OB ,∴PF =12PD , ∴PF =FD .7. 如图①,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,OD ∥AC ,OD 交⊙O 于点E ,且∠CBD =∠COD .(1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,求证:四边形OACE 是菱形.(3)如图②,作CF ⊥AB 于点F ,连接AD 交CF 于点G ,求FG FC的值.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠ABC +∠BAC =90°,∵OD ∥AC ,∴∠ACO =∠COD .∵OA=OC,∴∠BAC=∠ACO,又∵∠COD=∠CBD,∴∠CBD=∠BAC,∴∠ABC+∠CBD=90°,∴∠ABD=90°,即OB⊥BD,又∵OB是⊙O的半径,∴BD是⊙O的切线;(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE,∴四边形OACE是菱形;第7题解图(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴FCBD=AFOB,即FC=BD·AFOB,又∵FG∥BD,∴△AFG∽△ABD,∴FGBD=AFAB,即FG=BD·AFAB,∴FC FG =AB OB=2, ∴FG FC =12. 8. 如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC ⊥OB 交⊙O 于点C ,作直径CD 过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE ·CP ;(3)当AB =43且CF CP =34时,求劣弧BD ︵的长度.第8题图(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠FAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE ∽△CPB ,∴BC PC =CE CB, ∴BC 2=CE ·CP ;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34, ∴CE CP =34, 设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32, ∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.类型三 与全等相似结合9. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG .(1)求证:AB =CD ;(2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.第9题图(1)证明:∵AC 为直径,∴∠ABC =∠ADC =90°,∴∠ABC =∠BAD =90°,∴BC ∥AD ,∴∠BCA =∠CAD ,又∵AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD;(2)证明:∵AE为⊙O的切线且O为圆心,∴OA⊥AE,即CA⊥AE,∴∠EAB+∠BAC=90°,而∠BAC+∠BCA=90°,∴∠EAB=∠BCA,而∠EBA=∠ABC,∴△EBA∽△ABC,∴EBAB=BABC,∴AB2=BE·BC,由(1)知AB=CD,∴CD2=BE·BC;(3)解:由(2)知CD2=BE·BC,即CD 2=92BC ①, ∵FG ∥BC 且点F 为AC 的三等分点,∴G 为AB 的三等分点,即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③, 将③代入①得,CD =332. 10.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).第10题图 (1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.。

圆的有关计算与证明(共50题)(解析版)-2023年中考数学真题分项汇编(全国通用)

圆的有关计算与证明(共50题)(解析版)-2023年中考数学真题分项汇编(全国通用)

