数学分析(复旦大学版)课后题答案40-45

合集下载

数学分析 复旦大学

数学分析 复旦大学
目录
第一章 集合
1.1 集合
1.2 数集及其确界
第二章 数列极限
2.1 数列极限
2.2 数列极限(续)
2.3 单调数列的极限
2.4 子列
第三章 映射Leabharlann 实函数 3.1 映射 3.2 一元实函数
3.3 函数的几何特性
第四章 函数极限和连续性
4.1 函数极限
4.2 函数极限的性质
4.3 无穷小量、无穷大量和有界量
第五章 连续函数和单调函数
5.1 区间上的连续函数
5.2 区间上连续函数的基本性质
5.3 单调函数的性质
第六章 导数和微分
6.1 导数概念
6.2 求导法则
6.3 高阶导数和其他求导法则
6.4 微分
第七章 微分学基本定理及应用
7.1 微分中值定理
7.2 Taylor展开式及应用
7.3 LHospital法则及应用
第八章 导数的应用
8.1 判别函数的单调性
8.2 寻求极值和最值
8.3 函数的凸性
8.4 函数作图
8.5 向量值函数
第九章 积分
9.1 不定积分
9.2 不定积分的换元法和分部积分法
9.3 定积分
9.4 可积函数类R[a,b]
第二十六章 Lebesgue积分
26.1 可测函数
26.2 若干预备定理
26.3 Lebesgue积分
26.4(L)积分存在的充分必要条件
26.5 三大极限定理
26.6 可测集及其测度
26.7 Fubini定理
练习及习题解答

复旦大学数学系陈纪修《数学分析》 第二版 习题答案ex

复旦大学数学系陈纪修《数学分析》 第二版 习题答案ex

− x ≤ sup S ,即 x ≥ − sup S ;同时对任意 ε > 0,存在 y ∈ S ,使得 y > sup S − ε ,
于是 − y ∈ T ,且 − y < − sup S + ε 。所以 − sup S 为集合 T 的下确界,即
inf T = − sup S 。
5. 证明有界数集的上、下确界唯一。 证 设 sup S 既等于 A ,又等于 B ,且 A < B 。取 ε = B − A > 0 ,因为 B 为
m
可能:
(i)⎜⎛ n ⎟⎞2 < 3 ,由(1)可知存在充分小的有理数 r > 0 ,使得 ⎜⎛ n + r ⎟⎞2 < 3 ,
⎝m⎠
⎝m ⎠
这说明 n + r ∈ S ,与 sup S = n 矛盾;
m
m
(ii) ⎜⎛ n ⎟⎞2 > 3 ,取有理数 r > 0 充分小,使得 4r − r 2 < ⎜⎛ n ⎟⎞2 − 3 ,于是
m +1
n < n < n + 1 ,所以 maxC 与 minC 都不存在。
m+1 m m+1
3. A, B 是两个有界集,证明:
(1) A ∪ B 是有界集;
(2) S = { x + y | x ∈ A, y ∈ B} 也是有界集。 证 (1)设 ∀x ∈ A ,有 x ≤ M1 , ∀x ∈ B ,有 x ≤ M 2 ,则 ∀x ∈ A ∪ B ,有
xn+k
= a。

设 lim n→∞
xn
=
a
,则 ∀ε
>

数学分析_复旦_欧阳光中陈传璋第三版3版上下册课后习题答案解析(下)

数学分析_复旦_欧阳光中陈传璋第三版3版上下册课后习题答案解析(下)
101
(4) b•
ê§ lim
x→∞
xb eax
=
lim
x→∞
bxb−1 aeax
=
··· =
lim
x→∞
b! abeax
=0
bؕ
ê§K[b]
b
<
[b]+1§u´
|x|[b] eax
|x|b eax
<
|x|[b]+1 eax (|x|
> 1)§
þ¡®y²§‚ 4••0§Ïd§¥m 4•••0.
l
§é?¿a, b§þk lim
lim
+
=
x→0
24
24
1
6
ax − bx
ax ln a − bx ln b
a
(9) lim
= lim
= ln a − ln b = ln (a = 0, b = 0)
x→0 x
x→0
1
b
x−1
1
(10) lim
x→1
ln x
= lim
x→1
1
=1
x
(11) lim ax − xa = lim ax ln a − axa−1 = aa(ln a − 1)
(x2 − 1) sin x
(4) lim x→1 ln
1 + sin π x
2

