高考数学真题立体几何分类汇编

合集下载

十年高考真题分类汇编立体几何

十年高考真题分类汇编立体几何

十年高考真题分类汇编(2010—2019)数学专题10立体几何2.(2019·全国1·理T12)已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )A.8√6πB.4√6πC.2√6πD.√6π【答案】D3.(2019·全国2·理T7文T7)设α,β为两个平面,则α∥β的充要条件是( )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【答案】B4.(2019·全国3·理T8文T8)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,则( )A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【答案】B6.(2018·全国3·理T10文T12)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9√3,则三棱锥D-ABC体积的最大值为( )A.12√3B.18√3C.24√3D.54√3【答案】B7.(2018·全国1·理T7文T9)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A.2√17B.2√5C.3D.2【答案】B10.(2018·上海·T15)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图.若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是( )A.4B.8C.12D.16【答案】D11.(2018·全国1·文T10)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为( )A.8B.6√2C.8√2D.8√3【答案】C12.(2018·全国2·理T9)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=√3,则异面直线AD1与DB1所成角的余弦值为( )A.15B.√56C.√55D.√22【答案】C13.(2018·全国2·文T9)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为( )A.√22B.√32C.√52D.√72【答案】C14.(2018·全国1·文T5)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.12√2πB.12πC.8√2πD.10π【答案】B【解析】过直线O1O2的平面截该圆柱所得的截面为圆柱的轴截面,设底面半径为r,母线长为l,因为轴截面是面积为8的正方形,所以2r=l=2√2,r=√2,所以圆柱的表面积为2πrl+2πr2=8π+4π=12π.18.(2017·全国2·理T10)已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )A.√3B.√15C.√10D.√3【答案】C20.(2017·全国3·理T8文T9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4C.π2D.π4【答案】B21.(2017·全国1·文T6)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )【答案】A4.(2016·浙江·理T2文T2)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n【答案】C23.(2016·全国3·理T10文T11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )A.4πB.9π2C.6π D.32π3【答案】B24.(2016·全国1·文T4)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12πB. πC.8πD.4π【答案】A25.(2016·全国1·理T11文T11)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )A.√32B.√22C.√33D.13【答案】A29.(2016·山东·理T5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为( )A.1+2πB.1+√2πC.1+√2πD.1+√2π【答案】C35.(2015·山东·理T7)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D.2π【答案】C40.(2015·浙江·理T8)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A'CD,所成二面角A'-CD-B的平面角为α,则( )A.∠A'DB≤αB.∠A'DB≥αC.∠A'CB≤αD.∠A'CB≥α【答案】B41.(2015·全国2·理T9文T10)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为 ( )A.36πB.64πC.144πD.256π【答案】C42.(2015·安徽·理T5)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行...与β平行的直线...,则在α内不存在D.若m,n不平行...垂直于同一平面...,则m与n不可能【答案】D43.(2015·浙江·文T4)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m【答案】A44.(2015·广东·文T6)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【答案】D47.(2014·辽宁·理T4文T4)已知m,n表示两条不同直线,α表示平面.下列说法正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【答案】B48.(2014·广东·理T7)在空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【答案】D49.(2014·浙江·文T6)设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m ⊥β,n ⊥β,n ⊥α,则m ⊥αD.若m ⊥n,n ⊥β,β⊥α,则m ⊥α 【答案】C50.(2014·陕西·理T5)已知底面边长为1,侧棱长为√2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( ) A.32π3B.4πC.2πD.4π3【答案】D51.(2014·大纲全国·理T8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81πB.16πC.9πD.27π【答案】A56.(2014·大纲全国·理T11)已知二面角α-l-β为60°,AB ⊂α,AB ⊥l,A 为垂足,CD ⊂β,C ∈l,∠ACD=135°,则异面直线AB 与CD 所成角的余弦值为( ) A.14 B.√24C.√34D.12【答案】B57.(2014·大纲全国·文T4)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A.16 B.√36C.13D.√33【答案】B66.(2013·辽宁·理T10)已知直三棱柱ABC-A 1B 1C 1的6个顶点都在球O 的球面上.若AB=3,AC=4,AB ⊥AC,AA 1=12,则球O 的半径为( ) A.3√172 B.2√10C.132D.3√10【答案】C【解析】过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD-A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r=√32+42+1222=132.67.(2013·全国2·理T4)已知m,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m,l ⊥n,l ⊄α,l ⊄β,则( ) A.α∥β且l ∥α B.α⊥β且l ⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l 【答案】D【解析】因为m ⊥α,l ⊥m,l ⊄α,所以l ∥α.同理可得l ∥β.又因为m,n 为异面直线,所以α与β相交,且l 平行于它们的交线.故选D.68.(2013·广东·理T6)设m,n 是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是 ( ) A.若α⊥β,m ⊂α,n ⊂β,则m ⊥n B.若α∥β,m ⊂α,n ⊂β,则m ∥n C.若m ⊥n,m ⊂α,n ⊂β,则α⊥β D.若m ⊥α,m ∥n,n ∥β,则α⊥β 【答案】D【解析】选项A 中, m 与n 还可能平行或异面,故不正确; 选项B 中,m 与n 还可能异面,故不正确; 选项C 中,α与β还可能平行或相交,故不正确; 选项D 中,∵m ⊥α,m ∥n,∴n ⊥α. 又n ∥β,∴α⊥β.故选D.69.(2012·全国·理T11)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此棱锥的体积为 ( ) A.√26 B.√36C.√23D.√22【答案】A【解析】∵SC 是球O 的直径,∴∠CAS=∠CBS=90°. ∵BA=BC=AC=1,SC=2,∴AS=BS=√3.取AB 的中点D,显然AB ⊥CD,AB ⊥SD,∴AB ⊥平面SCD. 在△CDS 中,CD=√32,DS=√112,SC=2,利用余弦定理可得cos ∠CDS=CD 2+SD 2-SC 22CD ·SD =-√33, ∴sin ∠√2√33∴S △CDS =12×√32×√112×√2√33=√22,∴V=V B-CDS +V A-CDS =13×S △CDS ×BD+13S △CDS ×AD=13S △CDS ×BA=13×√22×1=√26.70.(2012·全国·文T8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为√2,则此球的体积为( )A.√6πB.4√3πC.4√6πD.6√3π【答案】B【解析】设球O的半径为R,则R=√12+(√2)2=√3,故V球=43πR3=4√3π.71.(2012·全国·理T7文T7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.18【答案】B【解析】由三视图可推知,几何体的直观图如图所示,可知AB=6,CD=3,PC=3,CD垂直平分AB,且PC⊥平面ACB,故所求几何体的体积为13×(12×6×3)×3=9.72.(2012·大纲全国·理T4文T8)已知正四棱柱ABCD-A1B1C1D1中,AB=2,CC1=2√2,E为CC1的中点,则直线AC1与平面BED的距离为( )A.2B.√3C.√2D.1【答案】D【解析】连接AC交BD于点O,连接OE,∵AB=2,∴AC=2√2.又CC1=2√2,则AC=CC1.作CH⊥AC1于点H,交OE于点M.由OE为△ACC1的中位线知,CM⊥OE,M为CH的中点.由BD⊥AC,EC⊥BD知,BD⊥面EOC,∴CM⊥BD.∴CM⊥面BDE.∴HM为直线AC1到平面BDE的距离.又△ACC 1为等腰直角三角形,∴CH=2.∴HM=1.73.(2011·陕西·文T5)某几何体的三视图如图所示,则它的体积为( ) A.8-2π3B.8-π3C.8-2πD.2π3【答案】A【解析】由几何体的三视图可知,原几何体是一个棱长为2的正方体且内部挖掉一个底面与正方体上底面内切,高等于正方体棱长的圆锥.正方体的体积为8,圆锥的体积为13πr 2h=2π3,所以所求几何体的体积为8-2π3. 74.(2011·全国·理T6文T8)在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为( )【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示: 可知侧视图为等腰三角形,且轮廓线为实线,故选D.75.(2011·重庆·理T9)高为√24的四棱锥S-ABCD 的底面是边长为1的正方形,点S,A,B,C,D 均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为( )A.√24B.√22C.1D.√2【答案】C【解析】如图所示,过S点作SE⊥AC,交AC的延长线于E点,则SE⊥面ABCD,故SE=√24.设球心为O,A,B,C,D 所在圆的圆心为O 1,则O1为AC,BD的交点.在Rt△OAO1中,AO1=√22,AO=1,故OO1=√1-(√22)2=√22.故OO1=2SE.过S点作SO2⊥O1O于点O2,则O2为OO1的中点.故△OSO1为等腰三角形,则有O1S=SO=1.76.(2011·辽宁·理T8)如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是( )A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【答案】D【解析】∵SD⊥面ABCD,AC⊂面ABCD,∴SD⊥AC,又∵ABCD为正方形,∴AC⊥BD,又SD∩BD=D,∴AC⊥面SBD,AC⊥SB,故A对;∵AB∥CD,CD⊂面CDS,AB在面CDS外,∴AB∥平面SCD,故B对;设AC∩BD=O,由上面的分析知,∠ASO与∠CSO分别是SA与平面SBD,SC与平面SBD所成的角,易知∠ASO与∠CSO相等,故C对;∵CD⊥SD,CD⊥AD,AD∩SD=D,∴CD⊥平面SAD,∴DC⊥SA,DC与SA所成角为90°.又∵AB∥CD,∴AB与SC所成的角即为∠SCD,是锐角,故D错.77.(2010·浙江·理T6)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( )A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m【答案】B【解析】对于A:若l⊥m,m⊂α,则l⊂α可能成立,l⊥α不一定成立,A错误;对于B:若l⊥α,l∥m,则m⊥α,B正确;对于C,若l∥α,m⊂α,l∥m或l与m异面,故C错误;对于D,若l∥α,m∥α,则l∥m或l与m 相交或l与m异面,故D错误.78.(2010·山东·文T4)在空间,下列命题正确的是( )A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【答案】D【解析】对于A,平行直线的平行投影也可能平行或为两个点,故A错误;对于B,平行于同一直线的两个平面也可能相交,故B错误;对于C,垂直于同一平面的两个平面也可能相交,故C错误;由线面垂直的性质知D正确.故选D.79.(2010·全国·理T10)设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为( )A.πa2B.7πa2C.11πa2D.5πa2【答案】B【解析】如图,O1,O分别为上、下底面的中心,D为O1O的中点,则DB为球的半径r,有r=DB=√OD2+OB2=√a2 4+a23=√7a212,∴S表=4πr2=4π×7a 212=73πa2.80.(2010·全国·文T7)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为( )A.3πa2B.6πa2C.12πa2D.24πa2【答案】B【解析】长方体体对角线长等于球的直径,2R=√a 2+a 2+(2a )2=√6a,R=√62a,S=4πR 2=4π·6a 24=6πa 2.81.(2010·大纲全国·理T12,难度)已知在半径为2的球面上有A,B,C,D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为( ) A.2√33 B.4√33 C.2√3 D.8√33【答案】B【解析】过CD 作平面PCD,使AB ⊥平面PCD,交AB 于P.设点P 到CD 的距离为h,则有 V 四面体ABCD =13×2×12×2×h=23h.当直径通过AB 与CD 的中点时,h max =2√22-12=2√3.故V max =4√33.82.(2019·全国3·理T16文T16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD-A 1B 1C 1D 1挖去四棱锥O-EFGH 后所得的几何体,其中O 为长方体的中心,E,F,G,H 分别为所在棱的中点,AB=BC=6 cm,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为 g.【答案】118.8【解析】由题意得,四棱锥O-EFGH 的底面积为4×6-4×12×2×3=12(cm 2),点O 到平面BB 1C 1C 的距离为3 cm,则此四棱锥的体积为V 1=13×12×3=12(cm 3).又长方体ABCD-A 1B 1C 1D 1的体积为V 2=4×6×6=144(cm 3), 则该模型的体积为V=V 2-V 1=144-12=132(cm 3). 故其质量为0.9×132=118.8(g).83.(2019·天津·理T11文T12)已知四棱锥的底面是边长为√2的正方形,侧棱长均为√5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该 圆柱的体积为 . 【答案】π4【解析】由底面边长为√2,可得OC=1.设M 为VC 的中点,O 1M=12OC=12, O 1O=12VO,VO=√VC 2-OC 2=2, ∴O 1O=1.V 柱=π·O 1M 2·O 1O=π×122×1=π4.84.(2019·江苏·T9)如图,长方体ABCD-A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E-BCD 的体积是 .【答案】10【解析】∵长方体ABCD-A 1B 1C 1D 1的体积为120, ∴AB ·BC ·CC 1=120.∵E 为CC 1的中点,CC 1⊥底面ABCD,∴CE 为三棱锥E-BCD 的底面BCD 上的高,CE=12CC 1, ∴V E-BCD =13×12AB ·BC ·CE =13×12AB ·BC ·12CC 1=112AB ·BC ·CC 1=112×120=10.85.(2019·全国2·理T16文T16)中国有悠久的金石文T 化,印信是金石文T 化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有 个面,其棱长为 .【答案】26 -1【解析】由题图2可知第一层与第三层各有9个面,共计18个面,第二层共有8个面,所以该半正多面体共有18+8=26个面.如图,设该半正多面体的棱长为x,则AB=BE=x,延长CB 与FE 的延长线交于点G,延长BC 交正方体的另一条棱于点H.由半正多面体的对称性可知,△BGE 为等腰直角三角形,所以BG=GE=CH=√2x,所以GH=2×√22x+x=(√2+1)x=1,解得x=√2+1=√2-1,即该半正多面体的棱长为√2-1.86.(2019·全国1·文T16)已知∠ACB=90°,P 为平面ABC 外一点,PC=2,点P 到∠ACB 两边AC,BC 的距离均为√3,那么P 到平面ABC 的距离为 . 【答案】√2【解析】作PD,PE 分别垂直于AC,BC,PO ⊥平面ABC.连接CO,OD,知CD ⊥PD,CD ⊥PO,PD ∩PO=P, ∴CD ⊥平面PDO,OD ⊂平面PDO,∴CD ⊥OD. ∵PD=PE=√3,PC=2,∴sin ∠PCE=sin ∠PCD=√32,∴∠PCB=∠PCA=60°.