圆的有关计算与证明(50题)一、单选题1.(2023·新疆·统考中考真题)如图,在⊙O 中,若∠ACB =30°,OA =6,则扇形OAB (阴影部分)的面积是()A.12πB.6πC.4πD.2π【答案】B【分析】根据圆周角定理求得∠AOB =60°,然后根据扇形面积公式进行计算即可求解.【详解】解:∵AB=AB,∠ACB =30°,∴∠AOB =60°,∴S =60360π×62=6π.故选:B .【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键.2.(2023·江苏连云港·统考中考真题)如图,矩形ABCD 内接于⊙O ,分别以AB 、BC 、CD 、AD 为直径向外作半圆.若AB =4,BC =5,则阴影部分的面积是()A.414π-20 B.412π-20 C.20πD.20【答案】D【分析】根据阴影部分面积为2个直径分别为AB ,BC 的半圆的面积加上矩形的面积减去直径为矩形对角线长的圆的面积即可求解.【详解】解:如图所示,连接AC ,∵矩形ABCD 内接于⊙O ,AB =4,BC =5∴AC 2=AB 2+BC 2∴阴影部分的面积是S 矩形ABCD +π×AB 2 2+π×BC22-πAC22S 矩形ABCD +π×14AB 2+BC 2-AC 2=S 矩形ABCD=4×5=20,故选:D .【点睛】本题考查了勾股定理,矩形的性质,熟练掌握勾股定理是解题的关键.3.(2023·湖北荆州·统考中考真题)如图,一条公路的转弯处是一段圆弧(AC),点O 是这段弧所在圆的圆心,B 为AC上一点,OB ⊥AC 于D .若AC =3003m ,BD =150m ,则AC 的长为()A.300πmB.200πmC.150πmD.1003πm【答案】B【分析】根据垂径定理求出AD 长度,再根据勾股定理求出半径长度,最后利用弧长公式即可求出答案.【详解】解:∵OB ⊥AC ,点O 是这段弧所在圆的圆心,∴AD =CD ,,∵OD =OD ,OA =OC ,∴△ADO ≌△CDO ,∴∠AOD =∠COD .∵AC =3003m ,AD =CD ,∴AD =CD =1503m .设OA =OC =OB =x ,则DO =x -150,在Rt △ADO 中,x 2=x -150 2+1503 2,∴x =300m ,∴sin ∠AOD =AD AO=1503300=32.∴∠AOD =60°,∴∠AOC =120°,∴AC =n πR 180=120×π×300180=200πm .故选:B .【点睛】本题考查了圆的垂径定理,弧长公式,解题的关键在于通过勾股定理求出半径长度,从而求出所求弧长所对应的圆心角度数.4.(2023·山东滨州·统考中考真题)如图,某玩具品牌的标志由半径为1cm 的三个等圆构成,且三个等圆⊙O 1,⊙O 2,⊙O 3相互经过彼此的圆心,则图中三个阴影部分的面积之和为()A.14πcm 2 B.13πcm 2 C.12πcm 2 D.πcm 2【答案】C 【分析】根据圆的对称性可知:图中三个阴影部分的面积相等,只要计算出一个阴影部分的面积即可,如图,连接AO 1,AO 2,O 1O 2,阴影AO 1O 2的面积=扇形AO 1O 2的面积,据此即可解答.【详解】解:根据圆的对称性可知:图中三个阴影部分的面积相等;如图,连接AO 1,AO 2,O 1O 2,则AO 1=AO 2=O 1O 2,△AO 1O 2是等边三角形,∴∠AO 1O 2=60°,弓形AO 1,AO 2,O 1O 2的面积相等,∴阴影AO 1O 2的面积=扇形AO 1O 2的面积=60π×12360=16πcm 2,∴图中三个阴影部分的面积之和=3×16π=12πcm 2;故选:C .【点睛】本题考查了不规则图形面积的计算,正确添加辅助线、掌握求解的方法是解题关键.5.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形,曲线DA 1B 1C 1D 1A 2⋯是由多段90°的圆心角的圆心为C ,半径为CB 1;C 1D 1 的圆心为D ,半径为DC 1⋯,DA 1 、A 1B 1 、B 1C 1、C 1D 1⋯的圆心依次为A 、B 、C 、D 循环,则A 2023B 2023�的长是()A.4045π2B.2023πC.2023π4D.2022π【答案】A【分析】曲线DA 1B 1C 1D 1A 2⋯是由一段段90度的弧组成的,半径每次比前一段弧半径+12,得到AD n -1=AA n =4×12(n -1)+12,BA n =BB n =4×12(n -1)+1,得出半径,再计算弧长即可.【详解】解:由图可知,曲线DA 1B 1C 1D 1A 2⋯是由一段段90度的弧组成的,半径每次比前一段弧半径+12,∴AD =AA 1=12,BA 1=BB 1=1,CB 1=CC 1=32,DC 1=DD 1=2,AD 1=AA 2=2+12,BA 2=BB 2=2+1,CB 2=CC 2=2+32,DC 2=DD 2=2+2,⋯⋯,AD n -1=AA n =4×12(n -1)+12,BA n =BB n =4×12(n -1)+1,故A 2023B 2023 的半径为BA 2023=BB 2023=4×12×2023-1 +1=4045,∴A 2023B 2023 的弧长=90180×4045π=40452π.故选:A .【点睛】此题主要考查了弧长的计算,弧长的计算公式:l =n πr180,找到每段弧的半径变化规律是解题关键.6.(2023·四川广安·统考中考真题)如图,在等腰直角△ABC 中,∠ACB =90°,AC =BC =22,以点A 为圆心,AC 为半径画弧,交AB 于点E ,以点B 为圆心,BC 为半径画弧,交AB 于点F ,则图中阴影部分的面积是()A.π-2B.2π-2C.2π-4D.4π-4【答案】C【分析】先利用扇形的面积公式求出扇形ACE 和扇形BCF 的面积,再减去△ABC 的面积即可得.【详解】解:∵△ABC 是等腰直角三角形,∴∠A =∠B =45°,∵AC =BC =22,∴图中阴影部分的面积是S 扇形ACE +S 扇形BCF -S Rt △ABC =45π×22 2360+45π×22 2360-12×22 ×22=2π-4,故选:C .【点睛】本题考查了扇形的面积,熟练掌握扇形的面积公式是解题关键.7.(2023·江苏苏州·统考中考真题)如图,AB 是半圆O 的直径,点C ,D 在半圆上,CD=DB,连接OC ,CA ,OD ,过点B 作EB ⊥AB ,交OD 的延长线于点E .设△OAC 的面积为S 1,△OBE 的面积为S 2,若S 1S 2=23,则tan ∠ACO 的值为()A.2B.223C.75D.32【答案】A【分析】如图,过C 作CH ⊥AO 于H ,证明∠COD =∠BOE =∠CAO ,由S 1S 2=23,即12OA ∙CH 12OB ∙BE =23,可得CH BE =23,证明tan ∠A =tan ∠BOE ,可得CH BE =AH OB =23,设AH =2m ,则BO =3m =AO =CO ,可得OH =3m -2m =m ,CH =9m 2-m 2=22m ,再利用正切的定义可得答案.【详解】解:如图,过C 作CH ⊥AO 于H ,∵CD=BD,∴∠COD =∠BOE =∠CAO ,∵S 1S 2=23,即12OA ∙CH 12OB ∙BE =23,∴CH BE=23,∵∠A =∠BOE ,∴tan ∠A =tan ∠BOE ,∴CH AH=BE OB ,即CH BE =AH OB =23,设AH =2m ,则BO =3m =AO =CO ,∴OH =3m -2m =m ,∴CH =9m 2-m 2=22m ,∴tan ∠A =CH AH=22m2m =2,∵OA =OC ,∴∠A =∠ACO ,∴tan ∠ACO =2;故选:A .【点睛】本题考查的是圆周角定理的应用,勾股定理的应用,锐角三角函数的应用,作出合适的辅助线构建直角三角形是解本题的关键.二、填空题8.(2023·重庆·统考中考真题)如图,在矩形ABCD 中,AB =2,BC =4,E 为BC 的中点,连接AE ,DE ,以E 为圆心,EB 长为半径画弧,分别与AE ,DE 交于点M ,N ,则图中阴影部分的面积为.(结果保留π)【答案】4-π【分析】利用矩形的性质求得AB =CD =2,BE =CE =2,进而可得∠BAE =∠AEB =∠DEC =∠CDE =45°,然后根据S 阴影=2S △ABE -S 扇形BEM 解答即可.【详解】解:∵四边形ABCD 是矩形,AB =2,BC =4,E 为BC 的中点,∴AB =CD =2,BE =CE =12BC =2,∠ABC =∠DCB =90°,∴∠BAE =∠AEB =∠DEC =∠CDE =45°,∴S 阴影=2S △ABE -S 扇形BEM =2×12×2×2-45π×22360 =2×2-12π=4-π;故答案为:4-π.【点睛】本题考查了矩形的性质和不规则面积的计算,熟练掌握矩形的性质、明确阴影面积为两个全等的等腰直角三角形的面积减去两个圆心角为45°的扇形面积是解题关键.9.(2023·黑龙江绥化·统考中考真题)如图,⊙O 的半径为2cm ,AB 为⊙O 的弦,点C 为AB上的一点,将AB沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为.(结果保留π与根号)【答案】23π-3cm 2【分析】根据折叠的性质得出△AOC 是等边三角形,则∠AOC =60°,OD =CD =1,根据阴影部分面积=S 扇形AOC -S △AOC 即可求解.【详解】解:如图所示,连接OA ,OC ,设AB ,CO 交于点D∵将AB沿弦AB 翻折,使点C 与圆心O 重合,∴AC =AO ,OC ⊥AB 又OA =OC ∴OA =OC =AC ,∴△AOC 是等边三角形,∴∠AOC =60°,OD =CD =1,∴AD =AO 2-CD 2=3,∴阴影部分面积=S 扇形AOC -S △AOC =60360π×22-12×2×3=23π-3cm 2 故答案为:23π-3cm 2.10.(2023·重庆·统考中考真题)如图,⊙O 是矩形ABCD 的外接圆,若AB =4,AD =3,则图中阴影部分的面积为.(结果保留π)【答案】254π-12【分析】根据直径所对的圆周角是直角及勾股定理得到BD =5,再根据圆的面积及矩形的性质即可解答.【详解】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是⊙O 的直径,∵AB =4,AD =3,∴BD =AB 2+AD 2=5,∴⊙O 的半径为52,∴⊙O 的面积为254π,矩形的面积为3×4=12,∴阴影部分的面积为254π-12;故答案为:254π-12.【点睛】本题考查了矩形的性质,圆的面积,矩形的面积,勾股定理,掌握矩形的性质是解题的关键.11.(2023·江苏扬州·统考中考真题)用半径为24cm ,面积为120πcm 2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为cm .【答案】5【分析】应为圆锥侧面母线的长就是侧面展开扇形的半径,利用圆锥侧面面积公式:S =π⋅r ⋅l ,就可以求出圆锥的底面圆的半径.【详解】解:设圆锥底面圆的半径为r ,l =24,由扇形的面积:S =π⋅r ⋅l =120π,得:r =5故答案为:5.【点睛】本题考查了圆锥侧面面积的相关计算,熟练掌握圆锥侧面面积的计算公式是解题的关键,注意用扇形围成的圆锥,扇形的半径就是圆锥的母线.12.(2023·浙江温州·统考中考真题)若扇形的圆心角为40°,半径为18,则它的弧长为.【答案】4π【分析】根据弧长公式l =n πr180即可求解.【详解】解:扇形的圆心角为40°,半径为18,∴它的弧长为40180×18π=4π,故答案为:4π.【点睛】本题考查了求弧长,熟练掌握弧长公式是解题的关键.13.(2023·浙江宁波·统考中考真题)如图,圆锥形烟囱帽的底面半径为30cm,母线长为50cm,则烟囱帽的侧面积为cm2.(结果保留π)【答案】1500π【分析】根据圆锥侧面展开图是一个扇形,由扇形面积公式S=12lr代值求解即可得到答案.【详解】解:∵圆锥形烟囱帽的底面半径为30cm,母线长为50cm,∴烟囱帽的侧面积S=12lr=12×2π×30×50=1500π(cm2),故答案为:1500π.【点睛】本题考查圆锥侧面展开图及扇形面积公式S=12lr,熟记扇形面积公式是解决问题的关键.14.(2023·天津·统考中考真题)如图,在每个小正方形的边长为1的网格中,等边三角形ABC内接于圆,且顶点A,B均在格点上.(1)线段AB的长为;(2)若点D在圆上,AB与CD相交于点P.请用无刻度的直尺,在如图所示的网格中,画出点Q,使△CPQ为等边三角形,并简要说明点Q的位置是如何找到的(不要求证明).【答案】(1)29(2)画图见解析;如图,取AC,AB与网格线的交点E,F,连接EF并延长与网格线相交于点G;连接DB与网格线相交于点H,连接HF并延长与网格线相交于点I,连接AI并延长与圆相交于点K,连接CK并延长与GB的延长线相交于点Q,则点Q即为所求【分析】(1)在网格中用勾股定理求解即可;(2)取AC,AB与网格线的交点E,F,连接EF并延长与网格线相交于点M,连接MB;连接DB与网格线相交于点G,连接GF并延长与网格线相交于点H,连接AH并延长与圆相交于点I,连接CI并延长与MB的延长线相交于点Q,则点Q即为所求,连接PQ,AD,BK,过点E作ET⊥网格线,过点G作GS ⊥网格线,由图可得Rt △AJF ≌Rt △BLF AAS ,根据全等三角形的性质可得Rt △IMF ≌Rt △HNF ASA 和△AIF ≌△BHF SAS ,根据同弧所对圆周角相等可得AD=BK,进而得到∠1=∠2和∠PCQ =60°,再通过证明△CAP ≌△CBQ ASA 即可得到结论.【详解】(1)解:AB =22+52=29;故答案为:29.(2)解:如图,取AC ,AB 与网格线的交点E ,F ,连接EF 并延长与网格线相交于点G ;连接DB 与网格线相交于点H ,连接HF 并延长与网格线相交于点I ,连接AI 并延长与圆相交于点K ,连接CK 并延长与GB 的延长线相交于点Q ,则点Q 即为所求;连接PQ ,AD ,BK ,过点E 作ET ⊥网格线,过点G 作GS ⊥网格线,由图可得:∵∠AJF =∠BLF ,∠AFJ =∠BFL ,AJ =BL ,∴Rt △AJF ≌Rt △BLF AAS ,∴FJ =FL ,AF =BF ,∵MJ =NL ,∴FJ -MJ =FL -NL ,即FM =FN ,∵∠IMF =∠HNF ,∠IFM =∠HFN ,∴Rt △IMF ≌Rt △HNF ASA ,∴FI =FH ,∵∠AFI =∠BFH ,AF =BF ,∴△AIF ≌△BHF SAS ,∴∠FAI =∠FBH ,∴AD=BK,∴∠1=∠2,∵△ABC 是等边三角形,∴∠ACB =60°,即∠1+∠PCB =60°,∴∠2+∠PCB =60°,即∠PCQ =60°,∵ET =GS ,∠ETF =∠GSF ,∠EFT =∠GFS ,∴Rt △ETF ≌Rt △GSF AAS ,∴EF =GF ,∵AF =BF ,∠AFE =∠BFG ,∴△AFE ≌△BFG SAS ,∴∠EAF =∠GBF ,∴∠GBF =∠EAF =∠CBA =60°,∴∠CBQ =180°-∠CBA -∠GBF =60°,∴∠CBQ =∠CAB ,∵CA =CB ,∴△CAP ≌△CBQ ASA ,∴CQ =CP ,∵∠PCQ =60°,∴△PCQ 是等边三角形,此时点Q 即为所求;故答案为:如图,取AC ,AB 与网格线的交点E ,F ,连接EF 并延长与网格线相交于点G ;连接DB 与网格线相交于点H ,连接HF 并延长与网格线相交于点I ,连接AI 并延长与圆相交于点K ,连接CK 并延长与GB 的延长线相交于点Q ,则点Q 即为所求.【点睛】本题考查作图-复杂作图,勾股定理、等边三角形的判定、全等三角形的判定与性质等知识,解题关键是理解题意,灵活运用所学知识是关键.15.(2023·江苏苏州·统考中考真题)如图,在▱ABCD 中,AB =3+1,BC =2,AH ⊥CD ,垂足为H ,AH =3.以点A 为圆心,AH 长为半径画弧,与AB ,AC ,AD 分别交于点E ,F ,G .若用扇形AEF 围成一个圆锥的侧面,记这个圆锥底面圆的半径为r 1;用扇形AHG 围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r 2,则r 1-r 2=.(结果保留根号)【答案】324【分析】由▱ABCD ,AB =3+1,BC =2,AH ⊥CD ,AH =3,AD =BC =2,DH =22-3 2=1,cos DAH =AH AD=32,AB =CD =3+1,AB ∥CD ,求解∠DAH =30°,CH =3=AH ,证明∠ACH =∠CAH =45°,可得∠BAC =45°,再分别计算圆锥的底面半径即可.【详解】解:∵在▱ABCD 中,AB =3+1,BC =2,AH ⊥CD ,AH =3,∴AD =BC =2,DH =22-3 2=1,∵cos ∠DAH =AHAD=32,AB =CD =3+1,∴∠DAH =30°,CH =3=AH ,∴∠ACH =∠CAH =45°,∵AB ∥CD ,∴∠BAC =45°,∴45π×3180=2πr 1,30π×3180=2πr 2,解得:r 1=38,r 2=312,∴r 1-r 2=3324-2324=324;故答案为:324【点睛】本题考查的是平行四边形的性质,勾股定理的应用,锐角三角函数的应用,扇形的弧长的计算,圆锥的底面半径的计算,熟记圆锥的侧面展开图的扇形弧长等于底面圆的周长是解本题的关键.16.(2023·四川自贡·统考中考真题)如图,小珍同学用半径为8cm ,圆心角为100°的扇形纸片,制作一个底面半径为2cm 的圆锥侧面,则圆锥上粘贴部分的面积是cm 2.【答案】169π【分析】由题意知,底面半径为2cm 的圆锥的底面周长为4πcm ,扇形弧长为100π×8180=409πcm ,则扇形中未组成圆锥底面的弧长l =409π-4π=49πcm ,根据圆锥上粘贴部分的面积为扇形中未组成圆锥的弧长部分所对应的扇形面积可得圆锥上粘贴部分的面积为12lr =12×49π×8,计算求解即可.【详解】解:由题意知,底面半径为2cm 的圆锥的底面周长为4πcm ,扇形弧长为100π×8180=409πcm ,∴扇形中未组成圆锥底面的弧长l =409π-4π=49πcm ,∵圆锥上粘贴部分的面积为扇形中未组成圆锥的弧长部分所对应的扇形面积,∴圆锥上粘贴部分的面积为12lr =12×49π×8=169πcm 2,故答案为:169π.【点睛】本题考查了扇形的弧长、面积公式.解题的关键在于熟练掌握S 扇形=12lr ,l 扇形=n πr180,其中n 为扇形的圆心角,r 为扇形的半径.三、解答题17.(2023·四川南充·统考中考真题)如图,AB 与⊙O 相切于点A ,半径OC ∥AB ,BC 与⊙O 相交于点D ,连接AD .(1)求证:∠OCA =∠ADC ;(2)若AD =2,tan B =13,求OC 的长.【答案】(1)见解析(2)5【分析】(1)连接OA ,根据切线的性质得出∠OAB =90°,再由平行线的性质得出∠AOC =90°,利用圆周角定理及等腰直角三角形的性质即可证明;(2)过点A 作AH ⊥BC ,过点C 作CF ⊥BA 的延长线于点F ,根据勾股定理及等腰直角三角形的性质得出AH =DH =2,再由正切函数确定BH =32,AB =25,再由正方形的判定和性质及相似三角形的判定和性质求解即可.【详解】(1)证明:连接OA ,如图所示:∵AB 与⊙O 相切于点A ,∴∠OAB =90°,∵OC ∥AB ,∴∠AOC =90°,∴∠ADC =45°,∵OC =OA ,∴∠OCA =45°,∴∠OCA =∠ADC ;(2)过点A 作AH ⊥BC ,过点C 作CF ⊥BA 交BA 的延长线于点F ,如图所示:由(1)得∠OCA =∠ADC =45°,∴ΔAHD 为等腰直角三角形,∵AD =2,∴AH =DH =2,∵tan B =13,∴BH =32,AB =AH 2+BH 2=25,由(1)得∠AOC =∠OAF =90°,∵CF ⊥BA ,∴四边形OCFA 为矩形,∵OA =OC ,∴四边形OCFA 为正方形,∴CF =FA =OC =r ,∵∠B =∠B ,∠AHB =∠CFB =90°,∴△ABH ∽△CBF ,∴BH BF =AH CF 即3225+r=2r ,解得:r =5,∴OC =5.【点睛】题目主要考查圆周角定理,解直角三角形及正方形与相似三角形的判定和性质,理解题意,作出辅助线,综合运用这些知识点是解题关键.18.(2023·四川成都·统考中考真题)如图,以△ABC 的边AC 为直径作⊙O ,交BC 边于点D ,过点C 作CE ∥AB 交⊙O 于点E ,连接AD ,DE ,∠B =∠ADE .(1)求证:AC=BC;(2)若tan B=2,CD=3,求AB和DE的长.