x2 sin 1
1
1
2x sin − cos
1 cos
(1) Ï
x ©f!©1Óžéx¦ ê§
x

x x → 0ž4•Ø•3§Ïdâ
sin x
cos x
cos x

复旦大学数学系陈纪修数学分析(第二版)习题答案ex2-3,4

复旦大学数学系陈纪修数学分析(第二版)习题答案ex2-3,4

一解 a = 0 舍去),因此
lim
n→∞
xn
=
2。
(3)首先有 x1 =
2 > −1,设 xk > −1,则 xk+1 =
−1 > −1 ,由数学
2 + xk
25
归纳法可知 ∀n ,xn
> −1。由 xn+1
− xn
=
−1 2 + xn
− xn
=

(xn + 1)2 2 + xn
< 0 ,可知{xn}
)n
= 0。
证(1)设
lim
n→∞
an
=
+∞ ,则 ∀G
>
0, ∃N1
>
0, ∀n
>
N1
: an
>
3G
。对固定的
N1 ,
∃N > 2N1,∀n > N :
a1 + a2 + " + aN1 n
< G ,于是
2
a1 + a2 + " + an ≥ aN1+1 + aN1+2 + " + an − a1 + a2 + " + aN1 > 3G − G = G 。
n→∞ ⎝ n ⎠
⑴ lim ⎜⎛1 − 1 ⎟⎞n ;
n→∞ ⎝ n ⎠
⑵ lim ⎜⎛1 + 1 ⎟⎞n ;
n→∞ ⎝ n + 1⎠
⑶ lim ⎜⎛1 + 1 ⎟⎞n ;
n→∞ ⎝ 2n ⎠

数学分析复旦答案

数学分析复旦答案

数学分析复旦答案【篇一:复旦《数学分析》答案第四章1、2节】题 4.1 微分和导数⒈半径为1cm的铁球表面要镀一层厚度为0.01cm的铜,试用求微分的方法算出每只球需要用铜多少克?(铜的密度为8.9g/cm3。

)解球体积v?43?r3,每只球镀铜所需要铜的质量为2m???v?4??r?r?1.12g。

?0⒉用定义证明,函数y点之外都是可微的。

证当x?0时,?y?微。

当x?0时,?y???3x2在它的整个定义域中,除了x这一?x2是?x的低阶无穷小,所以y?x2在x?0不可?x?x?o(?x),所以y?x2在x?0是可微的。

习题 4.2 导数的意义和性质1.设f?(x0)存在,求下列各式的值:⑴⑵⑶lim?x?0f(x0??x)?f(x0) ?x;limx?x0f(x)?f(x0)x?x0;。

f(x0?(??x))?f(x0) (??x)??f(x0)。

limh?0f(x0?h)?f(x0?h) h解 (1)lim⑵⑶f(x0??x)?f(x0) ?xf(x)?f(x0)x?x0?x?0??lim?x?0x?x0lim?limf(x0?(x?x0))?f(x0) x?x0x?x0?0?f(x0)。

limf(x0?h)?f(x0?h) hf(x0?h)?f(x0)hh?0f(x0?h)?f(x0)hh?0?limh?0?lim?2f(x0)。

2.⑴用定义求抛物线y?2x2?3x?1的导函数;⑵求该抛物线上过点(?1,?2)处的切线方程;⑶求该抛物线上过点(?2,1)处的法线方程;⑷问该抛物线上是否有(a,b),过该点的切线与抛物线顶点与焦点的连线平行?解 (1)因为?y?x?2(x??x)?3(x??x)?1?(2x?3x?1)?xf(x)?lim?y?x?4x?3。

22?4x?3?2?x,所以?x?0(2)由于(3)由于f(?1)??1,切线方程为y??1?[x?(?1)]?(?2)??x?3。

f(?2)??5,法线方程为y??1?5[x?(?2)]?1?x?75。

复旦大学数学系《数学分析》(第3版)(下册)-名校考研真题-多变量微积分学【圣才出品】

复旦大学数学系《数学分析》(第3版)(下册)-名校考研真题-多变量微积分学【圣才出品】
连续函数.由连续函数的最值性知,存
由于对任意的 y∈[c,d],有下式成立
所以有