∴PO ⊥CO,CO 为∠ACB 平分线, ∴∠OCD=45°,∴OD=CD=1,OC=√2. 又PC=2,∴PO=√4-2=√2.87.(2018·全国2·文T16)已知圆锥的顶点为S,母线SA,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8.则该圆锥的体积为 .【答案】8π 【解析】∵SA ⊥SB, ∴S △SAB =12·SA ·SB=8.∴SA=4.过点S 连接底面圆心O,则∠SAO=30°. ∴SO=2,OA=2√3.∴V=13πr 2h=13×π×(2√3)2×2=8π.88.(2018·天津·理T11)已知正方体ABCD-A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH 的体积为 . 【答案】112【解析】由题意可知,四棱锥M-EFGH 的底面EFGH 为正方形且边长为√22,其高为12, 所以V 四棱锥M-EFGH =1×(√2)2×1=1. 89.(2018·江苏·T10)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .【答案】43【解析】由题图可知,该多面体为两个全等的正四棱锥的组合体,且正四棱锥的高为1,底面正方形的边长为√2,所以该多面体的体积为2×13×1×(√2)2=43.90.(2018·全国2·理T16)已知圆锥的顶点为S,母线SA,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为5√15.则该圆锥的侧面积为_____________. 【答案】40√2π【解析】如图,设O 为底面圆圆心. ∵SA 与底面成45°角, ∴△SAO 为等腰直角三角形. 设OA=r,则SO=r,SA=SB=√2r. ∵在△SAB 中,cos ∠ASB=78, ∴sin ∠ASB=√158,∴S △SAB =12SA ·SB ·sin ∠ASB=12(√2r)2·√158=5√15, 解得r=2√10,∴SA=√2r=4√5,即母线长l=4√5, ∴S 圆锥侧=πrl=π×2√10×4√5=40√2π.91.(2017·全国1·理T16)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC 的中心为O.D,E,F 为圆O 上的点,△DBC,△ECA,△FAB 分别是以BC,CA,AB 为底边的等腰三角形,沿虚线剪开后,分别以BC,CA,AB 为折痕折起△DBC,△ECA,△FAB,使得D,E,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 .【答案】4【解析】如图所示,连接OD,交BC 于点G. 由题意知OD ⊥BC,OG=√36BC. 设OG=x,则BC=2√3x,DG=5-x, 三棱锥的高h=√DG 2-OG 2= √25-10x +x 2-x 2=√25-10x .因为S △ABC =12×2√3x ×3x=3√3x 2,所以三棱锥的体积V=13S △ABC ·h=√3x 2·√25-10x =√3·√25x 4-10x 5.令f(x)=25x 4-10x 5,x ∈(0,52),则f'(x)=100x 3-50x 4.令f'(x)=0,可得x=2,则f(x)在(0,2)单调递增,在(2,52)单调递减, 所以f(x)max =f(2)=80.所以V≤√3×√80=4√15,所以三棱锥体积的最大值为4√15.92.(2017·全国2·文T15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 . 【答案】14π【解析】由题意可知长方体的体对角线长等于其外接球O 的直径2R,即2R=2+22+12=√14,所以球O 的表面积S=4πR 2=14π.93.(2017·全国1·文T16)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC 的体积为9,则球O 的表面积为 . 【答案】36π【解析】取SC 的中点O,连接OA,OB. 因为SA=AC,SB=BC,所以OA ⊥SC,OB ⊥SC. 因为平面SAC ⊥平面SBC,且OA ⊂平面SAC,所以OA ⊥平面SBC.设OA=r,则V A-SBC =13×S △SBC ×OA=13×12×2r ×r ×r=13r 3, 所以13r 3=9,解得r=3.所以球O 的表面积为4πr 2=36π.94.(2017·天津·理T10文T11)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】9π2.【解析】 设正方体的棱长为a,外接球的半径为R,则2R=√3a.∵正方体的表面积为18,∴6a 2=18. ∴a=√3,R=32.∴该球的体积为V=43πR 3=4π3×278=9π2.95.(2017·江苏·T6)如图,在圆柱O 1O 2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V1V 2的值是________________.【答案】32【解析】设球O的半径为r,则圆柱O1O2的高为2r,故V1V2=πr2·2r43πr3=32,答案为32.96.(2017·全国3·理T16)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)【答案】②③【解析】由题意,AB是以AC为轴,BC为底面半径的圆锥的母线,由AC⊥a,AC⊥b,得AC⊥圆锥底面,在底面内可以过点B,作BD∥a,交底面圆C于点D,如图所示,连接DE,则DE⊥BD,∴DE∥b.连接AD,在等腰三角形ABD 中,设AB=AD=√2,当直线AB与a成60°角时,∠ABD=60°,故BD=√2.又在Rt△BDE中,BE=2,∴DE=√2,过点B作BF∥DE,交圆C于点F,连接AF,由圆的对称性可知BF=DE=√2,∴△ABF为等边三角形,∴∠ABF=60°,即AB与b成60°角,②正确,①错误.由最小角定理可知③正确;很明显,可以满足直线a⊥平面ABC,直线AB与a所成的最大角为90°,④错误.故正确的说法为②③.97.(2016·全国2·理T14)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m ∥n,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号) 【答案】②③④【解析】对于①,若m ⊥n,m ⊥α,n ∥β,则α,β的位置关系无法确定,故错误;对于②,因为n ∥α,所以过直线n 作平面γ与平面α相交于直线c,则n ∥c.因为m ⊥α,所以m ⊥c,所以m ⊥n,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确命题的编号有②③④.98.(2016·天津·理T11)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为 m 3.【答案】2【解析】由三视图知四棱锥高为3,底面平行四边形的底为2,高为1,因此该四棱锥的体积为V=13×(2×1)×3=2.故答案为2.99.(2016·四川·理T13)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .【答案】√33【解析】由三棱锥的正视图知,三棱锥的高为1,底面边长分别为2√3,2,2,所以底面三角形的高为√22-(√3)2=1,所以,三棱锥的体积为V=13×12×2√3×1×1=√33.100.(2015·浙江·理T13)如图,在三棱锥A-BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别为AD,BC 的中点,则异面直线AN,CM 所成的角的余弦值是 .【答案】78【解析】连接DN,取DN 的中点P,连接PM,CP,因为M 是AD 的中点, 故PM ∥AN,则∠CMP 即为异面直线AN,CM 所成的角, 因为AB=AC=BD=CD=3,AD=BC=2,可得AN=CM=DN=2√2, 故MP=PN=√2. 在Rt △PCN中,CP=√PN 2+CN 2=√2+1=√3,由余弦定理,可得cos ∠CMP=CM 2+MP 2-CP 22·CM ·MP=2×22×2=78,故异面直线AN,CM 所成的角的余弦值为78.101.(2014·山东·理T13)三棱锥P-ABC 中,D,E 分别为PB,PC 的中点,记三棱锥D-ABE 的体积为V 1,P-ABC 的体积为V 2,则V 1V 2=________________. 【答案】1【解析】由题意,知V D-ABE =V A-BDE =V 1,V P-ABC =V A-PBC =V 2.因为D,E 分别为PB,PC 中点, 所以S△BDES △PBC=14.设点A 到平面PBC 的距离为d,则V 12=13S △BDE ·d 13S △PBC ·d=S△BDE△PBC=1. 102.(2014·山东·文T13)一个六棱锥的体积为2√3,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 . 【答案】12【解析】根据题意知该六棱锥为正六棱锥,底面正六边形面积为6√3,设六棱锥的高为h,则V=13×6√3h=2√3,解得h=1.设侧面高为h',则h 2+(√3)2=h'2,∴h'=2.所以正六棱锥的侧面积为6×12×2×2=12.103.(2013·北京·理T14)如图,在棱长为2的正方体ABCD-A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .【答案】2√55【解析】如图,过E 点作EE 1垂直底面A 1B 1C 1D 1,交B 1C 1于点E 1,连接D 1E 1,过P 点作PH 垂直于底面A 1B 1C 1D 1,交D 1E 1于点H,P 点到直线CC 1的距离就是C 1H,故当C 1H 垂直于D 1E 1时,P 点到直线CC 1距离最小,此时,在Rt △D 1C 1E 1中,C 1H ⊥D 1E 1,D 1E 1·C 1H=C 1D 1·C 1E 1,∴C 1H=√5=2√55.104.(2013·全国2·文T15)已知正四棱锥O-ABCD 的体积为3√22,底面边长为√3,则以O 为球心,OA 为半径的球的表面积为 .【答案】24π【解析】如图所示,∵V O-ABCD =13×(√3)2×|OO 1|=3√22,∴|OO 1|=3√22, 在Rt △OO 1A 中,|AO 1|=√62,|OA|=√(3√22)2+(√62)2=√6, 即R=√6,∴S 球=4πR 2=24π.105.(2013·全国1·文T15)已知H 是球O 的直径AB 上一点,AH ∶HB=1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为 .【答案】9π2【解析】如图,设球O 的半径为R,则AH=2R 3,OH=R 3.又∵π·EH 2=π,∴EH=1.∵在Rt △OEH 中,R 2=(R 3)2+12,∴R 2=98.∴S 球=4πR 2=9π2.106.(2013·福建·理T12)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是 .【答案】12π【解析】由题意知该几何体是一个正方体内接于球构成的组合体,球的直径等于正方体体对角线长,即2r=√22+22+22=√12,所以r=√3,故该球的表面积为S 球=4πr 2=4π×3=12π. 107.(2012·辽宁·理T16)已知正三棱锥P-ABC,点P,A,B,C 都在半径为√3的球面上,若PA,PB,PC 两两相互垂直,则球心到截面ABC 的距离为 .【答案】√33 【解析】正三棱锥P-ABC 可看作由正方体PADC-BEFG 截得,如图所示,PF 为三棱锥P-ABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a,则3a 2=12,a=2,AB=AC=BC=2√2.S △ABC =1×2√2×2√2×√3=2√3.由V P-ABC =V B-PAC ,得1·h ·S △ABC =1×1×2×2×2,所以h=2√33,因此球心到平面ABC 的距离为√33. 108.(2012·安徽·理T12)某几何体的三视图如图所示,该几何体的表面积是 .【答案】92【解析】由三视图可知,该几何体为底面是直角梯形且侧棱垂直于底面的棱柱,该几何体的表面积为S=2×12×(2+5)×4+[2+5+4+√42+(5-2)2]×4=92. 109.(2011·全国·理T15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB=6,BC=2√3,则棱锥O-ABCD 的体积为 .【答案】8【解析】如图所示,OO'垂直于矩形ABCD 所在的平面,垂足为O',连接O'B,OB,则在Rt △OO'B 中,由OB=4,O'B=2√3,可得OO'=2,故V O-ABCD =13S 矩形ABCD ·OO'=13×6×2√3×2=8√3.110.(2010·全国·理T14文T15)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 .(填入所有可能的几何体前的编号)①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱【答案】①②③⑤【解析】只要判断正视图是不是正三角形就行了.111.(2011·全国·文T16)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .【答案】13【解析】设球面半径为R,圆锥底面半径为r.由题意知,πr 2=316×4πR 2,即r 2=34R 2.如图所示,设体积较小者的圆锥为A-CO 1D,其高为AO 1.体积较大的圆锥为B-CO 1D,其高为O 1B.在Rt △O 1CO中,CO 1=r,CO=R,则OO 1=√R 2-r 2=12R.又∵AO=R,∴AO 1=R 2.又∵O 1B=O 1O+OB=12R+R=32R,∴AO 1BO 1=R 232R =13. 112.(2019·全国1·文T19)如图,直四棱柱ABCD-A 1B 1C 1D 1的底面是菱形,AA 1=4,AB=2,∠BAD=60°,E,M,N 分别是BC,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE;(2)求点C 到平面C 1DE 的距离.【解析】(1)证明连接B 1C,ME.因为M,E 分别为BB 1,BC 的中点,所以ME ∥B 1C,且ME=12B 1C.又因为N 为A 1D 的中点,所以ND=12A 1D.由题设知A 1B 1 DC,可得B 1C A 1D,故ME ND,因此四边形MNDE 为平行四边形,MN ∥ED.又MN ⊄平面C 1DE,所以MN ∥平面C 1DE.(2)解过C 作C 1E 的垂线,垂足为H.由已知可得DE ⊥BC,DE ⊥C 1C,所以DE ⊥平面C 1CE,故DE ⊥CH.从而CH ⊥平面C 1DE,故CH 的长即为C 到平面C 1DE 的距离.由已知可得CE=1,C 1C=4,所以C 1E=√17,故CH=4√1717.从而点C 到平面C 1DE 的距离为4√1717.113.(2019·天津·文T17)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC ⊥平面PCD,PA⊥CD,CD=2,AD=3.(1)设G,H分别为PB,AC的中点,求证:GH∥平面PAD;(2)求证:PA⊥平面PCD;(3)求直线AD与平面PAC所成角的正弦值.【解析】(1)证明连接BD,易知AC∩BD=H,BH=DH.又由BG=PG,故GH∥PD.又因为GH⊄平面PAD,PD⊂平面PAD,所以GH∥平面PAD.(2)证明取棱PC的中点N,连接DN,依题意,得DN⊥PC,又因为平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,所以DN⊥平面PAC,又PA⊂平面PAC,故DN⊥PA.又已知PA⊥CD,CD∩DN=D,所以PA⊥平面PCD.(3)解连接AN,由(2)中DN⊥平面PAC,可知∠DAN为直线AD与平面PAC所成的角.因为△PCD为等边三角形,CD=2且N为PC的中点,所以DN=√3,又DN⊥AN,在Rt△AND中,sin∠DAN=DNAD =√33.所以,直线AD与平面PAC所成角的正弦值为√33.114.(2019·全国2·文T17)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB 1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.【解析】(1)证明由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,所以BE⊥平面EB1C1.(2)解由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.所以,四棱锥E-BB1C1C的体积V=13×3×6×3=18.115.(2019·江苏·T16)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【解析】证明(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.116.(2019·全国3·文T19)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.【解析】(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)解取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=√3,故DM=2.所以四边形ACGD的面积为4.117.(2018·全国1·文T18)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q-ABP的体积.【解析】(1)由已知可得,∠BAC=90°,BA⊥AC.又BA⊥AD,所以AB⊥平面ACD.又AB⊂平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=3√2.又BP=DQ=23DA,所以BP=2√2.作QE⊥AC,垂足为E,则QE 13DC.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥Q-APB的体积为V Q-ABP=13×QE×S△ABP=13×1×12×3×2√2sin 45°=1.118.(2018·全国3·文T19)如图,矩形ABCD所在平面与半⏜所在平面垂直,M是CD⏜上异于C,D的点.圆弧CD(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【解析】(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故⏜上异于C,D的点,且DC为直径,所以DM⊥CM.BC⊥DM.因为M为CD又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连接AC交BD于O.因为ABCD为矩形,所以O为AC中点.连接OP,因为P为AM中点,所以MC∥OP.MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.119.(2018·北京·文T18)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF∥平面PCD.【解析】证明(1)∵PA=PD,且E为AD的中点,∴PE⊥AD.∵底面ABCD为矩形,∴BC∥AD,∴PE⊥BC.(2)∵底面ABCD为矩形,∴AB⊥AD.∵平面PAD⊥平面ABCD,∴AB⊥平面PAD.∴AB⊥PD.又PA⊥PD,PA∩AB=A,∴PD⊥平面PAB.∵PD⊂平面PCD,∴平面PAB⊥平面PCD.(3)如图,取PC的中点G,连接FG,GD.∵F,G分别为PB和PC的中点,。