【答案】(1)见解析(2)AB=25,DE=25【分析】(1)根据CE∥AB,得到∠ACE=∠BAC,再根据同弧所对的圆周角相等,得到∠ACE=∠ADE=∠B,可证明△ABC是等腰三角形,即可解答;(2)根据直径所对的圆周角为直角,得到tan B=2=ADBD,设BD=x,根据勾股定理列方程,解得x 的值,即可求出AB;解法一:过点E作DC的垂线段,交DC的延长线于点F,证明∠B=∠ECF,求出EF,DF的长,根据勾股定理即可解出DE的长;解法二:连接AE,得到角相等,进而证得△ABC∽△ADE,根据对应边成比例即可解出DE的长.【详解】(1)证明:∵CE∥AB,∴∠BAC=∠ACE,∴∠BAC=∠ACE=∠ADE,∵∠B=∠ADE,∴∠B=∠BAC,∴AC=BC;(2)解:设BD=x,∵AC是⊙O的直径,∴∠ADC=∠ADB=90°,∵tan B=2,=2,即AD=2x,∴ADBD根据(1)中的结论,可得AC=BC=BD+DC=x+3,根据勾股定理,可得AD2+DC2=AC2,即2x2,2+32=x+3解得x1=2,x2=0(舍去),∴BD=2,AD=4,根据勾股定理,可得AB=AD2+BD2=25;解法一:如图,过点E作DC的垂线段,交DC的延长线于点F,∵CE∥AB,∴∠ECF=∠B,∵EF⊥CF,∴tan∠ECF=tan∠B=2,即EF=2,CF∵∠B+∠BAD=90°,∠ADE+∠EDF=90°,∠B=∠ADE,∴∠BAD=∠EDF,∴∠DEF =90°-∠EDF =90°-∠BAD =∠B ,∴DF EF=2,设CF =a ,则DF =DC +CF =a +3,∴EF =2a ,可得方程a +32a=2,解得a =1,∴EF =2,DF =4,根据勾股定理,可得DE =DF 2+EF 2=25.解法二:如图,连接AE ,∵∠B =∠ADE ,∠ACB =∠AED ,∴△ABC ∽△ADE ,∴AB AD=BC DE ,又∵BC =5,AD =4,AB =25,∴254=5DE ,∴DE =25.【点睛】本题考查了圆周角定理,等腰三角形的判定和性质,相似三角形的判定及性质,平行线的性质,勾股定理,正切,利用等量代换证明相关角相等是解题的关键.19.(2023·内蒙古·统考中考真题)如图,AB 是⊙O 的直径,AC 是弦,D 是AC上一点,P 是AB 延长线上一点,连接AD ,DC ,CP .(1)求证:∠ADC -∠BAC =90°;(请用两种证法解答)(2)若∠ACP =∠ADC ,⊙O 的半径为3,CP =4,求AP 的长.【答案】(1)证明见解析(2)8【分析】(1)证法一:连接BD ,得到∠ADB =90°,因为∠BAC =∠BDC ,所以∠ADC -∠BAC =90°;证法二:连接BC ,可得∠ADC +∠ABC =180°,则∠ABC =180°-∠ADC ,根据∠ACB =90°,可得∠BAC +∠ABC =90°,即可得到结果;(2)连接OC ,根据角度间的关系可以证得△OCP 为直角三角形,根据勾股定理可得边OP 的长,进而求得结果.【详解】(1)证法一:如图,连接BD ,∵BC=BC,∴∠BDC=∠BAC,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=∠ADB+∠BDC∵∠BAC=∠BDC,∴∠ADC=90°+∠BAC,∴∠ADC-∠BAC=90°,证法二:如图,连接BC,∵四边形ABCD是⊙O的内接四边形,∴∠ADC+∠ABC=180°,∴∠ABC=180°-∠ADC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∴∠BAC+180°-∠ADC=90°,∴∠ADC-∠BAC=90°,(2)解:如图,连接OC,∵∠ACP=∠ADC,∠ADC-∠BAC=90°,∴∠ACP-∠BAC=90°,∵OA=OC,∴∠BAC=∠ACO,∴∠ACP-∠ACO=90°,∴∠OCP=90°.∵⊙O的半径为3,∴AO=OC=3,在Rt△OCP中,OP2=OC2+CP2,∵CP=4,∴OP2=32+42=25,∴OP=5,∴AP=AO+OP=8,【点睛】本题考查了圆周角定理,直径所对的圆周角为直角,勾股定理,找到角度之间的关系是解题的关键.20.(2023·辽宁大连·统考中考真题)如图1,在⊙O中,AB为⊙O的直径,点C为⊙O上一点,AD为∠CAB的平分线交⊙O于点D,连接OD交BC于点E.(1)求∠BED 的度数;(2)如图2,过点A 作⊙O 的切线交BC 延长线于点F ,过点D 作DG ∥AF 交AB 于点G .若AD =235,DE =4,求DG 的长.【答案】(1)90°(2)210【分析】(1)根据圆周角定理证明两直线平行,再利用平行线的性质证明角度相等即可;(2)由勾股定理找到边的关系,求出线段长,再利用等面积法求解即可.【详解】(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∵AD 平分∠CAB ,∴∠BAD =12∠BAC ,即∠BAC =2∠BAD ,∵OA =OD ,∴∠BAD =∠ODA ,∴∠BOD =∠BAD +∠ODA =2∠BAD ,∴∠BOD =∠BAC ,∴OD ∥AC ,∴∠OEB =∠ACB =90°,∴∠BED =90°,(2)如图,连接BD ,设OA =OB =OD =r ,则OE =r -4,AC =2OE =2r -8,AB =2r ,∵AB 是⊙O 的直径,∴∠ADB =90°,在Rt △ADB 中,有勾股定理得:BD 2=AB 2-AD 2由(1)得:∠BED =90°,∴∠BED =∠BEO =90°,由勾股定理得:BE 2=OB 2-OE 2,BE 2=BD 2-DE 2,∴BD 2=AB 2-AD 2=BE 2+DE 2=OB 2-OE 2+DE 2,∴2r 2-235 2=r 2-r -4 2+42,整理得:r 2-2r -35=0,解得:r =7或r =-5(舍去),∴AB =2r =14,∴BD =AB 2-AD 2=142-235 2=214,∵AF是⊙O的切线,∴AF⊥AB,∵DG∥AF,∴DG⊥AB,∴S△ABD=12AD·BD=12AB·DG,∴DG=AD·BDAB =235×21414=210.【点睛】此题考查了圆周角定理和勾股定理,三角形中位线定理,切线的性质,解一元二次方程,熟练掌握圆周角定理和勾股定理是解题的关键.21.(2023·浙江杭州·统考中考真题)在边长为1的正方形ABCD中,点E在边AD上(不与点A,D重合),射线BE与射线CD交于点F.(1)若ED=13,求DF的长.(2)求证:AE⋅CF=1.(3)以点B为圆心,BC长为半径画弧,交线段BE于点G.若EG=ED,求ED的长.【答案】(1)1 2(2)见解析(3)14【分析】(1)证明△AEB∽△DEF,利用相似三角形的对应边成比例求解;(2)证明△AEB∽△CBF,利用相似三角形的对应边成比例证明;(3)设EG=ED=x,则AE=1-x,BE=1+x,在Rt△ABE中,利用勾股定理求解.【详解】(1)解:由题知,AB=BC=CD=DA=1,若ED=13,则AE=AD-ED=23.∵四边形ABCD是正方形,∴∠A=∠FDE=90°,又∵∠AEB=∠FED,∴△AEB∽△DEF,∴AB DF =AE ED,即1DF=2313,∴DF=12.(2)证明:∵四边形ABCD是正方形,∴∠A=∠C=90°,AB∥CD,∴∠ABE=∠F,∴△ABE∽△CFB,∴AB CF =AE BC,∴AE⋅CF=AB⋅BC=1×1=1.(3)解:设EG=ED=x,则AE=AD-AE=1-x,BE=BG+GE=BC+GE=1+x.在Rt△ABE中,AB2+AE2=BE2,即12+(1-x)2=(1+x)2,解得x=1 4.∴ED=14.【点睛】本题考查了相似三角形的性质与判定,勾股定理的应用,正方形的性质等,熟练掌握相关性质定理是解题的关键.22.(2023·河北·统考中考真题)装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水面沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动,如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN于点D.探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ的长度,并比较大小.【答案】(1)7cm (2)112cm(3)EF =2533cm ,EQ =25π6cm ,EF >EQ .【分析】(1)连接OM ,利用垂径定理计算即可;(2)由切线的性质证明OE ⊥GH 进而得到OE ⊥MN ,利用锐角三角函数求OD ,再与(1)中OC 相减即可;(3)由半圆的中点为Q 得到∠QOB =90°,得到∠QOE =30°分别求出线段EF 与EQ的长度,再相减比较即可.【详解】解:(1)连接OM ,∵O 为圆心,OC ⊥MN 于点C ,MN =48cm ,∴MC =12MN =24cm ,∵AB =50cm ,∴OM =12AB =25cm ,∴在Rt △OMC 中,OC =OM 2-MC 2=252-242=7cm .(2)∵GH 与半圆的切点为E ,∴OE ⊥GH ∵MN ∥GH∴OE ⊥MN 于点D ,∵∠ANM =30°,ON =25cm ,∴OD =12ON =252cm ,∴操作后水面高度下降高度为:252-7=112cm .(3)∵OE ⊥MN 于点D ,∠ANM =30°∴∠DOB =60°,∵半圆的中点为Q ,∴AQ=QB,∴∠QOB =90°,∴∠QOE =30°,∴EF =tan ∠QOE ⋅OE =2533cm ,EQ =30×π×25180=25π6cm ,∵2533-25π6=503-25π6=2523-π 6>0,∴EF >EQ.【点睛】本题考查了垂径定理、圆的切线的性质、求弧长和解直角三角形的知识,解答过程中根据相关性质构造直角三角形是解题关键.23.(2023·湖北武汉·统考中考真题)如图,OA ,OB ,OC 都是⊙O 的半径,∠ACB =2∠BAC .(1)求证:∠AOB =2∠BOC ;(2)若AB =4,BC =5,求⊙O 的半径.【答案】(1)见解析(2)52【分析】(1)由圆周角定理得出,∠ACB =12∠AOB ,∠BAC =12∠BOC ,再根据∠ACB =2∠BAC ,即可得出结论;(2)过点O 作半径OD ⊥AB 于点E ,根据垂径定理得出∠DOB =12∠AOB ,AE =BE ,证明∠DOB =∠BOC ,得出BD =BC ,在Rt △BDE 中根据勾股定理得出DE =BD 2-BE 2=1,在Rt △BOE 中,根据勾股定理得出OB 2=(OB -1)2+22,求出OB 即可.【详解】(1)证明:∵AB=AB,∴∠ACB =12∠AOB ,∵BC =BC ,∴∠BAC =12∠BOC ,∵∠ACB =2∠BAC ,∴∠AOB =2∠BOC .(2)解:过点O 作半径OD ⊥AB 于点E ,则∠DOB =12∠AOB ,AE =BE ,∵∠AOB =2∠BOC ,∴∠DOB =∠BOC ,∴BD =BC ,∵AB =4,BC =5,∴BE =2,DB =5,在Rt △BDE 中,∵∠DEB =90°∴DE =BD 2-BE 2=1,在Rt △BOE 中,∵∠OEB =90°,∴OB 2=(OB -1)2+22,∴OB =52,即⊙O 的半径是52.【点睛】本题主要考查了勾股定理,垂径定理,圆周角定理,解题的关键是作出辅助线,熟练掌握圆周角定理.24.(2023·湖南·统考中考真题)如图所示,四边形ABCD 是半径为R 的⊙O 的内接四边形,AB 是⊙O 的直径,∠ABD =45°,直线l 与三条线段CD 、CA 、DA 的延长线分别交于点E 、F 、G .且满足∠CFE =45°.(1)求证:直线l ⊥直线CE ;(2)若AB =DG ;①求证:△ABC ≌△GDE ;②若R =1,CE =32,求四边形ABCD 的周长.【答案】(1)见解析(2)①见解析,②72+2【分析】(1)在⊙O 中,根据同弧所对的圆周角相等可得∠ACD =∠ABD =45°,结合已知在△CFE 中根据三角形内角和定理可求得∠FEC =90°;(2)①根据圆内接四边形的性质和邻补角可得∠ABC =∠GDE ,由直径所对的圆周角是直角和(1)可得∠ACB =∠GED ,结合已知即可证得△ABC ≌△GDE AAS ;②在⊙O 中由R =1,可得AB =2,结合题意易证DA =DB ,在Rt △ABC 中由勾股定理可求得DA =2,由①可知易得BC +CD =DE +CD =CE ,最后代入计算即可求得周长.【详解】(1)证明:在⊙O 中,∵AD =AD,∴∠ACD =∠ABD =45°,即∠FCE =45°,在△CFE 中,∵∠CFE =45°,∴∠FEC =180°-∠FCD +∠CFE =90°,即直线l ⊥直线CE ;(2)①四边形ABCD 是半径为R 的⊙O 的内接四边形,∴∠ADC +∠ABC =180°,∵∠ADC +∠GDE =180°,∴∠ABC =∠GDE ,∵AB 是⊙O 的直径,∴∠ACB =90°,由(1)可知∠GED =90°,∴∠ACB=∠GED,在△ABC与△GDE中,∠ABC=∠GDE ∠ACB=∠GED AB=DG,∴△ABC≌△GDE AAS,②在⊙O中,R=1,∴AB=2R=2,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=45°,∴∠BAD=90°-∠ABD=45°,∴DA=DB,在Rt△ABC中,∴DA2+DB2=AB2,即2DA2=22,解得:DA=2,由①可知△ABC≌△GDE,∴BC=DE,∴BC+CD=DE+CD=CE=32,∴四边形ABCD的周长为:DA+AB+BC+CD=DA+AB+CE=2+2+32=72+2.【点睛】本题考查了同弧所对的圆周角相等、三角形内角和定理、垂直的定义、圆内接四边形的性质、邻补角互补、直径所对的圆周角是直角、全等三角形的判定和性质、勾股定理解直角三角形以及周长的计算;解题的关键是灵活运用以上知识,综合求解.25.(2023·天津·统考中考真题)在⊙O中,半径OC垂直于弦AB,垂足为D,∠AOC=60°,E为弦AB所对的优弧上一点.(1)如图①,求∠AOB和∠CEB的大小;(2)如图②,CE与AB相交于点F,EF=EB,过点E作⊙O的切线,与CO的延长线相交于点G,若OA=3,求EG的长.【答案】(1)∠AOB=120°,∠CEB=30°(2)3【分析】(1)根据半径OC 垂直于弦AB ,可以得到AC =BC,从而得到∠AOC =∠BOC ,结合已知条件∠AOC =60°即可得到∠AOB =2∠AOC =120°,根据∠CEB =12∠AOC 即可求出∠CEB =30°;(2)根据∠CEB =30°,结合EF =EB ,推算出∠EBF =∠EFB =75°,进一步推算出∠GOE =∠AOE-∠AOG =30°,在Rt △OEG 中,tan ∠GOE =EG OE,OE =OA =3,再根据EG =3×tan30°即可得到答案.【详解】(1)解:在⊙O 中,半径OC 垂直于弦AB ,∴AC =BC ,得∠AOC =∠BOC .∵∠AOC =60°,∴∠AOB =2∠AOC =120°.∵∠CEB =12∠BOC =12∠AOC ,∴∠CEB =30°.(2)解:如图,连接OE .同(1)得∠CEB =30°.∵在△BEF 中,EF =EB ,∴∠EBF =∠EFB =75°.∴∠AOE =2∠EBA =150°.又∠AOG =180°-∠AOC =120°,∴∠GOE =∠AOE -∠AOG =30°.∵GE 与⊙O 相切于点E ,∴OE ⊥GE ,即∠OEG =90°.在Rt △OEG 中,tan ∠GOE =EG OE,OE =OA =3,∴EG =3×tan30°=3.【点睛】本题考查圆周角定理、切线的性质和直角三角函数,解题的关键是灵活运用相关知识.26.(2023·江苏苏州·统考中考真题)如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,AC =5,BC =25,点F 在AB 上,连接CF 并延长,交⊙O 于点D ,连接BD ,作BE ⊥CD ,垂足为E .(1)求证:△DBE ∽△ABC ;(2)若AF =2,求ED 的长.【答案】(1)证明见解析(2)355【分析】(1)分别证明∠ACB=90°=∠BED,∠CAB=∠CDB,从而可得结论;(2)求解AB=AC2+BC2=5,tan∠ABC=ACBC =12,可得BF=3,证明tan∠ABC=tan∠DBE=DE BE =12,设DE=x,则BE=2x,BD=5x,证明△ACF∽△DBF,可得ACBD=AFDF=CFBF,可得DF=2x,EF=x=DE,BD=BF=3,从而可得答案.【详解】(1)证明:∵AB是⊙O的直径,BE⊥CD,∴∠ACB=90°=∠BED,∵∠CAB=∠CDB,∴△DBE∽△ABC.(2)∵AC=5,BC=25,∠ACB=90°,∴AB=AC2+BC2=5,tan∠ABC=ACBC =12,∵AF=2,∴BF=3,∵△DBE∽△ABC,∴∠ABC=∠DBE,∴tan∠ABC=tan∠DBE=DEBE =12,设DE=x,则BE=2x,BD=5x,∵∠AFC=∠BFD,∠CAB=∠CDB,∴△ACF∽△DBF,∴AC BD =AFDF=CFBF,∴55x =2DF,则DF=2x,∴EF=x=DE,∴BD=BF=3,∴DE=355.【点睛】本题考查的是圆周角定理的应用,相似三角形的判定与性质,锐角三角函数的应用,熟记圆的基本性质与重要定理是解本题的关键.27.(2023·四川达州·统考中考真题)如图,△ABC、△ABD内接于⊙O,AB=BC,P是OB延长线上的一点,∠PAB=∠ACB,AC、BD相交于点E.(1)求证:AP 是⊙O 的切线;(2)若BE =2,DE =4,∠P =30°,求AP 的长.【答案】(1)见解析(2)6【分析】(1)由AB =BC ,OB 为半径,可知OB ⊥AC ,∠CAB =∠ACB ,则∠CAB +∠ABO =90°,∠ACB +∠ABO =90°,∠PAB +∠ABO =90°,如图1,连接OA ,由OA =OB ,可得∠OAB =∠ABO ,则∠PAB +∠OAB =90°,即∠OAP =90°,进而结论得证;(2)如图2,记OB 与AC 交点为M ,连接OD ,过O 作ON ⊥DB 于N ,证明△ABO 是等边三角形,则AB =OB =OA ,∠ABM =60°,设⊙O 半径为r ,则BM =AB ⋅cos ∠ABM =12r ,由OB =OD ,ON ⊥DB ,可得BN =12BD =3,证明△BME ∽△BNO ,则BM BN =BE BO ,即12r 3=2r ,解得r =23或r =-23(舍去),根据AP =OA tan ∠P,计算求解即可.【详解】(1)解:如图,连接OA ,OC ,∵AB =BC ,∴AB �=BC �,∴∠AOB =∠COB ,∴OB ⊥AC ,由等边对等角可得∠CAB =∠ACB ,∴∠CAB +∠ABO =90°,∴∠ACB +∠ABO =90°,∵∠PAB =∠ACB ,∴∠PAB +∠ABO =90°,∵OA =OB ,∴∠OAB =∠ABO ,∴∠PAB +∠OAB =90°,即∠OAP =90°,又∵OA 是半径,∴AP 是⊙O 的切线;(2)解:如图2,记OB 与AC 交点为M ,连接OD ,过O 作ON ⊥DB 于N ,∵∠P =30°,∴∠AOP =60°,∴△ABO 是等边三角形,∴AB =OB =OA ,∠ABM =60°,设⊙O 半径为r ,∵AM ⊥BM ,∴BM =AB ⋅cos ∠ABM =12r ,∵OB =OD ,∴△BOD 是等腰三角形,又∵ON ⊥DB ,∴BN =12BD =BE +DE 2=3,∵∠BME =∠BNO =90°,∠EBM =∠OBN ,∴△BME ∽△BNO ,∴BM BN =BE BO ,即12r 3=2r ,解得r =23或r =-23(舍去),∴AP =OA tan ∠P =r 33=6,∴AP 的长为6.【点睛】本题考查了垂径定理,等腰三角形的判定与性质,切线的判定,等边三角形的判定与性质,相似三角形的判定与性质,余弦、正切等知识.解题的关键在于对知识的熟练掌握与灵活运用.28.(2023·湖南·统考中考真题)如图,AB 是⊙O 的直径,AC 是一条弦,D 是AC的中点,DE ⊥AB 于点E ,交AC 于点F ,交⊙O 于点H ,DB 交AC 于点G .(1)求证:AF =DF .(2)若AF =52,sin ∠ABD =55,求⊙O 的半径.【答案】(1)见解析(2)5【分析】(1)根据D 是AC 的中点,DE ⊥AB 于点E ,得到CD =DA =AH ,得到∠ADH =∠DAC 即可得证.(2)根据sin ∠ABD =55=AD AB,设AD =5x ,AB =5x ,运用勾股定理,得到BD =5x 2-5x 2=25x ,结合sin ∠ABD =55=DE BD ,得到DE =2x ,运用勾股定理,得到BE =25x 2-2x 2=4x ,从而得到AE =x ,EF =ED -DF =DE -AF =2x -52,在Rt △AEF 中,利用勾股定理计算x 即可.【详解】(1)∵D 是AC 的中点,∴CD =DA ,∵DE ⊥AB ,AB 是⊙O 的直径,∴DA =AH ,∴CD =DA =AH,∴∠ADH =∠DAC ,∴AF =DF .(2)∵DE ⊥AB ,AB 是⊙O 的直径,。