5 / 54
圣才电子书

十万种考研考证电子书、题库视频学习平 台
第 2 部分 多变量微分学
第 14 章 偏导数和全微分
解答题 1.已知
1 确定,且 h(x)具有所需的性质.求
所以对任意的 ε>0,取 在(0,0)处连续.
,则当
时,有
,故 f(x,y)
7 / 54
圣才电子书

十万种考研考证电子书、题库视频学习平 台
由于当(x,y)≠(0,0)时,
,故
4.讨论
在(0,0)点的连续性和可微性.[武汉大学研] 解:(1)连续性.可以令 x=ζcosθ,y=ζsinθ,因为
十万种考研考证电子书、题库视频学习平 台

12.
解:由
又由

[上海交通大学研] 得
,于是
13.设 z 由 求 [南京大学研]
解:由
得 ①式两端再对 x 求导得
定义为 x,y 的隐函数,其中 为二次连续可微,
两边对 x 求导 ①
所以 f(x,y)在(0,0)点连续. (2)可微性.由于 从而
选取特殊路径 y=kx,有 为 1,所以 f(x,y)在(0,0)点不可微.
5. 解:由于
,求 dz.[华东师范大学研]
8 / 54
,极限不
圣才电子书

十万种考研考证电子书、题库视频学习平 台


6.函数 数.[天津大学研]
同时


5.若函数 f(x,y)在 上对 x 连续,且存在 L>0,对任意的 x、y′有

数学分析复旦大学第四版答案实数基本定理

数学分析复旦大学第四版答案实数基本定理

数学分析复旦大学第四版答案实数基本定理【篇一:数学分析(4)复习提纲(全部版)】>第一部分实数理论1实数的完备性公理一、实数的定义在集合r内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称r为实数域或实数空间。

(1)域公理:(2)全序公理:则或a中有最大元而a中无最小元,或a中无最大元而a中有最小元。

评注域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。

二、实数的连续性(完备性)公理实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。

主要有如下几个公理:确界原理:单调有界定理:区间套定理:有限覆盖定理:(heine-borel)聚点定理:(weierstrass)致密性定理:(bolzano-weierstrass)柯西收敛准则:(cauchy)习题1证明dedekind分割原理与确界原理的等价性。

习题2用区间套定理证明有限覆盖定理。

习题3用有限覆盖定理证明聚点定理。

评注以上定理哪些能够推广到欧氏空间r?如何叙述?n2闭区间上连续函数的性质有界性定理:上册p168;下册p102,th16.8;下册p312,th23.4最值定理:上册p169;下册下册p102,th16.8介值定理与零点存在定理:上册p169;下册p103,th16.10一致连续性定理(cantor定理):上册p171;下册p103,th16.9;下册p312,th23.7 习题4用有限覆盖定理证明有界性定理习题5用致密性定理证明一致连续性定理3数列的上(下)极限三种等价定义:(1)确界定义;(2)聚点定义;(3)n定义评注确界定义易于理解;聚点定义易于计算;n定义易于理论证明习题6用区间套定理证明有界数列最大(小)聚点的存在性。