高中数学立体几何大题综合归类(原卷版)

高中数学立体几何大题综合归类(原卷版)

高中数学立体几何大题综合归类(原卷版)目录题型01平行:无交线型 (1)题型02平行:线面平行探索性 (3)题型03平行:面面平行探索性 (4)题型04垂直:线面垂直探索性 (5)题型05垂直:面面垂直翻折探索性 (7)题型06证明与建系:斜棱柱垂面法建系 (8)题型07证明与建系:斜棱柱垂线法建系 (10)题型08证明与建系:三棱柱投影法建系 (12)题型09证明与建系:角平分线法建系 (13)题型10二面角延长线法 (15)题型11翻折型 (16)题型12台体型 (18)高考练场..............................................................................................................................................................................19热点题型归纳题型01平行:无交线型【解题攻略】两个平面相交:1.两点确定一条直线,只需确定两平面的两个公共点即可2.由于两平面有一个公共点A ,再找一个公共点即可确定交线3.一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行,在平面内,过两平面的公共点作直线与已知直线平行,则此直线即为两平面的交线【典例1-1】如图,在平行四边形ABCD 中,60ABC ∠=︒,24==A D A B ,E 为AD 的中点,以EC 为折痕将CDE △折起,使点D 到达点P 的位置,且=10PB ,F ,G 分别为BC ,PE 的中点.(1)证明://PB 平面AFG .(2)若平面PAB 与平面PEF 的交线为l ,求直线l 与平面PBC 所成角的正弦值.【变式1-1】如图所示,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,//AB CD ,24AB CD ==,0=60BAD ∠,侧棱1DD ⊥底面ABCD 且1DD DC =.(1)指出棱1CC 与平面1ADB 的交点E 的位置(无需证明);(2)求点B 到平面1ADB 的距离.【变式1-2】如图,P 为圆锥的顶点,O 为圆锥底面的圆心,圆锥的底面直径4AB =,母线22PH =,M 是PB 的中点,四边形OBCH 为正方形.设平面POH ⋂平面PBC l =,证明://l BC ;.题型02平行:线面平行探索性【解题攻略】平行的常用构造方法①三角形中位线法;②平行四边形线法;③比例线段法.注意:平行构造主要用于:①异面直线求夹角;②平行关系的判定.【典例1-1】如图,在三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112AC A C A A ===,AB BC =,且AB BC ⊥,O 为AC 中点.(1)求证AC ⊥平面1A OB(2)在1BC 上是否存在一点E ,使得OE 平面1A AB ,若不存在,说明理由;若存在,确定点E 的位置.【变式1-1】如图,四边形ABCD 中,AB AD ⊥,//AD BC ,6AD =,24BC AB ==,E ,F 分别在BC ,AD 上,//EF AB ,现将四边形ABCD 沿EF 折起,使BE EC ⊥.(1)若1BE =,在折叠后的线段AD 上是否存在一点P ,使得//CP 平面ABEF ?若存在,求出AP PD 的值;若不存在,说明理由.(2)求三棱锥A CDF -的体积的最大值,并求出此时点F 到平面ACD 的距离.【变式1-2】如图,在直角梯形ABCD 中,AB ∥DC ,∠BAD =90°,AB =4,AD =2,DC =3,点E 在CD 上,且DE =2,将△ADE 沿AE 折起,使得平面ADE ⊥平面ABCE ,G 为AE 中点.(1)求证:DG ⊥平面ABCE ;(2)求四棱锥D -ABCE 的体积;(3)在线段BD 上是否存在点P ,使得CP ∥平面ADE ?若存在,求BP BD的值;若不存在,请说明理由.题型03平行:面面平行探索性【解题攻略】证明平行(1)线线平行:设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)线面平行:设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(3)面面平行:设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.【典例1-1】在三棱柱111ABC A B C 中,(1)若,,,E F G H 分别是1111,,,AB AC A B AC 的中点,求证:平面1//EFA 平面BCHG .(2)若点1,D D 分别是11,AC AC 上的点,且平面1//BC D 平面11AB D ,试求AD DC 的值.【变式1-1】.在长方体1111ABCD A B C D -中,1222AB BC AA ===,P 为11A B 的中点.已知过点1 A的平面α与平面1BPC 平行,平面α与直线11,AB C D 分别相交于点M ,N ,请确定点M ,N的位置;【变式1-2】已知正方体1111ABCD A B C D -中,P 、Q 分别为对角线BD 、1CD 上的点,且123CQ BP QD PD ==.(1)求证://PQ 平面11A D DA ;(2)若R 是AB 上的点,AR AB的值为多少时,能使平面//PQR 平面11A D DA ?请给出证明.题型04垂直:线面垂直探索性【解题攻略】垂直的常见构造:①等腰三角形三线合一法;②勾股定理法;③投影法.④菱形的对角线互相垂直【典例1-1】已知正方体1111ABCD A B C D -的棱长为2,E 、F 、G 分别是1AA 、11A B 、11AD 的中点.(1)求证://EF 平面1BC D ;(2)在线段BD 上是否存在点H ,使得EH ⊥平面1BC D ?若存在,求线段BH 的长;若不存在,请说明理由;(3)求EF 到平面1BC D 的距离.【变式1-1】如图,在四棱锥S -ABCD 中,四边形ABCD 是边长为2的菱形,∠ABC =60°,△SAD 为正三角形.侧面SAD ⊥底面ABCD ,E ,F 分别为棱AD ,SB 的中点.(1)求证:AF ∥平面SEC ;(2)求证:平面ASB ⊥平面CSB ;(3)在棱SB 上是否存在一点M ,使得BD ⊥平面MAC ?若存在,求BMBS 的值;若不存在,请说明理由.【变式1-2】如图,在直三棱柱111ABC A B C -中,90ABC ∠= ,1AB BC ==,13AA =,M 为棱AC 上靠近A 的三等分点,N 为棱11AB 上靠近1A 的三等分点.(1)证明://MN 平面11BB C C ;(2)在棱1BB 上是否存在点D ,使得1C D ⊥面1B MN ?若存在,求出1B D 的大小并证明;若不存在,说明理由.题型05垂直:面面垂直翻折探索性【解题攻略】翻折1.翻折前后,在同一平平面内的点线关系不变2.翻折过程中是否存在垂直或者平行等特殊位置关系3.翻折过程中,角度是否为定值4.翻折过程中,体积是否存在变化【典例1-1】如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PA =AB =BC =3,AD =CD =1,∠ADC =120°,点M是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB .(1)证明:MN //平面PDC ;(2)在线段BC 上是否存在一点Q ,使得平面MNQ ⊥平面PAD ,若存在,求出点Q 的位置;若不存在,请说明理由.【变式1-1】如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.【变式1-2】如图(1),点E是直角梯形ABCD底边CD上的一点,∠ABC=90°,BC=CE=1,AB=DE =2,将DAE沿AE折起,使得D-AE-B成直二面角,连接CD和BD,如图(2).(1)求证:平面ABD 平面BCD;(2)在线段BD上确定一点F,使得CF∥平面ADE.题型06证明与建系:斜棱柱垂面法建系【解题攻略】斜棱柱垂线型建系如果存在垂线(投影型)斜棱柱,则可以直接借助垂线作为z轴建系,下底面,可以寻找或者做出一对垂线作为xy轴。

【2023高考必备】2013-2022十年全国高考数学真题分类(全国通用):立体几何选填题(解析版)

【2023高考必备】2013-2022十年全国高考数学真题分类(全国通用):立体几何选填题(解析版)

