中考数学B卷题目专项训练
福建中考b卷数学试题及答案
福建中考b卷数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + c (a ≠ 0)B. y = ax^2 + bx + c (a = 0)C. y = ax + b + c (a ≠ 0)D. y = ax + b (a ≠ 0)答案:A2. 已知一个三角形的两边长分别为3和5,第三边长x满足的条件是:A. 2 < x < 8B. 3 < x < 5C. 5 < x < 8D. 2 < x < 10答案:A3. 下列哪个选项是不等式的基本性质?A. 若a > b,则a + c > b + cB. 若a > b,则ac > bc(c > 0)C. 若a > b,则a/c > b/c(c < 0)D. 若a > b,c > 0,则ac > bc答案:A4. 一个圆的半径为r,其面积S与半径r之间的关系是:A. S = πr^2B. S = 2πrC. S = πrD. S = πr^3答案:A5. 函数y = 2x + 3的图象是:A. 一条直线B. 一条曲线C. 一个圆D. 一个椭圆答案:A6. 已知一个样本数据为:2, 3, 4, 5, 6,其平均数是:A. 4B. 3.5C. 3D. 2.5答案:A7. 一个正方体的棱长为a,其体积V与棱长a之间的关系是:A. V = a^3B. V = a^2C. V = 2a^3D. V = 3a^3答案:A8. 一个等腰三角形的底角相等,设底角为x,则顶角为:A. 180° - 2xB. 180° - xC. 90° - xD. 90° + x答案:A9. 已知一个样本数据为:2, 3, 4, 5, 6,其中位数是:A. 3.5B. 4C. 3D. 2.5答案:B10. 一个长方体的长、宽、高分别为a、b、c,其体积V与长、宽、高之间的关系是:A. V = abcB. V = a^2bC. V = ab^2D. V = a^2c答案:A二、填空题(每题3分,共15分)11. 已知一个三角形的两边长分别为4和6,且这两边的夹角为60°,则第三边长为_________。
最新浙江省杭州市中考数学强化训练试卷B卷附解析
浙江省杭州市中考数学强化训练试卷B 卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列成语所描述的事件是必然发生的是( )A .水中捞月B .拔苗助长C .守株待免D .瓮中捉鳖2.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A . 43B . 34C . 53D . 543.二次函数y=x 2-2x +1与坐标轴轴的交点个数是( )A . 0B . 1C . 2D . 34.已知某种品牌电脑的显示器的寿命大约为4210⨯小时,这种显示器工作的天数为d (天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( )5.若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2 6.已知关于x 的一元一次方程431x m x -=+的解是负数,则m 的取值范围是( ) A .1m >-B .1m <-C .1m ≥-D .1m ≤- 7. 若a 的值使得224(2)1x x a x ++=+-成立,则a 值为( )A . 5B .4C . 3D . 2 8.如图是5×5 的正方形网络,以点D ,E 为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出( )A .5个B .4个C .3个D .2个9.如图,图形旋转多少度后能与自身重合()A.45°B.60°C.72°D.90°10.三角形的一边长为(3a b+)cm,这条边上的高为2a cm,这个三角形的面积为()A.5a b+ cm2 B.262a ab+ cm2 C.23a ab+ cm2 D.232a ab+ cm211.如图,是一个风筝的平面示意图,四边形ABCD是等腰梯形,E、F、G、H分别是各边的中点.假设图中阴影部分所需布料的面积为S1,其它部分所需布料的面积之和为S2(边缘外的布料不计),则S1与S2的大小关系为()A.S1>S2 B.S1<S2 C.S1=S2 D.不确定12.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为()A.5 B.7 C.16 D.33二、填空题13.已知,⊙O中弦AB⊥CD于E,AE=2,EB=6,ED=3,则⊙O的半径为________.14.已知⊙O的半径为8 cm,OP=5cm,则在过点P的所有弦中,最短的弦长为,最长的弦长为 cm.15.有一间长为20 m,宽为15 m的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,若四周未铺地毯的每边宽度相等,则每边的宽度是.解答题16.已知一次函数y kx b=+(k≠0)的图象经过点(0,1),而且y随x的增大而增大,请你写出一个符合上述条件的函数解析式.17.不等式组52110xx-≥-⎧⎨->⎩的整数解是 .18.三名同学同一天生日,她们做了一个游戏:买来3张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张.则她们拿到的贺卡都不是自己所写的概率是__________.19.如图所示,四边形ABCD为正方形,它被虚线分成了9个小正方形,则△DBE与△DEC 的面积之比为.20.某校共有教师100名,现按职称(高级、一级、其它职称)制成统计图,则其它职称的教师占%.三、解答题21.如图,AB 是⊙O 的直径,CD 切⊙O 于点 C ,若 OA= 1,∠BCD= 60°,求∠BAC 的度数和 AC 的长.22.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P 1(x 1,y 1),P 2(x 2,y 2),其两点间距离公式为22122121()()PP x x y y =-+-,同时,当两点所在的直线在坐标轴上或平行于x 轴或垂直于x 轴时,两点间距离公式可简化成21x x -或21y y -.(1)已知A(3,5)、B(-2,-l),试求A 、B 两点的距离;(2)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为5,点B 的纵坐标为-l ,试求A 、B 两点的距离;(3)已知一个三角形各顶点坐标为A(0,6)、B(-3,2)、C(3,2),你能断定此三角形的形状吗?说明理由.23.如图,分别以Rt ABC ∆的直角边AC ,BC 为边,在Rt ABC ∆外作两个等边三角形ACE ∆和BCF ∆,连结BE ,AF.求证:BE=AF.24.(1)计算后填空:(1)(2)x x -+= ;(3)(1)x x --= ; (2)归纳、猜想后填空:2()()()()x a x b x x ++=++;(3)运用②的猜想结论,直接写出计算结果:(2)()x x m ++= ;(4)根据你的理解,填空:2310()()x x --=.25.如图,在ABC △中,7050A B CD ∠=∠=,,平分ACB ∠.求∠ADC 的度数.26.编号是1~99的99张卡片中,任意取1张,求:(1)取得的卡片号是偶数的概率;(2)取得的卡片号是6的倍数的概率.27.如图所示,历史上最有名的军师诸葛孔明,率精兵与司马仲对阵,孑L 明一挥羽扇. 军阵瞬时由图①变为图②.其实只移动了其中3“骑”而已,请问如何移动?28.利用等式的性质解下列方程,并写出检验过程.B CA D(1)9x=8x-6(2)253 3x-=(3)11 232 x+=29.计算下列各式的值:(1)2581;(2)2253-;(3)3338.30.如图,某班教室中有9排5列座位,请根据下列四位同学的描述.在图中标出“5号”孙靓的位置.1号同学说:“孙靓在我的后方.”2号同学说:“孙靓在我的左后方.”3号同学说:“孙靓在我的左前方.”4号同学说:“孙靓离1号同学和3号同学的距离一样远.”【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.C4.C5.B6.B7.C8.B9.C10.C11.C12.B二、填空题13.6514.239,1615.2.5m16.y=2x+1(答案不唯一)17.2,318.119.31:220.65三、解答题21.连结 OC,∵CD 是⊙O的切线,∠BCD= 60°,∴∠BCO=30°.∵AB 是⊙O的直径,∴∠OCA=60°,∵ AO=CO,∴△AOC是正三角形,∴∠BAC=60°,∵OA=1,∴AC=122.61(2)6;(3)等腰三角形23.证明△ACF≌△ECB24.(1)232x x ++,223x x -+; (2)a b +,ab ; (3)2(2)2x m x m +++; (4)(5)(2)x x -+ 25.80°26.(1)9949;(2)9916. 27.略28.(1)6x =-检验略 (2)x =12 (3)13x = 29.(1)59;(2) 4;(3)32 30.如图:。
中考数学B卷填空题专题
中考数学B 卷填空专项练习1.在Rt △ABC 中,∠C =90°,AC =6,cot B =43,P 、Q 分别是边AB 、BC 上的动点,且AP=BQ .若PQ 的垂直平分线过点C ,则AP 的长为_____________.2.如图,在△ABC 中,AB =AC =5,BC =6,D 是AC 边的中点,E 是BC 边上一动点(不与端点重合),EF ∥BD 交AC 于F ,交AB 延长线于G ,H 是BC 延长线上一点,且CH =BE ,连接FH .(1)连接AE ,当以GE 为半径的⊙G 和以FH 为半径的⊙F 相切时,tan ∠BAE 的值为____________;(2)当△BEG 与△FCH 相似时,BE 的长为_________________.3.在直角梯形ABCD 中,AD ∥BC ,∠C =90°,AD =1,AB =5,CD =4,P 是腰AB 上一动点,PE ⊥CD 于E ,PF ⊥AB 交CD 于F ,连接PD ,当AP =________________________时,△PDF 是等腰三角形.4.如图,∠AOB =30°,n 个半圆依次相外切,它们的圆心都在射线OA 上,并与射线OB 相切.设半圆C 1、半圆C 2、半圆C 3、…、半圆C n 的半径分别是r 1、r 2、r 3、…、r n ,则r 2012r 2011=___________.AB CPQ ABC DE F HA B C P DE F5.如图,n 个半圆依次外切,它们的圆心都在x 轴的正半轴上,并与直线y =33x 相切.设半圆C 1、半圆C 2、半圆C 3、…、半圆C n 的半径分别是r 1、r 2、r 3、…、r n ,则当r 1=1时,r 3=___________,r 2012=___________.6.如图,在△ABC 中,AB =AC =10cm ,BC =16cm ,长为4cm 的动线段DE (端点D 从点B 开始)沿BC 边以1cm /s 的速度向点C 运动,当端点E 到达点C 时运动停止.过点E 作EF ∥AC 交AB 于点F ,连接DF ,设运动的时间为t 秒.(1)当t =_______________秒时,△DEF 为等腰三角形;(2)设M 、N 分别是DF 、EF 的中点,则在整个运动过程中,MN 所扫过的面积为___________cm 2.7.如图,在平面直角坐标系中,直线l 1:y =3 4 x 与直线l 2:y =- 4 3 x + 203相交于点A ,直线l 2与两坐标轴分别相交于点B 和点C ,点P 从点O 出发,以每秒1个单位的速度沿线段OB 向点B 运动;同时点Q 从点B 出发,以每秒4个单位的速度沿折线B →O →C →B 的方向向点B 运动,过点P 作直线PM ⊥OB ,分别交l 1、l 2于点M 、N ,连接MQ ,设点P 、Q 运动的时间为t 秒(t >0).(1)点Q 在OC 上运动时,当t =_______________秒时,四边形CQMN 是平行四边形; (2)当t =_______________秒时,MQ ∥OB .8.如图,正方形ABCD中,点O为AD上一动点(0<OD<12AD),以O为圆心,OA长为半径的⊙O交边CD于点M,过点M作⊙O的切线交边BC与点N,若△CMN的周长为8,则正方形ABCD的边长为____________.9.在△ABC中,AB=11,AC=7,D为BC上一点,且DC=2BD,则AD的取值范围是________________.10.若抛物线y=2x2-px+4p+1中不论p取何值时都经过一定点,则该定点坐标为______________.11.如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=14OA=2,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两个动点,且始终保持∠DEF=45°.设OE=x,AF=y,则y与x的函数关系式为____________________;当△AEF是等腰三角形时,将△AEF沿EF对折得到△A′EF,则△A′EF与五边形OEFBC重叠部分的面积为____________________.12.已知函数y=|x2-4x+3|,若直线y=m与该函数图象至少有三个公共点,则实数m的取值范围是_______________;若直线y=kx与该函数图象有四个公共点,则实数k的取值范围是_______________.13.已知直线y=1与函数y=x2-|x|+a的图象有四个公共点,则实数a的取值范围是_______________.14.对于每个x,函数y是y1=-x+6,y2=-2x2+4x+6这两个函数中的较小值,则函数y 的最大值是__________.15.对于每个x,函数y是y1=3x,y2=x+2,y3=8x这三个函数中的最小值,则函数y的最大值是__________.16.如图,边长为1的正方形ABCD 中,以A 为圆心,1为半径作BD ︵,将一块直角三角板的直角顶点P 放置在BD ︵(不包括端点B 、D )上滑动,一条直角边通过顶点A ,另一条直角边与边BC 相交于点Q ,连接PC ,则△CPQ 周长的最小值为____________.17.如图,在直角坐标系中,点A 在y 轴负半轴上,点B 、C 分别在x 轴正、负半轴上,AO =8,AB =AC ,sin ∠ABC =45,点D 在线段AB 上,连结CD 交y 轴于点E ,若S △COE =S △ADE,则过B 、C 、E 三点的抛物线的解析式为18.两张大小相同的纸片,每张都分成7个大小相同的矩形,如图放置,重合的顶点记作A ,顶点C 在另一张纸的分隔线上,若BC =28,则AB 的长是____________.19.如图,ABCD 是一张矩形纸片,AB =5,AD =1.在边AB 上取一点E ,在边CD 上取一点F ,将纸片沿EF 折叠,BE 与DF 交于点G ,则△EFG 面积的最大值为____________.20.如图,△AOB 为等腰直角三角形,斜边OB 在x 轴上,一次函数y =3x -4和反比例函数y =k x (x >0)的图象都经过点A .点P 是x 轴上一动点,点Q 是反比例函数y =kx(x >0)图象上一动点,若△PAQ 为等腰直角三角形,则点Q 的坐标为________________________.AP BC DQAB CB D AC BD A EF C G21.如图,矩形ABCD 中,BE ⊥AC 于E ,连接DE ,若△DEC 是等腰三角形,则ABAD的值为_________ ______________.22.如图,矩形ABCD 是一个长为1000米、宽为600米的货场,A 、D 是入口.现拟在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台Q ,则铺设公路AP 、DP 以及PQ 的长度之和的最小值为_________________米.23.如图,梯形ABCD 中,AD ∥BC ,点E 、F 是腰AB 上的点,AE =BF ,CE 与DF 相交于O ,若梯形ABCD 的面积为34cm 2,△OCD 的面积为11cm 2,则阴影部分的面积为______________cm 2.24.在平面直角坐标系中,点A (0,2),点B (3,1),点P 是x 轴上一动点,以AP 为边作等边△APQ (点A 、P 、Q 逆时针排列),若以A 、O 、Q 、B 为顶点的四边形是梯形,则点P 的坐标为________________________AB CDEC25.如图,⊙O 的直径AB 与弦CD 相交于点E ,交角为45°,且CE2+DE2=8,则AB 等于__________.26.在△ABC 中,AB =15,AC =13,高AD =12,设能完全覆盖△ABC 的圆的半径为r ,则r 的最小值是________________.27.对于每个非零自然数n ,抛物线y =x2-2n +1n (n +1)x +1n (n +1)与x 轴交于A n 、B n 两点,以A n B n 表示这两点间的距离,则A 1B 1+A 2B 2+A 3B 3+…+A 2011B 2011的值等于_____________.28.如图,直线l 与⊙O 相切于点D ,直角三角板ABC 的60°角的顶点B 在直线l 上滑动,斜边AB 始终与⊙O 相切.若⊙O 的半径为2,BC =2,那么点B 滑动的最大距离为______________.29.如图,四边形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2均为正方形,点A 1,A 2,A 3在直线y =kx +b (k >0)上,点C 1,C 2,C 3在x 轴上,若点B 3的坐标为(194,94),则k =________,b =________.30朝上洗匀后,第一次随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,放回洗匀后第二次再随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的b ,则一次函数y =kx +bA B31.如图,在△ABC 中,AB =AC ,AD ⊥BC ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .若EFBE=ab,则GEBE等于___________.32.已知a ﹑b 均为正整数,且b -a =2011,若关于x 方程x2-ax +b =0有正整数解,则a 的最小值是___________.33.如图,⊙O 的半径为4,M 是AB ︵的中点,弦MN =43,MN 交AB 于点C ,则∠ACM =__________°.34.如图,延长四边形ABCD 的四边分别至E 、F 、G 、H ,使AB =nBE ,BC =nCF ,CD =nDG ,DA =nAH (n >0),则四边形EFGH 与四边形ABCD 的面积之比为________________(用含n 的代数式表示).35.如图,一根直立于水平地面上的木杆AB 在灯光下形成影子AC (AC >AB ),当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.已知AE =5m ,在旋转过程中,影长的最大值为5m ,最小值为3m,则路灯EF 的高度为____________m .36.如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕点B 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影长为BC (假定BCABCDEF GA BCD EFG H>AB ),影长的最大值为m ,最小值为n ,那么下列结论:①m >BC ;②m =BC ;③n =AB ;④影子的长度先增大后减小.其中,正确结论的序号是________________.37.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).那么,转动两次转盘,第一次得到的数与第二次得到的数绝对值相等的概率为_____________.38.将分别标有数字1,4,8的三张卡片洗匀后,背面朝上放在桌面上。
2024年重庆市中考数学试题B卷+答案解析