高等数学复旦大学出版第三版下册课后答案习题全

高等数学复旦大学出版第三版下册课后答案习题全

习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点yOz面上的呢zOx面上的呢答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点y轴上的点呢z轴上的点呢答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s=(4) s==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).s==故s==x2224(33)541y s =+-++=2224(3)(55)5z s =+-+-=.6. 在z 轴上,求与两点A (-4,1,7)和B (3,5,-2)等距离的点.解:设此点为M (0,0,z ),则222222(4)1(7)35(2)z z -++-=++--解得 149z = 即所求点为M (0,0,149). 7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB |=|AC |=7.且有|AC |2+|AB |2=49+49=98=|BC |2.故△ABC 为等腰直角三角形.8. 验证:()()++=++a b c a b c .证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =u u u r c ,BC =u u u r a 表示向量1D A u u u u r ,2D A u u u u r ,3D A u u u u r 和4D A u u u u r .解:1115D A BA BD =-=--u u u u r u u u r u u u u r c a 2225D A BA BD =-=--u u u u r u u u r u u u u r c a 3335D A BA BD =-=--u u u u r u u u r u u u u r c a 444.5D A BA BD =-=--u u u u r u u u r u u u u r c a 11. 设向量OM u u u u r 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M 的投影为M ',则1Pr j cos604 2.2u OM OM =︒=⨯=u u u u r u u u u r 12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----u u u r解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP u u u u r 在各坐标轴上的投影; (2) 12PP u u u u r 的模;(3) 12PP u u u u r 的方向余弦; (4) 12PP u u u u r 方向的单位向量.解:(1)12Pr j 3,x x a PP ==u u u u r12Pr j 1,y y a PP ==u u u u r 12Pr j 2.z z a PP ==-u u u u r(2) 12PP ==u u u u r(3) 12cos x aPP α==u u u u r12cos ya PP β==u u u u r12cos z aPP γ==u u u u r(4) 12012PP PP ===-e j u u u u r u u u u r . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos cos cos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17.解:设{,,}x y z a a a a =r 则有cos (1,1)3x a i a a i a iπ⋅====⋅r r r r 求得12x a =. 设a r 在xoy 面上的投影向量为b r 则有{,,0}x y b a a =r则22cos 4a b a b π⋅=⇒=⋅r r r r 则214y a =求得12y a =± 又1,a =r 则2221x y z a a a ++=从而求得11{,,22a =r或11{,,22- 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =u u u u u r u u u u u r ,求向径OM u u u u r 的坐标.解:设向径OM u u u u r ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----u u u u u r u u u u u r 因为,123M M MM =u u u u u r u u u u u r 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM u u u u r ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP uuu r 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-=u u u r得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒==故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b 21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b 222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b 36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB u u u r 在向量CD uuu r 上的投影.解:AB u u u r ={3,-2,-6},CD uuu r ={6,2,3}Pr j CD AB CD AB CD ⋅=u u u r u u u r u u u r u u u r u u ur 4.7==- 23. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ②由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 24. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直.证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a-b ={-6,10,14}又(a +b )·(a-b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a-b ).25. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ; (2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a .解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 27. 求垂直于向量3i-4j-k 和2i-j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量()||3⨯==±--+⨯a b e i j k a b||sin ||||26θ⨯===⨯a b a b . 28. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.29. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯u u u u r u u u r u u u r u u u r . 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--u u u u r3{1,0,}2MP =-u u u r {4,4,4}AC =--u u u r{2,0,3}BC =-u u u r22222235233100122MN MP ----⨯=++=++--i j k i j k u u u u r u u u r 44444412208033220AC BC ---⨯=++=++--i j k i j k u u u r u u u r 故 1()4MN MP AC BC ⨯=⨯u u u u r u u u r u u u r u u u r . 30.(1)解: x y zx y zi j k a b a a a b b b ⨯=r r r r r=-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k r r r ()()()则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅r r u r ()()()()xy z xy z x y z a a a b b b C C C = 若,,C a b r r u r 共面,则有 a b ⨯r r 后与 C u r 是垂直的. 从而C 0a b ⨯⋅=r r u r () 反之亦成立. (2) C x y z x y z xy z a a a a b b b b C C C ⨯⋅=r r u r Q()a x y z x y z xy z b b b b C C C C a a a ⨯⋅=r u r r () b x y z x y z xy zC C C C a a a a b b b ⨯⋅=u r r r () 由行列式性质可得:xy z x y z x y z x y z x y z x y z xy z x y z x y za a ab b b C C C b b b C C C a a a C C C a a a b b b ==故 C a ?b a b b C C a ⨯⋅=⨯⋅=⨯⋅r r u r r u r r u r r r Q()()()31. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-u u u r u u u r则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k u u u r u u u r .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+. 32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则 13BCD V S h =⋅⋅V , 而11948222BCD S BC BD i j k =⨯=--+=V u u u r u u u r r r r 又BCD ∆所在的平面方程为:48150x y z +-+=则43h == 故1942323V =⋅⋅= 33. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB =u u u r ,{2,6,8}AC =u u u r显然2AC AB =u u u r u u u r则22()0AB AC AB AB AB AB ⨯=⨯=⨯=u u u r u u u r u u u r u u u r u u u r u u u r故A ,B ,C 三点共线.34. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---u u u u u u r因0M M n ⊥u u u u u u r ,故00M M n ⋅=u u u u u u r .即2(x -1)+3(y-1)-4(z-1)=0整理得:2x +3y-4z-1=0即为动点M 的轨迹方程.35. 求通过下列两已知点的直线方程:(1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3). 解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程. 解:所给直线的方向向量为12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.38. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程.解:所求平面的法向量可取为0{1,7,3}OM ==-n u u u u u r故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2. 故所求平面方程为1424x y z ++= 40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x-3y-6=0; (4) x–y =0;(5) 2x-3y+4z=0.解:(1) y =0表示xOz坐标面(如图7-2)(2) 3x-1=0表示垂直于x轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-642. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面.解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有 5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||4θ⋅====n nn n解得2k=±44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n nP(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面.解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A C A B C A B C C B ⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n n n n 又(1,-1,1)在所求平面上,故A -B +C +D =0,得D =0故所求平面方程为2033C Cx y Cz -++= 即2x -y -3z =046. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量.