2020九年级中考数学 专题复习:圆的综合(含答案)

2020九年级中考数学 专题复习:圆的综合(含答案)

2020中考数学 专题复习:圆的综合(含答案)类型一 与基本性质有关的证明与计算1. 如图,AB 是⊙O 的直径,点D 是AE ︵上的一点,且∠BDE =∠CBE ,BD 与AE 交于点F . (1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF ·DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若P A =AO ,DE =2,求PD 的长.第1题图(1)证明:∵AB 是⊙O 的直径, ∴∠AEB =90°, ∴∠EAB +∠ABE =90°,∵∠BDE =∠EAB ,∠BDE =∠CBE , ∴∠EAB =∠CBE ,∴∠ABE +∠CBE =∠ABE +∠EAB =90°,即CB ⊥AB . 又∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线; (2)证明:∵BD 平分∠ABE , ∴∠ABD =∠DBE ,AD ︵=DE ︵, ∴∠ABD = ∠DEA , ∴∠DEA = ∠DBE , ∵∠EDB =∠BDE , ∴△DEF ∽△DBE ,∴DE DB =DF DE, ∴DE 2= DF ·DB ;(3)解:如解图,连接OD ,延长ED 交BA 的延长线于点P ,第1题解图∵OD =OB , ∴∠ODB =∠OBD , ∵BD 平分∠ABE , ∴∠OBD = ∠EBD , ∴∠EBD =∠ODB , ∴OD ∥BE , ∴△PDO ∽△PEB , ∴PD PE =POPB, ∵P A =AO , ∴P A =AO =OB , ∴PO PB =PD PE =23, ∵PD PE =PD PD +DE =23,DE =2, ∴PD =4.2. 如图,AB 是⊙O 的直径,C 是BD ︵的中点,CE ⊥AB ,垂足为E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若BE =4,EF = 3,求⊙O 的半径.第2题图(1)证明:连接AC ,如解图,∵点C 是BD ︵的中点,∴∠DBC =∠BAC , 在△ABC 中,∠ACB =90°,CE ⊥AB ,第2题解图∴∠BCE +∠ECA =∠BAC +∠ECA =90°, ∴∠BCE =∠BAC , 又∵C 是BD ︵的中点, ∴∠DBC =∠CDB , ∴∠BCE =∠DBC , ∴CF = BF ;(2)解:∵BE = 4,EF = 3, ∴BF =32+42= 5,∴CF = 5,∴CE = 5+3= 8, ∵AB 是⊙O 的直径, ∴∠ACB = 90°, ∴CE 2=BE ·AB , ∴AB =CE 2BE = 644= 16,∴AO = 8,∴⊙O 的半径为8.3. 如图,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连接AD . (1)求证:AD =AN;(2)若AB =8,ON = 1,求⊙O 的半径.第3题图(1)证明:∵CD ⊥AB , ∴∠CEB = 90°, ∴∠C +∠B = 90°, 同理∠C +∠CNM = 90°, ∴∠CNM =∠B , ∵∠CNM = ∠AND , ∴∠AND = ∠B , ∵AC ︵=AC ︵, ∴∠ADN = ∠B , ∴∠AND = ∠ADN , ∴AN =AD ;第3题解图(2)解:设OE 的长为x ,连接OA , ∵AN =AD ,CD ⊥AB , ∴DE = NE =x +1,∴OD =OE +ED =x +x +1=2x +1, ∴OA = OD = 2x +1,∴在Rt △OAE 中,OE 2+AE 2= OA 2, ∴x 2+42=(2x +1)2,解得x =53或x =-3(不合题意,舍去),∴OA = 2x +1= 2×53+1= 133,即⊙O 的半径为133.4. 如图,A 、B 、C 为⊙O 上的点,PC 过O 点,交⊙O 于D 点,PD = OD ,若OB ⊥AC 于E 点.第4题图(1)判断A 是否是PB 的中点,并说明理由; (2)若⊙O 半径为8,试求BC 的长. 解:(1)A 是PB 的中点, 理由:连接AD ,如解图,第4题解图∵CD 是⊙O 的直径, ∴AD ⊥AC , ∵OB ⊥AC , ∴AD ∥OB , ∵PD = OD ,∴AD 是△PBO 的中位线, ∴P A =AB , ∴A 是PB 的中点; (2)∵AD ∥OB , ∴△APD ∽△BPO , ∴AD BO =PD PO = 12, ∵⊙O 半径为8, ∴OB = 8, ∴AD =4, ∴AC =CD 2-AD 2= 415,∵OB ⊥AC , ∴AE =CE = 215, ∴OE =12AD = 2,∴BE =6, ∴BC =BE 2+CE 2=4 6.5. 如图,AB 是⊙O 的直径,点C 、E 是⊙O 上的点,且AC ︵=EC ︵,连接AC 、BE ,并延长交于点D ,已知AB =2AC =6.第5题图(1)求DC 的长; (2)求EC ︵的长.解:(1)如解图,连接BC ,第5题解图∵ AB 是⊙O 的直径, ∴∠ACB =90°,CB ⊥AD , ∵AC ︵=EC ︵, ∴∠ABC =∠DBC , ∴△ABD 为等腰三角形, ∵AB =2AC =6, ∴DC =AC =3;(2)如解图,连接OC 、OE , ∵AB =2AC =6,∠ACB =90°, ∴∠ABC =30°,OC =OE =3, ∴∠DBC =∠ABC =30°∴∠COE =2∠DBC =60°,∴l EC ︵=60×π×3180=π.6. 如图,AB 为圆O 的直径,CD ⊥AB 于点E ,交圆O 于点D ,OF ⊥AC 于点F .第6题图(1)求证:OF =12BD ;(2)当∠D =30°,BC =1时,求圆中阴影部分的面积. (1)证明:如解图,连接OC ,第6题解图∵OF ⊥AC ,OA =OC , ∴AF =FC ,∵OA =OB ,∴OF 是△ABC 的中位线,∴OF =12BC ,∵AB ⊥CD ,∴BC ︵=BD ︵, ∴BC =BD , ∴OF =12BD ;(2)解:∵∠D =30°, ∴∠A =∠D =30°, ∴∠COB =2∠A =60°, ∴∠AOC =120°,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,BC=1,∴AB=2,AC=3,由(1)可知OF=12BC=1 2,∵∠COB=60°,OB=OC,∴△BOC是等边三角形,∴OA=OB=BC=1,∴S△AOC=12AC ·OF=12×3×12=34,S扇形AOC=120πOA2360=π3,∴S阴影=S扇形AOC-S△AOC=π3-34.7. 如图,△ABC内接于⊙O,AB为⊙O的直径,OD⊥AB交⊙O于点D,AC、OD的延长线交于点E,连接CD.(1)求证:∠ECD=∠BCD;(2)当AC=CD时,求证:CE=CB.第20题图证明:(1)∵AB是⊙O的直径,∴∠ACB=∠ECB=90°,∵OD⊥AB,∴∠DOB=90°,∴∠BCD=12∠DOB=45°,∴∠ECD=∠ECB-∠BCD=90°-45°=45°,∴∠ECD =∠BCD ;(2)如解图,连接OC 、BD ,第7题解图∵AC =CD ,∴∠AOC =∠DOC ,∠ABC =∠DBC , 又∵∠E +∠A =∠ABC +∠A =90°, ∴∠E =∠ABC =∠DBC , 在△ECD 和△BCD 中⎩⎨⎧∠E =∠DBC∠ECD =∠BCD CD =CD, ∴△ECD ≌△BCD (AAS), ∴CE = CB .8. 如图,四边形ABCD 内接于⊙O ,且BD 为直径,∠ACB = 45°,过A 点的AC 的垂线交BC 的延长线于点E . (1)求证:BE = DC ; (2)如果AD =2,求图中阴影的面积.第8题图解:(1)∵BD 是⊙O 的直径, ∴∠BAD =90°,∵∠ACB =45°,∴∠ADB =∠ACB = 45°, ∵AE ⊥AC ,∴△ACE 与△ABD 是等腰直角三角形,∴AE = AC ,AB = AD ,∠EAC = ∠BAD = 90°, ∴∠EAB = ∠CAD , 在△ABE 与△ADC 中,⎩⎨⎧AE =AC∠EAB = ∠CAD AB =AD, ∴△ABE ≌△ADC , ∴BE =DC ;第8题解图(2)如解图,连接AO ,则∠AOD = ∠ABD =90°, ∵AD = 2, ∴AO = OD = 1, ∴S 阴影= S 扇形-S △AOD =90 ·π×12360-12×1×1= π4-12. 9. 如图,在△ABC 中,以AC 为直径的⊙O 分别交AB ,BC 于点D ,E ,连接DE ,AD =BD ,∠ADE =120°. (1)证明:△ABC 是等边三角形; (2)若AC =2,求图中阴影部分的面积.第9题图(1)证明:如解图,连接CD , ∵AC 为⊙O 的直径, ∴CD ⊥AB , ∵AD =BD , ∴AC =BC ,∵∠ADE =120°,∴∠ACE =60°, 又∵AC =BC ,∴△ABC 是等边三角形;第9题解图(2)解:∵△ABC 是等边三角形, ∴∠CAB =∠ACB =∠B =60°,∵∠ADE =120°,∴∠BED =∠BDE =∠B =60°, ∴△BDE 是等边三角形, ∴BD =ED , ∵AD =BD ,∴DE =AD = BE =12AB = 12BC ,∴DE ︵=AD ︵,DE 为△ABC 的中位线,E 为BC 的中点, ∴S 弓形DE =S 弓形AD ,∴S 阴影=S △DEB = 12S △BDC ,∵AC =2,∴AD =BD =1,∴DC =3,∴S 阴影=12×12×1×3= 34.10. 如图,在△ABC 中,AB = AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连接BD .第10题图(1)求证:点E 是BD ︵的中点;(2)当BC = 12,且AD ∶CD =1∶2,求⊙O 的半径. (1)证明:如解图,连接AE ,DE ,第10题解图∵AB 是直径, ∴AE ⊥BC , ∵AB = AC , ∴BE = EC ,∵∠CDB =90°,DE 是斜边BC 的中线, ∴DE = EB , ∴ED ︵= EB ︵,即点E 是BD ︵的中点; (2)设AD =x ,则CD = 2x , ∴AB =AC =3x ,∵AB 为直径, ∴∠ADB =90°, ∴BD 2= (3x )2-x 2=8x 2, 在Rt △CDB 中, (2x )2+8x 2=122, ∴x =23, ∴OA = 32x =33,即⊙O 的半径是3 3.类型二 与切线有关的证明与计算1. 如图,AB 是⊙O 的切线,B 为切点,圆心O 在AC 上,∠A = 30°,D 为BC ︵的中点.第1题图(1)求证:AB =BC ;(2)试判断四边形BOCD 的形状,并说明理由. 解:(1)∵AB 是⊙O 的切线,∴∠OBA = 90°,∠AOB = 90°-30°= 60°. ∵OB =OC ,∴∠OBC =∠OCB ,∠OCB = ∠A = 30°, ∴AB = BC ;(2)四边形BOCD 为菱形,理由如下:连接OD 交BC 于点M , ∵D 是BC ︵的中点,第1题解图∴OD 垂直平分BC , 在Rt △OMC 中, ∵∠OCM = 30°, ∴OC =2OM =OD , ∴OM =MD ,∴四边形BOCD 为菱形.2. 如图,AB 为⊙O 的直径,C ,D 为⊙O 上两点,∠BAC =∠DAC ,过点C 作直线EF ⊥AD ,交AD 的延长线于点E ,连接BC .(1)求证:EF 是⊙O 的切线;(2)若DE =1,BC =2,求劣弧BC ︵的长l .第2题图(1)证明:如解图,连接OC , ∵OA =OC , ∴∠OAC =∠OCA , ∵∠BAC =∠DAC , ∴∠DAC =∠OCA , ∴AD ∥OC , ∵EF ⊥AD , ∴∠AEC =90°,∴∠OCF =∠AEC =90°, ∴EF 是⊙O 的切线;(2)解:如解图,连接OD ,DC .第2题解图∵∠DAC =12∠DOC ,∠OAC =12∠BOC ,∠DAC =∠OAC , ∴∠DOC =∠BOC , ∴DC =BC =2, 在Rt △EDC 中, ∵ED =1,DC =2, ∴sin ∠ECD =DE DC =12, ∴∠ECD =30°,∴∠OCD =90°-30°=60°, 又∵OC =OD ,∴△DOC 为等边三角形,∴∠BOC =∠COD =60°,OC =2, ∴l =60π×2180=23π. 3. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DF ⊥AC ,垂足为点F .第3题图(1)求证:DF 是⊙O 的切线; (2)若AE =4,cos A =25,求DF 的长.(1)证明:如解图,连接OD ,第3题解图∵OB =OD , ∴∠ODB =∠B . 又∵AB =AC , ∴∠C =∠B . ∴∠ODB =∠C . ∴OD ∥AC , ∵DF ⊥AC , ∴∠DFC =90°.∴∠ODF =∠DFC =90°, ∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线;(2)解:如解图,过点O 作OG ⊥AC ,垂足为点G . ∴AG =12AE =2.∵cos A =AG OA =25,∴OA =225=5.∴OG =OA 2-AG 2=21.∵∠ODF =∠DFG =∠OGF =90°. ∴四边形OGFD 为矩形, ∴DF =OG =21.4. 如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙O的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=34,求⊙O的半径.第4题图(1)证明:如解图,连接OD,第4题解图∵BC是⊙O的切线,∴OD⊥BC,∴∠ODB=90°,又∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠CAD=∠OAD,∴AD平分∠BAC;(2)解:∵AC=8,tan∠P AC=CDAC=34,∴CD=6,在Rt△ACD中,AD=AC2+CD2=10,如解图,连接DE ,∵AE 为⊙O 的直径, ∴∠ADE = 90°, ∴∠ADE = ∠C , ∵∠CAD =∠OAD , ∴△ACD ∽△ADE , ∴AD AC = AE AD ,即108= AE10, ∴AE =252,∴⊙O 的半径是254.5. 如图,AB 为⊙O 的直径,CB ,CD 分别切⊙O 于点B ,D ,CD 交BA 的延长线于点E ,CO 的延长线交⊙O 于点G ,EF ⊥OG 于点F .(1)求证:∠FEB =∠ECF ; (2)若BC =6,DE =4,求EF 的长.第5题图(1)证明:∵EF ⊥OG ,BC 是⊙O 的切线, ∴∠CBA = ∠EFC =90°,∴∠EOF +∠FEB = 90°,∠BOC +∠BCO =90°, ∵∠EOF = ∠COB , ∴∠FEB = ∠BCO , ∵CB ,CD 是⊙O 的切线, ∴∠ECF = ∠BCO , ∴∠FEB = ∠ECF ;(2)解:如解图,连接OD ,则OD ⊥CE ,第5题解图∵CB,CD为⊙O的切线,BC=6,DE=4,∴CD=BC=6,∴CE=CD+DE=6+4=10,在Rt△CBE中,根据勾股定理得BE=CE2-BC2=102-62=8,设OD=x,则OE=8-x,在Rt△ODE中,根据勾股定理得OE2=OD2+ED2,即(8-x)2=x2+42,解得x=3,则OE=5.在Rt△ODC中,根据勾股定理得OC=CD2+OD2=62+32=35,∵∠EOF=∠COB,∠EFO=∠CBO,∴△EFO∽△CBO,∴EFCB=OEOC,即EF6=535,解得EF=2 5.6. 如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.第6题图 (1)证明:如解图,连接OB,第6题解图∵OB =OC ,∠ACB =30°,∴∠OBC =∠OCB =30°,∵DE ⊥AC ,∴∠DEC =90°,∴∠D =60°,∵CB =BD ,∴BE =BD ,∴△BDE 为等边三角形,∴∠DBE =60°,∴∠EBO =180°-∠DBE -∠OBC =180°-60°-30°=90°,即OB ⊥BE ,又∵OB 为⊙O 的半径,∴BE 是⊙O 的切线;(2)解:∵AC 为⊙O 的直径,∴∠ABC =90°,在Rt △ABC 中,BC =BD =BE =3,∠ACB =30°,∴AB =BC ·tan30°= 3,AC = 2AB =23,∴OA =12AC =3,∴S △ABC =12AB ·BC = 12×3×3=332, ∴S 阴影= S 半圆-S △ABC = 12π×(3)2-332=3π-332. 7. 如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO .(1)求证:BC 是∠ABE 的平分线;(2)若DC = 8,⊙O 的半径OA =6,求CE 的长.第7题图(1)证明:∵BE ∥CO ,∴∠OCB =∠EBC ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠OBC =∠EBC ,∴BC 是∠ABE 的平分线;(2)解:∵CD 是⊙O 的切线,∴CD ⊥CO ,∴∠DCO =90°,在Rt △DCO 中,有DC 2+CO 2=DO 2,即82+62=DO 2,∴DO =10,∵CO ∥BE ,∴CE DC =BO DO ,即CE 8=610, ∴CE =4.8.8. 如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,BD 是⊙O 的弦,点E 是BC 的中点,连接DE .第8题图(1)求证:DE 是⊙O 的切线;(2)若CD ∶AD =1∶3,BC =2,求线段BD 的长. (1)证明:如解图,连接OD .第8题解图∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠CDB =90°,在Rt △CDB 中,∵点E 是BC 的中点,∴DE 是Rt △CDB 斜边BC 上的中线,∴ED =12BC ,EB =12BC , ∴ED =EB ,∴∠EDB =∠EBD ,∵OD =OB ,∴∠ODB =∠OBD ,∠OBD +∠EBD =∠ODB +∠EDB =∠ABC =90°,∴∠ODE =90°,∴OD ⊥DE ,又∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.(2)解:在Rt △CDB 和在Rt △CBA ,∵∠C=∠C ,∠CDB=∠ABC=90°,∴Rt △CDB ≌Rt △CBA.∴CD :BC= BC :AC ,∵CD :AD=1:3,∴设CD 为x ,则AD =3x ,AC=4x ,∴x :2=2:4x ,解得x 1=1, x 2=-1(舍),∴CD =1,∴BD=222221 3.BC CD -=-=9. 如图,在⊙O 中,AB 为直径,C 为圆上一点且∠P +12∠AOC =90°. (1)求证:P A 是⊙O 的切线;(2)cos B =45,P A =8,求⊙O 的半径.第9题图(1)证明:∵∠B 与∠AOC 所对的弧都为弧AC ,∴∠B =12∠AOC , 又∵∠P +12∠AOC =90°, ∴∠P +∠B =90°.在△ABP 中,∠BAP =180°-90°=90°,∴P A ⊥AB .又∵AB 为⊙O 的直径,∴P A 是⊙O 的切线;(2)解:在Rt △ABP 中,∵cos B =45,P A =8,∴AB PB =45. ∴设AB =4x ,则PB =5x ,根据勾股定理得P A 2+AB 2=PB 2,∴82+(4x )2=(5x )2,化简得:9x 2=64,解得x =83. ∴AB =4×83=323, ∴AO =12AB =12×323=163. ∴⊙O 的半径为163.10. 如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC = BC = DC .(1)若∠CDB =39°,求∠BAD 的度数;(2)求证:∠1=∠2.第10题图(1)解:∵BC =DC ,∴∠CBD =∠CDB = 39°,∵∠BAC =∠CDB = 39°,∠CAD = ∠CBD = 39°,∴∠BAD =∠BAC +∠CAD = 39°+39°= 78°;(2)证明:∵BC = EC ,∴∠CBE =∠CEB ,∵∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE = ∠1+∠CBD ,∵∠BAE =∠CBD ,∴∠1= ∠2.。