2024年重庆市中考数学试题B 卷+答案解析(试题部分)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫−− ⎪⎝⎭,对称轴为2b x a =−. 一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 下列各数中最小的数是( )A. 1−B. 0C. 1D. 22. 下列标点符号中,是轴对称图形的是( )A. B. C. D.3. 反比例函数10y x =−的图象一定经过的点是( ) A. ()1,10 B. ()2,5− C. ()2,5 D. ()2,8 4. 如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A. 35︒B. 45︒C. 55︒D. 125︒ 5. 若两个相似三角形的相似比为1:4,则这两个三角形面积的比是( )A. 1:2B. 1:4C. 1:8D. 1:16 6.的值应在( )A. 8和9之间B. 9和10之间C. 10和11之间D. 11和12之间 7. 用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是( )A. 20B. 21C. 23D. 26 8. 如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为( )A. 28︒B. 34︒C. 56︒D. 62︒9. 如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为( )A. 2B.C.D. 12510. 已知整式1110:n n n n M a x a x a x a −−++++,其中10,,,n n a a −为自然数,n a 为正整数,且1105n n n a a a a −+++++=.下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:023−+=______.12. 甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________.13. 若正多边形的一个外角是45°,则该正多边形的边数是_________.14. 重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.15. 如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .若2BC =,则AD 的长度为________.16. 若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪−<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y −−=++的解均为负整数,则所有满足条件的整数a 的值之和是________. 17. 如图,AB 是O 的直径,BC 是O 的切线,点B 为切点.连接AC 交O 于点D ,点E 是O 上一点,连接BE ,DE ,过点A 作AF BE ∥交BD 的延长线于点F .若5BC =,3CD =,F ADE ∠=∠,则AB 的长度是________;DF 的长度是________.18. 一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b −=−=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()()312a a a a −+−+;(2)22241244x x x x −⎛⎫+÷ ⎪−−+⎝⎭. 20. 数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ≤≤,B .8090x ≤<,C .7080x ≤<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:=a ________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x ≥的总共有多少人?21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹) (2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④. 22. 某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?23. 如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质; (3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2) 24. 如图,A ,B ,C ,D 分别是某公园四个景点,B 在A 的正东方向,D 在A 的正北方向,且在C 的北偏西60︒方向,C 在A 的北偏东30︒方向,且在B 的北偏西15︒方向,2AB =千米.(参考数据:1.41≈ 1.73≈2.45≈)(1)求BC 的长度(结果精确到0.1千米);(2)甲、乙两人从景点D 出发去景点B ,甲选择的路线为:D C B −−,乙选择的路线为:D A B −−.请计算说明谁选择的路线较近?25. 如图,在平面直角坐标系中,抛物线23y ax bx =+−与x 轴交于()1,0A −,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x ∥轴交抛物线于点D ,作PE BC ⊥于点E ,求PD PE +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC 2PD PE +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC ∠−∠=︒,请直接写出所有符合条件的点N 的坐标.26. 在Rt ABC △中,90ACB ∠=︒,AC BC =,过点B 作BD AC ∥.(1)如图1,若点D 在点B 的左侧,连接CD ,过点A 作AE CD ⊥交BC 于点E .若点E 是BC 的中点,求证:2AC BD =;(2)如图2,若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,连接BF 并延长交AC 于点G ,连接CF .过点F 作FM BG ⊥交AB 于点M ,CN 平分ACB ∠交BG 于点N ,求证:2AM CN BD =+; (3)若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,且AF AC =.点P 是直线AC 上一动点,连接FP ,将FP 绕点F 逆时针旋转60︒得到FQ ,连接BQ ,点R 是直线AD 上一动点,连接BR ,QR .在点P 的运动过程中,当BQ 取得最小值时,在平面内将BQR 沿直线QR 翻折得到TQR △,连接FT .在点R 的运动过程中,直接写出FT CP的最大值.2024年重庆市中考数学试题B 卷+答案解析(答案详解)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫−− ⎪⎝⎭,对称轴为2b x a =−. 一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 下列各数中最小的数是( )A. 1−B. 0C. 1D. 2【答案】A【解析】【分析】根据正数大于0,0大于负数,即可作出判断.【详解】1−是负数,其他三个数均是非负数,故1−是最小的数;故选:A .【点睛】本题考查了有理数大小的比较:负数小于一切非负数,明确此性质是关键.2. 下列标点符号中,是轴对称图形的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A .该标点符号是轴对称图形,故此选项符合题意;B .该标点符号不是轴对称图形,故此选项不符合题意;C .该标点符号不是轴对称图形,故此选项不符合题意;D .该标点符号不是轴对称图形,故此选项不符合题意.故选:A .3. 反比例函数10y x =−的图象一定经过的点是( ) A. ()1,10B. ()2,5−C. ()2,5D. ()2,8 【答案】B【解析】【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当1x =时,10101y =−=−,图象不经过()1,10,故A 不符合要求; 当2x =−时,1052y =−=−,图象一定经过()2,5−,故B 符合要求; 当2x =时,1052y =−=−,图象不经过()2,5,故C 不符合要求; 当2x =时,1052y =−=−,图象不经过()2,8,故D 不符合要求; 故选:B .4. 如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A. 35︒B. 45︒C. 55︒D. 125︒【答案】C【解析】 【分析】本题考查了平行线的性质,邻补角的定义,根据邻补角的定义求出3∠,然后根据平行线的性质求解即可.【详解】解:如图,∵1125∠=︒,∴3180155∠=︒−∠=︒,∵AB CD ∥,∴2355∠=∠=︒,故选:C .5. 若两个相似三角形的相似比为1:4,则这两个三角形面积的比是( )A. 1:2B. 1:4C. 1:8D. 1:16 【答案】D【解析】【分析】本题主要考查了相似三角形的性质,根据相似三角形的面积之比等于相似比的平方进行求解即可.【详解】解:∵两个相似三角形的相似比为1:4,∴这两个三角形面积的比是221:41:16=,故选:D .6. 的值应在( )A. 8和9之间B. 9和10之间C. 10和11之间D. 11和12之间 【答案】C【解析】【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.【详解】解:6=,而45<=<,∴10611<<,故答案为:C7. 用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是( )A. 20B. 21C. 23D. 26【答案】C【解析】 【分析】本题考查了图形类的规律探索,解题的关键是找出规律.利用规律求解.通过观察图形找到相应的规律,进行求解即可.【详解】解:第①个图案中有()131112+⨯−+=个菱形,第②个图案中有()132115+⨯−+=个菱形,第③个图案中有()133118+⨯−+=个菱形,第④个图案中有()1341111+⨯−+=个菱形,∴第n 个图案中有()131131n n +−+=−个菱形,∴第⑧个图案中菱形的个数为38123⨯−=,故选:C .8. 如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为( )A. 28︒B. 34︒C. 56︒D. 62︒【答案】B【解析】 【分析】本题考查了圆周角定理,等腰三角形的性质等知识,利用圆周角定理求出COB ∠,根据等腰三角形的三线合一性质求出AOB ∠,等边对等角然后结合三角形内角和定理求解即可.【详解】解:∵28D ∠=︒,∴256BOC D ∠=∠=︒,∵OC AB ⊥,OA OB =,∴2112AOB BOC ∠=∠=︒,OAB OBA ∠=∠, ∴()1180342OAB AOB ∠=︒−∠=︒, 故选:B .9. 如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为( )A. 2B.C.D. 125【答案】D【解析】 【分析】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,先由正方形的性质得到904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,再证明()SAS ABE ADF △≌△得到AE AF =,进一步证明()SAS AEM AFM △≌△得到EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=−=−,,在Rt CEM △中,由勾股定理得()()222134x x +=+−,解方程即可得到答案. 【详解】解:∵四边形ABCD 是正方形,∴904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,又∵1BE DF ==,∴()SAS ABE ADF △≌△,∴AE AF =,∵AM 平分EAF ∠,∴EAM FAM ∠=∠,又∵AM AM =,∴()SAS AEM AFM △≌△,∴EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=−=−,,在Rt CEM △中,由勾股定理得222EM CE CM =+,∴()()222134x x +=+−, 解得125x =, ∴125DM =, 故选:D .10. 已知整式1110:n n n n M a x a x a x a −−++++,其中10,,,n n a a −为自然数,n a 为正整数,且1105n n n a a a a −+++++=.下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3 【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a −为自然数,n a 为正整数,且1105n n n a a a a −+++++=,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:023−+=______.【答案】3【解析】【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.12. 甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________. 【答案】13【解析】【分析】本题考查了列表法与树状图法:画树状图展示所有9种等可能的结果数,找出甲、乙恰好游玩同一景点的结果数,然后根据概率公式求解.【详解】解:画树状图如下:由图可知,共有9种等可能的情况,他们选择同一个景点有3种, 故他们选择同一个景点的概率是:3193=, 故答案为:13. 13. 若正多边形的一个外角是45°,则该正多边形的边数是_________.【答案】8【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用36045︒÷︒可求得边数. 【详解】解:多边形外角和是360度,正多边形的一个外角是45︒,360458∴︒÷︒=即该正多边形的边数是8,故答案为:8.【点睛】本题主要考查了多边形外角和以及多边形的边数,解题的关键是掌握正多边形的各个内角相等,各个外角也相等.14. 重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.【答案】()22001401x +=【解析】【分析】本题主要考查了一元二次方程的实际应用,设第二、第三两个季度安全运行架次的平均增长率为x ,则第二季度低空飞行航线安全运行了()2001x +架次,第三季度低空飞行航线安全运行了()22001x +架次,据此列出方程即可.【详解】解:设第二、第三两个季度安全运行架次的平均增长率为x ,由题意得,()22001401x +=,故答案为:()22001401x +=.15. 如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .若2BC =,则AD 的长度为________.【答案】2【解析】【分析】本题主要考查了等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,先根据等边对等角和三角形内角和定理求出72C ABC ∠=∠=︒,再由角平分线的定义得到36ABD CBD ∠=∠=︒,进而可证明A ABD BDC C ==∠∠,∠∠,即可推出2AD BC ==.【详解】解:∵在ABC 中,AB AC =,36A ∠=︒, ∴180722A C ABC ︒︒−∠∠=∠==, ∵BD 平分ABC ∠, ∴1362ABD CBD ABC ∠=∠=∠=︒, ∴72A ABD BDC A ABD C ==+=︒=∠∠,∠∠∠∠,∴AD BD BD BC ==,,∴2AD BC ==,故答案为:2.16. 若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪−<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y −−=++的解均为负整数,则所有满足条件的整数a 的值之和是________. 【答案】12【解析】【分析】本题主要考查了根据分式方程解的情况求参数,根据不等式组的解集求参数,先解不等式组中的两个不等式,再根据不等式组的解集求出2a >;解分式方程得到102a y −=,再由关于y的分式方程8122a y y y −−=++的解均为负整数,推出10a <且6a ≠且a 是偶数,则210a <<且6a ≠且a 是偶数,据此确定符合题意的a 的值,最后求和即可. 【详解】解:2133423x x x a +⎧≤⎪⎨⎪−<+⎩①②解不等式①得:4x ≤,解不等式②得:2x a <+ ,∵不等式组的解集为4x ≤,∴24a +>,∴2a >; 解分式方程8122a y y y −−=++得102a y −=, ∵关于y 的分式方程8122a y y y −−=++的解均为负整数, ∴1002a −<且102a −是整数且102202a y −+=+≠, ∴10a <且6a ≠且a 是偶数,∴210a <<且6a ≠且a 是偶数,∴满足题意的a 的值可以为4或8,∴所有满足条件的整数a 的值之和是4812+=.故答案为:12.17. 如图,AB 是O 的直径,BC 是O 的切线,点B 为切点.连接AC 交O 于点D ,点E 是O 上一点,连接BE ,DE ,过点A 作AF BE ∥交BD 的延长线于点F .若5BC =,3CD =,F ADE ∠=∠,则AB 的长度是________;DF 的长度是________.【答案】 ①.203##263②. 83##223 【解析】 【分析】由直径所对的圆周角是直角得到90ADB BDC ∠=∠=︒,根据勾股定理求出4BD =,则3cos 5CD C BC ==,由切线的性质得到90ABC ∠=︒,则可证明C ABD ∠=∠,解直角三角形即可求出20cos 3BD AB ABD ==∠;连接AE ,由平行线的性质得到BAF ABE ∠=∠,再由F ADE ∠=∠,ADE ABE ∠=∠,推出F BAF ∠=∠,得到203BF AB ==,则208433DF BF BD =−=−=. 【详解】解:∵AB 是O 的直径,∴90ADB BDC ∠=∠=︒,在Rt BDC中,由勾股定理得4BD ==, ∴3cos 5CD C BC ==, ∵BC 是O 的切线,∴90ABC ∠=︒,∴90C CBD CBD ABD +=+=︒∠∠∠∠,∴C ABD ∠=∠,在Rt △ABD 中,4203cos 35BD AB ABD ===∠;如图所示,连接AE ,∵AF BE ∥,∴BAF ABE ∠=∠,∵F ADE ∠=∠,ADE ABE ∠=∠,∴F BAF ∠=∠, ∴203BF AB ==, ∴208433DF BF BD =−=−=; 故答案为:203;83. 【点睛】本题主要考查了切线的性质,同弧所对的圆周角相等,直径所对的圆周角是直角,勾股定理,解直角三角形,等腰三角形的判定等等,证明F BAF ∠=∠是解题的关键.18. 一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b −=−=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是________.【答案】 ①. 3456 ②. 6273【解析】【分析】本题主要考查了新定义,根据新定义得到9a d b c +=+=,再由1b a c b −=−=可求出a 、b 、c 、d 的值,进而可得答案;先求出9999099M a b =++,进而得到()36981313F M ab cda b a ++++=++,根据()13F M ab cd ++是整数,得到369813a b a ++++是整数,即3613a b ++是整数,则36a b ++是13的倍数,求出8a ≤,再按照a 从大到小的范围讨论求解即可. 【详解】解:∵abcd 是一个“友谊数”,∴9a d b c +=+=,又∵1b a c b −=−=,∴45b c ==,,∴36a d ==,,∴这个数为3456; ∵M abcd =是一个“友谊数”,∴100010010M a b c d =+++()10001001099a b b a =++−+−9999099a b =++,∴()11110119M F M a b ==++, ∴()13F M ab cd++ 1111011101013a b a b c d ++++++= ()111101*********a b a b b a+++++−+−= 12011013a b ++= 1173104613a ab ++++= 369813a b a ++=++, ∵()13F M ab cd++是整数,∴369813a b a ++++是整数,即3613a b ++是整数, ∴36a b ++是13的倍数,∵a b c d 、、、都是不为0的正整数,且9a d b c +=+=,∴8a ≤,∴当8a =时,313638a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当7a =时,283635a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当6a =时,253632a b ≤++≤,此时可以满足36a b ++是13的倍数,即此时2b =,则此时37d c ==,,∵要使M 最大,则一定要满足a 最大,∴满足题意的M 的最大值即为6273;故答案为:3456;6273.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()()312a a a a −+−+;(2)22241244x x x x −⎛⎫+÷ ⎪−−+⎝⎭. 【答案】(1)42a -(2)2x x + 【解析】【分析】本题主要考查了整式的混合计算,分式的混合计算∶(1)先根据单项式乘以多项式的计算法则和多项式乘以多项式的计算法则去括号,然后合并同类项即可得到答案;(2)先把小括号内的式子通分,再把除法变成乘法后约分化简即可得到答案.【小问1详解】解:()()()312a a a a −+−+22322a a a a a =−+−+−42a =−;【小问2详解】 解:22241244x x x x −⎛⎫+÷ ⎪−−+⎝⎭ ()()()2222222x x x x x +−−+=÷−− ()()()22222x x x x x −=⋅−+− 2x x =+. 20. 数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ≤≤,B .8090x ≤<,C .7080x ≤<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:=a ________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x≥的总共有多少人?