解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n 故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47. 求下列直线与平面的交点: (1)11126x y z -+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x t y t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0.故交点为(-2,1,3).48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩;(2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k --={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直;(2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行;(3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为 s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n 故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z ++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8; (3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上.51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程. 解:直线的方向向量为12123111-=++-ij k i j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3)故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =- 于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量 即11133211==-=---ij k n s j k故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d == 55. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离. 56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R ==设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++- 化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7.(2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8(3)母线平行于y 轴的椭圆柱面,如图7-9.(4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11.(6)z 轴,如图7-12.图7-11 图7-12 59. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y zx++=; (2)22369436x y z+-=;(3)222149y zx--=; (4)2221149y zx+-=;(5)22209zx y+-=.解:(1)半轴分别为1,2,3的椭球面,如图7-13.(2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x轴为中心轴的双叶双曲面,如图7-15.(4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1. 解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-21 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-;(2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1.得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x ty tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集并分别指出它们的聚点集和边界:(1) {(x , y )|x ≠0}; (2) {(x , y )|1≤x 2+y 2<4}; (3) {(x , y )|y <x 2};(4) {(x , y )|(x -1)2+y 2≤1}∪{(x , y )|(x +1)2+y 2≤1}. 解:(1)开集、无界集,聚点集:R 2,边界:{(x , y )|x =0}. (2)既非开集又非闭集,有界集, 聚点集:{(x , y )|1≤x 2+y 2≤4},边界:{(x , y )|x 2+y 2=1}∪{(x , y )| x 2+y 2=4}. (3)开集、区域、无界集, 聚点集:{(x , y )|y ≤x 2}, 边界:{(x , y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x , y )|(x -1)2+y 2=1}∪{(x , y )|(x +1)2+y 2=1}. 2. 已知f (x , y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f ( x + y , x -y , x y ) =( x + y )xy+(x y )x +y +x -y=(x + y )xy +(x y )2x.4. 求下列各函数的定义域:2(1)ln(21);z y x =-+ (2)z=(3)z = (4)u =(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→ 22001(2)lim;x y x y →→+00x y →→x y →→00sin (5)lim ;x y xy x →→2222221cos()(6)lim.()ex y x y x y x y +→→-++解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=001.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x yx y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y ++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x+-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.120lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z = x 2y +2xy;(2)s =22u v uv+;(3)z = x(4)z = lntan x y; (5)z = (1+xy )y; (6)u = z xy; (7)u = arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+ 2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+(4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y yy x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+ []ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yz z yy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y =+,求证:3u uxy u x y∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++.由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x x x ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y ) = x +(y,求f x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z = x 4+ y 4-4x 2y 2; (2)z = arctan y x; (3)z = y x ;(4)z = 2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭, 2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x yz x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x , y , z ) = xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z = x ln ( x y ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =(3)zy u x =;(4)yzu x =.解:(1)∵2222e 2,e 2x y x y z z x y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )xy xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴ 223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂1ln yz u x x y z∂=⋅⋅∂ ln y z u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz zz y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算:(1) 3·2;(3).解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =,d y =,则3·2=f ,≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×+2×12×]=1.(2)设f (x ,y ,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d 0.05d 0.07(4.05,2.93)(4,3)d (4,3)0.053(0.07)]15(0.01)54.998x y f f f ==-=≈+=⨯+⨯-=+⨯-=(3)设f (x ,y )=x y,则d f (x ,y )=yx y -1d x +x yln x d y , 取x =2,y =1,d x =,d y =,则1.05d 0.03d 0.05(1.97)(1.97,1.05)(2,1)d (2,1)20.0393 2.0393.x y f f f =-==≈+=+=19.矩型一边长a =10cm ,另一边长b =24cm, 当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l ,则d d ).l l x x y y ==+当x =10,y =24,d x =,d y =时,d 0.4240.1)0.062l =⨯-⨯=(cm)故矩形的对角线长约增加0.062cm. 20.解:因为圆锥体的体积为21.3V r h π=⋅ 0030,0.1,60,0.5r r h h ====-V V 而221.33V V V dV r h yh r r h r h ππ∂∂≈=⋅+⋅=⋅+⋅∂∂V V V V V0030,0.1,60,0.5r r h h ====-V V 时, 2213.1430600.130(0.5)33V π≈⨯⨯⨯⨯+⨯⨯-V 230()cm =-21.解:设水池的长宽深分别为,,x y z 则有:V xyz = 精确值为:50.242 2.850.22 3.6 2.80.2V =⨯⨯+⨯⨯⨯+⨯⨯⨯V 313.632()m = 近似值为:V dV zx y xy z ≈=+V V V 0.4,0.4,0.2x y z ===V V V430.4530.4540.2V dV ≈=⨯⨯+⨯⨯+⨯⨯ 314.8()m =22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,zv∂∂; (2)z =arc tanx y , x =u +v ,y =u -v , 求z u ∂∂,z v∂∂; (3)ln(e e )xyu =+, y =x 3, 求d d ux; (4) u =x 2+y 2+z 2, x =e cos tt , y =e sin tt , z =e t, 求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++(2)222222211111x z z x z y y x v y u x u y uyx y u v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y xx x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =- (2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+25. 设22()yz f x y =-,其中f (u )为可导函数,验证: 211z z zx x y y y∂∂+=∂∂. 证明:∵ 2222z yf x xyf x f f''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,z f x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂。