中考专题复习——圆的相关证明(附答案)

中考专题复习——圆的相关证明(附答案)

中考复习专题——圆的相关证明题1.在⊙O 中,AB 为直径,C 为⊙O 上一点.(Ⅰ)如图①,过点C 作⊙O 的切线,与AB 的延长线相交于点P ,若P ∠︒=42,求∠CAB 的大小; (Ⅱ)如图②,D 为上一点,且OD 经过AC 的中点E ,连接DC 并延长,与AB 的延长线相交于点P , 若∠CAB ︒=10,求∠P 的大小.2.已知AB 是⊙O 的直径,C 是⊙O 上一点,过点C 作⊙O 的切线,交AB 的延长线于点P .(Ⅰ)如图①,连接AC ,BC ,若OB BP =,求A ∠和∠P 的大小;(Ⅱ)如图②,过点P 作⊙O 的切线PD ,切点为D ,连接CD ,BD ,若∠BDC =32°,求BDP ∠的大小.图①图②O B COB D CPE AC3.已知点A ,B ,C 是⊙O 上的三个点,︒=∠120AOB . (Ⅰ)如图①,若AC =BC ,求C ∠和CAO ∠的大小;(Ⅱ)如图②,过点C 作⊙O 的切线,交BA 的延长线于点D ,若AC =AD ,求CAO ∠的大小.4.已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AD 交⊙O 于点E .(Ⅰ)如图①,求证:AC 平分DAB ∠;(Ⅱ)如图②,过B 作BF AD ∥交⊙O 于点F ,连接CF ,若45AC =4DC =,求CF 和⊙O 半径的长. ABCDEO图①ABCDEO图②F5.已知,△DBC内接于⊙O,DB=DC.(Ⅰ)如图①,过点B作射线BE交⊙O于点A,若∠EAD=75°,求∠BDC的度数.(Ⅱ)如图②,分别过点B、点D作⊙O的切线相交于点E,若∠E=30°,求∠BDC的度数.①②6.已知P A,PB分别与⊙O相切于点A,B,PO交⊙O于点F,且其延长线交⊙O于点C,∠BCP=28°,E为CF上一点,延长BE交⊙O于点D.(Ⅰ)如图1,求∠CDB与∠APB的大小;(Ⅱ)如图2,当BC=CE时,求∠PBE的大小.7.在ABC △中90B ∠=︒D 为AC 上一点,以CD 为直径的⊙O 与AB 相切于点E ,与BC 相交于点F ,连接CE .(Ⅰ)如图①,若27ACE ∠=︒,求A ∠和ECB ∠的大小; (Ⅱ)如图②,连接EF ,若//EF AC ,求A ∠的大小.8. 已知:在⊙O 中OA BC ⊥垂足为E ,点D 在⊙O 上.(Ⅰ)如图①若50AOB ∠=︒,求ADC ∠和∠CAO 的大小;(Ⅱ)如图②CD ∥AO ,过点D 作⊙O 的切线,与BC 的延长线相交于点P ,若26∠=︒ABC 求∠P 的大小.图①图②ABCF OED ABCOED F 图①O EDCBA图②POE DCBA9.如图,在⊙O 中,直径AB 与弦CD 相交于点E ,58ABC ∠=︒. (Ⅰ)如图①若85AEC ∠=︒,求BAD ∠和CDB ∠的大小;(Ⅱ)如图②若CD AB ⊥过点D 作⊙O 的切线DF ,与AB 的延长线相交于点F ,求F ∠的大小.10. 已知AB 是⊙O 的直径,CD 、CB 是⊙O 的弦,且AB CD ∥.(Ⅰ)如图①若25ABC ∠=︒,求BAC ∠和ODC ∠的大小;(Ⅱ)如图②过点C 作⊙O 的切线,与BA 的延长线交于点F 若OD CF ∥求ABC ∠的大小.图①图②EABO DCFE ABO DC图②图①11. 如图,⊙O 是△ABC 的外接圆,AE 切⊙O 于点A ,AE 与直径BD 的延长线相交于点E .(Ⅰ)如图①,若∠C =71°,求∠E 的大小;(Ⅱ)如图②,当AE =AB ,DE =2时,求∠E 的大小和⊙O 的半径.12. 已知DA 、DC 分别与⊙O 相切于点A 点C ,延长DC 交直径AE 的延长线于点P . (Ⅰ)如图①若DC =PC ,求∠P 的度数;(Ⅱ)如图②在⊙O 上取一点B ,连接AB 、BC 、BE ,当四边形ABCD 是平行四边形时,求∠P 及∠AEB 的大小. OEEDCBAD O C BA图①图②DECAPOB图① 图②ECAPOD13.如图①,AB 是⊙O 的弦,OE ⊥AB ,垂足为P ,交AB 于点E ,且OP =3PE ,AB =74.(Ⅰ)求⊙O 的半径;(Ⅱ)如图②过点E 作⊙O 的切线CD ,连接OB 并延长与该切线交于点D ,延长OA 交CD 于C ,求OC 的长. 图②图①EP A BCODP EOBA参考答案1.解:(Ⅰ)如图,连接OC∵ ⊙O 与PC 相切于点C ∴ OC PC ⊥,即90OCP ∠=︒ ∵ 42P ∠=︒∴ 9048COB P ∠=︒-∠=︒ 在Rt OPC △中,48CAB ACO COP ∠+∠=∠=︒ ∵OA =OC ∴∠CAB =∠ACO ∴ 24CAB ∠=︒(Ⅱ)∵ E 为AC 的中点∴ OD AC ⊥,即90AEO ∠=︒在Rt AOE △中,由10EAO ∠=︒得9080AOE EAO ∠=︒-∠=︒ ∴ 1402ACD AOD ∠=∠=︒∵ ACD ∠是ACP △的一个外角∴ 30P ACD CAP ∠=∠-∠=︒2. 解:(Ⅰ)如图①连接OC ∵PC 是⊙O 的切线∴︒=∠90OCP ∵OB BP =∴OB BC =∵OC OB =∴BOC ∆为等边三角形, ∴∠BOC=60° ∴︒=∠=∠3021BOC A ∠P=90°-∠COB =30°(Ⅱ)如图② 连接OC 、OD 设CD 交OP 于点E∵PC ,PD 是⊙O 的切线∴PD PC = ︒=∠=∠90ODP OCP ∵OD OC =∴OP 为CD 的垂直平分线 ∴︒=∠=∠90DEP CEP∵∠BDC =32°∴∠OBD =90°-∠BDC =58° ∵OB OD =∴∠ODB =∠OBD =58° ∴∠BDP =90°-58°=32°3.解: (Ⅰ)∵︒=∠120AOB ∴∠ACB= 12 ∠AOB=60°如图① 连接OC∵AC =BC ∴∠AOC=∠BOC∵∠AOC+∠BOC +∠AOB=360° ∴∠AOC =12 (360°-120°)=120° ∵OA OC ∴∠CAO=∠ACO=12(180°-120°)=30°O AB PCOAB D CPE(Ⅱ)如图② 连接OC设∠ACD= x ∵ACAD ∴∠ACD =∠ADC= x∴∠CAB=2x ∵∠AOB=120°OAOB ∴∠OAB =∠OBA= 12(180°-120°)=30°∵CD 是⊙O 的切线∴∠OCD=90° ∵OAOC ∴∠OCA =∠OAC∴90°-x=2x -30° 解得x=40° ∴∠CAB=80°∴∠CAO=∠CAB -∠OAB =50°4.(Ⅰ)证明:连接OC ∵CD 为⊙的切线∴OC CD ⊥即90OCM OCD ∠=∠=︒ ∵AD CD ⊥垂足为D ∴90ADC ∠=︒ ∵90ADC OCM ∠=∠=︒∴OC AD ∥ ∴DAC ACO ∠=∠∵OC OA =∴CAO ACO ∠=∠∴DAC CAO ∠=∠∴AC 平分DAB ∠ (Ⅱ)解:连接AF 延长CO 交AF 于G ∵AB 为⊙的直径 ∴=90AFB ∠︒ ∵OC AD BF AD ∥,∥ ∴CO BF ∥∴90AFB AGC ∠=∠=︒ ∴OC AF ⊥由垂径定理可得AC=CF∴45AC CF == ∵90ADC ∠=︒22O O ABC DEOF GABCDEOM∴90ADC DCO AGC ∠=∠=∠=︒ ∴四边形ADCG 是矩形∴8AD CG == 4CD AG == 在Rt AGO 中,得222AG OG AO += 设OC x =则,8OA x OG x ==- 可得方程()22248x x +-=解得5x =. ∴⊙半径的长为545CF =.5.(Ⅰ)解:∵四边形ABCD 是⊙O 的内接四边形∴∠DAB +∠C =180° ∵∠EAD +∠DAB =180° ∴∠C =∠EAD ∵∠EAD =75° ∴∠C =75° ∵DB =DC∴∠DBC =∠C =75°∴∠BDC =180°﹣∠C ﹣∠DBC =30°(Ⅱ)解:连结OB OD∵EB ED 与⊙O 相切于点B 点D∴ED OD ⊥⊥,EB OB ∴ ︒=∠︒=∠90ODE 90,OBE∵︒=∠+∠+∠+∠360BOD ODE E OBE ︒=∠30E ∴︒=∠150BOD∴︒=∠=∠7521BOD C ∵DB =DC ,∴∠DBC =∠C =75°,∴∠BDC =180°﹣∠C ﹣∠DBC =30° O6. (I )解:连接OB∵P A 、PB 与圆O 相切于点A 点,B∴PO 平分∠APB 且∠PBO =90° ∵∠BCP =28°∴∠BOP =2∠BCP =28°×2=56° ∴∠BPO =90°-∠BOP =90°-56°=34° ∴∠APB =2∠BPO =2×34°=68°又∠BDC =BOC ∠21=)180(21BOP ∠- ∴∠BDC = 62)56180(21=-∴∠APB =68°∠BDC= 62 (II )连接OB∵BC =CE ∴∠CBE =∠CEB∵∠BCP =28° ∴∠CBE =76228180=-∵OB =OC ∴∠OBC =∠OCB =28° ∴∠EBO =∠CBE -∠OBC =76°-28°=48° ∵P A 与圆O 相切于点A∴OB ⊥PB ∴∠PBO =90°∴∠PBE =90°- ∠EBO =90°-48°=42°7.解:(Ⅰ)如图连接OE .∵ AB 与⊙O 相切∴ OE AB ⊥,即90AEO ∠=︒ ∵ 27ACE ∠=︒∴ 254AOE ACE ∠=∠=︒ ∴ 9036A AOE ∠=︒-∠=︒ ∵ OE OC =∴ OEC OCE ∠=∠∵ 90B ∠=︒∴ //OE BC ∴ ECB OEC ∠=∠ ∴ 27ECB ∠=︒ (Ⅱ)如图,连接OE OF∵ //OE BC //EF AC ∴ 四边形OEFC 为平行四边形 ∴ OE CF = ∴ OC OF CF == ∴ 60ACB ∠=︒∴ 9030A ACB ∠=︒-∠=︒ABCOED F ABCF OED8. 解:(Ⅰ)∵OA BC ⊥ ∴AB AC = 90∠=︒AEC∴∠=∠ACB ADC ∵1252∠=∠=︒ACB AOB∴25∠=∠=︒ADC ACB9065∠=︒-∠=︒CAO ACB(Ⅱ)连接BD . 由OA BC ⊥知,90∠=∠=︒AEB BEO∴ 9064∠=︒-∠=︒OAB ABC ∵AO ∥CD ∴90∠=∠=︒BCD BEO ∴BD 是⊙O 的直径又PD 与⊙O 相切∴⊥BD PD . 即90∠=︒BDP∵=OA OB ∴64∠=∠=︒OBA OAB∴642636∠=∠-∠=︒-︒=︒CBD ABO ABC ∴9052∠=︒-∠=︒P CBD9. (Ⅰ)∵∠AEC 是ΔBEC 的一个外角 58ABC ∠=︒85AEC ∠=︒27C AEC ABC ∴∠=∠-∠=︒∵在⊙O 中BAD C ∠=∠27BAD ∴∠=︒ AB 为⊙O 的直径90ADB ∴∠=︒ ∵在⊙O 中58ADC ABC ∠=∠=︒ 又CDB ADB ADC ∠=∠-∠32CDB ∴∠=︒(Ⅱ)连接OD∵CD ⊥AB 90CEB ∴∠=︒.9032E E CB BC =-∴∠=∠︒︒∴264DOB DCB ∠=∠=︒ ∵DF 是⊙O 的切线∴90ODF ∠=︒90906426F DOB ∴∠=︒-∠=︒-︒=︒图②POE DCBA图①O E DCBA10. 解:(Ⅰ)如图连接OC ∵ AB 是⊙O 的直径 ∴ 90ACB ∠=︒∴ 90BAC ABC ∠+∠=︒由25ABC ∠=︒得65BAC ∠=︒又AB CD ∥得25ABC BCD ∠=∠=︒ ∵ OB OC = ∴ 25OCB ABC ∠==∠=︒ 则50OCD OCB BCD ∠=∠+∠=︒ 由OC OD =得50ODC OCD ∠=∠=︒(Ⅱ)如图,连接OC∵CF 切⊙O 于点C ∴OC FC ⊥则90OCF ∠=︒∵ OD CF ∥ ∴ 90DOC OCF ∠=∠=︒ 又OC OD =则45ODC OCD ∠==∠=︒ 由AB CD ∥得45BOD ODC ∠=∠=︒∴135BOC DOC BOD ∠=∠+∠=︒ ∵ OC OB = ∴22.5ABC OCB ∠=∠=︒11. 解:(Ⅰ)连接OA .∵AE 切⊙O 于点A ∴OA ⊥AE ,∴∠OAE =90° ∵∠C =71° ∴∠AOB =2∠C =2×71°=142° 又∵∠AOB +∠AOE =180° ∴∠AOE =38° ∵∠AOE +∠E =90° ∴∠E =90°﹣38°=52° (Ⅱ)连接OA 设∠E = x .∵AB =AE ∴∠ABE =∠E = x ∵OA =OB ∴∠OAB =∠ABO = x ∴∠AOE =∠ABO +∠BAO =2x∵AE 是⊙O 的切线∴OA ⊥AE ,即∠OAE =90°在△OAE 中∠AOE +∠E =90°即2x +x =90°解得30x =︒∴∠E =30° 在Rt △OAE 中OA =21OE∵OA =OD ∴OA =OD =DE∵DE =2∴OA =2即⊙O 的半径为212.解:(Ⅰ)∵DA 、DC 是⊙O 的切线 ∴DA =DC OA ⊥DA ∴∠DAO =90°∵DC =PC ∴DA =DC =PC ∵∠DAP =90° ∴sin P=DP AD =21∴∠P=30° (Ⅱ)连接OC 、AC∵DA ,DC 是⊙O 的切线 ∴DA =DC∵四边形ABCD 是平行四边形∴□ABCD 是菱形 ∴DA =DC =CB =AB ∠ABC =∠ADC ∵∠AOC =2∠ABC ∴∠AOC =2∠ADC∵DA 、DC 是⊙O 的切线∴OA ⊥AD OC ⊥DC ∴∠DAO =∠DCO =90°∵∠ADC +∠DCO+∠AOC +∠DAO =360° ∴∠ADC +∠AOC =180°∴3∠ADC =180°∴∠ADC =60°∴∠P =90°-∠ADC =30°,∠ABC =60°又AB =BC ∴△ABC 是等边三角形 ∴∠ACB =60° ∴∠AEB =∠ACB=60°13. 解:(Ⅰ)∵OE ⊥AB∴1272APAB 设PE =x 则OP =3x OA =OE =4x在Rt OAP △中222OA OP AP =+即2216928x x =+ 解得x =2(负舍)∴4x =8 ∴半径OA 为8 (Ⅱ)∵ CD 为⊙O 的切线 ∴OE ⊥CD又∵OE ⊥AB ∴AB //CD ∴34OA OP OCOE∴323OCECAPODB。