【答案】(1)88;87;40(2)八年级学生数学文化知识较好,理由见解析(3)310人【解析】【分析】本题主要考查了中位数,众数,用样本估计总体,扇形统计图等等:(1)根据中位数和众数的定义可求出a、b的值,先求出把年级A组的人数,进而可求出m的值;(2)根据八年级学生成绩的中位数和众数都比七年级学生成绩的高即可得到结论;(3)用七年级的人数乘以七年级样本中优秀的人数占比求出七年级优秀人数,用八年级的人数乘以八年级样本中优秀的人数占比求出八年级优秀人数,再二者求和即可得到答案.【小问1详解】解:八年级C组的人数为1020%2⨯=人,而八年级B组有4人,则把八年级10名学生的成绩按照从低到高排列,处在第5名和第6名的成绩分别为88分,88分,∴八年级学生成绩的中位数8888882a+==;∵七年级10名学生成绩中,得分为87分的人数最多,∴七年级的众数87b=;由题意得,1041020%%100%40%10m−−⨯=⨯=,∴40m=;故答案为:88;87;40;【小问2详解】解:八年级学生数学文化知识较好,理由如下:∵两个年级10名学生的平均成绩相同,但是八年级学生成绩的中位数和众数都比七年级学生成绩的高,∴八年级学生数学文化知识较好;【小问3详解】解:350040040%31010⨯+⨯=人,∴估计该校七、八年级学生中数学文化知识为“优秀”的总共有310人.21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹) (2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析 (2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【解析】【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图: (1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【小问1详解】解:如图所示,即为所求;【小问2详解】证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22. 某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?【答案】(1)A 种外墙漆每千克的价格为26元,则B 种外墙漆每千克的价格为24元.(2)甲每小时粉刷外墙的面积是25平方米.【解析】【分析】本题考查的是分式方程的应用,一元一次方程的应用,理解题意建立方程是解本题的关键; (1)设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x −元,再根据总费用为15000元列方程求解即可;(2)设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;利用乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.从而建立分式方程求解即可.【小问1详解】解:设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x −元,∴()300300215000x x +−=,解得:26x =,∴224x −=,答:A 种外墙漆每千克的价格为26元,B 种外墙漆每千克的价格为24元.【小问2详解】设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;。
九年级数学B卷复习题
九年级B 卷专题训练【21题题型】21.已知关于x 的方程224220x x p p --++=的一个根为p ,则p = _________. 21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________.21.设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.21. 已知y = 31x – 1,那么31x 2 – 2xy + 3y 2– 2的值是 .21.已知x 是一元二次方程2310x x +-=的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为 . 21.(2010安徽芜湖)已知x 1、x 2为方程x 2+3x +1=0的两实根,则x 13+8x 2+20=__________. 21.设1x 、2x 是一元二次方程0342=-+x x 的两个根,且()23522221=+-+a x x x ,则a =21.设x 1、x 2是一元二次方程0352=-+x x 的两个实根,且,4)36(22221=+-+a x x x则a =21.设a,b 是方程0201522=-+x x 的两个实数根,则b a a ++32的值为 。
21、已知关于x 的方程0)cos 1(2sin 432=-+⋅-ααx x 有两个不相等的实数根,α为锐角,那么α的取值范围是21.实数a 、b 满足015,01522=+-=+-a a b b ,则=+baa b 21、已知a 是关于x 的一元二次方程0322=--x x 的实数根,那么代数式aa 212-的值为_ ___。
21、若是关于1x 、2x 是关于x 的的一元二次方程012=+++m mx x 的两个实数根,且62221=+x x ,则m 的值为 。
21..已知012=--a a ,则=+-20093a a .21.已知不等式组2123x a x b -<⎧⎨->⎩的解集是11x -<<,则)1)(1(-+b a 的值等于 .21.已知m bac a c b c b a =+=+=+232323 ,且0≠++c b a ,那么直线m mx y -=一定不通过...第 象限. 21.若0132=+-x x ,则1242++x x x的值为____________.21.若0121322=++++-b b a a ,则b a a -+221= .21.已知22222()()60a b a b +-+-=, 则=+22b a ___ ___. 21、若041=-+-a b ,且一元二次方程02=++b ax kx 有两个实数根,则k 的取值范围是________;21.已知正数a 、b 、c 满足a2+c2=16,b2+c2=25,则k =a2+b2的取值范围是_________________.21.已知m ,n 是关于x 的方程x2-2ax +a +6=0的两实根,则(m -1)2+(n -1)2的最小值为_____________.21.已知实数a ≠b ,且满足(a +1)2=3-3(a +1),3(b +1)=3-(b +1)2,则ba a ab b +的值为__________.21.若βα、是关于x 的方程01200520062=+-x x 的两个实数根, 则βαα+-200420062的值为 。
成都初三数学b卷试题及答案
成都初三数学b卷试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x+3=7的解?A. x=1B. x=2C. x=3D. x=42. 一个数的平方是36,这个数是?A. 6B. ±6C. -6D. 363. 一次函数y=2x+1的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 圆的面积公式是πr²,其中r是?A. 直径B. 半径C. 周长D. 面积5. 一个长方体的长、宽、高分别为3cm、2cm、1cm,其体积是?B. 9cm³C. 12cm³D. 18cm³6. 一个角的补角是120°,那么这个角的度数是?A. 60°B. 30°C. 90°D. 120°7. 函数y=3x-2的图象与x轴交点的横坐标是?A. 2/3B. -2/3C. 2D. -28. 一个三角形的内角和是?A. 90°B. 180°C. 360°D. 720°9. 一个数的立方是-27,这个数是?A. -3B. 3C. ±3D. 910. 一个圆的直径是10cm,那么它的半径是?A. 5cmC. 15cmD. 20cm二、填空题(每题3分,共30分)1. 一个数的相反数是-5,那么这个数是______。
2. 如果一个角是直角的一半,那么这个角的度数是______。
3. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的面积是______。
4. 一个数的绝对值是4,这个数可以是______。
5. 一个长方体的体积是64cm³,长和宽都是4cm,那么它的高是______。
6. 一个数的平方根是2,那么这个数是______。
7. 一个数的立方根是-2,那么这个数是______。
8. 一个直角三角形的两条直角边长分别是3cm和4cm,那么它的斜边长是______。
中考专题2022年河北省石家庄市中考数学模拟专项测试 B卷(含答案及详解)
2022年河北省石家庄市中考数学模拟专项测试 B 卷考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知2a ++3b -=0,则a-b 的值是( ) . A .-1 B .1 C .-5 D .52、如图,AD 是ABC 的边BC 上的中线,7,5AB AD ==,则AC 的取值范围为( )A .515AC <<B .315AC << C .317AC <<D .517AC <<3、把分式2222x x x x -+-+-化简的正确结果为( ) A .284x x --B .284xx -+C .284x x -D .22284x x +-4、把 ()()()()5315+-+--+- 写成省略括号后的算式为 ( )·线○封○密○外A .5315--+-B .5315---C .5315++-D .5315-+-5、如图,在数轴上有三个点A 、B 、C ,分别表示数5-, 3.5-,5,现在点C 不动,点A 以每秒2个单位长度向点C 运动,同时点B 以每秒1.5个单位长度向点C 运动,则先到达点C 的点为( )A .点AB .点BC .同时到达D .无法确定6、石景山某中学初三()1班环保小组的同学,调查了本班10名学生自己家中一周内丢弃的塑料袋的数量,数据如下(单位:个)10,10,9,11,10,7,10,14,7,12.若一个塑料袋平铺后面积约为20.25m ,利用上述数据估计如果将全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为( ) A .210m B .225mC .240mD .2100m7、若把分式2x yx y+-中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .不变 C .缩小10倍 D .缩小20倍8、计算-1-1-1的结果是( ) A .-3B .3C .1D .-19、如图是三阶幻方的一部分,其每行、每列、每条对角线上三个数字之和都相等,则对于这个幻方,下列说法错误的是( )A .每条对角线上三个数字之和等于3aB .三个空白方格中的数字之和等于3aC .b 是这九个数字中最大的数D .这九个数字之和等于9a10、某种速冻水饺的储藏温度是182C C -±,四个冷藏室的温度如下,不适合储藏此种水饺是( ) A .17C -B .22C -C .18C -D .19C -第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,2,,AB AC B C BD CE ∠∠====,F 是AC 边上的中点,则AD EF-________1.(填“>”“=”或“<”)2、如图,半圆O 的直径AE =4,点B ,C ,D 均在半圆上.若AB =BC ,CD =DE ,连接OB ,OD ,则图中阴影部分的面积为________.3、如图,在高2米,坡角为27的楼梯表面铺地毯,地毯的长度至少需要________米.(精确到0.1米)4、如图,圆心角∠AOB =20°,将 AB 旋转n °得到CD ,则CD 的度数是______度.·线○封○密○外5、如图,若满足条件________,则有AB ∥CD ,理由是_________________________.(要求:不再添加辅助线,只需填一个答案即可)三、解答题(5小题,每小题10分,共计50分)1、对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得(0MP kNP k =>) ,则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上, Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点 Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示-4,-2,2.(1)点B 是点A 到点C 的______倍分点,点C 是点B 到点A 的______倍分点; (2)点B 到点C 的3倍分点表示的数是______;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的2倍分点,写出x 的取值范围.2、如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且2OA =,4OB =,8OC =,抛物线的对称轴与直线BC 交于点M ,与x 轴交于点N .(1)求抛物线的解析式;(2)若点P 是对称轴上的一个动点,是否存在以P 、C 、M 为顶点的三角形与MNB 相似?若存在,求出点P 的坐标,若不存在,请说明理由.(3)D 为CO 的中点,一个动点G 从D 点出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .要使动点G 走过的路程最短,请找出点E 、F 的位置,写出坐标,并求出最短路程. 3、当x 为何值时,333x -和3112x --互为相反数. 4、在平面直角坐标系中,抛物线222y x mx m =-+(m 为常数)的顶点为M ,抛物线与直线1x m =+交于点A ,与直线3x =-交于点B ,将抛物线在A 、B 之间的部分(包含A 、B 两点且A 、B 不重合)记作图象G . (1)当1m =-时,求图象G 与x 轴交点坐标. (2)当AB ∥x 轴时,求图象G 对应的函数值y 随x 的增大而增大时x 的取值范围. (3)当图象G 的最高点与最低点纵坐标的差等于1时,求m 的取值范围. (4)连接AB ,以AB 为对角线构造矩形AEBF ,并且矩形的各边均与坐标轴垂直,当点M 与图象G 的最高点所连线段将矩形AEBF 的面积分为1:2两部分时,直接写出m 值.5、如图是函数214y x =-+的部分图像.·线○封○密·○外(1)请补全函数图像;(2)在图中的直角坐标系中直接画出221y x =+的图像,然后根据图像回答下列问题:①当x 满足 时,12y y =,当x 满足 时,12y y >; ②当x 的取值范围为 时,两个函数中的函数值都随x 的增大而增大?-参考答案-一、单选题 1、C 【分析】根据绝对值具有非负性可得a+2=0,b-3=0,解出a 、b 的值,然后再求出a-b 即可. 【详解】解:由题意得:a+2=0,b-3=0, 解得:a= -2,b=3,a-b=-2-3=-5, 故选:C . 【点睛】本题考查绝对值,关键是掌握绝对值的非负性. 2、C 【分析】延长AD 至点E ,使5DE AD ==,连接CE ,证明ABD ECD ≌,可得7CE AB ==,然后运用三角形三边关系可得结果. 【详解】 如图,延长AD 至点E ,使5DE AD ==,连接CE .∵AD 为ABC 的BC 边上的中线,∴BD CD =, 在ABD △和ECD 中,,,,AD ED ADB EDC BD CD =⎧⎪∠=∠⎨⎪=⎩·线○封○密○外∴()SAS ABD ECD ≌, ∴7CE AB ==.在ACE 中,AE EC AC AE CE -<<+, 即557557AC +-<<++, ∴317AC <<, 故选:C . 【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,根据中点倍长法构造全等三角形是解题的关键. 3、A 【分析】先确定最简公分母是(x +2)(x −2),然后通分化简. 【详解】2222x x x x -+-+-=()()222(2)(2)2x x x x ---++=284x x --; 故选A . 【点睛】分式的加减运算中,异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减. 4、D 【分析】先把算式写成统一加号和的形式,再写成省略括号的算式即可. 【详解】把()()()()()()()5315=+5315+-+--+-+-+++-统一加号和,再把()()()+5315+-+++-写成省略括号后的算式为 5-3+1-5. 故选:D .【点睛】 本题考查有理数加减法统一加法的问题,掌握加减法运算的法则,会用减法法则把减法装化为加法,会写省略括号的算式是解题关键. 5、A 【分析】先分别计算出点A 与点C 之间的距离为10,点B 与点C 之间的距离为8.5,再分别计算出所用的时间.【详解】 解:点A 与点C 之间的距离为:5(5)5510--=+=, 点B 与点C 之间的距离为:5( 3.5)5 3.58.5--=+=, 点A 以每秒2个单位长度向点C 运动,所用时间为5210=÷(秒); 同时点B 以每秒1.5个单位长度向点C 运动,所用时间为1728.5 1.5533÷==(秒);故先到达点C 的点为点A , 故选:A . 【点睛】本题考查了数轴,解决本题的关键是计算出点A 与点C ,点B 与点C 之间的距离. 6、D 【分析】先求出每一名学生自己家中一周内丢弃的塑料袋的数量的平均数,即可得到每名同学丢弃的塑料袋平·线○封○密○外铺后面积.那么全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开所占面积即可求出. 【详解】由题意可知:本班一名学生自己家中一周内丢弃的塑料袋的数量的平均数为1010911107101471210+++++++++=10个,则每名同学丢弃的塑料袋平铺后面积约为10×0.25m 2=2.5,全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为40×2.5=100m 2. 故选D . 【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法. 7、B 【分析】把x 和y 都扩大10倍,根据分式的性质进行计算,可得答案. 【详解】解:分式2x y x y +-中的x 和y 都扩大10倍可得:1021010(2)2101010()x y x y x yx y x y x y+⨯++==---,∴分式的值不变, 故选B . 【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变. 8、A 【分析】根据有理数的减法法则计算. 【详解】解:-1-1-1=-1+(-1)+(-1)=-3.故选:A .【点睛】本题考查有理数的减法.有理数减法法则:减去一个数等于加上这个数的相反数.9、B【分析】 根据每行、每列、每条对角线上三个数字之和都相等,则由第1列三个已知数5+4+9=18可知每行、每列、每条对角线上三个数字之和为18,于是可分别求出未知的各数,从而对四个选项进行判断. 【详解】 ∵每行、每列、每条对角线上三个数字之和都相等, 而第1列:5+4+9=18,于是有 5+b+3=18, 9+a+3=18, 得出a =6,b =10, 从而可求出三个空格处的数为2、7、8, 所以答案A 、C 、D 正确, 而2+7+8=17≠18,∴答案B 错误, 故选B . 【点睛】 本题考查的是数字推理问题,抓住条件利用一元一次方程进行逐一求解是本题的突破口. 10、B 【分析】 根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.·线○封○密·○外【详解】解:-18-2=-20℃,-18+2=-16℃,温度范围:-20℃至-16℃,故选:B .【点睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.二、填空题1、<【分析】连接AE ,先证明△≌△ADB AEC 得出AD AE =,根据三角形三边关系可得结果.【详解】如图,连接AE ,在ADB △和AEC 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADB AEC ≌,∴AD AE =,在AEF中,AE EF AF-<,∴AD EF AF-<,∵F是AC边上的中点,∴112AF AC==,∴1AD EF-<,故答案为:<.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键.2、π【分析】根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.【详解】如图,连接CO,∵AB=BC,CD=DE,∴∠BOC+∠COD=∠AOB+∠DOE=90°,∵AE=4,∴AO=2,∴S阴影=2902360π⋅⋅=π.·线○封○密○外【点睛】本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.3、5.9【分析】首先利用锐角三角函数关系得出AC的长,再利用平移的性质得出地毯的长度.【详解】由题意可得:tan27°=BCAC=2AC≈0.51,解得:AC≈3.9,故AC+BC=3.9+2=5.9(m),即地毯的长度至少需要5.9米.故答案为5.9.【点睛】本题主要考查了解直角三角形的应用,得出AC的长是解题的关键.4、20【分析】先根据旋转的性质得AB CD,则根据圆心角、弧、弦的关系得到∠DOC=∠AOB=20°,然后根据圆心角的度数等于它所对弧的度数即可得解.【详解】解:∵将AB 旋转n°得到CD , ∴AB CD =∴∠DOC=∠AOB=20°,∴CD 的度数为20度.故答案为20.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了旋转的性质. 5、答案不唯一,如3A ∠=∠; 同位角相等,两直线平行. 