3 3
时等号成立,故选:C
【题目栏目】立体几何\球的问题\球的其它问题 【题目来源】2022 年全国乙卷理科·第 9 题
5.(2022 年全国乙卷理科·第 7 题) 在正方体 ABCD A1B1C1D1 中,E,F 分别为 A B , B C 的中点,则
()
A.平面 B1 E F 平面 BD D1
乙圆锥的高 h2
l2
1 l2 9
22 3
l
,所以 V甲 V乙
1 3
r12
h1
1 3
r2
2
h2
4l2 5 l 93 1l2 2 2 l 93
10 .
故选:C.
【题目栏目】立体几何\空间几何体的结构特征及其直观图、三视图\空间几何体的展开图问题 【题目来源】2022 年全国甲卷理科·第 9 题
2.(2022 年全国甲卷理科·第 7 题) 在长方体 ABCD A1B1C1D1 中,已知 B1D 与平面 ABCD 和平面 AA1B1B 所成
2013-2022 十年全国高考数学真题分类汇编
专题 16 立体几何选填题
一、选择题 1.(2022 年全国甲卷理科·第 9 题) 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为 2π ,侧面积
分别为
S甲

S乙
,体积分别为 V甲
和 V乙
.若
S甲 S乙
=2
,则
V甲 V乙
=
(
)
A. 5 【答案】C
tan BAE c 2 ,所以 BAE 30 ,B 错误; a2
对于 C, AC a2 b2 3c , CB1 b2 c2 2c , AC CB1 ,C 错误;
对于