复旦版数学分析答案

复旦版数学分析答案
A ∪ B = {a1,b1, a2 ,b2 , , an ,bn , }。
⒊ 指出下列表述中的错误:
(1) {0} = ∅ ;
(2) a ⊂ { a,b, c } ;
(3) { a,b } ∈{ a,b, c } ;
(4) { a,b,{a,b} } = { a,b } 。
解 (1){0}是由元素 0 构成的集合,不是空集。
(3) f (x) = sin2 x + cos2 x , g(x) = 1。
解 (1)函数 f 和 g 不等同;
5
(2)函数 f 和 g 不等同;
(3)函数 f 和 g 等同。
7. (1) 设 f (x + 3) = 2x3 − 3x2 + 5x − 1,求 f (x) ;
(2)
设f⎜⎛ ⎝xx −{a,b,{a,b}} ⊃ { a,b } ,但{a,b,{a,b}} ≠ { a,b } 。
⒋ 用集合符号表示下列数集:
(1)
满足
x x
− +
3 2

0
的实数全体;
(2) 平面上第一象限的点的全体;
(3) 大于 0 并且小于 1 的有理数全体;
(4) 方程 sin x cot x = 0 的实数解全体。
⒎ 下述命题是否正确?不正确的话,请改正。 (1) x ∈ A ∩ B ⇔ x ∈ A 并且 x ∈ B ; (2) x ∈ A ∪ B ⇔ x ∈ A 或者 x ∈ B 。
解(1)不正确。 x ∈ A ∩ B ⇔ x ∈ A 或者 x ∈ B 。 (2)不正确。 x ∈ A ∪ B ⇔ x ∈ A 并且 x ∈ B 。
第一章 集合与映射
习 题 1.1 集合