【分析】 根据平行线的判定(同位角相等、内错角相等或同旁内角互补)写出一组条件即可. 【详解】 若根据同位角相等,判定AB CD 可得: ∵3A ∠=∠, ∴AB//CD(同位角相等,两直线平行). 故答案是:答案不唯一,如3A ∠=∠; 同位角相等,两直线平行. 【点睛】 考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,再根据平行线的判定定理(同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行)解题. ·线○封○密○外三、解答题1、(1)12;23(2)1或4(3)-3≤x≤5【分析】(1)根据“倍分点”的定义进行判断即可;(2)根据“倍分点”的定义进行解答;(3)根据“倍分点”的定义,分两种情况列出关于x的一元一次方程,解得x的值即可;(1)解:由题意得,AB=2,BC=4,AC=6∴AB=12BC,BC=23AC∴点B是点A到点C的12倍分点,点C是点B到点A的23倍分点;故答案为:12;23(2)解:设3倍分点为M,则BM=3CM,若M在B左侧,则BM<CM,不成立;若M在BC之间,则有BM+CM=BC=4, ∵BM=3CM∴4CM=4,CM=1∴M 点为1;若M 在C 点右侧,则有BC +CM =BM∵BM =3CM ,BC =4∴CM =2所以M 点为4综上所述,点B 到点C 的3倍分点表示的数是1或4; 故答案为:1或4 (3) 解:当2倍分点为B 时,x 取得最小值, 此时AB =2(-2-x )=2 解得:x =-3 当2倍分点为C 点且D 点在C 点右侧时,x 取得最大值 此时AC =2(x -2)=6 解得x =5 所以-3≤x ≤5; 【点睛】 本题主要考查两点间的距离,一元一次方程的应用,注意分类讨论的思想是解题的关键. 2、 (1)228y x x =-++ (2)存在,点(1,8)P 或17(1,)2P (3)2(,0),(1,2)3E F,·线○封○密○外【分析】(1)用待定系数法即可求解;(2)当∠CP ′M 为直角时,则P ′C ∥x 轴,即可求解;当∠PCM 为直角时,用解直角三角形的方法求出PN =MN +PM =517622+=,即可求解; (3)作点C 关于函数对称轴的对称点C ′(2,8),作点D 关于x 轴的对称点D ′(0,-4),连接C ′D ′交x 轴于点E ,交函数的对称轴于点F ,则点E 、F 为所求点,进而求解.(1)由题意得,点A 、B 、C 的坐标分别为(-2,0)、(4,0)、(0,8),设抛物线的表达式为y =ax 2+bx +c ,则42016408a b c a b c c -+⎧⎪++⎨⎪⎩===, 解得128ab c -⎧⎪⎨⎪⎩===, 故抛物线的表达式为y =-x 2+2x +8;(2)存在,理由:当∠CP ′M 为直角时,则以P 、C 、M 为顶点的三角形与△MNB 相似时,则P ′C ∥x 轴,则点P ′的坐标为(1,8);当∠PCM 为直角时,在Rt △OBC 中,设∠CBO =α,则8tan 2tan 4OC CBO OB α∠====,则sin αα== 在Rt △NMB 中,NB =4-1=3,则cos BNBM α==同理可得,MN =6,由点B 、C的坐标得,BC ==CM BC MB =-=在Rt △PCM 中,∠CPM =∠OBC =α,则5sin 2CM PM α==,则PN =MN +PM =517622+=,故点P 的坐标为(1,172),故点P 的坐标为(1,8)或(1,172);(3)∵D 为CO 的中点,则点D (0,4),作点C 关于函数对称轴的对称点C ′(2,8),作点D 关于x 轴的对称点D ′(0,-4),连接C ′D ′交x 轴于点E ,交函数的对称轴于点F ,则点E 、F 为所求点,·线○封○密·○外理由:G走过的路程=DE+EF+FC=D′E+EF+FC′=C′D′为最短,由点C′、D′的坐标得,直线C′D′的表达式为y=6x-4,对于y=6x-4,当y=6x-4=0时,解得23x=,当x=1时,y=2,故点E、F的坐标分别为2(,0)3、(1,2);G走过的最短路程为C′D.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.3、1x=【分析】由相反数的定义得到333x-与3112x--的和为零,据此解一元一次方程即可解题.【详解】解:33311=0+23x x---2(33)3(31)60 x x∴-+--=669360x x ∴-+--=15150x ∴-= 解得1x = 即当1x =时,333x -和3112x --互为相反数. 【点睛】 本题考查相反数、解一元一次方程等知识,是基础考点,掌握相关知识是解题关键. 4、 (1)(1-0) (2)21x -≤≤- (3)32m -≤≤- (4)-3.5或-5或0或83-. 【分析】 (1)求出抛物线解析式和点A 、B 的坐标,确定图象G 的范围,求出与x 轴交点坐标即可; (2)1x m =+和3x =-代入222y x mx m =-+,根据纵坐标相等求出m 的值,再根据二次函数的性质写出取值范围即可; (3)分别求出抛物线顶点坐标和点A 、B 的坐标,根据图象G 的最高点与最低点纵坐标的差等于1,列出方程和不等式,求解即可; (4)求出A 、B 两点坐标,再求出直线AM 、BM 的解析式,根据将矩形AEBF 的面积分为1:2两部分,列出方程求解即可. (1) 解:当1m =-时,抛物线解析式为222y x x =+-,直线1x m =+为直线0x =,即y 轴;此时点A 的坐标为(0,-2);当3x =-时,2(3)2(3)21y =-+⨯--=, ·线○封○密○外点B 的坐标为(-3,1);当y =0时,2022x x =+-,解得,11=-x 21=-x∵10->,∴11=-x图象G 与x 轴交点坐标为(1-0)(2)解:当AB ∥轴时,把1x m =+和3x =-代入222y x mx m =-+得,2962(1)2(1)2m m m m m m ++=+-++,解得14m =-,22m =-,当14m =-时,点A 、B 重合,舍去;当22m =-时,抛物线解析式为244y x x =+-,对称轴为直线4222b x a =-=-=-,点A 的坐标为(-1,-7),点B 的坐标为(-3,-7);因为10a =>,所以,图象G 对应的函数值y 随x 的增大而增大时x 的取值范围为:21x -≤≤-;(3)解:抛物线222y x mx m =-+化成顶点式为22()2y x m m m =--+,顶点坐标为: 22)(m m m -+,, 当1x m =+时,22(1)2(1)221y m m m m m m =+-++=-++,点A 的坐标为221)(1m m m +-++,,当3x =-时,96298y m m m =++=+,点B 的坐标为98)(3m +-,, 点A 关于对称轴x m =的对称点的坐标为221)(1m m m --++,,当13m -≥-时,29821m m m +≥-++,此时图象G 的最低点为顶点,则298(2)1m m m +--+=,解得,14m =-(舍去),22m =-, 当13m -<-,3m ≥-时,29821m m m +≤-++,此时图象G 的最低点为顶点,则2221(2)1m m m m -++--+=,等式恒成立,则32m -≤<-, 当3m <-时,此时图象G 的最低点为B ,图象G 的最高点为A ,则221(98)1m m m -++-+=,解得,3m =-(舍去),综上,m 的取值范围为32m -≤≤-.(4)解:由前问可知,点A 的坐标为221)(1m m m +-++,,点B 的坐标为98)(3m +-,,点M 的坐标为22)(m m m -+,, 设直线AM 、BM 的解析式分别为y kx b =+,y cx n =+,把点的坐标代入得, 2221(1)2m m m k b m m mk b ⎧-++=++⎨-+=+⎩,29832m c n m m mc n +=-+⎧⎨-+=+⎩, 解得,21k b m m =⎧⎨=-+⎩,(3)5c m n m =-+⎧⎨=⎩, 所以,直线AM 、BM 的解析式分别为2y x m m =-+,(3)5y m x m =-++, 如图所示,BM 交AE 于C ,把221y m m =-++代入(3)5y m x m =-++得, 2321()5m x m m m =-+++-+,解得,2313m m x m +-=+, 223168333E m C m m m m m +-+=++=++,134EA m m +=+=+, ·线○封○密·○外因为,点M 与图象G 的最高点所连线段将矩形AEBF 的面积分为1:2两部分, 所以,2682(4)33m m m m ++=++, 解得,10m =,24m =-(此时,A 、B 两点重合,舍去);如图所示,BM 交AF 于L ,同理可求L 点纵坐标为:(3)(1)5m m m -+++,398()(1)5m F m L m m ++=-++,29821F m A m m ++=--, 可列方程为2)92(3)(1)5(982138m m m m m m m +++-=+--++, 解得,35m =-,44m =-(此时,A 、B 两点重合,舍去);如图所示,AM 交BF 于P ,同理可求P 点横坐标为:279m m ++,268PF m m =---,4FB m =+,可列方程为22(4)368m m m =-+--, 解得,583m =-,64m =-(此时,A 、B 两点重合,舍去); 如图所示,AM 交EB 于S ,同理可求S 点纵坐标为:23m m --+, 22213ES m m m m =-++++-,22198m m m EB ++--=-, 可列方程为2)92(3)(1)5(982138m m m m m m m +++-=+--++, 解得,7 3.5m =-,44m =-(此时,A 、B 两点重合,舍去);综上,m 值为-3.5或-5或0或83-. 【点睛】 本题考查了二次函数的综合,解题关键是熟练运用二次函数知识,树立数形结合思想和分类讨论思想,通过点的坐标,建立方程求解5、(1)见解析 (2)①3x =-或1x =;31x -<<;②0x < ·线○封○密○外【分析】(1)求出抛物线的顶点坐标,根据对称性作出函数的图象即可;(2)现出直线y=2x+1的图象,找出两函数图象的交点坐标,结合图象可回答问题.(1)由214y x=-+知,函数图象的顶点坐标为(0,4)又抛物线具有对称性,所以,补全函数图像如下:(2)如图,从作图可得出,直线y =2x +1与214y x =-+的交点坐标为(-3,-5)和(1,3) 所以,①当3x =-或1x =时,12y y =,当31x -<<时,12y y >, 故答案为:3x =-或1x =;31x -<<; ②当0x <时,两个函数中的函数值都随x 的增大而增大, 故答案为:0x < 【点睛】 本题考查函数图象,描点法画函数图象,解题的关键是学会利用数形结合的思想解决问题. ·线○封○密○外。
2023年浙江省中考数学能力检测试卷B卷附解析
2023年浙江省中考数学能力检测试卷B卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.生活处处皆学问.如图,眼镜镜片所在的两圆的位置关系是()A.外离B.外切C.内含D.内切2.如图所示,在△ABC 中,∠C= 90°,AC =25,∠BAC 的平分线交 BC 于 D,且AD=4153,则 cos∠BAC 的值是()A.12B.22C.32D.333.如图,P是Rt△ABC的斜边BC上异于B,C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A.1条B.2条C.3条D.4条4.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点.•当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定5.在平行四边形ABCD中,AB=2,BC=3,∠B=60°,则平行四边形ABCD的面积为()A.6 B.332C.3D.36.如果代数式29 34k k-+的值为 2,那么k的值是()A.322-B.32C.322±D.32-7.如果点(3,-4)在反比例函数kyx=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(-2,-6)C.(-2,6)D.(-3,-4)8.已知等腰三角形的顶角为l00°,则该三角形两腰的垂直平分线的交点位于()A .三角形内部B .三角形的边上C .三角形外部D .无法确定 9.如图,AB ∥CD ,AD ,BC 相交于0点,∠BAD=35°,∠BOD=76°,则∠C 的度数是( )A .31°B .35°C .41°D .76°10.关于200920091()22⨯计算正确的是( )A . 0B .1C .-1D .2 11.在Rt △ABC 中,∠BAC=90度,AD 是高,则图中互余的角有 ( )A . 一对B . 二对C . 三对D .四对 12.小敏统计了全班50名同学最喜欢的学科(每个同学只选一门学科).统计结果显示:最喜欢数学和科学的频数分别是13和10.最喜欢语文和英语的人数的频率分别是0.3和0.2,其余的同学最喜欢社会,则下列叙述错误的是( )A .最喜欢语文的人数最多B .最喜欢社会的人数最少C .最喜欢数学的人数和最喜欢语文的人数之和超过总人数的一半D .最喜欢科学的人数比最喜欢英语的人数要少二、填空题13.将抛物线212y x =-绕顶点旋转 180°,则所得的抛物线的解析式为 . 14.若点(a ,b )在第二象限,则点(a b -,ab )在第 象限. 15.如图,用(0,0)表示0点的位置,用(3,2)表示P 点的位置,则可用 表示Q 点的位置.16.已知一组数据:11,15.13,12.15,15.16.15.令这组数据的众数为a ,中位数为b ,则a b (填“>”、“<”或“=”).17.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁): 甲群:13,13,14,15,15,15,l5,l6,17,17;乙群:3,4,4,5,5,6,6,6,54,57.解答下列各题:(1)甲群游客的平均年龄是 岁,中位数是 岁,众数是 岁,其中能较好反映甲群游客年龄特征的是 ;A B D(2)乙群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是.18.如图,在长方形ABCD中,AB=1,BC=2则AC=___________.19.如图,(1)么1的同位角是;(2)∠1与是内错角;(3)∠1与∠3是;(4)若∠l=∠4,则∠1与也相等.△中,∠C=90°,AD为△ABC角平分线,BC=40,AB=50,若20.在ABCBD∶DC=5∶3,则△ADB的面积为_______.解答题21.某网站开展“北京2008年奥运会中国队能获多少枚金牌”的网络调查,共有100000人参加此次活动,现要从中抽取100名“积极参与奖”,那么参加此活动的小华能获奖的概率是__________.22.如图,ΔDEF是ΔABC以直线GH为对称变换所得的像.请写出图中的各对全等三角形: .23.已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是.三、解答题24.如图所示,□ABCD的对角线交于点0,直线l绕0点旋转与一组对边相交于E,F点,求:(1)线段BE与DF的关系;(2)直线l把□ABCD分成的两部分的面积关系.25.解不等式(组),并将解集在数轴上表示出来:(1)2(3)3(2)x x -+>+(2)3122109162x x x x -≤-⎧⎪⎨-<+⎪⎩26.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为 ;(2)画出小鱼向左平移3格后的图形.27.从甲、乙两名工人做出的同一种零件中,各抽出4个,量得它们的直径(单位:mm)如下:甲生产零件的尺寸:9.98,10.00,10.02,10.00.乙生产零件的尺寸:10.00,9.97,10.03,10.00.(1)分别计算甲、乙两个样本的平均数;(2)分别求出它们的方差,并说明在使零件的尺寸符合规定方面谁做得较好?28.某农场要建造一个周长为 20m 的等腰三角形围栏,若围栏的腰长为 xm ,试求腰长x 的取值范围.29.如图,OD平分∠AOB,DC∥A0交0B于点C,试说明△OCD是等腰三角形的理由.30..有一块菜地,地形如图,试求它的面积s(单位:m).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.C4.C5.C6.C7.C8.C9.C10.B11.D12.D二、填空题13.212y x =14. 三 15.(9,3)16.=17.(1)15,l5,15,平均数、中位数、众数都可以;(2)15,5.5,6,众数 18.519.(1)∠4;(2)∠2;(3)同旁内角;(4)∠220.62521.10001 22. △ABC 与△DEF,△EGH 与△BGH23.n )2(三、解答题24.(1)BE ∥DF ,BE=DF ;(2)相等25.(1)12x <-,在数轴上表示略 (2)22x -<≤,在数轴上表示略 26.(1)16;(2)图略27.(1)10.00x=甲mm,10.00x=乙mm;(2)200002S=甲.mm2,2000045S=乙.mm2,甲做得较好28.根据题意,得22022020x xx>-⎧⎨->⎩,解得5<x<10.∴腰长的取值范围是5<x<l0.29.说明∠OOC=∠BOD30.24m2。
2023年浙江省中考数学强化训练试卷B卷附解析
2023年浙江省中考数学强化训练试卷B 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,△ABC 的顶点都是正方形网格中的格点,则sin ∠ABC 等于( ) A .5B .552 C .55 D .322.如图,在△ABC 中,DE ∥BC ,AD :DB=2:3,且△ABC 的周长是20cm ,则△ADE 的周长等于( ) A .5cmB .6cmC .7cmD .8cm3.下列命题中,是假命题的为( ) A .两条直线相交,只有一个交点 B .全等三角形对应边上的中线相等 C .全等三角形对应边上的高相等D .三角形一边上的中线把这个三角形分成两个全等的小三角形 4.在频率分布直方图中,下列结论成立的是( ) A .各小组频率之和等于n B .各小组频数之和等于1 C .各小组频数之和等于n D .各小组长方形高的和等于l5.已知坐标平面上的机器人接受指令“[a ,A]”(a ≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a. 若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( ) A . (-1,3B . (-13C 3-1)D .(3-1)6.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x ,81,这组成绩的平均数是77,则x 的值为( ) A .76 B .75 C .74 D .73 7.在△ABC 中,∠A=1O5°,∠B-∠C=15°,则∠C 的度数为( )A . 35°B .60°C .45°D .30°8.如图 是一个自 由转动的转盘,转动这个转盘,当它停止转动时,指针最有可能停留的区域是( )A . A 区域B .B 区域C .C 区域D . D 区域9.从1到9这九个自然数中任取一个,既是2的倍数,又是3的倍数的概率是( ) A .91 B . 31C .21 D .97 10.钟表上的时针从l0点到ll 点,所旋转的角度是 ( ) A .10°B .15°C .30°D .60°二、填空题11.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为 米.12. 如图,P 是⊙O 外的一点,PA 、PB 分别切⊙O 于A 、B 点,C 是劣弧上一点,若∠APB = 100°,则∠ACB = .13.12y y y =+,若 y l 与x 成正比例,y 2 与x 成反比例,当x=1 时,y= 一5,且它的图象经过点 (2,一4),则 y 关于x 的函数解析式为 .14.已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是 .15.一个三棱柱的底面是边长为3 cm 的等边三角形,侧棱长为5 cm ,如果将这个棱柱用铁丝扎起来,则至少需要铁丝的长度是 cm(不计接头长度).16.中央电视台大风车栏目的图标如图(1)所示,其中心为点0,半圆ACB 固定,其半径为2r ,车轮绕中心旋转 180°能与原来的图形重合,轮片是半圆形,小红通过观察发现车轮旋转过程中留在半圆ACB 内的轮片面积是不变的(如图(2)),这个不变的面积值是 .17. 某举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出 10份作为一等奖,则该班小明同学获一等奖的概率为 .18.若543222Ax B x x x x x --=-+++,则A= ,B= . 19.用代入法解方程组321(1)32(2)x y x y +=⎧⎨-=⎩,应先将方程 变形为 然后再代入方程 ,可得方程 . (不需要化筒).20.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为 米.21.聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是 .三、解答题22.一个物体的三视图如图所示,请描述该物体的形状.23.将分别标有数字 1、2、3 的三张卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一张,求 P(奇数);(2)随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字, 能组成哪些两位数?恰好是“32”的概率为多少?24.已知a 、b 、c 是△ABC 的三边,a 、b 、c 满足等式2(2)4()()b c a c a =+-,且有5a-3c=0,求 sinB 的值.25.如图所示,在梯形ABCD 中,AD ∥BC ,AE ⊥BC 于E ,若AE=12,BD=15,AC=20,求梯形ABCD 的面积.150,提示:过点D 作DF ⊥BC 于F .26.如图,六边形ABCDEF 的每个内角都是120°,AF=AB=2,BC=CD=3,求DE ,EF 的长.27.化简: (1)31123(10)52⨯⨯-; (2)4545842++(3)22(31)(23)--;(4)(22)(322)-+28.在10个试验田中对甲、乙两个早稻品种作了对比试验,两个品种在试验田的亩产量如下(单位:kg):甲 802 808 802 800 795 801 798 797 798 799 乙810814804788785801795800769799(1)用计算器分别计算两种早稻的平均亩产量; (2)哪种早稻的产量较为稳定?(3)在高产、稳产方面,哪种早稻品种较为优良?29.某商店销售一种衬衫,四月份的营业额为 5000 元,为了扩大销售,在五月份将每件衬衫按原价的 8 折销售,销售量比四月份增加了 40 件,营业额比四月份增加了600 元,求四月份每件衬衫的售价.30.把下列各数的序号填在相应的数集内:① 1;②35;③) + 3. 2;④0;⑤13;⑥-5;⑦+ l08;⑧)- 6.5;⑨467.(1)正整数集{ }(2)正分数集{ }(3)负分数集{ }(4)有理数集{ }【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.D4.D5.D6.D7.D8.B9.A10.C二、填空题3012.140°13.4y xx=--14.y=6x-215.916.2rπ17.1518.1,-319.②,32y x=-,①,32(32)1x x+-=20.1021.31三、解答题22.该物体是一个圆柱被左右两侧平面及水平面切片成缺口面形成的几何图形,它的形状如解图所示.23.(1)()2 3P=奇数(2)所组成两位数有6 个:12,13,21,23 ,31,32.∴组成 32 的概率为1 6由已知得222b c a =-,即222c a b =+,∴△ABC 是Rt △,∠C=90°, ∵530a c -=,∴35a c =. 设: a = 3k ,c= 5k ,∴b= 4k ,∴4sin 5b Bc ==. 25.150,提示:过点D 作DF ⊥BC 于F .26.把边AB ,CD ,EF 向两方延长,构成等边三角形,可得EF=4,DE=127.(1)-)8--)228.(1)800x =甲kg ,796.5x =乙kg ;(2)甲的产量较为稳定;(3)甲种早稻较为优良29.50 元30.(1)①⑦ (2)③⑤ (3)②⑧⑨ (4)全部。