十年高考真题分类汇编 数学 专题 立体几何

十年高考真题分类汇编  数学 专题 立体几何

十年高考真题分类汇编(2010—2019)数学专题10立体几何1.(2019·浙江·T4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A.158B.162C.182D.324 【答案】B【解析】由三视图得该棱柱的高为6,底面五边形可以看作是由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2+62×3+4+62×3×6=162.2.(2019·全国1·理T12)已知三棱锥P-ABC 的四个顶点在球O 的球面上,PA=PB=PC,△ABC 是边长为2的正三角形,E,F 分别是PA,AB 的中点,∠CEF=90°,则球O 的体积为( )A.8√6πB.4√6πC.2√6πD.√6π【答案】D【解析】设PA=PB=PC=2x.∵E,F 分别为PA,AB 的中点,∴EF ∥PB,且EF=12PB=x.∵△ABC 为边长为2的等边三角形,∴CF=√3.又∠CEF=90°,∴CE=√3-x 2,AE=12PA=x.在△AEC 中,由余弦定理可知cos ∠EAC=x 2+4-(3-x 2)2×2·x . 作PD ⊥AC 于点D,∵PA=PC,∴D 为AC 的中点,cos ∠EAC=AD PA =12x .∴x 2+4-3+x 24x=12x . ∴2x 2+1=2.∴x 2=12,即x=√22.∴PA=PB=PC=√2.又AB=BC=AC=2,∴PA ⊥PB ⊥PC.∴2R=√2+2+2=√6.∴R=√62.∴V=43πR 3=43π×6√68=√6π.故选D.3.(2019·全国2·理T7文T7)设α,β为两个平面,则α∥β的充要条件是( )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知,“α内有两条相交直线与β平行”是“α∥β”的充分条件.由面面平行的性质知,“α内有两条相交直线与β平行”是“α∥β”的必要条件,故选B.4.(2019·全国3·理T8文T8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD,M 是线段ED 的中点,则( )A.BM=EN,且直线BM,EN 是相交直线B.BM ≠EN,且直线BM,EN 是相交直线C.BM=EN,且直线BM,EN 是异面直线D.BM ≠EN,且直线BM,EN 是异面直线【答案】B【解析】如图,连接BD,BE.在△BDE 中,N 为BD 的中点,M 为DE 的中点,∴BM,EN 是相交直线,排除选项C 、D.作EO ⊥CD 于点O,连接ON.作MF ⊥OD 于点F,连接BF.∵平面CDE ⊥平面ABCD,平面CDE ∩平面ABCD=CD,EO ⊥CD,EO ⊂平面CDE,∴EO ⊥平面ABCD.同理,MF ⊥平面ABCD.∴△MFB 与△EON 均为直角三角形.设正方形ABCD 的边长为2,易知EO=√3,ON=1,MF=√32,BF=√22+94=52,则EN=√3+1=2,BM=√34+254=√7, ∴BM ≠EN.故选B.5.(2019·浙江·T8)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P-AC-B 的平面角为γ,则( )A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【答案】B【解析】如图G 为AC 中点,点V 在底面ABC 上的投影为点O,则点P 在底面ABC 上的投影点D 在线段AO 上,过点D 作DE 垂直AE,易得PE ∥VG,过点P 作PF ∥AC 交VG 于点F,过点D 作DH ∥AC,交BG 于点H,则α=∠BPF,β=∠PBD,γ=∠PED,所以cos α=PF PB =EG PB =DH PB <BD PB =cos β,所以α>β,因为tan γ=PD ED >PD BD=tan β,所以γ>β.故选B.6.(2018·全国3·理T10文T12)设A,B,C,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为9√3,则三棱锥D-ABC 体积的最大值为( )A.12√3B.18√3C.24√3D.54√3 【答案】B【解析】由△ABC 为等边三角形且面积为9√3,设△ABC 边长为a,则S=12a ·√32a=9√3.∴a=6,则△ABC 的外接圆半径r=√32×23a=2√3<4.设球的半径为R,如图,OO 1=√R 2-r 2=√42-(2√3)2=2.当D 在O 的正上方时,V D-ABC =1S △ABC ·(R+|OO 1|)=1×9√3×6=18√3,最大.故选B.7.(2018·全国1·理T7文T9)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A.2√17B.2√5C.3D.2【答案】B【解析】如图所示,易知N 为CD⏜的中点,将圆柱的侧面沿母线MC 剪开,展平为矩形MCC'M',易知CN=14CC'=4,MC=2,从M 到N 的路程中最短路径为MN.在Rt△MCN中,MN=√MC2+NC2=2√5.8.(2018·全国3·理T3文T3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应为A中图形.9.(2018·北京·理T5文T6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1B.2C.3D.4【答案】C【解析】由该四棱锥的三视图,得其直观图如图.由正视图和侧视图都是等腰直角三角形,知PD⊥平面ABCD,所以侧面PAD和PDC都是直角三角形.由俯视图为直角梯形,易知DC⊥平面PAD.又AB∥DC,所以AB⊥平面PAD,所以AB⊥PA,所以侧面PAB也是直角三角形.易知PC=2√2,BC=√5,PB=3,从而△PBC不是直角三角形.故选C.10.(2018·上海·T15)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图.若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是( )A.4B.8C.12D.16【答案】D【解析】设正六棱柱为ABCDEF-A1B1C1D1E1F1,以侧面AA1B1B,AA1F1F为底面矩形的阳马有E-AA 1B 1B,E 1-AA 1B 1B,D-AA 1B 1B,D 1-AA 1B 1B,C-AA 1F 1F,C 1-AA 1F 1F,D-AA 1F 1F,D 1-AA 1F 1F,共8个,以对角面AA 1C 1C,AA 1E 1E 为底面矩形的阳马有F-AA 1C 1C,F 1-AA 1C 1C,D-AA 1C 1C,D 1-AA 1C 1C,B-AA 1E 1E,B 1-AA 1E 1E,D-AA 1E 1E,D 1-AA 1E 1E,共8个,所以共有8+8=16(个),故选D.11.(2018·全国1·文T10)在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A.8B.6√2C.8√2D.8√3【答案】C【解析】在长方体ABCD-A 1B 1C 1D 1中,AB ⊥平面BCC 1B 1,连接BC 1,则∠AC 1B 为AC 1与平面BB 1C 1C 所成的角,∠AC 1B=30°,所以在Rt △ABC 1中,BC 1=AB tan∠AC 1B =2√3,又BC=2,所以在Rt △BCC 1中,CC 1=√(2√3)2-22=2√2, 所以该长方体体积V=BC ×CC 1×AB=8√2.12.(2018·全国2·理T9)在长方体ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1=√3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.√56C.√55D.√22 【答案】C【解析】以DA,DC,DD 1所在直线为坐标轴建立空间直角坐标系如图,则D 1(0,0,√3),A(1,0,0),D(0,0,0),B 1(1,1,√3).∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,√3),DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,√3).设异面直线AD 1与DB 1所成的角为θ.∴cos θ=|AD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·DB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |AD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||DB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||=|2×√5|=√55.∴异面直线AD 1与DB 1所成角的余弦值为√55. 13.(2018·全国2·文T9)在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( )A.√22B.√32C.√52D.√72 【答案】C【解析】如图,因为AB∥CD,所以AE与CD所成的角为∠EAB. 在Rt△ABE中,设AB=2,则BE=√5,则tan∠EAB=BEAB =√52,所以异面直线AE与CD所成角的正切值为√52.14.(2018·全国1·文T5)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.12√2πB.12πC.8√2πD.10π【答案】B【解析】过直线O1O2的平面截该圆柱所得的截面为圆柱的轴截面,设底面半径为r,母线长为l,因为轴截面是面积为8的正方形,所以2r=l=2√2,r=√2,所以圆柱的表面积为2πrl+2πr2=8π+4π=12π.15.(2018·浙江·T3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.2B.4C.6D.8【答案】C【解析】由三视图可知该几何体为直四棱柱.∵S底=12×(1+2)×2=3,h=2,∴V=Sh=3×2=6.16.(2017·全国2·理T4文T6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π 【答案】B【解析】由三视图知,该几何体是一个圆柱截去一部分所得,如图所示.其体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V=π×32×4+π×32×6×12=63π.17.(2017·全国1·理T7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【答案】B【解析】由三视图可还原出几何体的直观图如图所示.该五面体中有两个侧面是全等的直角梯形,且该直角梯形的上底长为2,下底长为4,高为2,则S 梯=(2+4)×2÷2=6,所以这些梯形的面积之和为12.18.(2017·全国2·理T10)已知直三棱柱ABC-A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.√32B.√155C.√105D.√33 【答案】C【解析】方法一:把三棱柱ABC-A 1B 1C 1补成四棱柱ABCD-A 1B 1C 1D 1,如图,连接C 1D,BD,则AB 1与BC 1所成的角为∠BC 1D.由题意可知BC 1=√2,BD=√22+12-2×2×1×cos60°=√3,C 1D=AB 1=√5.可知B C 12+BD 2=C 1D 2, 所以cos ∠BC 1D=√2√5=√105,故选C.方法二:以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图所示.由已知条件知B 1(0,0,0),B(0,0,1),C 1(1,0,0),A(-1,√3,1),则BC 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,-√3,-1).所以cos<AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ >=AB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |AB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√5×√2=√105.所以异面直线AB 1与BC 1所成角的余弦值为√105.19.