2021年九年级数学中考复习:与圆相关的证明与计算(含答案) (1)

2021年九年级数学中考复习:与圆相关的证明与计算(含答案) (1)

中考复习与圆相关的证明与计算强化训练(含答案)̂的半径OA=2,OC⊥AB于点C,∠AOC=60°.求:1.如图,AB(1) 弦AB的长;̂的长.(2) AB2.如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1) 求证:EC是⊙O的切线;̂的长(结果保留π).(2) 若AD=2√3,求AM3.如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.(1) 判断直线BC与⊙O的位置关系,并说明理由;(2) 若∠A=30°,OP=1,求图中涂色部分的面积.4.如图,在▱ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,AB长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.(1) 求证:DE与⊙A相切;(2) 若∠ABC=60°,AB=4,求涂色部分的面积.5.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1) 求证:BE是⊙O的切线;(2) 设OE交⊙O于点F,若DF=2,BC=4√3,求EF的长;(3) 在(2)的条件下,求涂色部分的面积.6.中心为O的正六边形ABCDEF的半径为6 cm,点P,Q同时分别从A,D两点出发,以 1 cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1) 求证:四边形PBQE为平行四边形;(2) 求矩形PBQE的面积与正六边形ABCDEF的面积之比7.如图,OM是⊙O的半径,过点M作⊙O的切线AB,且MA=MB, OA,OB分别交⊙O于点C,D.求证:AC=BD.8.如图,四边形OABC是平行四边形,以点O为圆心,OC为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于点E,连接EB交OC于点F.求∠C和∠E的度数.9.在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(1) 如图①,若∠APC=100°,求∠BAD和∠CDB的度数;(2) 如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的度数.10.如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F. BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E. (1) 求证:△CBA ≌△DAB ;(2) 若BE =BF ,求证:AC 平分∠DAB.11.如图,在Rt △ABC 中,∠C =90°,点O 在AC 上,以OA 为半径的半圆O 交AB 于点D ,交AC 于点E ,过点D 作半圆O 的切线DF ,交BC 于点F. (1) 求证:BF =DF ;(2) 若AC =4,BC =3,CF =1,求半圆O 的半径长12.如图,AB 是⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D.(1) 求证:∠CAD =∠CAB ;(2) 若ADAB =23,AC =2√6,求CD 的长.̂于点D,13. 如图,AB是⊙O的直径,C是⊙O上一点,∠CAB的平分线AD交BC过点D作DE∥BC交AC的延长线于点E.(1) 求证:DE是⊙O的切线.(2) 过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长14. 如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B.(1) 求证:CD是⊙O的切线;(2) 若DE⊥AB,垂足为E,DE交AC于点F,求证:△DCF是等腰三角形̂=CD̂=DB̂,连接14. 如图,AB为⊙O的直径,C,D为⊙O上的两个点,ACAD,过点D作DE⊥AC交AC的延长线于点E.(1) 求证:DE是⊙O的切线;(2) 若直径AB=6,求AD的长.̂上一点,DE⊥AB于15. 如图①,AB是半圆O的直径,AC是一条弦,D是AC点E,交AC于点F,连接BD,交AC于点G,且AF=FG.̂.(1) 求证:点D平分AC(2) 如图②,延长BA至点H,使AH=AO,连接DH.若E是线段AO的中点,求证:DH是⊙O的切线.16. 如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1) 请判断直线AC是否是⊙O的切线,并说明理由;(2) 若CD=2,CA=4,求弦AB的长.17. 如图,在四边形ABCD中,AD∥BC,AB=2√3a,∠ABC=60°,过点B的⊙O与边AB,BC分别交于E,F两点,OG⊥BC,垂足为G,OG=a,连接OB,OE,OF.(1) 若BF=2a,试判断△BOF的形状,并说明理由;(2) 若BE=BF,求证:⊙O与AD相切于点A.̂的中点,过18. 如图,在⊙O中,AB为⊙O的直径,C为⊙O上一点,P是BC点P作AC的垂线,交AC的延长线于点D,连接OP.(1) 求证:DP是⊙O的切线;(2) 若AC=5,sin ∠APC=5,求AP的长.1319. 如图,在▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O 为圆心,OD长为半径作⊙O,分别交边DA,DC于点M,N.点E在边BC上,OE交̂的中点.⊙O于点G,G为MN(1) 求证:四边形ABEO为菱形;(2) 已知cos ∠ABC=1,连接AE,当AE与⊙O相切时,求AB的长3答案1.解:(1)∵ OC ⊥AB ,∠AOC =60°,∴ ∠OAC =90°-∠AOC =30°.∴ OC =12OA=1.∴ AC =√OA 2−OC 2=√3.∵ OA =OB ,OC ⊥AB ,∴ AB =2AC =2√3(2) ∵ OA =OB ,OC ⊥AB ,∴ ∠AOB =2∠AOC =120°.∵ OA =2,∴ AB̂的长为120π×2180=4π32.解:(1) 如图,连接OB.∵ 四边形ABCD 是平行四边形,∠D =60°,∴ ∠ABC =∠D =60°.∵ BE =AB ,∴ ∠E =∠BAE.∵ ∠ABC =∠E +∠BAE =60°,∴ ∠BAE =∠E =30°.∵ OA =OB ,∴ ∠ABO =∠OAB =30°.∴ ∠OBC =∠ABC +∠ABO =90°.∴ OB ⊥CE.∴ EC 是⊙O 的切线(2) 如图,连接OM ,过点O 作OH ⊥AC 于点H.∵ 四边形ABCD 是平行四边形,∴ BC =AD =2√3.∵ AC ⊥BC ,∠E =30°,∴ ∠EAC =60°.∵ OA =OM ,∴ △AOM 是等边三角形.∴ ∠AOM =60°.∵ OH ⊥AC ,∠OBC = 90°,AC ⊥BC ,∴ 四边形OBCH 是矩形.∴ OH =BC =2√3,OH ∥EC.∴ ∠AOH =∠E =30°.∴ 在Rt △AHO 中,AH =12AO. 根据勾股定理,得AH 2+OH 2=AO 2,即(12AO)2+(2√3)2=AO 2,解得AO =4(负值舍去).∴ AM̂的长=60·π×4180=4π33.解:(1) 直线BC 与⊙O 相切理由:连接OB.∵ OA =OB ,∴ ∠OAB =∠OBA.∵ CP =CB ,∴ ∠CPB =∠CBP.∵ ∠CPB =∠APO ,∴ ∠CBP =∠APO.∵ OC ⊥OA ,∴ 在Rt △AOP 中,∠OAB +∠APO =90°.∴ ∠OBA +∠CBP =90°, 即∠OBC =90°.∴ OB ⊥CB.又∵ OB 是⊙O 的半径,∴ 直线BC 与⊙O 相切.(2) ∵ 在Rt △AOP 中,∠A =30°,OP =1,∴ OA =OP tan 30°=√3.∵ OA =OB =√3,∠A =30°,∴ ∠A =∠OBA =30°.∴ 在△OAB 中,∠AOB =180°-2×30°=120°.∵ OC ⊥OA ,∴ ∠AOP =90°.∴ ∠COB =30°.∴ 在Rt △OBC 中,BC =OB ·tan 30°=1.∴ S 涂色=S △OBC -S 扇形OBD =12×1×√3−30·π×(√3)2360=√32−π44.解:(1) 连接AE.∵ 四边形ABCD 是平行四边形,∴ AD =BC ,AD ∥BC.∴ ∠DAE =∠AEB.∵ AE =BA ,∴ ∠AEB =∠CBA.∴ ∠DAE =∠CBA.∴ △AED ≌△BAC(SAS).∴ ∠DEA = ∠CAB.∵ ∠CAB =90°,∴ ∠DEA =90°.∴ DE ⊥AE. ∵ AE 是⊙A 的半径,∴ DE 与⊙A 相切(2) ∵ ∠ABC =60°,AB =AE =4,∴ △ABE 是等边三角形.∴ ∠EAB =60°.∵ ∠CAB =90°,∴ ∠CAE =90°-∠EAB =90°-60°=30°.∵ ∠CAB =90°,∠ABC =60°,∴ ∠ACB =30°.∴BC =2AB =8.∴ AC =√BC 2−AB 2=4√3.∴ S 涂色=S △CAB -S △ABE - S 扇形EAF =12×4×4√3−√34×42-30π×42360=4√3−4π35.解:(1) 连接OC.∵ CE 为⊙O 的切线,∴ OC ⊥CE.∴ ∠OCE =90°.∵ OC =OB ,OD ⊥BC ,∴ CD =BD ,即OD 垂直平分BC.∴ EC =EB. ∵ OC =OB ,OE =OE ,∴ △OCE ≌△OBE(SSS).∴ ∠OBE =∠OCE =90°.∴ OB ⊥BE.∴ BE 是⊙O 的切线(2) ∵ BC =4√3,CD =BD ,∴ BD =12BC =2√3.设⊙O 的半径为x ,则OD =OF -DF =x -2,OB =x.∵ 在Rt △OBD 中,OD 2+BD 2=OB 2,∴ (x -2)2+(2√3)2=x 2,解得x =4.∴ OD =2,OB =4.∴ 在Rt △OBD 中,OD =12OB.∴ ∠OBD =30°.∴ ∠BOD =60°.∴ 在Rt △EBO 中,∠BEO =30°.∴ OE =2OB =8.∴ EF =OE -OF =8-4=4(3) 在Rt △EBO 中,BE =√OE 2−OB 2=4√3.∵ △OCE ≌△OBE(SSS),∴ ∠COE =∠BOE =60°. ∴ ∠BOC =120°. ∴ S 涂色=S 四边形OBEC -S 扇形OBC =2S △EBO -S 扇形OBC =2×12×4×4√3−120·π×42360=16√3−16π36.中心为O的正六边形ABCDEF的半径为6 cm,点P,Q同时分别从A,D两点出发,以 1 cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1) 求证:四边形PBQE为平行四边形;(2) 求矩形PBQE的面积与正六边形ABCDEF的面积之比解:(1) ∵六边形ABCDEF是正六边形,∴ AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF=∠F.∵点P,Q同时分别从A,D两点出发,以1 cm/s的速度沿AF,DC向终点F,C 运动,∴ AP=DQ=t cm,PF=QC=(6-t)cm.在△ABP和△DEQ中,{AB=DE,∠A=∠D,AP=DQ,∴△ABP≌△DEQ(SAS).∴ BP=EQ.同理,可证PE=QB,∴四边形PBQE为平行四边形(2) 连接BE,OA,则∠AOB=360°6=60°.∵ OA=OB,∴△AOB是等边三角形.∴ AB=OA=OB=6 cm,BE=2OB=12 cm.当t=0 s时,点P与点A重合,点Q 与点D重合,四边形PBQE即为四边形ABDE,如图①所示,则∠EAF=∠AEF=30°,∴∠BAE=120°-30°=90°.∴此时四边形ABDE是矩形,即四边形PBQE是矩形.当t=6 s时,点P与点F 重合,点Q与点C重合,四边形PBQE即为四边形FBCE,如图②所示,同理可知∠BFE=90°,此时四边形PBQE是矩形.∴当t=0 s或6 s时,四边形PBQE是矩形.∴ AE=√BE2−AB2=6√3 cm.∴S矩形PBQE =S矩形ABDE=AB·AE=6×6√3=36√3(cm2).∵ S正六边形ABCDEF=6S△AOB =6×14S矩形ABDE=6×14×36√3=54√3(cm2),∴ S矩形PBQE∶S正六边形ABCDEF =√354√3=237.如图,OM是⊙O的半径,过点M作⊙O的切线AB,且MA=MB, OA,OB分别交⊙O于点C,D.求证:AC=BD.解:∵OM是⊙O的半径,过点M作⊙O的切线AB,∴OM⊥AB.∵MA=MB,∴直线OM垂直平分AB.∴ OA=OB.∵ OC=OD,∴ OA-OC=OB-OD,即AC=BD8.如图,四边形OABC是平行四边形,以点O为圆心,OC为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于点E,连接EB交OC于点F.求∠C和∠E的度数.解:连接OB.∵⊙O与AB相切于点B,∴OB⊥AB.∵四边形OABC是平行四边形,∴ AB∥OC,OA∥BC.∴ OB⊥OC.∴∠BOC=90°.∵OB=OC,∴△OCB为等腰直角三角形.∴∠C=∠OBC=45°.∵ AO∥BC,∴∠AOB=∠OBC=45°.∠AOB=22.5°∴∠E=129.在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(1) 如图①,若∠APC=100°,求∠BAD和∠CDB的度数;(2) 如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的度数.解:(1) ∵∠APC是△PBC的一个外角,∴∠APC=∠C+∠ABC.∵∠ABC=63°,∠APC=100°,∴∠C=∠APC-∠ABC=100°-63°=37°.∵BD̂=BD̂,∴∠BAD=∠C=37°.∵AĈ=AĈ,∴∠ADC=∠ABC=63°.∵ AB是⊙O的直径,∴∠ADB=90°.∴∠CDB=∠ADB-∠ADC=90°-63°=27°(2) 连接OD.∵CD⊥AB,∴∠CPB=90°.∴∠PCB=90°-∠ABC=90°-63°=27°.∴∠BOD=2∠PCB=54°.∵ DE是⊙O的切线,∴ DE⊥OD.∴∠ODE=90°.∴∠E=90°-∠BOD=90°-54°=36°10.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F. BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1) 求证:△CBA≌△DAB;(2) 若BE=BF,求证:AC平分∠DAB.解:(1) ∵ AB是半圆O的直径,∴∠ACB=∠ADB=90°.在Rt△CBA与Rt△DAB中,{BC=AD,BA=AB,∴ Rt△CBA≌Rt△DAB(HL)(2) 由(1),知∠ACB=90°,∴BC⊥EF.∵BE=BF,∴∠EBC=∠FBC.∵CD̂=CD̂,∴∠FBC=∠DAC.∵ BE是半圆O所在圆的切线,∴∠ABE=90°.∴∠EBC+∠ABC=90°.∵∠ACB=90°,∴在△ACB中,∠BAC+∠ABC=90°.∴∠EBC=∠BAC.∴∠DAC=∠BAC.∴ AC平分∠DAB11.如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB 于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1) 求证:BF=DF;(2) 若AC =4,BC =3,CF =1,求半圆O 的半径长解:(1) 连接OD.∵ 过点D 作半圆O 的切线DF ,交BC 于点F ,∴ ∠ODF =90°.∴ ∠ADO +∠BDF =90°.∵ OA =OD ,∴ ∠OAD =∠ODA.∴ ∠OAD +∠BDF =90°.∵ ∠C =90°,∴ ∠OAD +∠B =90°.∴ ∠B =∠BDF.∴ BF =DF(2) 连接OF.设半圆O 的半径为r ,则OD =OE =r.∵ AC =4,BC =3,CF =1,∴ OC =4-r ,DF =BF =3-1=2.在Rt △ODF 和Rt △OCF 中,由勾股定理,得OD 2+DF 2=OF 2=OC 2+CF 2,即r 2+22=(4-r)2+12,解得r =138.∴ 半圆O 的半径长为13812.如图,AB 是⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D.(1) 求证:∠CAD =∠CAB ;(2) 若AD AB =23,AC =2√6,求CD 的长.解:(1) 连接OC.∵ CD 是⊙O 的切线,∴ OC ⊥CD.∵ AD ⊥CD ,∴ AD ∥OC.∴ ∠DAC =∠ACO.∵ OA =OC ,∴ ∠CAO =∠ACO.∴ ∠DAC =∠CAO ,即∠CAD =∠CAB(2) 连接BC.∵ AD AB =23,∴ 设AD =2x ,AB =3x.∵ AB 是⊙O 的直径,∴ ∠ACB =90°.∵ AD ⊥DC ,∴ ∠ADC =90°.∴ ∠ADC =∠ACB.∵ ∠DAC =∠CAB ,∴ △ACD ∽△ABC.∴ AD AC =AC AB .∴ 2√6=2√63x ,解得x 1=2,x 2=-2(不合题意,舍去).∴ AD =4.∴ CD =√AC 2−AD 2=2√213. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,∠CAB 的平分线AD 交BĈ于点D ,过点D 作DE ∥BC 交AC 的延长线于点E.(1) 求证:DE 是⊙O 的切线.(2) 过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长解:(1) 连接OD.∵ AB是⊙O的直径,∴∠ACB=90°. ∵ DE∥BC,∴∠E=∠ACB=90°.∵ OA=OD,∴∠OAD=∠ADO.∵ AD平分∠CAB,∴∠DAE=∠OAD. ∴∠ADO=∠DAE.∴ OD∥AE.∴∠E+∠ODE=180°.∴∠ODE=180°-∠E=90°,即OD⊥DE.∴ DE是⊙O的切线(2) ∵ OF=1,BF=2,∴ OD=OB=3.∵ DF⊥AB,∴∠OFD=∠BFD=90°.∴在Rt△OFD中,DF2=OD2-OF2=8.∴ BD2=DF2+BF2=8+22=12.∴ BD=2√314. 如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B.(1) 求证:CD是⊙O的切线;(2) 若DE⊥AB,垂足为E,DE交AC于点F,求证:△DCF是等腰三角形解:(1) 连接OC.∵OC=OA,∴∠OCA=∠A.∵AB是⊙O的直径,∴∠BCA=90°.∴∠A+∠B=90°.∵∠DCA=∠B,∴∠OCA+∠DCA=∠OCD=90°.∴ OC⊥CD.∴ CD是⊙O的切线(2) ∵∠OCA+∠DCA=90°,∠OCA=∠A,∴∠A+∠DCA=90°.∵ DE⊥AB,∴∠A+∠EFA=90°.∴∠DCA=∠EFA.∵∠EFA=∠DFC,∴∠DCA=∠DFC.∴ DC=DF.∴△DCF是等腰三角形̂=CD̂=DB̂,连接14. 如图,AB为⊙O的直径,C,D为⊙O上的两个点,ACAD,过点D作DE⊥AC交AC的延长线于点E.(1) 求证:DE是⊙O的切线;(2) 若直径AB=6,求AD的长.解:(1) 连接OD.∵ AB 为⊙O 的直径,AC ̂=CD ̂=DB ̂,∴ ∠BOD =13×180°=60°.∵ ∠BOD 是△AOD 的外角,∴ ∠OAD +∠ADO =60°. ∵ OA =OD ,∴ ∠ADO =∠DAB =30°.∵ CD̂=DB ̂,∴ ∠EAD =∠DAB =30°.∵ DE ⊥AC ,∴ ∠E =90°. ∴ 在Rt △AED 中,∠EDA =90°-∠EAD =60°.∴ ∠EDO =∠EDA +∠ADO =90°.∴ OD ⊥DE.∴ DE 是⊙O 的切线(2) 连接BD.∵ AB 为⊙O 的直径,∴ ∠ADB =90°.∵ ∠DAB =30°,AB =6,∴ BD =12AB =3.∴ AD =√AB 2−BD 2=3√315. 如图①,AB 是半圆O 的直径,AC 是一条弦,D 是AĈ上一点,DE ⊥AB 于点E ,交AC 于点F ,连接BD ,交AC 于点G ,且AF =FG.(1) 求证:点D 平分AĈ. (2) 如图②,延长BA 至点H ,使AH =AO ,连接DH.若E 是线段AO 的中点,求证:DH 是⊙O 的切线.解:(1) 连接AD.∵ AB 是半圆O 的直径,∴ ∠ADB =90°.∴ ∠ADE +∠BDE =90°.∵ DE ⊥AB ,∴ 在Rt △DEB 中,∠ABD +∠BDE =90°.∴ ∠ADE =∠ABD.又∵ 在Rt △ADG 中,AF =FG ,∴ DF =AF.∴ ∠DAC =∠ADE.∴ ∠ABD =∠DAC.∴ AD̂=DC ̂.∴ 点D 平分AC ̂ (2) 连接OD ,AD.∵ DE ⊥AB ,E 是线段OA 的中点,∴ DE 垂直平分AO.∴ AD =OD.∵ AO =OD ,∴ AD =OD =AO.∴ △OAD 是等边三角形.∴ ∠ADO =∠DAO =60°.∵ AH =AO ,∴ AH =AD.∴ ∠H =∠ADH =30°.∴ ∠HDO =∠ADH +∠ADO =90°.∴ HD ⊥OD.∴ DH 是⊙O 的切线16. 如图,在△ABC 中,D 是边BC 上一点,以BD 为直径的⊙O 经过点A ,且∠CAD =∠ABC.(1) 请判断直线AC 是否是⊙O 的切线,并说明理由;(2) 若CD =2,CA =4,求弦AB 的长.解:(1) 直线AC 是⊙O 的切线理由:如图,连接OA.∵ BD 为⊙O 的直径,∴∠BAD =90°=∠OAB +∠OAD.∵ OA =OB ,∴ ∠OAB =∠ABC. 又∵ ∠CAD =∠ABC ,∴ ∠OAB =∠CAD.∴ ∠OAC =∠OAD +∠CAD =90°.∴ AC ⊥OA.又∵ OA 是半径,∴ 直线AC 是⊙O 的切线.(2) 如图,过点A 作AE ⊥BD 于点E.设⊙O 的半径为r.∵ 在Rt △OAC 中,OC 2=AC 2+OA 2,∴ (r +2)2=16+r 2,解得r =3.∴ OC =5,BC =8.∵ S △OAC =12OA ·AC =12OC ·AE ,∴ AE =3×45=125.∴ 在Rt △AEO 中,OE =√OA 2−AE 2=95.∴ BE =OB +OE =245.∴ 在Rt △AEB 中,AB =√AE 2+BE 2=12√5517. 如图,在四边形ABCD 中,AD ∥BC ,AB =2√3a ,∠ABC =60°,过点B 的⊙O 与边AB ,BC 分别交于E ,F 两点,OG ⊥BC ,垂足为G ,OG =a ,连接OB ,OE ,OF.(1) 若BF =2a ,试判断△BOF 的形状,并说明理由;(2) 若BE =BF ,求证:⊙O 与AD 相切于点A.解:(1) △BOF 为等腰直角三角形 理由:∵ OB =OF ,OG ⊥BC ,BF =2a , ∴ △BOF 为等腰三角形,BG =FG =12BF =a.∵ OG =a ,∴ BG =OG ,FG =OG.∴ △BGO 和△OGF 都是等腰直角三角形.∴ ∠BOG =∠FOG =45°.∴ ∠BOF =90°.∴ △BOF 为等腰直角三角形.(2) 连接EF.∵ ∠EBF =60°,BF =BE ,∴ △BEF 为等边三角形.∴ EB =EF.∴ 点E 在BF 的垂直平分线上.∵ OB =OF ,OG ⊥BC ,∴ 直线OG 垂直平分BF.∴ 点E ,O ,G 共线,即EG ⊥BF.∴ ∠BEG =90°-∠ABC =30°.∵ OB =OE ,∴ ∠EBO =∠BEG =30°.∴ ∠OBG =∠ABC -∠EBO =30°.∴ 在Rt △BGO 中,OB =2OG =2a ,BG 2=(2a)2-a 2=3a 2.∴ EG =OE +OG =OB +OG =3a.∴ 在Rt △BGE 中,BE =√BG 2+EG 2=2√3a.∵ AB =2√3a ,∴ 点A 与点E 重合.∵ AD ∥BC ,AG ⊥BF ,∴ AG ⊥AD.∴ ⊙O 与AD 相切于点A18. 如图,在⊙O 中,AB 为⊙O 的直径,C 为⊙O 上一点,P 是BĈ的中点,过点P 作AC 的垂线,交AC 的延长线于点D ,连接OP.(1) 求证:DP 是⊙O 的切线;(2) 若AC =5,sin ∠APC =513,求AP 的长.解:(1) ∵ P 是BĈ的中点,∴ PC ̂=PB ̂.∴ ∠PAD =∠PAB.∵ OA =OP ,∴ ∠APO =∠PAO.∴ ∠DAP =∠APO.∴ AD ∥OP.∵ PD ⊥AD ,∴ PD ⊥OP.∴ DP 是⊙O 的切线(2) 连接BC ,交OP 于点E.∵ AB 为⊙O 的直径,∴ ∠ACB =90°.∴ ∠DCE =180°-∠ACB =90°.∵ PD ⊥AD ,PD ⊥OP ,∴ ∠D =∠DPE =90°.∴ 四边形CDPE 是矩形.∴ CD =PE ,PD =CE ,∠CEP =90°.∴ OP ⊥BC.∴ CE =BE =12BC.∵ AO =OB ,∴ OE =12AC =52.∵ AĈ=AC ̂,∴ ∠APC =∠ABC.∴ sin ∠APC =sin ∠ABC =AC AB =513.∵ AC =5,∴ AB =13,BC =√132−52=12.∴ PD =CE =12×12=6,PE =OP -OE =132−52=4,即CD =4.∴ AD =AC +CD =9.∴ 在Rt △ADP 中,AP =√AD 2+PD 2=√92+62=3√1319. 如图,在▱ABCD 中,∠ABC 的平分线BO 交边AD 于点O ,OD =4,以点O 为圆心,OD 长为半径作⊙O ,分别交边DA ,DC 于点M ,N.点E 在边BC 上,OE 交⊙O 于点G ,G 为MN̂的中点. (1) 求证:四边形ABEO 为菱形;(2) 已知cos ∠ABC =13,连接AE ,当AE 与⊙O 相切时,求AB 的长解:(1) 如图①,连接MN.∵ G 为MN̂的中点,∴ OE ⊥MN.∵ MD 是⊙O 的直径,∴ ∠MND =90°.∴ MN ⊥CD.∴ CD ∥OE.∵ 四边形ABCD 是平行四边形,∴ AB ∥CD ,BC ∥AD.∴ AB ∥OE ,BE ∥AO.∴ 四边形ABEO 是平行四边形.∵ BO 平分∠ABC ,∴ ∠ABO =∠OBC.∵ AD ∥BC ,∴ ∠OBC =∠AOB.∴ ∠ABO =∠AOB.∴ AB =AO.∴ 四边形ABEO 为菱形(2) 如图②,过点O 作OH ⊥BC 于点H ,AE 交OB 于点P.∵ 四边形ABEO 是菱形,∴ AB ∥OE ,BO =2OP ,BE =OE.∴ ∠ABC =∠OEH.∵ cos ∠ABC =13,∴ cos ∠OEH =13.∴ 在Rt △OEH 中,EH OE =13.设EH =a ,则OE =3a ,OH =2√2a ,BH =BE +EH =4a.当AE 与⊙O 相切时,OP ⊥AE ,∴ OP =OD =4,OB =8.∴ 在Rt △OBH 中,OH 2+BH 2=OB 2,即(2√2a)2+(4a)2=82,解得a =2√63(负值舍去).∴ AB =3a =2√6。