中考b卷练习及答案
1中考数学B 卷专项练习(一)一、填空题:(每小题4分,共20分)1..如图所示,AABC 是0()的接三角形,AD 丄BC 于D 点,且AC 二5, DC 二3, AB 二4, 则的直径等于 ________ ・2.如图,等腰梯形ABCD 中…AD 〃BC, ZDBC 二45° •翻折梯形ABCD,使点B 重 合于点D,折痕分别交边AB 、BC 于点F 、E.若AD=2, BO8,则BE 的长是 _______________ , CD : DE 的值是 ______ ・3.如图,点P 是平行四边形ABCD —点,S △咖=7, S APAD =4,则 _________________ 4・如图,O0的直径EF 为10cm,弦AB 、CD 分别为6cm 、8cm,且AB 〃EF 〃CD.则 图中阴影部分面积之和为( ).5 •如图,ZT 是O0的切线,厂为切点,必是割线,交于/!、〃两点,与直径 67交于点〃.已知CD=2.初=3, BD=4,那PB=_6.如图,P 为圆外一点,PA 切圆于A, PA 二&直线PCB 交圆于C 、B,且PC 二4,■连结 AB. AC, ZABC= a , ZACB=B,则巴匕= _______________________ . sin 07•如图,在边长为1的等边AABC 中,中线AD 与中线BE 相交于点0,则0A 长度 为 __________ •(5题图)(6题图) (2题图) (3题图)(4题图)8.如图,已知正方形纸片血d 的边长为8, O0的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使E A 9恰好与O0相切于点M ' I'EFA'与00除切点外无重叠部分),延长円‘交G?边于点6;则才0的长是9.对于每个非零自然数仏 拋物线y = = x + —与x 轴交于人、8•两n (n +1) n (n +1) 点,以观乞表示这两点间的距离,则人妨+%场+…+人009坊0«的值是.10、如图,在等腰梯形ABCD 中,AD// BC . AD = 39 BC = 5 , AC,加相交于O 点,且ZBOC = 60 ,顺次连结等腰梯形各边中点所得四边形的周长11、如图,G>0的直径肋为10 cm,弦AC 为6 cm, ZACB 的平分线交血?于代 交O0于〃.则弦力〃的长是12.如图,正方形纸片ABCD 的边长为1, M. N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A',折痕交AD 于点E,若M 、N 分别是AD. BC 边的中点,则A' N 二 ;若 '仁N 分别是AD 、 BC 边的上距DC 最近的n 等分点(Q2.且门为整数),则A' N=(用含有n 的式子表示)(8题图) (10题图) cm, (12题图)B(11题图)13.如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径 AB 上,另一边DE 过AABC 的切圆圆心0,且点E 在半圆弧上。
2024重庆中考数学b试题及答案
2024重庆中考数学b试题及答案2024年重庆中考数学B试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.0B. √2C. 0.5D. π2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 14D. 无法确定3. 一个二次函数y=ax^2+bx+c的顶点坐标为(2,1),且过点(0,3),则a的值为?A. -1B. 1C. -2D. 24. 以下哪个图形是中心对称图形?A. 等边三角形B. 等腰梯形C. 正方形D. 圆5. 一个圆的半径为r,那么它的面积是多少?A. πr^2B. 2πrC. πrD. r^26. 一个数的立方根等于它本身,这个数可能是?A. 0B. 1C. -1D. A和C7. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 无法确定8. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 0D. A和B9. 一个数的平方是25,那么这个数可能是?A. 5B. -5C. 0D. A和B10. 一个数的倒数是1/2,那么这个数是?A. 2B. 1/2C. -2D. -1/2二、填空题(每题3分,共15分)11. 一个等差数列的首项为2,公差为3,那么第5项的值是_________。
12. 一个直角三角形的两直角边长分别为3和4,那么斜边长是_________。
13. 一个数的平方根是2,那么这个数是_________。
14. 一个数的立方是8,那么这个数是_________。
15. 一个圆的直径为10,那么它的周长是_________。
三、解答题(每题15分,共45分)16. 已知一个二次函数y=ax^2+bx+c,其中a>0,且该函数的图像与x 轴有两个交点,求证:b^2-4ac>0。
17. 一个等腰三角形的两边长分别为5和10,求证:这个三角形是等腰三角形。
18. 一个数列的前三项分别为1,2,3,且每一项都是前一项的2倍,求证:这个数列是等比数列。
最新浙江省中考数学强化训练试卷B卷附解析
浙江省中考数学强化训练试卷B卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.△ABC 的内切圆与三边的切点构成△DEF,则△ABC 的内心是△DEF 的()A.内心B.重心C.垂心D.外心2.如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是()A.4个B.5个C.6个D.7个3.用如图所示的两个转盘设计一个“配紫色”的游戏,则获胜的概率为()A.12B.13C.14D.234.下列各式中,属于分式的是()A.a B.13C.3aD.3a5.在下列条件中,不能说明△ABC≌△A′B′C′的是()A.∠A=∠A′,∠B=∠B′,AC=A′C′B.∠A=∠A′,AB=A′B′,BC=B′C′C.∠B=∠B′,BC=B′C′、AB=A′B′D.AB=A′B′,BC=B′C′,AC=A′C ′6.下列现象中,不属于旋转变换的是()A.钟摆的运动 B.行驶中汽车车轮 C.方向盘的转动 D.电梯的升降运动7.将如图所示的两个三角形适当平移,可组成平行四边形的个数为()A.1个B.2个C.3个D.4个8.已知a 、b 两数在数轴上的对应点如图所示,则下列结论正确的是( )A .a b < B . 0ab < C . 0b a -< D . 0a b +> 9.下列运算结果为负值的是( ) A .(-7)×(-4) B .(-6)+(-5) C . 82-⨯- D .O ×(-2)×8 二、填空题10.已知关于x 的函数同时满足下列三个条件:①函数的图象不经过第二象限;②当2<x 时,对应的函数值0<y ;③当2<x 时,函数值y 随x 的增大而增大.你认为符合要求的函数的解析式可以是: (写出一个即可).11.命题“两直线平行,同旁内角互补”的逆命题是 .12.在四边形ABCD 中,若∠A =∠C =90°,∠B =60°,则∠D = °.13.林城是一个美丽的城市,为增强市民的环保意识,配合6月5日的“世界环境日”活动,某校初三(1)班50名学生调查了各自家庭一天丢弃塑料袋的情况,统计结果如下: 这50个同学家一天丢弃废塑料袋的众数是 ;14.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是 “上升数”的概率是 .15.如图所示,已知AB=AD ,AE=AC ,∠DAB=∠EAC ,请将下列说明△ACD ≌△AEB 的理由的过程补充完整.解:∵∠DAB=∠EAC(已知),∴∠DAB+ =∠EAC+ ,即 = .在△ACD 和△AEB 中AD=AB( ),= (已证),= (已知),∴△ACD ≌△AEB( ).16.把编号为 1、2、3、4、…的若干盆花按如图所示摆放,花盆中的花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第 6盆花的颜色为色.17.如图是某中学就“月球上有水吗”这一问题调查结果的扇形统计图,则该统计图中,“不知道”部分的圆心角的度数为,已知认为“无水”的同学共有100位,那么参加这次调查的人数是.18.用简便方法计算222001400220002000-⨯+= .19.不改变分式的值. 使分子、分母都不含不含负号:(1)23x-= ;(2)xyz--= ;(3)2ab---;(4)5yx---= .三、解答题20.如图,已知有一腰长为 2 cm 的等腰直角△ABC 余料,现从中要截下一个半圆,半圆的直径要在三角形的一边上,且与另两边相切. 请设计两种栽截方案,画出示意图,并计算出半圆的半径.21.已知△ABC,作△ABC 的外接圆 (不写作法,保留作图痕迹).22.如图,已知反比例函数8y x=-和一次函数2y x =-+的图象交于A 、B 两点,求: (1)A 、B 两点的坐标;(2)若O 为坐标原点,求△AOB 的面积.23.解下列方程:(1)3(x -2)2=12 (2))4(5)4(2+=+x x(3)4222=-x x24.已知关于x 的一元二次方程x 2-(k +1) x -6=0的一个根是2,求方程的另一根和k 的值.25.已知一纸箱中装有5个只有颜色不同的球,其中2个白球,3个红球.(1)求从纸箱中随机取出一个白球的概率是多少?(2)若往装有5个球的原纸箱中,再放入x 个白球和y 个红球,从箱中随机取出一个白 球的概率是13,求y 与x 的函数解析式.26.先化简: (2x-1)2-(3x+1)(3x-1)+(5x+1)(x-1),再选取一个你喜欢的数代替x 求值.27.如图,把图中的字母“L ”绕点O 顺时针旋转90°,画出旋转后的像.28.已知有含盐 20% 与含盐 8% 的盐水,若需配制含盐 15%的盐水 300 kg ,则两种盐水 需各取多少 kg ?29.已知直线1l ∥2l , 点 A ,B ,C 在直线1l 上,点E ,F ,H 在2l 上,任意取三个点连成一个三角形. 求:(1)连成△ABD 的概率;(2)连成△ABD 或△DEB 的概率;(3)连成的三角形有两个顶点在直线2l 上的概率.30.已知2x =是方程32ax +=的解,求a 的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.C4.D5.B6.D7.C8.C9.B二、填空题10.2-=x y 提示:答案不惟一,如652-+-=x x y 等)同旁内角互补,两直线平行12.12013.214. 52 15. ∠BAC ,∠BAC ,∠DAC ,∠BAE ,已知,∠DAC ,∠BAE ,AC ,AE ,SAS 16.黄17.72°,400人18.119.(1)23x -;(2)x yz ;(3)2ab -;(4)5y x+三、解答题20.如图的两种裁截方案:方案一:作∠CAB 的角平分线交 CB 于点0,以 0 为圆心,以 OC 为半径画半圆. 作OE ⊥AB. 则CO=EO ,由面积可得:AC BC AC CO OE AB ⋅=⋅+⋅,解得222OC =.方案二:作∠ACB 的角平分线交 AB 于点0,作 OD ⊥AC ,以 0为圆心,以 OD 为半径画半圆.作 OE ⊥CB ,则 OD=OE ,由面积可得0AC BC AC OD E CB ⋅=⋅+⋅,解得 OD=1. 21.作图略.(1)由28y x y x =-+⎧⎪⎨=-⎪⎩得2280x x --=,解得:x 1 = 4,x 2 =-2 x 1 = 4时,y 1 =-2;x 2 =--2 时,y 2 =4,∴A 、B 坐标分别是(4,一2)和(—2,4).(2)设直线 AB 与 x 轴交于C.则点 C 的坐标为(2,0). 112422622AOB AOC OBC s S s ∆∆∆=+==⨯⨯+⨯⨯=. 23.(1)4,0,(2)-4,1,(3)62±. 24.3,2--=另一根为k .25. (1)25(2)21y x =+ 26.-8x+1,略27.略28.含盐 20% 的盐水需 175 kg ,含盐 8%的盐水需 125 kg 29. (1)130;(2)115;(3)3530.12a =-。
中考数学综合题专题成都中考B卷填空题专题精选一
中考数学综合题专题【成都中考B 卷填空题】专题精选一1.如图,已知△ABC 中,AB =5,AC =3,则BC 边上的中线AD 的取值范围是________________.2.如图,已知抛物线y =x2+bx +c 经过点(0,-3),请你确定一个b 的值,使该抛物线与x0)和(3,0)之间,你所确定的b 的值是_________.3.如图,△ABC 中,∠C =90°,点O 在边BC 上,以O 为圆心,OC 为半径的圆交边AB 于点D 、E ,交边BC 于点F ,若D 、E 三等分AB ,AC =2,则⊙O 的半径为__________.4.已知点P (x ,y )位于第二象限,且y ≤2x +6,x 、y 为整数,则满足条件的点P 的个数是_________.5.半径分别为10和17的两圆相交,公共弦长为16,则两圆的圆心距为__________.6.已知方程(2011x)2-2010·2012x -1=0的较大根为a ,方程x2+2010x -2011=0的较小根为b ,则a -b =__________.7.从甲地到乙地有A 1、A 2两条路线,从乙地到丙地有B 1、B 2、B 3三条路线,从丙地到丁地有C 1、C 2两条路线.一个人任意选了一条从甲地到丁地的路线,他恰好选到B 2路线的概率是_________.8.如图,在半径为4,圆心角为90°的扇形OAB 的AB ︵上有一动点P ,过P 作PH ⊥OA 于H .设△OPH 的内心为I ,当点P 在AB ︵上从点A 运动到点B 时,内心I 所经过的路径长为___________.AB C DC9.已知二次函数y =ax2+bx +c 图象的一部分如图所示,则a 的取值范围是_______________.10.在平面直角坐标系中,已知点P 1的坐标为(1,0),将其绕原点按逆时针方向旋转30°得到点P 2,延长OP 2到点P 3,使OP 3=2OP 2,再将点P 3绕原点按逆时针方向旋转30°得到P 4,延长OP 4到点P 5,使OP 5=2OP 4,如此继续下去,则点P 2011的坐标是_____________.11.木工师傅可以用角尺测量并计算出圆的半径r .如图,用角尺的较短边紧靠⊙O ,并使较长边与⊙O 相切于点C .假设角尺的较长边足够长,角尺的顶点为B ,较短边AB =8cm .若________________.y =12x(x >0)图象上的动点,PC ⊥x___________.13.在平面直角坐标系中,已知点A (2,4),B (4,2),C (1,1),点P 在x 轴上,且四2倍,则点P 的坐标为________________.B O14.已知关于x ,y 的方程组 ⎩⎪⎨⎪⎧tx +3y =22x +(t -1)y =t 的解满足|x |<|y |,则实数t 的取值范围是_______________.15.如图,已知P 为△ABC 外一点,P 在边AC 之外,∠B 之内,若S △PAB :S △PBC :S △PAC=3 : 4 :2,且△ABC 三边a ,b ,c 上的高分别为h a =3,h b =5,h c =6,则P 点到三边的距离之和为___________.16.一袋装有四个分别标有数字1、2、3、4,除数字外其它完全相同的小球,摇匀后,甲从中任意抽取1个,记下数字后放回摇匀,乙再从中任意抽取一个,记下数字,然后把这两个数相加,当两数之和为3时,甲胜,反之乙胜.若甲胜一次得7分,那么乙胜一次得__________分,这个游戏对双方才公平.17.如图,已知点A (0,4),B (4,0),C (10,0),点P 在直线AB 上,且∠OPC =90º,18.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.B a cC A P bA CDFH GMENK T图2图119.如图,在平面直角坐标系中,点A的坐标是(-2,4),AB⊥y轴于B,抛物线y=-x2-2x+c经过点A,将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△AOB的,则m的取值范围是______________.他们从食品安全监督部门获取了一份快若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,则其中所含碳水化合物质量的最大值为__________克.y=2x(x>0)的图象上,顶点A1、B P2P3A2B2,顶点P3在反比例函数y=2x(xP3的坐标为______________.22.已知n、k均为正整数,且满足815<nn+k<713,则n的最小值为_________.23.如图,在平面直角坐标系中,点A在第二象限,点B在x轴的负半轴上,△AOB的外接圆与y轴交于点C(0,2),∠AOB=45°,∠BAO=60°,则点A的坐标为______________.24.如图,图①中的圆与正方形各边都相切,设这个圆的周长为C 1;图②中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的周长之和为C 2;图③中的九个圆的半径相等,并依次外切,且与正方形的边相切,设这九个圆的周长之和为C 3;…,依此规律,当正方形边长为2时,则C 1+C 2+C 3+…+C 99+C 100=____________. 25.如图,在平行四边形ABCD 中,AB =3,BC =4,∠B =60°,E 是BC 的中点,EF ⊥AB 于点F .26.如图,将一块直角三角板OAB 放在平面直角坐标系中,点B 坐标为(2,0),∠AOB =60°,点A 在第一象限,双曲线y =kx经过点A .点P 在x 轴上,过点P 作直线OA 的垂线l ,以直线l为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标为___________; (2)设P (t ,0),当O ′B ′与双曲线有交点时,t 的取值范围是______________.27.已知抛物线y =x2-(m -1)x -m -1与x 轴交于A 、B 两点,顶点为为C ,则△ABC 的面积的最小值为__________.28.如图,E 、F 、G 、H 分别为四边形ABCD 的边AB ,BC ,CD ,DA 的中点,并且图中四个小三角形的面积的和为1,即S 1+S 2+S 3+S 4=1,则图中阴影部分的面积为___________.图② 图③ 图①A BD CE FG HS 1S 2S 3S 429.在平面直角坐标系中,A 、B 两点的坐标分别为(-1,1)、(2,2),直线y =kx -1与线段AB 的延长线相交(交点不包括B ),则实数k 的取值范围是______________.30.如图,正方形ABCD 的面积为12,点E 在正方形ABCD 内,△ABE 是等边三角形,点P 在对角线AC 上,则PD +PE 的最小值为___________.31.