(2017·北京·理T7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3√2B.2√3C.2√2D.2【答案】B【解析】由题意可知,直观图为四棱锥A-BCDE(如图所示),最长的棱为正方体的体对角线AE=√22+22+22=2√3.故选B.20.(2017·全国3·理T8文T9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .π B.3π4C.π2D.π4【答案】B【解析】由题意可知球心即为圆柱体的中心,画出圆柱的轴截面如图所示,则AC=1,AB=12,底面圆的半径r=BC=√32,所以圆柱的体积是V=πr 2h=π×(√32)2×1=3π4,故选B.21.(2017·全国1·文T6)如图,在下列四个正方体中,A,B 为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )【答案】A【解析】易知选项B 中,AB ∥MQ,且MQ ⊂平面MNQ,AB ⊄平面MNQ,则AB ∥平面MNQ;选项C 中,AB ∥MQ,且MQ ⊂平面MNQ,AB ⊄平面MNQ,则AB ∥平面MNQ;选项D 中,AB ∥NQ,且NQ ⊂平面MNQ,AB ⊄平面MNQ,则AB ∥平面MNQ,故排除选项B,C,D;故选A.4.(2016·浙江·理T2文T2)已知互相垂直的平面α,β交于直线l,若直线m,n 满足m ∥α,n ⊥β,则( ) A.m ∥l B.m ∥nC.n ⊥lD.m ⊥n 【答案】C【解析】对于选项A,∵α∩β=l ,∴l ⊂α,∵m ∥α,∴m 与l 可能平行,也可能异面,故选项A 不正确; 对于选项B,D,∵α⊥β,m ∥α,n ⊥β,∴m 与n 可能平行,可能相交,也可能异面,故选项B,D 不正确. 对于选项C,∵α∩β=l ,∴l ⊂β. ∵n ⊥β,∴n ⊥l.故选C.22.(2016·天津·文T3)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B【解析】由题意得该长方体沿相邻三个面的对角线截去一个棱锥,如下图所示.易知其左视图为B 项中图.故选B.23.(2016·全国3·理T10文T11)在封闭的直三棱柱ABC-A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC,AB=6,BC=8,AA 1=3,则V 的最大值是( ) A.4π B.9π2C.6πD.32π3【答案】B【解析】先计算球与直三棱柱三个侧面相切的球的半径,再和与直三棱柱两底面相切的球的半径相比较,半径较小的球即为所求.设球的半径为R,∵AB ⊥BC,AB=6,BC=8,∴AC=10.当球与直三棱柱的三个侧面相切时,有12(6+8+10)×R=12×6×8,此时R=2;当球与直三棱柱两底面相切时,有2R=3,此时R=32.所以在封闭的直三棱柱中,球的最大半径只能为32,故最大体积V=4π(3)3=9π.24.(2016·全国1·文T4)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12πB. πC.8πD.4π【答案】A【解析】设正方体的棱长为a,由a3=8,得a=2.由题意可知,正方体的体对角线为球的直径,故2r=2则r=√3.所以该球的表面积为4π×(√3)2=12π,故选A.25.(2016·全国1·理T11文T11)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )A.√32B.√22C.√33D.13【答案】A【解析】∵α∥平面CB1D1,平面ABCD∥平面A1B1C1D1,α∩平面ABCD=m,平面CB1D1∩平面A1B1C1D1=B1D1,∴m∥B1D1.∵α∥平面CB1D1,平面ABB1A1∥平面DCC1D1,α∩平面ABB1A1=n,平面CB1D1∩平面DCC1D1=CD1,∴n∥CD1.∴B1D1,CD1所成的角等于m,n所成的角,即∠B1D1C等于m,n所成的角.∵△B1D1C为正三角形,∴∠B1D1C=60°,∴m,n所成的角的正弦值为√32.26.(2016·全国1·理T6文T7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π【答案】A【解析】由三视图可知该几何体是球截去18后所得几何体,则78×4π3×R 3=28π3,解得R=2,故其表面积为78×4πR 2+34×πR 2=14π+3π=17π. 27.(2016·全国2·理T6文T7)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 ( )A.20πB.24πC.28πD.32π 【答案】C【解析】因为原几何体由同底面的一个圆柱和一个圆锥构成,所以其表面积为S=π×(42)2+4π×4+12×4π×√(2√3)2+22=28π,故选C.28.(2016·全国3·理T9文T10)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ) A.18+36√5 B.54+18√5 C.90D.81【答案】B【解析】由题意知该几何体为四棱柱,且四棱柱的底面是边长为3的正方形,侧棱长为3√5,所以所求表面积为(3×3+3×6+3×3√5)×2=54+18√5,故选B.29.(2016·山东·理T5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为( ) A.1+2πB.1+√2πC.1+√2πD.1+√2π【答案】C【解析】由三视图可知,上面是半径为√22的半球,体积为V 1=12×43π×(√22)3=√2π6,下面是底面积为1,高为1的四棱锥,体积V 2=13×1×1=13,故选C.30.(2016·北京·理T6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D.1【答案】A【解析】由三视图可得,三棱锥的直观图如图,则该三棱锥的体积V=13×12×1×1×1=16,故选A.31.(2015·全国1·理T6文T6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛 【答案】B【解析】设底面圆弧半径为R,∵米堆底部弧长为8尺,∴14·2πR=8,∴R=16π. ∴体积V=14×13π×(16π)2×5.∵π≈3,∴V ≈3209(尺3).∴堆放的米约为3209×1.62≈22(斛). 32.(2015·全国2·理T6文T6)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15【答案】D【解析】由题意知该正方体截去了一个三棱锥,如图所示,设正方体棱长为a,则V 正方体=a 3,V 截去部分=16a 3,故截去部分体积与剩余部分体积的比值为16a 3∶56a 3=1∶5.33.(2015·重庆·理T5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B.23+π C.13+2πD.23+2π【答案】A【解析】由题中三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V 1=13×12×2×1×1=13;其右边是一个半圆柱,底面半径为1,高为2,所以体积V 2=π·12·2·12=π,所以该几何体的体积V=V 1+V 2=13+π.34.(2015·浙江·理T2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( ) A.8 cm 3 B.12 cm 3C.323 cm 3D.403 cm 3【答案】C【解析】由题中三视图知该几何体是一个正方体与正四棱锥的组合体,其中正方体与正四棱锥的底面边长为2 cm,正四棱锥的高为2 cm,则该几何体的体积V=2×2×2+13×2×2×2=323(cm 3),故选C.35.(2015·山东·理T7)在梯形ABCD 中,∠ABC=π2,AD ∥BC,BC=2AD=2AB=2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D.2π【答案】C【解析】由题意可得旋转体为一个圆柱挖掉一个圆锥,如图所示. V 圆柱=π×12×2=2π,V 圆锥=13×π×12×1=π3. ∴V 几何体=V 圆柱-V 圆锥=2π-π3=5π3.36.(2015·湖南·文T10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.827πC.24(√2-1)3πD.8(√2-1)3π【答案】A【解析】由三视图可知该几何体是一个圆锥,其底面半径r=1,母线长l=3,所以其高h=√l 2-r 2=2√2.故该圆锥的体积V=π3×12×2√2=2√2π3.由题意可知,加工后的正方体是该圆锥的一个内接正方体,如图所示.正方体ABCD-EFGH 的底面在圆锥的底面内,下底面中心与圆锥底面的圆心重合,上底面中心在圆锥的高线上,设正方体的棱长为x.在轴截面SMN 中,由O 1G ∥ON可得,O 1GON=SO 1SO ,即√22x 1=√2-2√2,解得x=2√23.所以正方体的体积为V 1=(2√23)3=16√227.所以该工件的利用率为V1V =16√22722π3=89π.故选A.37.(2015·全国1·理T11文T11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( ) A.1 B.2 C.4D.8【答案】B【解析】由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S 表=2r ×2r+2×12πr 2+πr ×2r+12×4πr 2=5πr 2+4r 2=16+20π, 解得r=2.38.(2015·北京·理T5)某三棱锥的三视图如图所示,则该三棱锥的表面积是( ) A.2+√5B.4+√5C.2+2√5D.5【答案】C【解析】作出三棱锥的直观图如图,在△ABC 中,作AB 边上的高CD,连接SD.在三棱锥S-ABC 中,SC ⊥底面ABC,SC=1,底面三角形ABC 是等腰三角形,AC=BC=√5,AB 边上的高CD=2,AD=BD=1,斜高SD=√5.所以S 表=S △ABC +S △SAC +S △SBC +S △SAB =12×2×2+12×1×√5+12×1×√5+12×2×√5=2+2√5. 39.(2015·陕西·理T5文T5)一个几何体的三视图如图所示,则该几何体的表面积为( ) A.3π B.4π C.2π+4 D.3π+4【答案】D【解析】由三视图可知,该几何体是一个半圆柱,圆柱的底面半径r=1,高h=2.所以几何体的侧面积S 1=C底·h=(π×1+2)×2=2π+4.几何体的底面积S 2=12π×12=12π.故该几何体的表面积为S=S 1+2S 2=2π+4+2×π2=3π+4.故选D.40.(2015·浙江·理T8)如图,已知△ABC,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A'CD,所成二面角A'-CD-B 的平面角为α,则( )A.∠A'DB ≤αB.∠A'DB ≥αC.∠A'CB ≤αD.∠A'CB ≥α 【答案】B【解析】设∠ADC=θ,设AB=2,则由题意AD=BD=1.在空间图形中,设A'B=t.在△A'BD 中, cos ∠A'DB=A 'D 2+DB 2-AB 22A 'D×DB =12+12-t 22×1×1=2-t 22. 在空间图形中,过A'作A'N ⊥DC,过B 作BM ⊥DC,垂足分别为N,M.过N 作NP MB,连接A'P,所以NP ⊥DC. 则∠A'NP 就是二面角A'-CD-B 的平面角,所以∠A'NP=α.在Rt △A'ND 中,DN=A'Dcos ∠A'DC=cos θ,A'N=A'Dsin ∠A'DC=sin θ.同理,BM=PN=sin θ,DM=cos θ.故BP=MN=2cos θ.显然BP ⊥面A'NP,故BP ⊥A'P.在Rt △A'BP 中,A'P 2=A'B 2-BP 2=t 2-(2cos θ)2=t 2-4cos 2θ.在△A'NP 中,cos α=cos ∠A'NP=A 'N 2+NP 2-A 'P 22A 'N×NP =sin 2θ+sin 2θ-(t 2-4cos 2θ)=2+2cos 2θ-t 22=2-t 22+cos 2θ2=12cos ∠A'DB+cos 2θ2. 因为1sin 2θ≥1,cos 2θsin 2θ≥0,所以cos α≥cos∠A'DB (当θ=π2时取等号),因为α,∠A'DB ∈[0,π],而y=cos x 在[0,π]上为递减函数,所以α≤∠A'DB.故选B.41.(2015·全国2·理T9文T10)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为 ( )A.36πB.64πC.144πD.256π【答案】C【解析】因为∠AOB=90°,所以S △AOB =12R 2.