最新版高等数学课后习题答案(复旦大学出版社)(李开复编)

最新版高等数学课后习题答案(复旦大学出版社)(李开复编)

高等数学(上)第一章 函数与极限1.设⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21= 224sin )4(==ππϕ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ;⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ []ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由 ][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a a x a ax a a x a x3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。

⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4. 设数列{}n x 有界, 又,0lim =∞→n n y 证明:.0lim =∞→n n n y x{}结论成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 0
§udÃF¼êPÂÈ©§y{'4Gª§& 1 ln xy dx9uy Q[ , b ](b > 1)þÂñ. b
+∞ a A
ln
0
b dx x
Âñ
#f (x, y)Q[ a, +∞; c, d ]ë§é[ c, d)þzy§ f (x, y) dxÂñ§¢È©Qy = duÑ. y²ùÈ©Q[ c, d ]Âñ. y²µd f (x, d) dxuѧ&∃ε > 0, ∀A > a, ∃A , A A §¦ f (x, d) dx ε
dx [ p1 , p2 ]
Q
ë
2−p
dx [ p1 , p2 ]
Q
ë
6.
π −1 p 2−p 1 2 1 p π π −1 p 2−p p 2−p p1 2−p1 1 2 1−p1 x→π −0 1 p1 2−p1 p1 π 1 π −1 p−1 2−p1 π π −1 p 2−p 1 2 π p 2−p 1 2 π −1 p 1 2 π 0 p 2−p +∞ +∞
2−p
π −1 1 p 2−p
1 π −1 π sin x sin x sin x sin x dx = dx + dx + dx p (π − x)2−p p (π − x)2−p p (π − x)2−p p (π − x)2−p x x x x 0 0 1 π −1 1 sin x dx p 2−p 0 x (π − x) sin x sin x (0 x 1, 0 < p1 p p2 < 2) p 2 − p p 2 x (π − x) x (π − x)2−p2 sin x 1 lim xp2 −1 p = 2−p 2 − p 2 2 2 x→+0 x (π − x) π 1 sin x p2 < 2 p2 − 1 < 1 dx p2 (π − x)2−p2 x 0 1 sin x dx p ∈ [ p1 , p2 ] p (π − x)2−p x 0 1 sin x sin x (0 , 1 ] × [ p , p ] dx [ p1 , p2 ] 1 2 p (π − x)2−p xp (π − x)2−p x 0 π
−∞
−∞
−(x−α)2
−x 4
2
+∞
−x 4
2
+∞
−x 4
2
−∞
0 +∞
−(x−α)2
−∞ +∞
−(x−α)2
+∞
−t2
α → +∞
A +∞
α → +∞
A−α
−(x−α)2
+∞
A
−(x−α)2
+∞
0
−(x−α)2
−∞ 1 0
(4) (i) |xp−1 ln2 x| = xp−1 ln2 x
È©
xp0 −1 ln2 x (p
+∞
p0 > 0, 0
x
1)
x
p−1
ln x dx =
0
2
e
4
−p0 z 2
z dz
ud ܧy{'4Gª l d¼§y{§& x 1 (ii) Ϩx ∈ 0, , ln x 1 e
1 0 2
z →+∞
lim z 2 · e−p0 z z 2 = lim
z → +∞
z = 0 (p0 > 0) ep0 z
0 0 0 0 a A A +∞ a 0
ùv²éy = d ∈ [ c, d ]k f (x, y) dx ε §`² 4. ?ØeÈ©Q½«m'ÂñSµ (1) x e dx (a α b; a, b?¿¢ê)
A +∞ α −x 1 +∞
f (x, y ) dx [ c, d ]
Q