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,分别以AE 、BE 为直径作两个大小不同的⊙O 1和⊙O 2,若CD =16,则图中阴影部分的面积为___________(结果保留π).32.如图,在平面直角坐标系中,等边三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM =MN ,则点M 的坐标为______________.33.如图,已知一次函数y =-x +8与反比例函数y =kx的图象在第一象限内交于A 、B 两点,且△AOB 的面积为24,则k =_________A B D C E PA B34.已知x =3154)(+-3154)(-,则x3+12x 的算术平方根是__________.35.有三个含30°角的直角三角形,它们的大小互不相同,但均有一条长为a 的边,那么,这三个三角形按照从小到大的顺序,它们的面积比为______________.36.已知点P 是抛物线y =-x2+3x 在y 轴右侧..部分上的一个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于B 、A 两点.若△PAB 与△AOB 相似,则点P 的坐标为_____________________________.37.如图,直线y =-x +22 交x 轴、y 轴于点B 、A ,点C 的坐标为(42,0),P 是直线AB 上一点,且∠OPC =45º,则点P 的坐标为38.如图,在△ABC 中,AB =AC =5,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F在AC 的延长线上,且∠CBF =1 2 ∠A ,sin ∠CBF =55,则BF 的长为39.如图,Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .将△ABC 绕点D 按顺时针旋转角α(0<α<180°)后,点B 恰好落在初始Rt △ABC 的边上,那么α=____________°.40.如图,直线y =kx -2(k >0)与双曲线y =kx在第一象限内交于点A 别交于点B 、C .AD ⊥x 轴于点D ,且△ABD 与△OBC 的面积相等,则k41.在“传箴言”活动中,某党支部的全体党员在一个月内所发箴言条数情况如下:发了三条箴言的党员中有两位男党员,发了四条箴言的党员有两位女党员.如果在发了三条箴言和四条箴言的党员中分别选出一位参加区委组织的“传箴言”活动总结会,那么所选两位党员恰好是一男一女的概率为_________.42.如图,在△ABC 中,∠ACB =90°,∠A =20°.将△ABC 绕点C 按逆时针方向旋转角α后得△A ′B ′C ,此时点B 在A ′B ′上,CA ′ 交AB 于点D .则∠BDC 的度数为__________.43.有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a ,则使关于x 的分式方程1-ax x -2+2=12-x有正整数解的概率为_________.44.如图,等边△ABC 的边长为8,E 是中线AD 上一点,以CE 为一边在CE 下方作等边△CEF ,连接BF 并延长至点N ,M 为BN 上一点,且CM =CN =5,则MN 的长为__________.45.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,点EB CDA ′B ′ABCD E F M的坐标为(0,2).点F (a ,0)在边AB 上运动,若过点E 、F 的直线将矩形ABCD 的周长分成2 :1两部分,则a 的值为__________.46.如图,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点F .已知BD =4,设AD =x ,CF =y ,则y 关于x 的函数关系式为_______________.47.如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =1048.已知关于x 的方程(1-a2)x2+2ax -1=0的两个根一个小于0,另一个大于1,则a 的取值范围是_____________.49.已知二次函数y =ax2+bx +c 的图象与x 轴交于(-2,0)、(x 1,0)两点,且1<x 1<2,与y 轴正半轴的交点在(0,2)的下方,下列结论:①a <b <0;②2a +c >0;③4a +c <0;④2a -b +1>0.其中正确结论的序号是________________.50.如图,点A 、B 在反比例函数y =kx若S △AOB=3,则k 的值为_________.51.方程x +2x -1+x -2x -1=x -1的解为x =__________.52.如图,PA 、PB 是⊙O 的切线,PEC 是⊙O 的割线,AB 与PC 相交于点D .若PE =2,DC =1,则DE 的长为___________.53.若一直角梯形的两条对角线的长分别为9和11,上、下两底长都是整数,则该梯形的高为________.54.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x ,朝下一面的数为y ,得到平面直角坐标系中的一个点(x ,y ).已知小华前二次掷得的两个点所确定的直线经过点P (4,7),那么他第三次掷得的点也在这条直线上的概率为_________.55.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,∠ABC =30°,直角边BC 在x 轴上,其内切圆的圆心坐标为I (0,1),抛物线y =ax2+2ax +1的顶点为A ,则a =___________.56.已知方程ax2+bx +c =0(a >b >c )的一个根为α=1,则另一个根β的取值范围是________________.3 5 1 1 2 357.如图,在△ABC中,∠ABC和∠ACB的平分线相交于O,过O作EF∥BC交AB于E,交AC于F,过O作OD⊥AC于D.下列四个结论:①EF是△ABC的中位线;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③设OD=m,AE+AF=2n,则S△AEF=mn;④∠BOC=90º+12∠A;其中正确的结论是________________.58.方程1x2+3x+2+1x2+5x+6+1x2+7x+12+1x2+9x+20=18的解是x=___________.59.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则DEDF的值为__________.60.如图,已知点A(1,0),B(3,0),P是直线y=-34x+3上的动点,则当∠APB最大时,点P的坐标为______________.61.如图,AB是⊙O的直径,AC是弦,将△ABC沿AC翻折,点B落在点D 处,AD交⊙O于点E,连接EC.若EC∥AB,则∠BAC=_________°.62.已知△ABC的一条边长为5,另两条边长恰好是一元二次方程2x2-12x+m=0的两个根,则实数m的取值范围是________________.63.如图,已知直线y=12x与双曲线y=kx(k>0)交于A、B两点,且点A的横坐标为4,过原点O的另一条直线交双曲线y=kx(k>0)于B、C、D为顶点的四边形的面积为24,则点COABEDCFA EDFCBB64.如图1,直线l 1∥l 2,l 1、l 2之间的距离为6,圆心为O 、半径为4的半圆形纸片的直径AB 在l 1上,点P 为半圆上一点,设∠AOP =α.将扇形纸片BOP 剪掉,使扇形纸片AOP 绕点A 按逆时针方向旋转(如图2).要使点P 能落在直线l 2上,则α的取值范围是______________.(参考数据:sin49°=3 4,tan37°=34)65.如图,矩形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 轴、y 轴的正半轴上,OA =3,OC =4,D 为边OC 的中点,E 、F 为边OA 上的两个动点,且EF =2,当四边形BDEF 的周长最小时,点E 的坐标为____________.66.如图,将直线y =x 向下平移b 反比例函数y =3x(x >0)的图象相交于点A ,与x 则OA2-OB2=__________.67.如图,矩形ABCD 的周长为32cm ,E 是AD F 是AB 上一点,EF ⊥EC ,且EF =EC ,则矩形__________cm 2.l 1 l 2图1 l 1l 2图268.如图,AB 是⊙O 的直径,点D 、T 是圆上的两点,且AT 平分∠BAD ,过点T 作AD 延长线的垂线PQ ,垂足为C .若⊙O 的半径为2,TC =3,则图中阴影部分的面积为______________.69.若关于x 的方程2kx -1-xx2-x=kx +1x只有一个解,则k =____________.70.如图,正方形ABCD 的边长为l ,点P 为边BC 上任意一点(可与点B 、C 重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别为B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为_________;最小值为_________.71.如图,矩形纸片ABCD ,BC =10,点E 是AB 上一点,把△BCE 沿EC 向上翻折,使点B 落在AD 边上点F 处,若⊙O 内切于以B 、C 、F 、E 为顶点的四边形,且AE :EB =3 :5,则⊙O 的半径为_________.72.已知点P (a +1,a -1)关于x 轴的对称点在反比例函数y =-8x(x >0)的图像上,y关于x 的函数y =k2x2-(2k +1)x +1的图像与坐标轴只有两个不同的交点A ﹑B ,则△PAB 的面积为_____________.73.如图,等腰Rt △ABC 的直角边长为4,以A 为圆心,直角边AB 为半径作弧BC 1,交斜边AC 于点C 1,C 1B 1⊥AB 于点B 1,设弧BC 1与线段C 1B 1、B 1B 围成的阴影部分的面积为S 1,AC BD D ′ B ′ C ′ PC D再以A 为圆心,AB 1为半径作弧B 1C 2,交斜边AC 于点C 2,C 2B 2⊥AB 于点B 2,设弧B 1C 2与线段C 2B 2,B 2B 1围成的阴影部分的面积为S 2,按此规律继续作下去,则S 1+S 2+S 3+…+S n =________________.(用含有n 的代数式表示)74.如图,边长为4的正方形AOBC 的顶点O 在坐标原点,顶点A 、B 分别在y 轴正半轴和x 轴正半轴上,P 为OB 边上一动点(不与O 、B 重合),DP ⊥OB 交AB 于D .将正方形AOBC 折叠,使点C 与点D 重合,折痕EF 与PD 的延长线交于点Q ,设点Q 的坐标为(x ,y ),则y 关于x 的函数关系式为_______________.75.已知点A 、B 的坐标分别为(1,0),(2,0),若二次函数y =x2+(a -3)x +3的图象与线段AB 恰有一个交点,则a 的取值范围是___________________.76.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为4m ,则圆心O 所经过的路线长是____________m .(结果用π表示)77.如图,在边长为1的正方形ABCD 中,以BC 为边在正方形内作等边△BCE ,并与正方形的对角线交于点F 、G ,则图中阴影图形AFEGD 的面积为______________.1234l78.将水平相当的A 、B 、C 、D 四人随机平均分成甲、乙两组进行乒乓球单打比赛,每组的胜者进入下一轮决赛.(1)A 、B 被分在同一组的概率是___________;(2)A 、B 在下一轮决赛中相遇的概率是___________.79.已知点P 是一次函数y =-x +4的图象在第一、四象限上的动点,点Q 是反比例函数y =3x(x >0)图象上的动点,PP 1⊥x 轴于P 1,PP 2⊥y 轴于P 2,QQ 1⊥x 轴于Q 1,QQ 2⊥y 轴于Q 2,设点P 的横坐标为x ,矩形PP 1OP 2的面积为S 1S 1<S 2时,x 的取值范围是________________________.80.如图,在5×5的正方形网格中,△ABC 的三个顶点都在格点上,若△A 1B 1C 1的三个顶点也在格点上,且与△ABC 相似,面积最大,则△A 1B 1C 1的面积为__________.81.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶t (h )后,与B 港的距离分别为S 1、S 2(km ),S 1、S 2与t 的函数关系如图所示.若甲、乙两船的距离不超过10 km 时可以相互看见,则两船可以相互看见时t 的取值范围是82.如图所示,在梯形ABCD 中,AD ∥BC ,CE 是∠BCD 的平分线,且CE ⊥AB ,E 为垂足,BE =2AE ,若四边形AECD 的面积为1,则梯形ABCD 的面积为___________.CAB B CD A E83.在平面直角坐标系中,反比例函数y =2kx(k ≠0)满足:当x <0时,y 随x 的增大而减小.若该反比例函数的图象与直线y =-x +3k 都经过点P ,且|OP |=7,则k =___________.84.如图所示,AC 为⊙O 的直径,PA ⊥AC 于点A ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,且DBDP=DCDO=23,则cos ∠BCA 的值等于_________85.已知反比例函数y =kx图象经过点A (-1,-3),点P是反比例函数图象在第一象限上的动点,以OA 、OP _____________.86.如图所示,在矩形ABCD 中,AB =nBC ,E 为BC 中点,DE ⊥AC ,则n =__________.87.如图,直线y =3x 和y =2x 分别与直线x =2相交于点A 、B ,将抛物线y =x2沿线段OB 移动,使其顶点始终在线段OB 上,抛物线与直线x =2相交于点C ,设△AOC 的面积为S ,则S 的取值范围是________________.APF D B A CE88.已知a2+b2=1,-2≤a +b ≤2,记t =a +b +ab ,则t 的取值范围是_______________.89.如图,平行四边形DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为2、5、3,则△ABC 的面积为__________.90.在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点.如图,⊙O 的半径是 5,圆心与坐标原点重合,l 为经过⊙O 上任意两个格点的直线,则直线l 同时经过第一、二、四象限的概率为________.91.已知二次函数y =x2+bx +c 的图象与x 轴交于不同的两点A 、B ,顶点为C ,且△ABC 的面积S ≤1,则b2-4c 的取值范围是________________.92.如图,已知正方形纸片ABCD 的边长是⊙O 半径的4倍,圆心O 是正方形ABCD 的中心,将纸片按图示方式折叠,使EA 1恰好与⊙O 相切于点A 1,则tan ∠A 1EF 的值为_________.93.已知a 、b 均为正整数,且满足 20092010<ab<20102011,则当b 最小时,分数 ab=_________.94.如图,将边长为2的正方形ABCD 沿直线l 向右无滑动地连续翻滚2011次,则正方形ABCD 的中心经过的路线长为_______________,顶点A 经过的路线长为_______________.A B DGD95.如图,半圆O 的直径AB =8,C 为AO 的中点,CD ⊥AB 交半圆于点D ,以C 为圆心,CD 为半径画弧DE 交AB 于E 点,则图中阴影部分的面积为_____________.2ax -2b +1和y =-x2+(a -3)x +b2-1的图象都经过x 轴上两个不同的点M ,N ,则a =________,b =________.97.在平行四边形ABCD 中,AE ⊥BC ,AF ⊥CD ,E 、F 为垂足,连接EF .若AB =13,BE =5,EC =9,则EF 的长为____________.98.已知抛物线y =-x2+bx +c 过点A (4,0)、B (1,3),对称轴为直线l ,点P 是抛物线上第四象限的一点,点P 关于直线l 的对称点为C ,点C 关于y 轴的对称点为D ,若四边形OAPD 的面积为20,则点P 的坐标为____________.99.如图,在△AB C 中,AB =AC =5,BC =6,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG ,连接BG ,当△BDG 是等腰三角形时,AD 的长为____________________.100.已知在平面直角坐标系中,点A (8,0),B (0,6),直线BC 平分∠OBA ,交x 轴于A B C (B ) l D (A ) (D ) A B C D …A B C DE FD AB CEFG点C,过O点作OD⊥BC,交AB于点D.P是射线BC上一动点,若S△AOP=S△ADP,则P点坐标为______________.。
福建中考b卷数学试题及答案
福建中考b卷数学试题及答案一、选择题(每小题4分,共40分)1. 已知函数f(x)=2x-3,那么f(-3)的值为()。
A. 6B. -9C. 0D. -12. 若一个扇形的半径为4cm,圆心角为60°,则该扇形的弧长为()。
A. 2π cmB. 4π cmC. 8π cmD. 16π cm3. 下列四个数的大小关系为()。
A. 0.273<0.75<2.71<2.81B. 2.71<0.273<2.81<0.75C. 2.81<2.71<0.273<0.75D. 0.273<2.71<0.75<2.814. 若正方形的面积为64cm^2,则其对角线长为()。
A. 4 cmB. 8 cmC. 16 cmD. 32 cm5. 若一直角梯形的上底长为10,下底长为16,高为8,则该梯形的面积为()。
A. 80B. 96C. 112D. 120...二、解答题(共60分)1. 解方程8x + 9 = 25。
解:将已知方程转化为一元一次方程的形式,得8x = 25 - 9。
化简得8x = 16,再除以8,得x = 2。
故方程的解为x = 2。
2. 一个立方体的棱长为3cm,求它的体积和表面积。
解:立方体的体积计算公式为V = a^3,其中a表示边长。
代入已知条件,计算得V = 3^3 = 27cm^3。
立方体的表面积计算公式为S = 6a^2。
代入已知条件,计算得S = 6 × 3^2 = 54cm^2。
所以,该立方体的体积为27cm^3,表面积为54cm^2。
...附:答案一、选择题1. B2. B3. A4. B5. B ...6. C7. D8. B9. B 10. D ...二、解答题1. x = 22. 体积:27cm^3,表面积:54cm^23. ......(文章长度超过了1000字,使内容更为准确,排版更为整洁美观。
)。
中考B卷数学专项训练(解析版)
中考数学B卷专项训练(一)1、如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.(1)若BK=错误!未找到引用源。
KC,求错误!未找到引用源。
的值;(2)连接BE,若BE平分∠ABC,则当AE=错误!未找到引用源。
AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=错误!未找到引用源。
AD(n>2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.分析:(1)由已知得错误!未找到引用源。
=错误!未找到引用源。
,由CD∥AB可证△KCD∽△KBA,利用错误!未找到引用源。
=错误!未找到引用源。
求值;(2)AB=BC+CD.作△ABD的中位线,由中位线定理得EF∥AB∥CD,可知G为BC的中点,由平行线及角平分线性质,得∠GEB=∠EBA=∠GBE,则EG=BG=错误!未找到引用源。
BC,而GF=错误!未找到引用源。
CD,EF=错误!未找到引用源。
AB,利用EF=EG+GF求线段AB、BC、CD三者之间的数量关系;当AE=错误!未找到引用源。
AD(n>2)时,EG=BG=错误!未找到引用源。
BC,而GF=错误!未找到引用源。
CD,EF=错误!未找到引用源。
AB,EF=EG+GF可得BC+CD=(n﹣1)AB.解答:解:(1)∵BK=错误!未找到引用源。
KC,∴错误!未找到引用源。
=错误!未找到引用源。
,又∵CD∥AB,∴△KCD∽△KBA,∴错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
;(2)当BE平分∠ABC,AE=错误!未找到引用源。
AD时,AB=BC+CD.证明:取BD的中点为F,连接EF交BC与G点,由中位线定理,得EF∥AB∥CD,∴G为BC的中点,∠GEB=∠EBA,又∠EBA=∠GBE,∴∠GEB=∠GBE,∴EG=BG=错误!未找到引用源。
BC,而GF=错误!未找到引用源。
强化训练:2022年河北省石家庄市中考数学模拟专项测试 B卷(含详解)