因为V O-ABC =V C-AOB ,而△AOB 面积为定值,所以三棱锥底面OAB 上的高最大时,其体积最大.因为高最大为半径R,所以V C-AOB =13×12R 2×R=36,解得R=6,故S 球=4πR 2=144π.42.(2015·安徽·理T5)已知m,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行...与β平行的直线...,则在α内不存在D.若m,n不平行...垂直于同一平面...,则m与n不可能【答案】D【解析】A选项α,β可能相交;B选项m,n可能相交,也可能异面;C选项若α与β相交,则在α内平行于它们交线的直线一定平行于β;由垂直于同一个平面的两条直线一定平行,可知D选项正确.43.(2015·浙江·文T4)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m【答案】A【解析】若l⊥β,又l⊂α,由面面垂直的判定定理,得α⊥β,故选项A正确;选项B,l⊥m或l∥m或l与m 相交或异面都有可能;选项C,α∥β或α与β相交都有可能;选项D,l∥m或l与m异面都有可能.44.(2015·广东·文T6)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【答案】D【解析】l1与l在平面α内,l2与l在平面β内,若l1,l2与l都不相交,则l1∥l,l2∥l,根据直线平行的传递性,则l1∥l2,与已知矛盾,故l至少与l1,l2中的一条相交.45.(2014·浙江·理T3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm2B.129 cm2C.132 cm2D.138 cm2【答案】D【解析】由题干中的三视图可得原几何体如图所示.故该几何体的表面积S=2×4×6+2×3×4+3×6+3×3+3×4+3×5+2××3×4=138(cm2).故选D.46.(2014·陕西·文T5)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A.4πB.3πC.2πD.π【答案】C【解析】依题意,知所得几何体是一个圆柱,且其底面半径为1,母线长也为1,因此其侧面积为2π×1×1=2π,故选C.47.(2014·辽宁·理T4文T4)已知m,n表示两条不同直线,α表示平面.下列说法正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【答案】B【解析】对A:m,n还可能异面、相交,故A不正确.对C:n还可能在平面α内,故C不正确.对D:n还可能在α内,故D不正确.对B:由线面垂直的定义可知正确.48.(2014·广东·理T7)在空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【答案】D【解析】如图,在正方体ABCD-A1B1C1D1中,取l1为BC,l2为CC1,l3为C1D1.满足l1⊥l2,l2⊥l3.若取l4为A1D1,则有l1∥l4;若取l4为DD1,则有l1⊥l4.因此l1与l4的位置关系不确定,故选D.49.(2014·浙江·文T6)设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α【答案】C【解析】当m⊥n,n∥α时,可能有m⊥α,但也有可能m∥α或m⊂α,故A选项错误;当m∥β,β⊥α时,可能有m⊥α,但也有可能m∥α或m⊂α,故选项B错误;当m⊥β,n⊥β,n⊥α时,必有α∥β,从而m⊥α,故选项C正确;在如图所示的正方体ABCD-A1B1C1D1中,取m为B1C1,n为CC1,β为平面ABCD,α为平面ADD1A1,这时满足m⊥n,n ⊥β,β⊥α,但m⊥α不成立,故选项D错误.50.(2014·陕西·理T5)已知底面边长为1,侧棱长为√2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3B.4π C.2π D.4π3【答案】D【解析】依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径R,则2R=√12+12+(√2)2=2,解得R=1,所以V=4π3R 3=4π3.51.(2014·大纲全国·理T8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B.16πC.9πD.27π4【答案】A【解析】由图知,R 2=(4-R)2+2,∴R 2=16-8R+R 2+2,∴R=94,∴S 表=4πR 2=4π×8116=814π,选A.52.(2014·湖南·理T7文T8)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】由三视图可得原石材为如右图所示的直三棱柱A 1B 1C 1-ABC,且AB=8,BC=6,BB 1=12.若要得到半径最大的球,则此球与平面A 1B 1BA,BCC 1B 1,ACC 1A 1相切,故此时球的半径与△ABC 内切圆的半径相等,故半径r=6+8-102=2.故选B. 53.(2014·全国1·理T12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6√2B.6C.4√2D.4【答案】B【解析】如图所示的正方体ABCD-A1B1C1D1的棱长为4.取B1B的中点G,即三棱锥G-CC1D1为满足要求的几何体,其中最长棱为D1G,D1G=√(4√2)2+22=6.54.(2014·全国1·文T8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解析】由所给三视图可知该几何体是一个三棱柱(如图).55.(2014·北京·理T7)在空间直角坐标系O-xyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1, √2).若S1,S2,S3分别是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则( )A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【答案】D【解析】三棱锥的各顶点在xOy 坐标平面上的正投影分别为A 1(2,0,0),B 1(2,2,0),C 1(0,2,0),D 1(1,1,0).显然D 1点为A 1C 1的中点,如图(1),正投影为Rt △A 1B 1C 1,其面积S 1=12×2×2=2.三棱锥的各顶点在yOz 坐标平面上的正投影分别为A 2(0,0,0),B 2(0,2,0),C 2(0,2,0),D 2(0,1,√2).显然B 2,C 2重合,如图(2),正投影为△A 2B 2D 2,其面积S 2=12×2×√2=√2.三棱锥的各顶点在zOx 坐标平面上的正投影分别为A 3(2,0,0),B 3(2,0,0),C 3(0,0,0),D 3(1,0,√2),由图(3)可知,正投影为△A 3D 3C 3,其面积S 3=12×2×√2=√2.综上,S 2=S 3,S 3≠S 1.故选D.56.(2014·大纲全国·理T11)已知二面角α-l-β为60°,AB ⊂α,AB ⊥l,A 为垂足,CD ⊂β,C ∈l,∠ACD=135°,则异面直线AB 与CD 所成角的余弦值为( )A.14B.√24C.√34D.12 【答案】B【解析】如图,在平面α内过C 作CE ∥AB,则∠ECD 为异面直线AB 与CD 所成的角或其补角,不妨取CE=1,过E 作EO ⊥β于O.在平面β内过O 作OH ⊥CD 于H,连EH,则EH ⊥CD.因为AB ∥CE,AB ⊥l,所以CE ⊥l.又因为EO ⊥平面β,所以CO ⊥l.故∠ECO 为二面角α-l-β的平面角,所以∠ECO=60°.而∠ACD=135°,CO ⊥l,所以∠OCH=45°.在Rt △ECO 中,CO=CE ·cos ∠ECO=1·cos 60°=12.在Rt △COH 中,CH=CO ·cos ∠OCH=12·sin 45°=√24. 在Rt △ECH 中,cos ∠ECH=CH CE =√241=√24.所以异面直线AB 与CD 所成角的余弦值为√24.故选B.57.(2014·大纲全国·文T4)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A.16B.√36C.13D.√33 【答案】B【解析】如图所示,取AD 的中点F,连EF,CF,则EF ∥BD,∴异面直线CE 与BD 所成的角即为CE 与EF 所成的角∠CEF.由题知,△ABC,△ADC 为正三角形,设AB=2,则CE=CF=√3,EF=12BD=1. ∴在△CEF 中,由余弦定理,得cos ∠CEF=CE 2+EF 2-CF 22CE ·EF =√3)22√3)22×√3×1=√36.故选B.58.(2014·全国2·理T6文T6)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13 【答案】C【解析】由零件的三视图可知,该几何体为两个圆柱组合而成,如图所示.切削掉部分的体积V 1=π×32×6-π×22×4-π×32×2=20π(cm 3),原来毛坯体积V 2=π×32×6=54π(cm 3).故所求比值为V 1V 2=20π54π=1027. 59.(2014·全国2·文T7)正三棱柱ABC-A 1B 1C 1的底面边长为2,侧棱长为√3,D 为BC 中点,则三棱锥A-B 1DC 1的体积为( )A.3B.32C.1D.√32【答案】C【解析】∵D 是等边△ABC 的边BC 的中点,∴AD ⊥BC.又ABC-A 1B 1C 1为正三棱柱,∴AD ⊥平面BB 1C 1C.又四边形BB 1C 1C 为矩形,∴S △DB 1C 1=12S 四边形BB 1C 1C =12×2×√3=√3.又AD=2×√32=√3,∴V A -B 1DC 1=13S △B 1DC 1·AD=13×√3×√3=1.60.(2013·全国1·理T8文T11)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π【答案】A【解析】该几何体为一个半圆柱与一个长方体组成的一个组合体.V 半圆柱= π×22×4=8π,V 长方体=4×2×2=16.所以所求体积为16+8π.故选A.61.(2013·浙江·文T5)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是() A.108 cm 3 B.100 cm 3C.92 cm 3D.84 cm 3【答案】B【解析】由三视图可知,该几何体是如图所示长方体去掉一个三棱锥,故几何体的体积是6×3×6-13×12×3×42=100(cm 3).故选B.62.(2013·山东·理T4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为9,底面是边长为√3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( )A.5π12B.π3C.π4D.π6【答案】B【解析】如图所示,由棱柱体积为94,底面正三角形的边长为√3,可求得棱柱的高为√3.设P 在平面ABC 上射影为O,则可求得AO 长为1,故AP 长为√12+(√3)2=2.故∠PAO=π3,即PA 与平面ABC 所成的角为π3.63.(2013·全国2·理T7文T9)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为 ( )【答案】A【解析】该四面体在空间直角坐标系O-xyz 中的图象如图所示.则它在平面zOx 上的投影,即正视图为.64.(2013·湖南·理T7)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( ) A.1 B.√2 C.√2-12 D.√2+12【答案】C【解析】当俯视图是面积为1的正方形时,其正视图的最小面积等于一个面的面积1,最大面积等于对角面的面积√2.故正视图面积S 的取值范围为1≤S≤√2. 因为√2-12<1,故选C.65.(2013·全国1·理T6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ) A.500π3 cm 3B.866π3 cm 3C.1372π3 cm 3D.2048π3cm 3【答案】A【解析】设球半径为R,由题可知R,R-2,正方体棱长的一半可构成直角三角形,即△OBA 为直角三角形,如图. BC=2,BA=4,OB=R-2,OA=R, 由R 2=(R-2)2+42,得R=5,所以球的体积为4π3×53=5003π(cm 3),故选A.66.(2013·辽宁·理T10)已知直三棱柱ABC-A 1B 1C 1的6个顶点都在球O 的球面上.若AB=3,AC=4,AB ⊥AC,AA 1=12,则球O 的半径为( ) A.3√172 B.2√10C.132D.3√10【答案】C。