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。

部编数学九年级上册专题24.3圆的证明综合(强化)(解析版)含答案

部编数学九年级上册专题24.3圆的证明综合(强化)(解析版)含答案

专题24.3 圆的证明综合【例题精讲】【例1】如图,四边形ABCD为菱形,以AD为直径作Oe交AB于点F,连接DB交Oe于=,连接DE.点H,E是BC上的一点,且BE BF(1)求证:DE是Oe的切线.BF=,DH=O(2)若2e的半径.【解答】(1)证明:如图1,连接DF,Q四边形ABCD为菱形,Ð=Ð,AD BC,DAB CAB BC CD DA\===,//Q,=BF BE\-=-,AB BF BC BE即AF CE=,\D@D,()DAF DCE SAS\Ð=Ð,DFA DECQ是OADe的直径,\Ð=°,DFA90\Ð=°90DECQ,//AD BC90ADE DEC \Ð=Ð=°,OD DE \^,OD Q 是O e 的半径,DE \是O e 的切线;(2)解:如图2,连接AH ,AD Q 是O e 的直径,90AHD DFA \Ð=Ð=°,90DFB \Ð=°,AD AB =Q ,DH =,2DB DH \==在Rt ADF D 和Rt BDF D 中,222DF AD AF =-Q ,222DF BD BF =-,2222AD AF DB BF \-=-,2222()AD AD BF DB BF \--=-,\2222(2)2AD AD --=-,5AD \=.O \e 的半径为52.【例2】如图,已知P 是O e 外一点,PO 交O e 于点C ,4OC CP ==,弦AB OC ^,劣弧AB 的度数为120°,连接PB .(1)求BC 的长;(2)求证:PB 是O e 的切线.【解答】(1)解:连接OB,Q弦AB OC^,劣弧AB的度数为120°,\弧BC与弧AC的度数为:60°,\Ð=°,BOC60Q,=OB OC\D是等边三角形,OBC\==;BC OC4(2)证明:OC CP=,=Q,BC OC\=,BC CP\Ð=Ð,CBP CPBQ是等边三角形,DOBC\Ð=Ð=°,OBC OCB60CBP\Ð=°,30\Ð=Ð+Ð=°,90OBP CBP OBC\^,OB BPQ点B在Oe上,\是OPBe的切线.【题组训练】1.如图,PA 为O e 的切线,A 为切点,过点A 作AB OP ^,垂足为点C ,交O e 于点B ,延长BO 与PA 的延长线交于点D .(1)求证:PB 是O e 的切线;(2)若3OB =,5OD =,求OP 的长.【解答】(1)证明:连接OA ,AB OP ^Q ,OB OA =,BOP AOP \Ð=Ð,PA Q 是O e 的切线,90OAP \Ð=°,在OBP D 与OAP D 中,OB OA BOP AOP OP OP =ìïÐ=Ðíï=î,()OBP OAP SAS \D @D ,90OBP OAP \Ð=Ð=°,OB PB \^,OB Q 是半径,PB \是O e 的切线;(2)解:5OD =Q ,3OA OB ==,在Rt AOD D 中,4AD ==,PA Q 、PB 为O e 的切线,PA PB \=,在Rt DBP D 中,222PD PB BD =+,即222(4)8PB PB +=+,6PB \=,在Rt OBP D 中,OP ==.2.如图,在O e 中,AB 是O e 的直径,CD 是O e 的弦,CD AB ^,垂足为P .过点D 作O e 的切线与AB 的延长线交于点E .若35BAC Ð=°,求E Ð的度数.【解答】解:连接OD ,AC ,AB CD ^Q ,AB 是O e 的直径,\¶¶BDBC =,35BCD BAC \Ð=Ð=°,270EOD DCB \Ð=Ð=°,DE Q 是O e 的切线,90ODE \Ð=°,907020E \Ð=°-°=°,故E Ð的度数为70°.6.如图,BE 是O e 的直径,点A 和点D 是O e 上的两点,过点A 作O e 的切线交BE 延长线于点C .(1)若25ADE Ð=°,求C Ð的度数;(2)若AB AC =,2CE =,求O e 半径的长.【解答】解:(1)连接OA ,AC Q 是O e 的切线,OA 是O e 的半径,OA AC \^,90OAC \Ð=°,Q ¶¶AE AE =,25ADE Ð=°,250AOE ADE \Ð=Ð=°,90905040C AOE \Ð=°-Ð=°-°=°;(2)AB AC =Q ,B C \Ð=Ð,Q ¶¶AE AE =,2AOC B \Ð=Ð,2AOC C \Ð=Ð,90OAC Ð=°Q ,90AOC C \Ð+Ð=°,390C \Ð=°,30C \Ð=°,12OA OC \=,设O e 的半径为r ,2CE =Q ,1(2)2r r \=+,解得:2r =,O \e 的半径为2.7.如图,AB 是O e 的直径,点D 在AB 的延长线上,C 、E 是O e 上的两点,CE CB =,BCD CAE Ð=Ð,延长AE 交BC 的延长线于点F .(1)求证:CD 是O e 的切线;(2)求证:CE CF =;【解答】解:(1)连接OC ,如右图所示,AB Q 是O e 的直径,90ACB \Ð=°,90CAD ABC \Ð+Ð=°,CE CB =Q ,CAE CAB \Ð=Ð,BCD CAE Ð=ÐQ ,CAB BCD \Ð=Ð,OB OC =Q ,OBC OCB \Ð=Ð,90OCB BCD \Ð+Ð=°,90OCD \Ð=°,CD \是O e 的切线;(2)BAC CAE Ð=ÐQ ,90ACB ACF Ð=Ð=°,AC AC =,()ABC AFC ASA \D @D ,CB CF \=,又CB CE =Q ,CE CF \=;10.如图,在ABC D 中,90C Ð=°,ABC Ð的平分线BE 交AC 于点E ,过点E 作直线BE 的垂线交AB 于点F ,O e 是BEF D 的外接圆.(1)求证:AC 是O e 的切线;(2)过点E 作EH AB ^于点H ,求证:EF 平分AEH Ð;(3)求证:CD HF =.【解答】(1)证明:如图,连接OE .BE EF ^Q ,90BEF \Ð=°,BF \是圆O 的直径,OB OE \=,OBE OEB \Ð=Ð,BE Q 平分ABC Ð,CBE OBE \Ð=Ð,OEB CBE \Ð=Ð,//\,OE BC\Ð=Ð=°,90AEO C\是Oe的切线;AC(2)证明:90Ð=Ð,Q,EBC EBAC BHEÐ=Ð=°\=Ð,BEC BEHQ是OBFe是直径,\Ð=°,BEF90Ð+Ð=°,\Ð+Ð=°,90AEF BECFEH BEH90\Ð=Ð,FEH FEAÐ.FE\平分AEH(3)证明:如图,连接DE.^于H,Q是ABCBEÐ的平分线,EC BC^于C,EH AB\=.EC EHHFE BDEÐ+Ð=°,Q,180CDE BDEÐ+Ð=°180\Ð=Ð,CDE HFEÐ=Ð=°Q,C EHF90CDE HFE AAS\D@D,()\=,CD HF11.如图,AB是OCD BM,交AB于点F,且e的直径,过点B作Oe的切线BM,弦//¶·=,连接AC,AD,延长AD交BM于点E.DA DC(1)求证:ACDD是等边三角形;DE=,求OE的长.(2)连接OE,若2【解答】(1)证明:AB Q 是O e 的直径,BM 是O e 的切线,AB BE \^,//CD BE Q ,CD AB \^,\¶¶AD AC =,Q ¶·DADC =,\¶¶¶AD AC CD ==,AD AC CD \==,ACD \D 是等边三角形;(2)解:连接OE ,过O 作ON AD ^于N ,由(1)知,ACD D 是等边三角形,60DAC \Ð=°AD AC =Q ,CD AB ^,30DAB \Ð=°,12BE AE \=,12ON AO =,设O e 的半径为:r ,12ON r \=,AN DN ==,2EN \=+,12BE AE ==,在t R NEO D 与t R BEO D 中,22222OE ON OB ==+即2222()(22r r ++=+,\=,r222528\=+=,OE\=.OE12.如图,在ABCe的切e交BC于点D,过点D作O D中,AB AC=,以AB为直径的O线DE,交AC于点E,AC的反向延长线交Oe于点F.(1)求证:DE AC^;(2)若8e的半径为10,求AF的长度.+=,ODE EA【解答】(1)证明:OB OD=Q,\Ð=Ð,ABC ODBQ,=AB AC\Ð=Ð,ABC ACB\Ð=Ð,ODB ACB\.OD AC//Q是ODEe的切线,OD是半径,DE OD\^,\^;DE AC(2)如图,过点O作OH AFÐ=Ð=Ð=°,ODE DEH OHE^于点H,则90\四边形ODEH是矩形,OD EH \=,OH DE =.设AH x =.8DE AE +=Q ,10OD =,10AE x \=-,8(10)2OH DE x x ==--=-.在Rt AOH D 中,由勾股定理知:222AH OH OA +=,即222(2)10x x +-=,解得18x =,26x =-(不合题意,舍去).8AH \=.OH AF ^Q ,12AH FH AF \==,22816AF AH \==´=.13.如图,ABC D 内接于O e ,AB AC =,AD 是O e 的直径,交BC 于点E ,过点D 作//DF BC ,交AB 的延长线于点F ,连接BD .(1)求证:DF 是O e 的切线;(2)已知12AC =,15AF =,求DF 的长.【解答】(1)证明:AD Q 是O e 的直径,90ABD \Ð=°,即90ABC CBD Ð+Ð=°,AB AC =Q ,ABC C \Ð=Ð,ADB C Ð=ÐQ ,ABC ADB \Ð=Ð,//BC DF Q ,CBD FDB \Ð=Ð,90ADB FDB \Ð+Ð=°,即90ADF Ð=°,AD DF \^,又OD Q 是O e 的半径,DF \是O e 的切线;(2)解:12AB AC ==Q ,15AF =,3BF AF AB \=-=,F F Ð=ÐQ ,90FBD FDA Ð=Ð=°,FBD FDA \D D ∽,::BF DF DF AF \=,231545DF BF AF \=´=´=,DF \==.14.如图,ABC D 内接于O e ,60B Ð=°,CD 是O e 的直径,点P 是CD 延长线上的一点,且AP AC =.(1)求证:PA 是O e 的切线;(2)若4AB =+,BC =,求O e 的半径.【解答】(1)证明:连接OA .60B Ð=°Q ,2120AOC B \Ð=Ð=°,又OA OC =Q ,30OAC OCA \Ð=Ð=°,又AP AC =Q ,30P ACP \Ð=Ð=°,90OAP AOC P \Ð=Ð-Ð=°,OA PA \^,PA \是O e 的切线;(2)解:过点C 作CE AB ^于点E .在Rt BCE D 中,60B Ð=°,BC =,12BE BC \==3CE =,4AB =Q 4AE AB BE \=-=,\在Rt ACE D 中,5AC ==,5AP AC \==.\在Rt PAO D 中,OA =,O \e .15.如图,AB 是O e 的直径,点F ,C 是O e 上两点,且¶¶¶AF FCCB ==,连接AC ,AF ,过点C 作CD AF ^交AF 延长线于点D ,垂足为D .(1)求证:CD 是O e 的切线;(2)若CD =O e 的半径.【解答】(1)证明:连接OC ,如图,Q ¶¶FCBC =,FAC BAC \Ð=Ð,OA OC =Q ,OAC OCA \Ð=Ð,FAC OCA \Ð=Ð,//OC AF \,CD AF ^Q ,OC CD \^,CD \是O e 的切线;(2)解:连接BC ,如图,AB Q 为直径,90ACB \Ð=°,Q ¶¶¶AF FCCB ==,1180603BOC \Ð=´°=°,30BAC \Ð=°,30DAC \Ð=°,在Rt ADC D 中,CD =,2AC CD \==在Rt ACB D 中,4BC AC ===,28AB BC \==,O \e 的半径为4.16.如图,Rt ABC D 中,90ABC Ð=°,以AB 为直径作半圆O e 交AC 与点D ,点E 为BC 的中点,连接DE .(1)求证:DE 是半圆O e 的切线.(2)若30BAC Ð=°,2DE =,求AD 的长.【解答】(1)证明:连接OD ,OE ,BD ,AB Q 为圆O 的直径,90ADB BDC \Ð=Ð=°,在Rt BDC D 中,E 为斜边BC 的中点,DE BE \=,在OBE D 和ODE D 中,OB OD OE OE BE DE =ìï=íï=î,()OBE ODE SSS \D @D ,90ODE ABC \Ð=Ð=°,则DE 为圆O 的切线;(2)在Rt ABC D 中,30BAC Ð=°,12BC AC \=,24BC DE ==Q ,8AC \=,又60=,Q,DE CECÐ=°DC DE==,\D为等边三角形,即2DEC则6=-=.AD AC DC17.如图,在ABCÐ=Ð.e经过点A,且CAD ABC D中,D是边BC上一点,以BD为直径的O(1)请判断直线AC是否是Oe的切线,并说明理由;(2)若2CA=,求弦AB的长.CD=,4【解答】解:(1)直线AC是Oe的切线,理由如下:如图,连接OA,Q为OBDe的直径,90\Ð=°=Ð+Ð,BAD OAB OADQ,OA OB=\Ð=Ð,OAB ABC又CAD ABCQ,Ð=Ð\Ð=Ð=Ð,OAB CAD ABC\Ð+Ð=°=Ð,90OAD CAD OAC\^,AC OA又OAQ是半径,e的切线;\直线AC是O^于E,(2)方法一、过点A作AE BD222Q,=+OC AC AO22(2)16OA OA \+=+,3OA \=,5OC \=,8BC =,1122OAC S OA AC OC AE D =´´=´´Q ,341255AE ´\==,95OE \===,245BE BO OE \=+=,AB \===.方法二、CAD ABC Ð=ÐQ ,C C Ð=Ð,ACD BCA \D D ∽,\CD AC AD AC BC AB ==,\244AD BC BA==,8BC \=,2AB AD =,6BD \=,222AB AD BD +=Q ,25AD \,AD \=2AB AD \==.18.如图,在ABC D 中,AB AC =,AD BC ^于点D ,E 是AB 上一点,以CE 为直径的O e 交BC 于点F ,连接DO ,且90DOC Ð=°.(1)求证:AB 是O e 的切线;(2)若2DF =,6DC =,求BE 的长.【解答】(1)证明:AB AC =Q ,AD BC ^,CD DB \=,又CO OE =,//OD BE \,90CEB DOC \Ð=Ð=°,CE AB \^,AB \是O e 的切线;(2)解:连接EF 、ED ,6BD CD ==Q ,4BF BD DF \=-=,CO OE =Q ,90DOC Ð=°,6DE DC \==,CE Q 为O e 的直径,90EFC \Ð=°,EF \==BE \==.20.如图,AB 是O e 的直径,点P 在O e 上,且PA PB =,点M 是O e 外一点,MB 与O e 相切于点B ,连接OM ,过点A 作//AC OM 交O e 于点C ,连接BC 交OM 于点D .(1)求证:12OD AC =;(2)求证:MC 是O e 的切线;(3)若152OB =,12BC =,连接PC ,求PC 的长.【解答】(1)证明:AB Q 是O e 的直径,90ACB \Ð=°,又//AC OM Q ,90BDO ACB \Ð=Ð=°,OD BC \^,D \为BC 的中点,O 为AB 的中点,OD \为ABC D 的中位线,12OD AC \=;(2)证明:如图所示:连接OC ,//AC OM Q ,OAC BOM \Ð=Ð,ACO COM Ð=Ð,OA OC =Q ,OAC ACO \Ð=Ð,BOM COM \Ð=Ð,在OCM D 与OBM D 中,OC OB COM BOM OM OM =ìïÐ=Ðíï=î,()OCM OBM SAS \D @D ,又MB Q 是O e的切线,90OCM OBM \Ð=Ð=°,又OC Q 是半径,MC \是O e 的切线;(3)解:AB Q 是O e 的直径,90ACB APB \Ð=Ð=°,152OB =Q ,15AB \=PA PB \==12BC =Q ,9AC \=,过点A 作AH PC ^于点H ,29AC OD ==Q ,45ACH ABP Ð=Ð=°,AH CH \==,PH ===PC PH CH \=+=21.如图,在ABC D 中,AB AC =,120BAC Ð=°,点D 在BC 边上,D e 经过点A 和点B 且与BC 边相交于点E .(1)求证:AC 是D e 的切线;(2)若CE =D e 的半径.【解答】(1)证明:连接AD,BACQ,120Ð=°,=AB ACB C\Ð=Ð=°,30Q,=AD BD\Ð=Ð=°,30BAD B\Ð=°,ADC60\Ð=°-°-°=°,DAC180603090e的切线;\是DAC(2)解:连接AE,=Q,60AD DEÐ=°,ADE\D是等边三角形,ADE\=,60AE DEÐ=°,AED\Ð=Ð-Ð=°,30EAC AED C\Ð=Ð,EAC C\==,AE CED\e的半径AD=22.如图,AB为Oe的直径,C为Oe上一点,弦AE的延长线与过点C的切线互相垂直,垂足为D,35Ð=°,连接BC.CADÐ的度数;(1)求B(2)若2AB =,求¶EC的长.【解答】解:(1)连接OC ,如图,CD Q 是O e 的切线,OC CD \^,AE CD ^Q ,//OC AE \,CAD OCA \Ð=Ð,OA OC =Q ,OCA OAC \Ð=Ð,35CAD OAC \Ð=Ð=°,AB Q 为O e 的直径,90ACB \Ð=°,90OAC B \Ð+Ð=°,90903555B OAC \Ð=°-Ð=°-°=°;(2)连接OE ,O Q e 的直径2AB =,1OA \=,Q ¶¶CECE =,223570COE CAE \Ð=Ð=´°=°,\¶EC 的长为:701718018p p ×=.23.已知:如图,ABCe交BC于点P,PD AC^于点=,以AB为直径的OD中,AB ACD.(1)求证:PD是Oe的切线;(2)若120Ð=°,6AB=,求BC的值.CAB【解答】(1)证明:AB ACQ,=\Ð=Ð,B C=Q,OP OB\Ð=Ð,B OPB\Ð=Ð,OPB C//\,OP AC^Q,PD AC\^,OP PD\是OPDe的切线;(2)解:连接AP,如图,ABQ为直径,\Ð=°,90APB\=,BP CPQ,Ð=°CAB12060BAP \Ð=°,在Rt BAP D 中,6AB =,30B Ð=°,132AP AB \==,BP \==2BC BP \==24.如图,在ABC D 中,90C Ð=°,ABC Ð的平分线交AC 于点E ,过点E 作BE 的垂线交AB 于点F ,O e 是BEF D 的外接圆.(1)求证:AC 是O e 的切线.(2)过点E 作EH AB ^于点H ,求证:CD HF =.【解答】证明:(1)如图1,连接OE .BE EF ^Q ,90BEF \Ð=°,BF \是圆O 的直径.BE Q 平分ABC Ð,CBE OBE \Ð=Ð,OB OE =Q ,OBE OEB \Ð=Ð,OEB CBE \Ð=Ð,//OE BC \,90AEO C \Ð=Ð=°,AC \是O e 的切线;(2)如图2,连接DE .CBE OBE Ð=ÐQ ,EC BC ^于C ,EH AB ^于H ,EC EH \=.180CDE BDE Ð+Ð=°Q ,180HFE BDE Ð+Ð=°,CDE HFE \Ð=Ð.在CDE D 与HFE D 中,90CDE HFE C EHF EC EH Ð=ÐìïÐ=Ð=°íï=î,()CDE HFE AAS \D @D ,CD HF \=.25.如图,AB 是O e 的直径,点C 、D 在O e 上,且AD 平分CAB Ð,过点D 作AC 的垂线,与AC 的延长线相交于E ,与AB 的延长线相交于点F ,G 为AB 的下半圆弧的中点,DG 交AB 于H ,连接DB 、GB .(1)证明EF 是O e 的切线;(2)求证:DGB BDF Ð=Ð;(3)已知圆的半径5R =,3BH =,求GH的长.【解答】解:(1)证明:连接OD ,OA OD =Q ,OAD ODA\Ð=Ð又AD Q 平分BAC Ð,OAD CAD\Ð=ÐODA CAD \Ð=Ð,//OD AE \,又EF AE ^Q ,OD EF \^,EF \是O e 的切线;(2)AB Q 是O e 的直径,90ADB \Ð=°,90DAB OBD \Ð+Ð=°由(1)得,EF 是O e 的切线,90ODF \Ð=°90BDF ODB \Ð+Ð=°OD OB =Q ,ODB OBD \Ð=Ð,DAB BDF \Ð=Ð,又DAB DGBÐ=Ð\Ð=ÐDGB BDF(3)连接OG,GQ是半圆弧中点,BOG\Ð=°90在Rt OGH=-=-=.OH OB BHOG=,532D中,5\==.GH26.如图,在Rt ABCe,与AC、BCÐ=°,以斜边AB上的中线CD为直径作OACBD中,90分别交于点M、N,与AB的另一个交点为E.过点N作NF AB^,垂足为F.(1)求证:NF是Oe的切线;DF=,求弦ED的长.(2)若2NF=,1【解答】(1)证明:连接ON.如图所示:Q在Rt ACBD中,CD是边AB的中线,\=,CD BD\Ð=Ð,DCB BQ,=OC ON\Ð=Ð,ONC DCBONC B\Ð=Ð,\//ON ABQ^NF ABNFB\Ð=°90\Ð=Ð=°,ONF NFB90\^ON NF又NFQ过半径ON的外端e的切线;\是ONF(2)解:过点O作OH ED^,垂足为H,如图2所示:设O e 的半径为rOH ED ^Q ,NF AB ^,ON NF ^,90OHD NFH ONF \Ð=Ð=Ð=°.\四边形ONFH 为矩形.HF ON r \==,2OH NF ==,1HD HF DF r \=-=-,在Rt OHD D 中,90OHD Ð=°222OH HD OD \+=,即2222(1)r r +-=,52r \=.32HD \=,OH ED ^Q ,且OH 过圆心O ,HE HD \=,23ED HD \==.28.如图,在Rt ABC D 中,90ACB Ð=°,点D 在AC 边上,以AD 为直径作O e 交AB 于点E ,连接CE ,且CB CE =.(1)求证:CE 是O e 的切线;(2)若2CD =,AB =O e 的半径.【解答】(1)证明:如图,连接OE,DE,Ð=°Q,ACB90A B\Ð+Ð=°,90Q是OADe的直径,\Ð=Ð=°,90AED DEB\Ð+Ð=°,DEC CEB90Q,=CE BC\Ð=Ð,B CEB\Ð=Ð,A DECQ,=OE OD\Ð=Ð,OED ODEQ,Ð+Ð=°A ADE90OECÐ=°,DEC OED90\Ð+Ð=°,即90\^.OE CEe的半径,Q是OOE\是Oe的切线;CE(2)解:在Rt ABC=,CD=,AB=BC CE D中,90ACBÐ=°,2设O e 的半径为r ,则OD OE r ==,2OC r =+,22AC r =+,222AC BC AB \+=,222(22)r BC \++=,在Rt OEC D 中,90OEC Ð=°,222OE CE OC \+=,222(2)r BC r \+=+,222(2)BC r r \=+-,2222(22)(2)r r r \+++-=,解得3r =,或6r =-(舍去).O \e 的半径为3.30.如图,ACB D 内接于圆O ,AB 为直径,CD AB ^与点D ,E 为圆外一点,EO AB ^,与BC 交于点G ,与圆O 交于点F ,连接EC ,且EG EC =.(1)求证:EC 是圆O 的切线;(2)当22.5ABC Ð=°时,连接CF ,①求证:AC CF =;②若1AD =,求线段FG 的长.【解答】(1)证明:连接OC ,OC OB =Q ,OCB B \Ð=Ð,EO AB ^Q ,90OGB B \Ð+Ð=°,EG EC =Q ,ECG EGC \Ð=Ð,EGC OGB Ð=ÐQ ,90OCB ECG B OGB \Ð+Ð=Ð+Ð=°,OC CE \^,EC \是圆O 的切线;(2)①证明:22.5ABC Ð=°Q ,OCB B Ð=Ð,45AOC \Ð=°,EO AB ^Q ,45COF \Ð=°,\¶¶AC CF =,AC CF \=;②解:作CM OE ^于M ,AB Q 为直径,90ACB \Ð=°22.5ABC Ð=°Q ,90GOB Ð=°,67.5A OGB \Ð=Ð=а,67.5FGC \Ð=°,45COF Ð=°Q ,OC OF =,67.5OFC OCF \Ð=Ð=°,GFC FGC \Ð=Ð,CF CG \=,FM GM \=,AOC COF Ð=ÐQ ,CD OA ^,CM OF ^,CD CM \=,在Rt ACD D 和Rt FCM D 中AC GF CD CM=ìí=îRt ACD Rt FCM(HL)\D @D ,1FM AD \==,\==.FG FM22。

中考数学复习《圆的证明与计算》经典题型及测试题(含答案)

中考数学复习《圆的证明与计算》经典题型及测试题(含答案)

中考数学复习《圆的证明与计算》经典题型及测试题(含答案)阅读与理解圆的相关知识的考查是中考数学中的一个重要内容,圆作为一个载体,常与三角形、四边形结合,考查切线的性质及判定、相似三角形的性质与判定、解直角三角形、求阴影面积等.解题时要先分析题干中的条件,然后从图象中挖掘隐含条件,最后再解题.类型一切线的判定判定一条直线是圆的切线,首先看圆的半径是否过直线与圆的交点,有半径则证垂直;没有半径,则连接圆心与切点,构造半径证垂直.例1 (2016·黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.【分析】(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;(2)连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得⊥OCA=⊥CAD,即可得到OC⊥AD,由于AD⊥CD,那么OC⊥CD,由此得证.【自主解答】(1)解:⊥AB是⊥O直径,C在⊥O上,⊥⊥ACB=90°,又⊥BC=3,AB=5,⊥由勾股定理得AC=4;(2)证明:⊥AC是⊥DAB的角平分线,⊥⊥DAC=⊥BAC,又⊥AD⊥DC,⊥⊥ADC=⊥ACB=90°,⊥⊥ADC⊥⊥ACB,⊥⊥DCA=⊥CBA,又⊥OA=OC,⊥⊥OAC=⊥OCA,⊥⊥OAC+⊥OBC=90°,⊥⊥OCA+⊥ACD=⊥OCD=90°,⊥DC是⊥O的切线.变式训练1.(2017·白银) 如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.类型二切线的性质已知某条直线是圆的切线,当圆心与切点有线段连接时,直接利用切线的性质:圆的切线垂直于过切点的半径;当圆心与切点没有线段相连时,则作辅助线连接圆心与切点,再利用切线的性质解题.例2 (2016·资阳) 如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连接BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=1时,求MN的长.【分析】(1)连接OD,由切线的性质可得∠CDB+∠ODB=90°,由AB是直径,可得∠ADB=90°,进而可得∠A+∠ABD=90°,进而求得∠A=∠BDC;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,再根据勾股定理求得MN的长.【自主解答】(1)如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠BDC+∠ODB=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∴∠A=∠BDC.(2)∵CM平分∠ACD,∴∠DCM=∠ACM.∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM.即∠DMN=∠DNM.∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN=变式训练2.(2017·长沙)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2=2﹣π∴S阴影类型三圆与相似的综合圆与相似的综合主要体现在圆与相似三角形的综合,一般结合切线的判定与性质综合考查,求线段长或半径.一般的解题思路是利用切线的性质构造角相等,进而构造相似三角形,利用相似三角形对应边成比例求出所求线段或半径.例3 (2017·兰州) 如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为5,CE=2,求EF的长.【分析】(1)由BC是⊙O的直径,得到∠BAF+∠FAC=90°,等量代换得到∠D+∠AOD=90°,于是得到结论;(2)连接BF,根据相似三角形的判定和性质即可得到结论.【自主解答】解:(1)∵BC是⊙O的直径,∴∠BAF+∠FAC=90°,∵∠D=∠BAF,∠AOD=∠FAC,∴∠D+∠AOD=90°,∴∠OAD=90°,∴AD是⊙O的切线;(2)连接BF,∴∠FAC=∠AOD,∴△ACE∽△OCA,∴,∴,∴AC=AE=,∵∠CAE=∠CBF,∴△ACE∽△BFE,∴,∴=,∴EF=.变式训练3.(2016·丹东)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.(1)证明:如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°. ∴∠BDC=∠ADO.∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A.(2)解:∵CE⊥AE,∴∠E=90°,∴DB∥EC,∴∠DCE=∠BDC.∵∠BDC=∠A,∴∠A=∠DCE.∵∠E=∠E,∴△AEC∽△CED,∴∴CE2=DE·AE,即16=2(2+AD),∴AD=6.。