Âñ.
Âñ cos xy dx 9uy Q(−∞, +∞)SÂñ. x +1
+∞ 0
dx π = x2 + 1 2
(3) x = 0
y
b, b > 1, 0 < x
1
§| ln xy|
| ln x| + | ln y |
− ln x + ln b = ln
1
b x
Ï l d¼§y{§&
3.
+∞
b ln b x lim x ln = lim =0 x→+0 x x→+0 x− 1 4
+∞ a a +∞ a A 0 0 A A A A A A A +∞ +∞ a
+∞
f (x, y ) dx
9
F (x, y ) dx < εéy ∈ [ c, d ]Ѥá |f (x, y )| dx f (x, y) dx dá¹ëgþPÂÈ©' ÜÂñ¦n§ f (x, y) dx9uy ∈ [ c, d ]Âñ§ uy ∈ [ c, d ]Âñ u f (x, y) dx9uy ∈ [ c, d ]Âñ ýéÂñ. 2. y²eÈ©Q¤½'«mSÂñµ
+∞ 0 2 2 0 0 0 0 0 0 0 0 2 2 2 0 2 +∞ 0 0 0 2 2 0 0 0 +∞ 0 0 2 2 +∞ +∞ α→+0 0 2 2 α→−0 0 2 2 +∞ 0 2 2 1 2 1 2
sin x dx (0, 2) xp (π − x)2−p
Q
Së.
éu Ï Ï §u §u´d ܧy{'4Gª§& l d¼§y{§& 9u Âñ q&ȼê Q þë§udëS½n§& sin x dx´¹ëgþ'~ÂÈ© x (π − x)
a +∞ a +∞
|f (x, y )| dx
9
(1)
0 +∞
cos xy dx (y x2 + y 2
a > 0)
(2)
0 1
cos xy dx (−∞ < y < +∞) x2 + 1 1 b y b, b > 1y²µ cos xy (1) Ïy a > 0§u x +y u´d¼§y{§&
(1)
0
Ïα ∈ [ a, b ], x ∈ (1, +∞)§u0 < |x e | x e q lim x · x e = 0§uâáPÂÈ©' ܧy{'4Gª§& x e dxÂñ u´d¼§y{§& x e dx9uα ∈ [ a, b ](a, b?¿¢ê)Âñ. √ √ π (2) αe dx = Âñ§¢§Q(0, +∞)9uαÂñ 2 √ √ π é∀A > 0§Ï lim αe dx = lim e dt = e dt = 2 √ π √ √ % é u0 < ε < 2 § U Qα > 0§ ¦ & α e dx = α e dx > ε § = √αe dx9uαQ(0, +∞)þØÂñ. √ (3) é?¿'½'α ∈ (−∞, +∞)§È© e dxÑÂñ§ e dx = π (i) |x|¿©§éa < α < b§k0 < e < 2e Ï e dx = 2 e dxÂñ ud¼§y{§& e dxéa < α < bÂñ. √ (ii) é∀A > 0§k lim e dx = lim e dt = π √ π u¨α¿©§ e dx > 2 dd§& e dxQ−∞ < α < +∞þÂñ l e dxQ−∞ < α < +∞þÂñ.
α −x b −x +∞ 2 b −x b −x x→+∞ +∞ 1 α −x 1 +∞ −αx2 0 +∞ −αx2 +∞ −t2 +∞ −t2 α→+0 A α→+0 √ αA +∞ A 0 0 0 0 −α0 x2 +∞ 0 −α0 x2 0 +∞ A −αx
2
0
+∞
−(x−α)2
+∞
−(x−α)2
Âñ
Q
ë
246
sin x x Q [ 1, π −1 ]×[ p , p ]ë§udëS½n§& Ï&ȼê x (πsin − x) x (π − x) x éu x (πsin dx − x) x sin(π − x) Ï x (πsin (π − 1 x π, 0 < p p p < 2) − x) x (π − x) π − x) 1 lim (π − x) x sin( = (π − x) π π − x) Ïp > 0§u1 − p < 1§u´d ܧy{'4Gª§& x sin( dxÂñ (π − x) x l d¼§y{§& x (πsin dx9up ∈ [ p , p ]Âñ − x) x x Q[ π−1, π)×[ p , p ]þë§udëS½n§& x (πsin q&ȼê x (πsin − x) − x) nܱþ§&F (p)Q[ p , p ]ë§l QÙþ?Xpë x dxQ(0, 2)Së.. qdp ∈ (0, 2)'?¿S§&F (p) = x (πsin − x)
2
2 +∞
相关文档
最新文档