2022年河北省石家庄市中考数学模拟专项测试 B 卷考试时间:90分钟;命题人:数学教研组考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟 2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对于反比例函数6y x=,下列结论错误的是( ) A .函数图象分布在第一、三象限 B .函数图象经过点(﹣3,﹣2) C .函数图象在每一象限内,y 的值随x 值的增大而减小 D .若点A (x 1,y 1),B (x 2,y 2)都在函数图象上,且x 1<x 2,则y 1>y 2 2、在Rt ABC ∆中,90C ∠=︒,3sin 5A =,则tan A =( )A .45B .34C .43D .543、已知()11,A y -,()23,B y -,()34,C y 在二次函数26y x x c =--+的图象上,1y ,2y ,3y 则的大小关系是( ) A .312y y y >> B .213y y y >> C .123y y y >> D .321y y y >>4、若二次函数2y ax =的图象经过点()2,4--,则a 的值为( )·线○封○密○外A.-2 B.2 C.-1 D.1 5、下列说法正确的是()A.掷一枚质地均匀的骰子,掷得的点数为3的概率是13.B.若AC、BD为菱形ABCD的对角线,则AC BD的概率为1.C.概率很小的事件不可能发生.D.通过少量重复试验,可以用频率估计概率.6、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为()A.21 B.25 C.28 D.297、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:则关于x的不等式kx+b>mx+n的解集是()A.x>0 B.x<0 C.x<﹣1 D.x>﹣18、下列对一元二次方程x 2-2x -4=0根的情况的判断,正确的是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根D .无法判断9、二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,与x 轴交于点(−1,0)和(x ,0),且1<x <2,以下4个结论:①ab <0;②2a +b =0;③3a +c >0;④a +b <am 2+bm (m <−1);其中正确的结论个数为( )A .4B .3C .2D .110、下列各对数中,相等的一对数是( )A .()1--与1--B .21-与()21-C .()31-与31-D .223与223⎛⎫ ⎪⎝⎭第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为_____cm 2. 2、己知等腰三角形两条边长分别是4和10,,则此三角形的周长是___________________ 3、某商场在“元旦”期间举行促销活动,顾客根据其购买商品标价的一次性总额,可以获得相应的优惠方法:①如不超过800元,则不予优惠;②如超过800元,但不超过1000元,则按购物总额给予8折优惠;③如超过1000元,则其中1000元给予8折优惠,超过1000元的部分给予7折优惠.促销期间,小明和他妈妈分别看中一件商品,若各自单独付款,则应分别付款720元和1150元;若合并付款,则他们总共只需付款______元. 4、点P 为边长为2的正方形ABCD 内一点,PBC 是等边三角形,点M 为BC 中点,N 是线段BP 上一动点,将线段MN 绕点M 顺时针旋转60°得到线段MQ ,连接AQ 、PQ ,则AQ PQ +的最小值为______. ·线○封○密·○外5、如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过O 点作EF BC ∥交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于D ,下列四个结论:①EF BE CF =+;②1902BOC A ∠=︒-∠;③点O 到ABC ∆各边的距离相等;④设OD m =,AE AF n +=,则Δ12AEF S mn =.其中正确的结论有________(填写序号).三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,△ABC 三个顶点的坐标为A (1,2),B (4,1),C (2,4).(1)在图中画出△ABC 关于y 轴对称的图形△A ′B ′C ′;并写出点B ′的坐标. (2)在图中x 轴上作出一点P ,使PA +PB 的值最小.·线2、解下列方程: (1)5326x x +=-; (2)341125x x -+-= 3、如图1,CA =CB ,CD =CE ,ACB DCE α∠=∠=,AD 、BE 交于点H ,连CH .(1)∠AHE =______________.(用α表示) (2)如图2,连接CH ,求证:CH 平分∠AHE ;(3)如图3,若60α=︒,P ,Q 分别是AD ,BE 的中点,连接CP ,PQ ,CQ .请判断三角形PQC 的形状,并证明.4、已知:在ABC 中,AB AC =,5AB =,8BC =,点E 在边AB 上,过点E 作DF AB ⊥,点D 在边BC 上,点F 在CA 的延长线上,联结BF .(1)如图1,当90FBC 时,求证:22BF AC BE =⋅;(2)如图2,当BC CF =时,求线段AE 的长. 5、解方程(1)5361x x --=-+(2)12136x x +--=-参考答案-一、单选题 1、D 【分析】根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可. 【详解】解:A 、∵k =6>0,∴图象在第一、三象限,故A 选项正确;B 、∵反比例函数6y x=,∴xy =6,故图象经过点(-3,-2),故B 选项正确; C 、∵k >0,∴x >0时,y 随x 的增大而减小,故C 选项正确; D 、∵不能确定x 1和x 2大于或小于0∴不能确定y 1、y 2的大小,故错误; 故选:D . 【点睛】本题考查了反比例函数ky x=(k≠0)的性质:①当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大. 2、B【分析】 作出图形,设BC =3k ,AB =5k ,利用勾股定理列式求出AC ,再根据锐角的余切即可得解. 【详解】 ·线解:如图,3sin 5A ∠=, ∴35BC AB = ∴设BC =3k ,AB =5k ,由勾股定理得,4,AC k =∴tan 4334BC k A AC k ∠===. 故选:B . 【点睛】本题考查了求三角函数值,利用“设k 法”表示出三角形的三边求解更加简便. 3、B 【分析】由抛物线开口向下且对称轴为直线x =-3知离对称轴水平距离越远,函数值越大,据此求解可得. 【详解】解:∵二次函数26y x x c =--+中a =-1<0, ∴抛物线开口向下,有最大值. ∵x =-2ba=-3, ∴离对称轴水平距离越远,函数值越小, ∵-3-(-3)<-1-(-3)<4-(-3),∴213y y y >>. 故选:B . 【点睛】本题主要考查二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质. 4、C 【分析】把(-2,-4)代入函数y =ax 2中,即可求a . 【详解】解:把(-2,-4)代入函数y =ax 2,得 4a =-4, 解得a =-1. 故选:C . 【点睛】本题考查了点与函数的关系,解题的关键是代入求值. 5、B 【分析】概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.【详解】A 项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是16,故A 错误,不符合题意; B 项:若AC 、BD 为菱形ABCD 的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则 AC ⊥BD 的概率为1是正确的,故B 正确,符合题意;·线C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.故选B【点睛】本题考查概率的命题真假,准确理解事务发生的概率是本题关键.6、D【分析】根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.【详解】解:∵第1个图形中圆圈数量5=1+4×1,第2个图形中圆圈数量9=1+4×2,第3个图形中圆圈数量13=1+4×3,……∴第n个图形中圆圈数量为1+4×n=4n+1,当n=7时,圆圈的数量为29,故选:D.【点睛】本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.7、D【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y1=kx+b中y随x的增大而增大;y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x>﹣1时,kx+b>mx+n.故选:D.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.8、B【分析】根据方程的系数结合根的判别式,可得出Δ=20>0,进而可得出方程x2-2x-4=0有两个不相等的实数根.【详解】解:∵Δ=(-2)2-4×1×(-4)= 20>0,∴方程x2-2x-4=0有两个不相等的实数根.故选:B.【点睛】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.9、B【分析】由开口方向、对称轴的位置可判断结论①;由对称轴的位置可判断结论②;由x=-1函数值为0以及对称轴的位置可判断结论③;由增减性可判断结论④.【详解】解:由图象可知,a>0,b<0,∴ab<0,①正确;因与x 轴交于点(−1,0)和(x ,0),且1<x <2,所以对称轴为直线−2b a <1, ∴−b <2a ,∴2a +b >0,②错误;由图象可知x =−1,y =a −b +c =0,又2a >−b ,2a +a +c >−b +a +c ,∴3a +c >0,③正确;由增减性可知m <−1,am 2+bm +c >0,当x =1时,a+b+c <0,即a +b <am 2+bm ,④正确.综上,正确的有①③④,共3个,故选:B .【点睛】本题考查了二次函数图象与系数之间的关系,熟练掌握二次函数的开口方向,对称轴,函数增减性并会综合运用是解决本题的关键. 10、C 【分析】 先化简,再比较即可. 【详解】 A. ∵()1--=1,1--=-1,∴()1--≠1--,故不符合题意;B. ∵21-=-1,()21-=1,∴21-≠()21-,故不符合题意; C. ∵()31-=-1,31-=-1,∴()31-=31-,故符合题意; D. ∵223=43,223⎛⎫ ⎪⎝⎭=49,∴223≠223⎛⎫ ⎪⎝⎭,故不符合题意; 故选C .·线○封○密·○外【点睛】本题考查了有理数的乘方,绝对值,有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.正确化简各数是解答本题的关键.二、填空题1、120【分析】设三边的长是5x ,12x ,13x ,根据周长列方程求出x 的长,则三角形的三边的长即可求得,然后利用勾股定理的逆定理判断三角形是直角三角形,然后利用面积公式求解.【详解】解:设三边分别为5x ,12x ,13x ,则5x +12x +13x =60,∴x =2,∴三边分别为10cm ,24cm ,26cm ,∵102+242=262,∴三角形为直角三角形,∴S =10×24÷2=120cm 2.故答案为:120.【点睛】本题考查三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积,比较基础,掌握三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积是解题关键.2、24 【分析】 分两种情考虑:腰长为4,底边为10;腰长为10,底边为4.根据这两种情况即可求得三角形的周·线长.【详解】当腰长为4,底边为10时,因4+4<10,则不符合构成三角形的条件,此种情况不存在;当腰长为10,底边为4时,则三角形的周长为:10+10+4=24.故答案为:24【点睛】本题考查了等腰三角形的性质及周长,要注意分类讨论.3、1654或1780或1654【分析】根据题意知付款720元时,其实际标价为为720或900元;付款1150元,实际标价为1500元,再分别计算求出一次购买标价2220元或2400元的商品应付款即可.【详解】解:由题意知付款720元,实际标价为720或720×108=900(元),付款1150元,实际标价肯定超过1000元,设实际标价为x,依题意得:(x-1000)×0.7+1000×0.8=1150,解得:x=1500(元),如果一次购买标价720+1500=2220(元)的商品应付款:1000×0.8+(2220-1000)×0.7=1654(元).如果一次购买标价900+1500=2400(元)的商品应付款:1000×0.8+(2400-1000)×0.7=1780(元).故答案是:1654或1780.【点睛】本题考查了一元一次方程的应用,通过优惠政策利用解方程求出小明和他妈妈分别看中商品的售价是解题的关键.4【分析】如图,取,BP PC 的中点,E F ,连接EF ,,EM AM ,PM ,证明BMN EMQ ≌,进而证明Q 在EF 上运动, 且EF 垂直平分PM ,根据AQ PQ AQ MQ AM +=+≥,求得最值,根据正方形的性质和勾股定理求得AM 的长即可求得AQ PQ +的最小值.【详解】解:如图,取,BP PC 的中点,E F ,连接EF ,,EM AM ,PM ,将线段MN 绕点M 顺时针旋转60°得到线段MQ ,MN MQ ∴=,60NMQ ∠=︒ PBC 是等边三角形,PB BC ∴=,60PBC ∠=︒,E F 是,BP PC 的中点,M 是BC 的中点BM BE ∴=BEM ∴是等边三角形BME ∴∠60=︒,BM BE =NMQ BME ∴∠=∠BME NME NMQ NME ∴∠-∠=∠-∠ 即BMB EMQ ∠=∠ 在BMN △和EMQ 中, BM EM BMN EMQ MN MQ =⎧⎪∠-⎨⎪=⎩ ∴BMN EMQ ≌ 60MEQ MBN ∴∠=∠=︒ 又60EMB ∠=︒ MEQ EMB ∴∠=∠ EQ BC ∴∥,E F 是,BP PC 的中点 EF BC ∴∥ Q ∴点在EF 上 M 是BC 的中点,PBC 是等边三角,PM BC ∴⊥ EF PM ∴⊥ 又11,22EP PB EM EB PB === EP EM ∴= EF ∴垂直平分PM QP QM ∴= ·线○封○密○外AQ PQ AQ MQ AM ∴+=+≥即AQ PQ +的最小值为AM四边形ABCD 是正方形,且2AB =AM ∴==∴AQ PQ +【点睛】本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键.5、①③④【分析】由角平分线的性质,平行的性质,三角形的性质等对结论进行判定即可.【详解】解:在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,12OBC ABC ∴∠=∠,12OCB ACB ∠=∠,180A ABC ACB ∠+∠+∠=︒, 1902OBC OCB A ∴∠+∠=︒-∠, 1180()902BOC OBC OCB A ∴∠=︒-∠+∠=︒+∠;故②错误; 在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,OBC OBE ∴∠=∠,OCB OCF ∠=∠,//EF BC ,OBC EOB ∴∠=∠,OCB FOC ∠=∠,EOB OBE ∴∠=∠,FOC OCF ∠=∠, BE OE ∴=,CF OF =, EF OE OF BE CF ∴=+=+, 故①正确; 过点O 作OM AB ⊥于M ,作ON BC ⊥于N ,连接OA , 在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O , ON OD OM m ∴===, 1111()2222AEF AOE AOF S S S AE OM AF OD OD AE AF mn ∆∆∆∴=+=+=+=;故④正确; 在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O , ∴点O 到ABC ∆各边的距离相等,故③正确. 故答案为:①③④. 【点睛】 本题考查了三角形内的有关角平分线的综合问题,一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线,角的平分线上的点到角的两边的距离相等.也就是说,一个点只要在角的平分线上,那么这个点到该角的两边的距离相等. 三、解答题 1、(1)作图见解析,点B ′的坐标为(-4,1);(2)见解析 【分析】 (1)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可得; ·线○封○密○外(2)作出点A 关于x 轴的对称点A ″,再连接A ″B ,与x 轴的交点即为所求.【详解】解:(1)如图所示,△A ′B ′C ′即为所求.点B ′的坐标为(-4,1);(2)如图所示,点P 即为所求.【点睛】本题主要考查了作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.注意:关于y 轴对称的点,纵坐标相同,横坐标互为相反数.2、(1)3x =-(2)2313x = 【解析】(1)解:5326x x +=-,39x =-,解得:3x =-;(2) 解:341125x x -+-=, 105(3)2(41)x x --=+, 1051582x x -+=+, 1323x =, 解得:2313x =. 【点睛】 本题考查了一元一次方程的求解,解题的关键是掌握解一元一次方程的一般步骤. 3、(1)180α︒-;(2)证明见详解;(3)CPQ ∆为等边三角形,证明见详解. 【分析】 (1)由题意及全等三角形的判定定理可得ACD BCE ∆≅∆,再根据全等三角形的性质及三角形内角和外角的性质即可得出结果; (2)过点C 作CM AD ⊥,CN BE ⊥,由全等三角形的判定和性质可得:ACM BCN ∆≅∆,CM CN =,利用角平分线的判定即可证明; (3)根据全等三角形的判定和性质可得:APC BQC ∆≅∆,PCA QCB ∠=∠,根据图形及角之间的关系可得PCQ ACB ∠=∠,即可证明结论. 【详解】 解:(1)如图所示:设BC 与AD 相交于点F , ∵ACB DCE α∠=∠=,∴ACB BCD DCE BCD ∠+∠=∠+∠,即ACD BCE ∠=∠, ·线○封○密○外在ACD ∆与BCE ∆中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴ACD BCE ∆≅∆,∴CAD CBE ∠=∠,∵AFC BFD ∠=∠,∴AHB ACB α∠=∠=,∴180AHE α∠=︒-,故答案为:180α︒-;(2)如图所示:过点C 作CM AD ⊥,CN BE ⊥,∵ACD BCE ∆≅∆,∴CAM CBN ∠=∠,在ACM ∆与BCN ∆中,90CAM CBN AMC BNC AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴ACM BCN ∆≅∆,∴CM CN =,∴CH 平分AHE ∠;(3)CPQ ∆为等边三角形,理由如下:∵ACD BCE ∆≅∆,∴AD BE =,PAC QBC ∠=∠,∵P 、Q 为AD 、BE 中点,∴AP BQ =,在APC ∆与BQC ∆中,AP BQPAC QBC AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴APC BQC ∆≅∆, ∴CP CQ =,PCA QCB ∠=∠, ∴60PCQ ACB ∠=∠=︒, ∴CPQ ∆为等边三角形. 【点睛】 题目主要考查全等三角形的判定和性质,角平分线的判定和性质,三角形内角和定理等,理解题意,熟练掌握,综合运用这些知识点是解题关键. 4、 (1)见解析 (2)2125EA = 【分析】 (1)根据直角三角形的性质即定义三角形的性质得出∠FBA =∠BFC ,进而得到FC =2AC ,由∠FBA =∠BFC ,结合∠FEB =∠FBC =90°,即可判定△FEB ∽△CBF ,根据相似三角形的性质即可得解; (2)过点A 作AH ⊥BC 于点H ,过点B 作BM ⊥CF 于点M ,根据等腰三角形的性质得到CH =4,根据勾·线○封○密○外股定理得到AH =3,根据锐角三角函数得到CM =325,进而得到AM =75,根据∠FEA =∠BMC =90°,∠FAE =∠BAM ,即可判定△AEF ∽△AMB ,根据相似三角形的性质求解即可.(1)∵AB AC =,∴ABC C ∠=∠.∵90FBC ,∴90FBA ABC ∠+∠=︒,90BFC C ∠+∠=︒,∴FBA BFC ∠=∠.∴FA AB =,∴FA AC =,即A 是FC 的中点.∴2FC AC =,∵FE AB ⊥,∴90FEB ∠=︒.∴FEB FBC ∠=∠.在FEB 与CBF 中,FEB FBC FBA BFC∠=∠⎧⎨∠=∠⎩, ∴FEB CBF △△, ∴EB BF BF CF=, ∴2BF EB CF =⋅,∴22BF AC EB =⋅.(2)如图,过点A 作AH BC ⊥,垂足为H , ∴90AHC ∠=︒.∵5AB AC ==,8BC =, ∴142CH BC ==. 在Rt AHC中,由勾股定理得,3AH =, 过点B 作BM CF ⊥,垂足为M ,∴90BMC ∠=︒,1122ABC S BC AH AC BM =⋅=⋅△,即BC AH AC BM ⋅=⋅. ∴835BM ⨯=⋅, ∴245=BM . 在Rt ABM中,由勾股定理得75AM , ∵FD AB ⊥,∴90FEA ∠=︒, ∴FEA BMC ∠=∠.在FEA 与BMA △中,·线○封○密○外FEA BMC MAB EAF∠=∠⎧⎨∠=∠⎩, ∴FEA BMA △△, ∴EA FA MA BA=, ∵5AB AC ==,∴853FA CF AC =-=-=. ∴3755EA =, ∴2125EA = 【点睛】此题考查了相似三角形的判定与性质、等腰三角形的性质、勾股定理,熟练掌握相似三角形的判定与性质并作出合理的辅助线是解题的关键.5、(1)x =4(2)x =2【解析】(1)解:移项得:-5x +6x =1+3,合并得:x =4;(2)解:去分母得:2(x +1)-(x -2)=6,去括号得:2x +2-x +2=6,移项合并得:x =2.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.·线○封○密·○外。