2023九年级数学下册中考专题训练——圆的切线的证明【含答案】

2023九年级数学下册中考专题训练——圆的切线的证明【含答案】

2023九年级数学下册中考专题训练——圆的切线的证明A AM⊙O B⊙O BD⊥AM D BD1. 如图,点是直线与的交点,点在上,垂足为,与⊙O C OC∠AOB∠B=60∘交于点,平分,.AM⊙O(1) 求证:是的切线;DC=2π(2) 若,求图中阴影部分的面积(结果保留和根号).AB⊙O AC BD⊙O OE∥AC BC E B 2. 如图,已知是的直径,,是的弦,交于,过点⊙O OE D DC BA F作的切线交的延长线于点,连接并延长交的延长线于点.DC⊙O(1) 求证:是的切线;∠ABC=30∘AB=8CF(2) 若,,求线段的长.△ABC∠B=∠C=30∘O BC O OB3. 如图,中,,点是边上一点,以点为圆心、为半径的圆A BC D经过点,与交于点.AC⊙O(1) 试说明与相切;AC=23(2) 若,求图中阴影部分的面积.ABC⊙O B C D⊙O E BC OE 4. 如图,割线与相交于,两点,为上一点,为弧的中点,BC F DE AC G∠ADG=∠AGD交于,交于,.AD⊙D(1) 求证明:是的切线;∠A=60∘⊙O4ED(2) 若,的半径为,求的长.5. 如图,, 分别是半 的直径和弦, 于点 ,过点 作半 的切线 AB AC ⊙O OD ⊥AC D A ⊙O , 与 的延长线交于点 .连接 并延长与 的延长线交于点 .AP AP OD P PC AB F(1) 求证: 是半 的切线;PC ⊙O (2) 若 ,,求线段 的长.∠CAB =30∘AB =10BF 6. 如图, 是 的直径, 是 上一点, 是 的中点, 为 延长线上一点,AB ⊙O C ⊙O D AC E OD 且 , 与 交于点 ,与 交于点 .∠CAE =2∠C AC BD H OE F(1) 求证: 是 的切线.AE ⊙O (2) 若 ,,求直径 的长.DH =9tanC =34AB 7. 如图, 是 的直径, 是 的弦,, 与 的延长线交于点 ,点 AB ⊙O AC ⊙O OD ⊥AB OD AC D 在 上,且 .E OD CE =DE(1) 求证:直线 是 的切线.CE ⊙O (2) 若 ,,.OA =23AC =3CD =8. 如图, 是的直径,弦 于点 ,点 在直径 的延长线上,AB ⊙O CD ⊥AB E G DF .∠D =∠G =30∘(1) 求证: 是 的切线.CG ⊙OCD=6GF(2) 若,求的长.AB⊙O AC D BC D EF AC9. 如图,是的直径,是弦,是的中点,过点作垂直于直线,垂E AB F足为,交的延长线于点.EF⊙O(1) 求证:是的切线.B OF⊙O3(2) 若点是的中点,的半径为,求阴影部分面积.PB⊙O B PO⊙O E F B PO BA 10. 如图,切于点,直线交于点,,过点作的垂线,垂D⊙O A AO⊙O C BC AF足为点,交于点,延长交于点,连接,.PA⊙O(1) 求证:直线为的切线;BC=6AD:FD=1:2⊙O(2) 若,,求的半径的长.AC⊙O B⊙O∠ACB=30∘CB D11. 如图,为的直径,为上一点,,延长至点,使得CB=BD D DE⊥AC E CA BE,过点作,垂足在的延长线上,连接.BE⊙O(1) 求证:是的切线;BE=3(2) 当时,求图中阴影部分的面积.AB⊙O AP⊙O A BP⊙O C12. 已知是的直径,是的切线,是切点,与交于点.∠P=35∘∠ABP(1) 如图①,若,求的度数;D AP CD⊙O(2) 如图②,若为的中点,求证:直线是的切线.Rt△ABC∠C=90∘D AB AD⊙O BC13. 如图,在中,,点在上,以为直径的与相交于点E AE∠BAC,且平分.BC⊙O(1) 求证:是的切线;∠EAB=30∘OD=3(2) 若,,求图中阴影部分的面积.⊙O PA PC PH∠APB⊙O H H 14. 如图,在中,是直径,是弦,平分且与交于点,过作HB⊥PC PC B交的延长线于点.HB⊙O(1) 求证:是的切线;HB=6BC=4⊙O(2) 若,,求的直径.AB⊙O BD⊙O BD C AB=AC AC15. 已知:是的直径,是的弦,延长到点,使,连接,过D DE⊥AC E点作,垂足为.DC=BD(1) 求证:;DE⊙O(2) 求证:为的切线.AB⊙O C⊙O D AB∠BCD=∠A16. 如图,是的直径,是上一点,在的延长线上,且.CD⊙O(1) 求证:是的切线;⊙O3CD=4BD(2) 若的半径为,,求的长.△ABC AC⊙O△ABC∠ABC⊙O17. 如图,以的边为直径的恰为的外接圆,的平分线交D D DE∥AC BC E于点,过点作交的延长线于点.DE⊙O(1) 求证:是的切线.AB=45BC=25DE(2) 若,,求的长.AB O AD∠DBC=∠A18. 如图,是半圆的直径,为弦,.BC O(1) 求证:是半圆的切线;OC∥AD OC BD E BD=6CE=4AD(2) 若,交于,,,求的长.△ABC AO⊥BC O⊙O AC D BE⊥AB 19. 如图,是等边三角形,,垂足为点,与相切于点,交AC E⊙O G F的延长线于点,与相交于,两点.AB⊙O(1) 求证:与相切;ABC8BF(2) 若等边三角形的边长是,求线段的长.AC⊙O BC⊙O P⊙O PB AB 20. 如图,是的直径,是的弦,点是外一点,连接,,∠PBA=∠C.PB⊙O(1) 求证:是的切线;OP OP∥BC OP=8⊙O22BC(2) 连接,若,且,的半径为,求的长.答案1. 【答案】(1) ,,∵∠B=60∘OB=OC是等边三角形,∴△BOC,∴∠1=∠2=60∘平分,∵OC∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∴∠BDM=90∘,∴∠OAM=90∘是的切线.∴AM⊙O(2) ,,∵∠3=60∘OA=OC是等边三角形,∴△AOC,∴∠OAC=60∘,∵∠OAM=90∘,∴∠CAD=30∘,∵CD=2,∴AC=2CD=4,∴AD=23∴S阴影=S梯形OADC−S扇形OAC =12(4+2)×23−60⋅π×16360=63−8π3.2. 【答案】(1) 连接,OC,∵OE∥AC,∴∠1=∠ACB是的直径,∵AB⊙O,∴∠1=∠ACB=90∘,由垂径定理得垂直平分,∴OD⊥BC OD BC,∴DB=DC,∴∠DBE=∠DCE又,∵OC=OB,∴∠OBE=∠OCE即,∠DBO=∠OCD为的切线,是半径,∵DB⊙O OB,∴∠DBO=90∘,∴∠OCD =∠DBO =90∘即 ,OC ⊥DC 是 的半径,∵OC ⊙O 是 的切线.∴DC ⊙O (2) 在 中,,Rt △ABC ∠ABC =30∘ ,又 ,∴∠3=60∘OA =OC 是等边三角形,∴△AOC∴∠COF =60∘在 中,,Rt △COF tan∠COF =CF OC .∴CF =433. 【答案】(1) 连接 .OA ,∵OA =OB .∴∠OAB =∠B ,∵∠B =30∘ .∴∠OAB =30∘ 中:,△ABC ∠B =∠C =30∘ .∴∠BAC =180∘−∠B−∠C =120∘ .∴∠OAC =∠BAC−∠OAB =120∘−30∘=90∘ ,∴OA ⊥AC 是 的切线,即 与 相切.∴AC ⊙O AC ⊙O (2) 连接 .AD ,∵∠C =30∘∠OAC =90∘ .∴OC =2OA 设 的长度为 ,则 .OA x OC =2x 在 中,,.△OAC ∠OAC =90∘AC =23根据勾股定理可得:,x 2+(23)2=(2x )2解得:,(不合题意,舍去).x 1=2x 2=−2 ,∴S △OAC =12×2×23=23,S 扇形OAD =60360×π×22=23π .∴S 阴影=23−23π答:图中阴影部分的面积为 .23−23π4. 【答案】(1) 连接 .OD 为 的中点,∵E BC ,∴OE ⊥BC ,∵OD =OE ,∴∠ODE =∠OED ,∴∠AGD +∠OED =∠EGF +∠OED =90∘ ,∵∠AGD =∠ADG ,即 ,∴∠ADG +∠ODE =90∘OD ⊥AD 是 的切线.∴AD ⊙O (2) 作 于 .OH ⊥ED H ,∴DE =2DH ,∵∠ADG =∠AGD ,∴AG =AD ,∵∠A =60∘ ,∴∠ADG =60∘,∴∠ODE =30∘ ,∵OD =4 ,∴DH =32OD =23 .∴DE =2DH =435. 【答案】(1) 连接 ,OC , 经过圆心 ,∵OD ⊥AC OD O ,∴AD =CD ,∴PA =PC 在 和 中,△OAP △OCP {OA =OC,PA =PC,OP =OP,,∴△OAP ≌△OCP (SSS ) ,∴∠OCP =∠OAP 是 的切线,∵PA ⊙O .∴∠OAP =90∘,即 ,∴∠OCP =90∘OC ⊥PC 是 的切线.∴PC ⊙O (2) 是直径,∵AB ,∴∠ACB =90∘,∵∠CAB =30∘,∴∠COF =60∘ 是 的切线,,∵PC ⊙O AB =10 ,,∴OC ⊥PF OC =OB =12AB =5 ,∴OF =OC cos∠COF =10 .∴BF =OF−OB =56. 【答案】(1) 是 的中点,∵D AC ,∴OE ⊥AC ,∴∠AFE =90∘ ,∴∠E +∠EAF =90∘ ,,∵∠AOE =2∠C ∠CAE =2∠C ,∴CAE =∠AOE ,∴∠E +∠AOE =90∘ ,∴∠EAO =90∘ 是 的切线.∴AE ⊙O (2) ,∵∠C =∠B ,∵OD =OB ,∴∠B =∠ODB ,∴ODB =∠C ,∴tanC =tan∠ODB =HF DF =34 设 ,,∴HF =3x DF =4x ,∴DH =5x =9,∴x =95 ,,∴DE =365HF =275 ,,∵∠C =∠FDH ∠DFH =∠CFD ,∴△DFH ∼△CFD ,∴DF CF =FH DF,∴CF =365×365275=485 ,∴AF =CF =485设 ,OA =OD =x,∴OF =x−365 ,∵AF 2+OF 2=OA 2 ,∴(485)2+(x−365)2=x 2解得:,x =10 ,∴OA =10 直径 为 .∴AB 207. 【答案】(1) 连接 ,OC ,∵OD ⊥AB ,∴∠AOD =90∘ ,∴∠D +∠A =90∘ ,∵OA =OC ,∴∠A =∠ACO ,∵CE =DE ,∴∠ECD =∠D ,∵∠ACO +∠DCE =90∘ ,∴∠OCE =90∘ ,∴OC ⊥CE 直线 是 的切线.∴CE ⊙O (2)5【解析】(2) 连接 ,BC 是 的直径,∵AB ⊙O ,∴∠ACB =90∘ ,∴∠AOD =∠ACB ,∵∠A =∠A ,∴△ABC ∽△ADO,∴AO AC =AD AB ,∴233=AD43 ,∴AD =8 .∴CD =AD−AC =58. 【答案】(1) 连接 .OC ,,∵OC =OD ∠D =30∘ .∴∠OCD =∠D =30∘ ,∵∠G =30∘ .∴∠DCG =180∘−∠D−∠G =120∘ .∴∠GCO =∠DCG−∠OCD =90∘ .∴OC ⊥CG 又 是 的半径.∵OC ⊙O 是 的切线.∴CG ⊙O (2) 是 的直径,,∵AB ⊙O CD ⊥AB .∴CE =12CD =3 在 中,,,∵Rt △OCE ∠CEO =90∘∠OCE =30∘ ,.∴EO =12CO CO 2=EO 2+CE 2设 ,则 .EO =x CO =2x .∴(2x )2=x 2+32解得 (舍负值).x =±3 .∴CO =23 .∴FO =23在 中,△OCG ,,∵∠OCG =90∘∠G =30∘ .∴GO =2CO =43 .∴GF =GO−FO =239. 【答案】(1) 连接 ,连接 ,OD AD 点 是 的中点,∵D BC ,∴∠1=∠2 ,∵OA =OD ,∴∠2=∠3即 ,∠1=∠2=∠3 ,∴∠1=∠3 ,∴AE ∥OD ,∵AE ⊥EF ,∴OD ⊥EF 即 是 的切线.EF ⊙O(2) 点是 的中点, 半径为 ,∵B OF ⊙O 3 ,∴BF =OB =3由()可知 ,1OD ⊥EF 在 中,Rt △ODF ,∵sinF =OD OF =36=12 ,,∴∠F =30∘∠DOF =60∘故S 阴影=S △ODF −S 扇ODB=12OD ⋅DF−60∘360∘π×32=3×332−32π=32(33−π).故阴影面积为:.32(33−π)10. 【答案】(1) 如图,连接 .OB 是 的切线,∵PB ⊙O .∴∠PBO =90∘ , 于 ,∵OA =OB BA ⊥PO D ,.∴AD =BD ∠POA =∠POB 又 ,∵PO =PO .∴△PAO ≌△PBO .∴∠PAO =∠PBO =90∘ 直线 为 的切线.∴PA ⊙O (2) ,,,∵OA =OC AD =BD BC =6 .∴OD =12BC =3设 .AD =x ,∵AD:FD =1:2 ,.∴FD =2x OA =OF =2x−3在 中,由勾股定理,得 .Rt △AOD (2x−3)2=x 2+32解之得,,(不合题意,舍去).x 1=4x 2=0 ,.∴AD =4OA =2x−3=5即 的半径的长 .⊙O 511. 【答案】(1) 如图所示,连接 ,BO ,∵∠ACB =30∘ ,∴∠OBC =∠OCB =30∘,,∵DE ⊥AC CB =BD 中,,∴Rt △DCE BE =12CD =BC ,∴∠BEC =∠BCE =30∘ 中,,∴△BCE ∠EBC =180∘−∠BEC−∠BCE =120∘ ,∴∠EBO =∠EBC−∠OBC =120∘−30∘=90∘ 是 的切线.∴BE ⊙O (2) 当 时,,BE =3BC =3 为 的直径,∵AC ⊙O ,∴∠ABC =90∘又 ,∵∠ACB =30∘ ,∴AB =tan 30∘×BC =3 ,,∴AC =2AB =23AO =3 ∴S 阴影部分=S 半圆−S Rt △ABC =12π×AO 2−12AB ×BC=12π×3−12×3×3=32π−32 3.12. 【答案】(1) 是 的直径, 是 的切线,∵AB ⊙O AP ⊙O ,∴AB ⊥AP ;∴∠BAP =90∘又 ,∵∠P =35∘ ∴∠ABP =90∘−35∘=55∘(2) 如图,连接 ,,.OC OD AC 是 的直径,∵AB ⊙O (直径所对的圆周角是直角),∴∠ACB =90∘ ;∴∠ACP =90∘又 为 的中点,∵D AP (直角三角形斜边上的中线等于斜边的一半);∴AD =CD 在 和 中,△OAD △OCD {OA =OC,OD =OD,AD =CD, ,△OAD ≌△OCD (SSS ) (全等三角形的对应角相等);∴∠OAD =∠OCD 又 是 的切线, 是切点,∵AP ⊙O A ,∴AB ⊥AP ,∴∠OAD =90∘ ,即直线 是 的切线.∴∠OCD =90∘CD ⊙O13. 【答案】(1) 平分 ,∵AE ∠BAC ,∴∠CAE =∠EAD ,∵OA =OE ,∴∠EAD =∠OEA ,∴∠OEA =∠CAE ,∴OE ∥AC ,∴∠OEB =∠C =90∘ ,∴OE ⊥BC 是 的切线.∴BC ⊙O (2) ,∵∠EAB =30∘ ,∴∠EOD =60∘ ,∴∠OEB =90∘ ,∴∠B =30∘ ,∴OB =2OE =2OD =6 ,∴BE =OB 2−OE 2=33,,∴S △OEB =932S 扇形=3π2 .∴S 阴影=932−3π214. 【答案】(1) 如图,连接 .OH 平分 ,∵PH ∠APB .∴∠HPA =∠HPB ,∵OP =OH .∴∠OHP =∠HPA .∴∠HPB =∠OHP .∴OH ∥BP ,∵BP ⊥BH .∴OH ⊥BH 是 的切线.∴HB ⊙O (2) 如图,过点 作 ,垂足为 .O OE ⊥PC E ,,,∵OE ⊥PC OH ⊥BH BP ⊥BH 四边形 是矩形.∴EOHB ,.∴OE =BH =6OH =BE .∴CE =OH−4 ,∵OE ⊥PC.∴PE =EC =OH−4=OP−4在 中,,.Rt △POE OP 2=PE 2+OE 2 .∴OP 2=(OP−4)2+36 .∴OP =132 .∴AP =2OP =13 的直径是 .∴⊙O 1315. 【答案】(1) 连接 ,AD 是 的直径,∵AB ⊙O ,∴∠ADB =90∘又 ,∵AB =AC .∴DC =BD (2) 连接半径 ,OD ,,∵OA =OB CD =BD ,∴OD ∥AC ,∴∠ODE =∠CED 又 ,∵DE ⊥AC ,∴∠CED =90∘ ,即 ,∴∠ODE =90∘OD ⊥DE 是 的切线.∴DE ⊙O 16. 【答案】(1) 连接 .OC 是 的直径, 是 上一点,∵AB ⊙O C ⊙O ,即 .∴∠ACB =90∘∠ACO +∠OCB =90∘ ,,∵OA =OC ∠BCD =∠A ,∴∠ACO =∠A =∠BCD ,即 ,∴∠BCD +∠OCB =90∘∠OCD =90∘ 是 的切线.∴CD ⊙O (2) 在 中,,,,Rt △OCD ∠OCD =90∘OC =3CD =4 ,∴OD =OC 2+CD 2=5 .∴BD =OD−OB =5−3=217. 【答案】(1) 连接 ,OD 是 的直径,∵AC ⊙O,∴∠ABC =90∘ 平分 ,∵BD ∠ABC ,∴∠ABD =45∘ ,∴∠ODE =90∘ ,∵DE ∥AC ,∴∠ODE =∠AOD =90∘ 是 的切线.∴DE ⊙O (2) 在 中,,,Rt △ABC AB =45BC =25 ,∴AC =AB 2+BC 2=10 ,∴OD =5过点 作 ,垂足为 ,C CG ⊥DE G 则四边形 为正方形,ODGC ,∴DG =CG =OD =5 ,∵DE ∥AC ,∴∠CEG =∠ACB ,∴tan∠CEG =tan∠ACB ,即 ,∴CG GE =AB BC 5GE =4525解得:,GE =52 .∴DE =DG +GE =15218. 【答案】(1) 是半圆 的直径,∵AB O ,∴BD ⊥AD ,∴∠DBA +∠A =90∘ ,∵∠DBC =∠A ,即 ,∴∠DBA +∠DBC =90∘AB ⊥BC 是半圆 的切线.∴BC O (2) ,∵OC ∥AD ,∴∠BEC =∠D =90∘ ,,∵BD ⊥AD BD =6 ,∴BE =DE =3 ,∵∠DBC =∠A ,∴△BCE ∽△BAD ,即 ,∴CE BD =BE AD 46=3AD .∴AD =4.519. 【答案】(1) 过点 作 ,垂足是 .O OM ⊥AB M 与 相切于点 ,∵⊙O AC D ,∴OD ⊥AC ,∠ADO =∠AMO =90∘ 是等边三角形,,∵△ABC AO ⊥BC 是 的角平分线,∴OA ∠MAD ,,∵OD ⊥AC OM ⊥AB .∴OM =OD 与 相切.∴AB ⊙O (2) 过点 作 ,垂足是 ,连接 .O ON ⊥BE N OF ,,∵AB =AC AO ⊥BC ∴ 是 的中点,O BC ,∴OB =12BC =12×8=4 在直角 中,,,△ABC ∠ABE =90∘∠MBO =60∘ ,∴∠OBN =30∘ ,,,∵ON ⊥BE ∠OBN =30∘OB =4 ,,∴ON =12OB =2BN =42−22=23 ,∵AB ⊥BE ∴四边形 是矩形,OMBN .∴BN =OM =23 .∵OF =OM =23由勾股定理得 .NF =(23)2−22=22 .∴BF =BN +NF =23+2220. 【答案】(1) 连接 ,如图所示:OB 是 的直径,∵AC ⊙O ,∴∠ABC =90∘ ,∴∠C +∠BAC =90∘ ,∵OA =OB ,∴∠BAC =∠OBA ,∵∠PBA =∠C ,即 ,∴∠PBA +∠OBA =90∘PB ⊥OB 是 的切线.∴PB ⊙O (2) 的半径为 ,∵⊙O 22,,∴OB =22AC =42 ,∵OP ∥BC ,∴∠CBO =∠BOP ,∵OC =OB ,∴∠C =∠CBO ,∴∠C =∠BOP 又 ,∵∠ABC =∠PBO =90∘ ,∴△ABC ∽△PBO ,即 ,∴BC OB =AC OP BC 22=428 .∴BC =2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档