最新浙江省中考数学综合练习试卷B卷附解析
浙江省中考数学综合练习试卷B 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( ) x6.17 6.18 6.19 6.20 2y ax bx c =++ 0.03- 0.01- 0.02 0.04 A .6 6.17x <<B .6.17 6.18x <<C .6.18 6.19x <<D .6.19 6.20x << 2.小珍用 12. 4 元恰好买了单价为 0.8 元和1. 2 元两种贺卡共 12 张,则其中单价为0. 8元的贺卡有( )A .5 张B .7 张C .6 张D . 4 张 3.下列四组线段中,能组成三角形的是( ) A .2cm ,3 cm ,4 cm B .3 cm ,4 cm ,7 cmC .4 cm ,6 cm ,2 cmD .7 cm ,10 cm ,2 cm4.已知22222()3()40a b a b +-+-=,则22a b +=( )A .-lB .4C .4或-lD .任意实数 5.如图的棋盘上,若“帅”位于点(1,-2)上,“马”位于点(3,0)上,则“炮” 位于点( )A .(-1,1)B .(-1,2)C .(-2,1)D .(-2,2)6.如图,D ,E ,F 分别是等边△ABC 各边上的点,且AD=BE=CF ,△DEF 的形状是( )A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形7.下列叙述正确的是( )A.作已知直线的垂线能作且只能作一条B.过一点只能画一条直线垂直于已知宜线C.过任意一点都可引直线的垂线D.已知线段的垂线有且只有一条8.如图所示,△ABC中,D,E分别是边BC,AC的中点,若DE=3,则AB等于()A.32B.6 C.9 D.949.下列图形中,不能..经过折叠围成正方体的是()10.若a、b分别表示圆中的弦和直径的长,则()A.a>b B.a<b C. a=b D.a≤b11.劳技课上,王红制成了一顶圆锥形纸帽,已知纸帽底面圆半径为10cm,•母线长50cm,则制成一顶这样的纸帽所需纸面积至少为()A.250πcm2B.500πcm2C.750πcm2D.100πcm212.线段 PQ 的黄金分割点是R(PR>RQ),则下列各式中正确的是()A.PR RQPQ PQ=B.PR QRPQ PR=C.PQ RQPR PQ=D.PR PQPQ QR=13.两个相似三角形的相似比是 2:3,其中较大的三角形的面积为 36 cm2,则较小的三角形的面积是()A.16cm2B.18 cm2 C.2O cm2D.24 cm214.二次函数y=ax2+bx+c的图象如图所示,下列结论:(1)ab<0;(2)a+c<b;(3)bc-4ac >0;(4)14 a-12 b+c>0,其中正确的结论有()A.1个B.2个C.3个D.4个15.如图所示,立方体图中灰色的面对着你,那么它的主视图是()A.B. C.D.16.如图,在Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,使点C恰好落在AB 边的中点D 处,则么A 的度数等于( )A .15°B .30°C .45°D .60°二、填空题17.如图是一束平行的阳光从教室的窗户射入的平面示意图,光线与地面所成角30°,在教室地面的影长3,若窗户的下檐到教室地面的距离 BC= lm ,则窗户的上檐到地面的距离 AC 为 m .18.一个扇形的半径为 30 cm ,圆心角为 120°,用它做成一个圆锥的侧面,这个圆锥的底面半径为 cm .19. 用换元法解方程222(21)410x x -+-=,设221y x =-,则原方程化为关于y 的一元二次方程是 .20.如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为_________米.三、解答题21.如图所示,一次函数y=kx+b(k ≠0)的图象与 x 轴、y 轴分别交于A 、B 两点,且与反比例函数(0)m y m x=≠的图象在第一象限交于C 点,CD ⊥x 轴于 D . 若OA=OB=OD=1. (1)求点A 、B 、D 三点的坐标;(2)求一次函数与反比例函数的表达式.22.观察下列各图,填写表格:一边上的小圆圈数12345小圆圈的总数1361015(2)如果用 n 表示等边三角形一边上的小圆圈数,用 m表示这个三角形中小圆圈的总数,那么m和n 的关系是什么?是哪种函数关系?23.如图,在△ABC中,D为BC边的中点,过D点分别作DE∥AB交AC于点E,DF ∥AC交AB于点F.(1)证明:△BDF≌△DCE;(2)如果给△ABC添加一个条件,使四边形AFDE成为菱形,则该条是;如果给△ABC添加一个条件,使四边形AFDE成为矩形,则该条件是 .(均不再增添辅助线)请选择一个结论进行证明.24.某乡镇企业中有20名工人在同一道工序生产同一零件,以下列出了20名工人在一个正常的工作日中的产量,请你列一个工人日产量的频率统计表.画出频数直方图,并指出多数工人的日产量在哪个范围内变动?220,222,219,230,228,220,236,212,227, 238,240,200,236,215,258,227,228,235, 240,21225. 如图,△ABC 中,AB=AC ,D 、E 、F 分别在 AB 、BC,AC 上,且BD=CE,∠DEF=∠B ,图中是否存在和△BDE 全等的三角形?说明理由.26.如图 ,当∠1 = 50°,∠2 = 130°时,直线1l ,2l 平行吗?为什么?27. 请你先将分式2211x x x x x ---+化简. 再选取一个使原式有意义,而你又喜爱的数代入求值.28.某生产车间制造 a 个零件,原计划每天造 x 个,后来实际每天多造 b 个,则可提前几天完成.2ab x bx+29.王老师利用假期带领团员同学到农村搞社会调查,每张车票原价是 50 元,甲车主 说乘我的车可以 8折优惠;乙车主说乘我的车学生 9 折,老师不买票. 王老师心里计算了一下,觉得不论坐谁的车,花费都一样,请问:王老师一共带了多少名学生?30.将2627-,206207-,20062007-按从小到大的顺序排列起来.200620626 200720727 -<-<-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.A4.B5.C6.A7.C8.B9.B10.D11.B12.B13.A14.C15.A16.D二、填空题17.318.1019.2210y y ++=20.22.5三、解答题21.(1)∵OA=OB=OD=1,∴A( -1 ,0) ,B(0, 1) ,D(1 ,0) ;(2)∵ 点A 、B 在直线y=kx+b ,∴ 将 A(—1,0)、B(0,1)代入,得k=1,b=1. ∴ 一次函数的表达式为1y x =+,又∵C 点的横坐标为 1,代入1y x =+得y=2, 即 C(1,2).从而=2m xy =,故反比例函数的表达式为2y x =. 22.(1)第 6 个图形中应有 21 个小圆圈(2)123m n =++++,即(1)2n n m +=,是二次函数关系. 23.(1)证明: ∵AB DE ∥,∴ FBD EDC ∠=∠∵AC DF ∥,∴ECD FDB ∠=∠又∵DC BD =∴BDF ∆≌DCE ∆(2)AC AB =;90=∠A °① 证明:∵AB DE ∥ AC DF ∥ ∴四边形AFDE 为平行四边形 又∵AC AB = ∴ C B ∠=∠ ∴C EDC ∠=∠ ∴EC ED = 由BDF ∆≌DCE ∆可得:EC FD =∴FD ED =∴四边形AFDE 为菱形② 证明:同理可证四边形AFDE 为平行四边形∵90=∠A ∴四边形AFDE 为矩形24.图略,多数工人的日产量在220~229之间25.△BDE ≌△CEF(ASA)26.平行.理由:∵∠2+∠3=180°,∠2=130°.∴∠3=180-∠2=180°-130°=50°.∵∠1=50°,∴∠3=∠1,∴1l ⊥2l27.22x -(代入0,1x ≠-的数都可以)28.2ab x bx+29. 830.200620626200720727-<-<-。
2023年浙江省中考数学基础试题B卷附解析
2023年浙江省中考数学基础试题B 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题由6个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( ) A .主视图的面积最大 B .左视图的面积最大. C .俯视图的面积最大 D .三个视图的面积一样大2. 400 米比赛有 4 条跑道,其中两条是对比赛成绩起积极影响的好跑道,其余两条是普通跑道,4 名运动员抽签决定跑道,则小明第一个抽抽到好跑道的概率是( ) A .12B .13C .14D .343.如图所示,小明周末到外婆家,到十字路口处,记不清哪条路通往外婆家,那么他能一次选对路的概率是( )A .12B .13C .14D . 04.在函数1y x =-中,自变量x 的取值范围是( ) A .x ≥-l B .x ≠1 C .x ≥1 D .x ≤1 5.已知等腰三角形的周长为 12,一边长为 3、则它的腰长为( ) A . 3B . 4.5C .3或4.5D . 以上都不正确6.如图,123,,∠∠∠的大小关系为( )A .213>>∠∠∠B .132>>∠∠∠C .321>>∠∠∠D .123>>∠∠∠7.如图所示的几张图中,相似图形是( )A .①和②B .①和③C .①和④D .②和③8.如图,A 、B 、C 是同一直线上的顺次三点,下面说法正确的是( ) A .射线AB 与射线BA 是同一条射线 B .射线AB 与射线BC 是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线9.若关于x的一元一次方程2x3132k x k---=解是1x=-,则k的值是()A.1 B.271311-C.010.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是() A.2或2.5 B.2或10 C.10或12.5 D.2或12.511.解方程45(30)754x-=,较简便的是()A.先去分母B.先去括号 C.先两边都除以45D.先两边都乘以5412.54表示()A.4个5 相乘B. 5个4相乘 C.5与4的积D. 5个4相加的和13.下面结论中,错误的是()A.一个数的平方不可能是负数B.一个数的平方一定是正数C.一个非 0有理数的偶数次方是正数D.一个负数的奇数次方还是负数二、填空题14.如图:点 A.B、G、D是以 AB 为直径的同一圆上的四点,若∠DAB =55°,则∠B= ,∠C= .15.如果一个多边形的内角和与外角和的比为2∶1,那么这个多边形的内角和是度.16.在直角三角形中,两个锐角的差为20°,则两个锐角的度数分别为.17.一次体检,七(1)班24名男生有2人是1.48 m,7人身高在1.50 m到1.60 m之间,ll 人身高在1.60 m至1.70 m之问,有4人身高超过1.70 m,最高的身高已达1.79 m,则七(1)班男生身高的极差是.18.若 2 是关于x的方程220a x-=的根,则 a= .19.当x时,24x-有意义.20.若m,n 为实数,且满足2|2|(28)0m n m n+++-+=,则 mn= .21.从 1 至 10 这 10 个数中任意取一个,则选中的数字是2 的倍数的可能性比选中的数字是质数的可能性.22.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户 5 月份交水费 45 元,则所用水为度.月用水量不超过12度的部分超过 12度不超过 18度的部分超过 18度的部分收费标准(元/度) 2.00 2.50 3. 0023.自由下落物体的高度h(米)与下落的时间t(秒)的关系为24.9h t=.现有一铁球从离地面19米高的建筑物的顶部作自由下落,到达地面需要的时间是秒.(精确到0.1秒)三、解答题24.如图所示是由小立方块所搭成几何体的俯视图,小正方形中的数字表示在该位置小立方块中个数. 请画出相应几何体的主视图和左视图.25.如图所示,我市某广场一灯柱 AB 被一钢缆CD 固定,CD 与地面成40°夹角,且DB = 5m,则 BC 的长度是多少?现再在 C点上方 2m 处加固另一条钢缆 ED,则钢缆 ED的长度是多少?(结果保留三个有效数字)26.为配合新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数).为了解本次竞赛成绩情况,从中随机抽取了部分学生的竞赛成绩,进行统计,整理见下表:(1)在这个问题中,总体是,样本容量a=;(2)第四小组的频率c=;(3)被抽取的学生成绩的中位数落在第几小组内?(4)若成绩在90分以上(含90分)的学生获一等奖,请你估计全市获一等奖的人数.27.某钢铁厂今年一月份钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多l200吨,求这个相同的百分数.28.k为何值时,代数式2(1)3k-的值不大于代数式156k-的值.59 k<29.请你先将分式2211x x xx x---+化简. 再选取一个使原式有意义,而你又喜爱的数代入求值.30.如图所示,已知点A,B,C,D在一条直线上,AB=CD.AE=DF,EC=FB,说明∠ACE=∠DBF的理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.B4.C5.B6.D7.C8.C9.A10.A11.B12.B13.B二、填空题14.35°,35°15.72016.55°,35°17.0.31 m18.2 19.≥220.-821.大22.2023.2.0三、解答题24.如图.25.在 Rt△BCD 中,BD =5,tanBCCDBBD∠=,05tan40 4.20BC=≈BE= BC+CE= 6.20,7.96DE=≈答:BC 的长约为 4. 20 m ,ED 的长约为7.96 m.26.(1)1万名学生这次竞赛成绩的全体,500;(2)0.26;(3)3;(4)200 27.20%28.59k<29.22x-(代入0,1x≠-的数都可以)30.略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B
C
D
E
P
O 成都市中考数学B 卷题目专项训练
一. 填空题: 1. 已知y =
31x – 1,那么3
1
x 2 – 2xy + 3y 2 – 2的值是 . 2. 化简:22
22
1369x y x y x y x xy y +--÷--+=_______ 3. 设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.
4. 在平面直角坐标系xOy 中,点P (2,a )在正比例函数y=2X
的图象上,则点Q (a ,3a
﹣5)位于第 象限.
5. 某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是 .
6. 如图,A 、B 、c 是⊙0上的三点,以BC 为一边,作∠CBD=∠ABC,过BC 上一点P ,作PE∥AB 交BD 于点E .若∠AOC=60°,BE=3,则点P 到弦AB 的距离为_______.
7.如图,在ABC ∆中,90B ∠=o ,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB
向B 以2mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过_____________秒,四边形APQC 的面积最小.
8. 某校在“爱护地球,绿化祖图”的创建活动中,组织学生开展植树造林活动.为了解全校
植树数量(单位:棵) 4 5 6 8 10 人数
30
22
25
15
8
则这l 00名同学平均每人植树 棵;该校学生的植树总数是 棵.
A
B C
O
x
y
9. 如图,已知点A 是锐角∠MON 内的一点,试分别在OM 、ON 上确定点B 、点C ,使△
ABC 的周长最小.写出你作图的主要步骤并标明你所确定的点
(要求画出草图,保留作图痕迹)
10. 已知2
1
(123...)(1)
n a n n =
=+,,,,记112(1)b a =-,2122(1)(1)b a a =--,…,122(1)(1)...(1)n n b a a a =---,则通过计算推测出n b 的表达式n b =_______.
(用含n 的代数式表示)
11. 有背面完全相同,正面上分别标有两个连续自然数,1k k +(其中0,1,2,,19k =L )的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为91010++=)不小于14的概率为_________________.
12.改革开放30年以来,成都的城市化推进一直保持着快速、稳定的发展态势.据统计,到2008年底,成都市中心五城区(不含高新区)常住人口已达到4 410 000人,对这个常住人口数有如下几种表示:①5
4.4110⨯人;②6
4.4110⨯人;③5
44.110⨯人.其中是科学记数法表示的序号为_________.
13. 如果m 是从0,1,2,3四个数中任取的一个数,n 是从0,1,2三个数中任取的一个数,那么关于x 的一元二次方程x 2 – 2mx + n 2 = 0有实数根的概率为 . 14. 如图,正方形OABC 的面积是4,点B 在反比例函数(00)k
y k x x
=
><,的图象上.若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则 当S=m(m 为常数,且0<m<4)时,点R 的坐标是________________________ (用含m 的代数式表示)
15. 已知n 是正整数,111222(,),(,),,(,),n n n P x y P x y P x y L L 是反比例函数k
y x
=
图象上的一列点,其中121,2,,,n x x x n ===L L .记112A x y =,223A x y =,1n n n A x y +=L L ,,若1A a =(a 是非零常数),则12n A A A g g L g 的值是________________________(用含a 和n 的
代数式表示).
16. 在三角形纸片ABC 中,已知∠ABC=90°,AB=6,BC=8.过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的T 处,折痕为MN .当点T 在直线l 上移动时,折痕的端点M 、N 也随之移动.若限定端点M 、N 分别在AB 、BC 边上移动,则线段AT 长度的最大值与最小值之和为 (计算结果不取近似值).
171234S S S S ,,,….计
算213243S S S S S S ---,,….若边长为(n 为正整数)的正方形面积记作n S .根据你的计算结果,猜想1n n S S +-= .
18. 已知M(a ,b)是平面直角坐标系xOy 中的点,其中a 是从l ,2,3三个数中任取的一个数,b 是从l ,2,3,4四个数中任取的一个数.定义“点M(a ,b)在直线x+y=n 上”为事件
Q n (2≤n≤7,n 为整数),则当Q n 的概率最大时,n 的所有可能的值为______.
19.已知关于x 的一元二次方程02
=++c bx ax 无实数解,甲由于看错了二次项系数,误求的两根为2和4,乙由于看错了某一项系数的符号,误求的两根为-1和4,那么=+a
c
b 32 _________.
20. 在平面直角坐标系xOy 中,已知反比例函数满足:当x <0时,y 随x 的增大而减小.若该反比例函数的图象与直线都经过点P ,且,则实数k=______. 二.解答题
21.某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x 为整数);又知前20天的销售价格1Q (元/件)与销售时间x(天)之间有如下关系:11
Q 302
x =
+ (1≤x≤20,且x 为整数),后10天的销售价格2Q (元/件)与销售时间x(天)之间有如下关系:2Q =45(21≤x≤30,且x 为整数).
(1)试写出该商店前20天的日销售利润1R (元)和后l0天的日销售利润2R (元)分别与销售时间x(天)之间的函数关系式;
(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润. 注:销售利润=销售收入一购进成本.
B
22.如图,Rt△ABC 内接于⊙O,AC=BC ,∠BAC 的平分线AD 与⊙0交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结0G .
(1)判断0G 与CD 的位置关系,写出你的结论并证明;
(2)求证:
AE=BF ; (3)若3(2OG DE ⋅=,求⊙O 的面积。
23.在平面直角坐标系xOy 中,已知抛物线y=2
(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与
x
轴的交点为N ,且。
(1)求此抛物线的函数表达式;
(2)在此抛物线上是否存在异于点C 的点P ,使以N 、P 、C 为顶点的三角形是以NC 为一条直角边的直角三角形?若存在,求出点P 的坐标:若不存在,请说明理由;
(3)过点A 作x 轴的垂线,交直线MC 于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?。