高考数学试题分类汇编立体几何理

高考数学试题分类汇编立体几何理

立体几何一、选择题1、(2016年北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16 B.13 C.12D.1 【答案】A2、(2016年山东高考)有一个半球和四棱锥组成的几何体,其三 视图如右图所示,则该几何体的体积为(A )π32+31 (B )π32+31 (C )π62+31 (D )π62+1【答案】C3、(2016年全国I 高考)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π【答案】A4、(2016年全国I 高考)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面ABB 1 A 1=n ,则m ,n 所成角的正弦值为(A (B )2 (C (D )13【答案】A5、(2016年全国II 高考)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π 【答案】C6、(2016年全国III 高考)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+(C )90 (D )81 【答案】B7、(2016年全国III 高考)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π(C )6π (D )323π【答案】B二、填空题1、(2016年上海高考)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan,则该正四棱柱的高等于____________【答案】2、(2016年四川高考)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是__________.3、(2016年天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.【答案】24、(2016年全国II 高考) ,αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥.[ (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 ..(填写所有正确命题的编号) 【答案】②③④5、(2016年浙江高考)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32 6、(2016年浙江高考)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12三、解答题1、(2016年北京高考) 如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD =(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.【解】⑴∵面PAD 面ABCD AD =面PAD ⊥面ABCD∵AB ⊥AD ,AB ⊂面ABCD ∴AB ⊥面PAD ∵PD ⊂面PAD ∴AB ⊥PD 又PD ⊥PA ∴PD ⊥面PAB⑵取AD 中点为O ,连结CO ,PO∵CD AC ==∴CO ⊥AD ∵PA PD = ∴PO ⊥AD以O 为原点,如图建系易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,,则(111)PB =-,,,(011)PD =--,,,(201)PC =-,,,(210)CD =--,, 设n 为面PDC 的法向量,令00(,1)n x y =,011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩,,则PB 与面PCD 夹角θ有sin cos ,1n PB n PB n PBθ⋅=<>==⑶假设存在M 点使得BM ∥面PCD设AM APλ=,()0,','M y z由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-,()1,1,0B ,()0,'1,'AM y z =-有()0,1,AM AP M λλλ=⇒- ∴()1,,BM λλ=--∵BM ∥面PCD ,n 为PCD 的法向量 ∴0BM n ⋅=即102λλ-++=∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求.2、(2016年山东高考)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的Ox yz PABC D直径,FB 是圆台的一条母线.(I )已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (II )已知EF =FB =12AC=,AB =BC .求二面角F BC A --的余弦值.【解】(Ⅰ)连结FC ,取FC 的中点M ,连结HM GM,, 因为GM//EF ,EF 在上底面内,GM 不在上底面内, 所以GM//上底面,所以GM//平面ABC ; 又因为MH//BC ,⊂BC 平面ABC ,⊄MH 平面ABC ,所以MH//平面ABC ; 所以平面GHM//平面ABC ,由⊂GH 平面GHM ,所以GH//平面ABC . (Ⅱ) 连结OB ,BC AB = OB A ⊥∴O以为O 原点,分别以O O OB,OA,'为z y,x,轴, 建立空间直角坐标系.BC AB ,32AC 21FB EF ==== ,3)(22=--='FO BO BF O O ,于是有)0,0,3A(2,)0,0,3C(-2,)0,3B(0,2,)3,3F(0,, 可得平面FBC 中的向量)3,(30,-BF =,)0,,(3232CB =, 于是得平面FBC 的一个法向量为)1,3,3(1-=n , 又平面ABC 的一个法向量为)1,0,0(2=n , 设二面角A -BC -F 为θ,B则7771cos ===θ. 二面角A -BC -F 的余弦值为77.3、(2016年上海高考)将边长为1的正方形11AAOO (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为2π,11A B 长为3π,其中1B 与C 在平面11AAOO 的同侧。

专题04 立体几何(文)(原卷版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题04 立体几何(文)(原卷版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题04立体几何(文)考点三年考情(2022-2024)命题趋势考点1:三视图2022年浙江卷2022年全国甲卷(理)2023年全国乙卷(理)从近三年高考命题来看,本节是高考的一个重点,立体几何是高考的必考内容,重点关注以下几个方面:(1)掌握基本空间图形及其简单组合体的概念和基本特征,能够解决简单的实际问题;(2)多面体和球体的相关计算问题是近三年考查的重点;(3)运用图形的概念描述图形的基本关系和基本结果,突出考查直观想象和逻辑推理.考点2:空间几何体表面积、体积、侧面积2022年全国I卷2024年天津卷2022年天津卷2024年全国Ⅰ卷考点3:空间直线、平面位置关系的判断2024年天津卷2024年全国甲卷(理)考点4:线线角、线面角、二面角2022年全国I卷2022年浙江卷2024年全国Ⅱ卷考点5:外接球、内切球问题2023年全国乙卷(文)2022年全国II卷考点6:立体几何中的范围与最值问题及定值问题2023年全国甲卷(文)2023年全国Ⅰ卷2022年全国乙卷(理)2022年全国I卷考点7:锥体的体积问题2023年全国甲卷(文)2023年天津卷2022年全国乙卷(文)2022年全国甲卷(文)2023年全国乙卷(文)考点8:距离及几何体的高问题2024年北京卷2024年全国甲卷(文)2023年全国甲卷(文)考点1:三视图1.(2022年新高考浙江数学高考真题)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.22πB.8πC.22π3D.16π32.(2022年高考全国甲卷数学(理)真题)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.203.(2023年高考全国乙卷数学(理)真题)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .30考点2:空间几何体表面积、体积、侧面积4.(2022年新高考全国I 卷数学真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .7 2.65≈)()A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯5.(2024年天津高考数学真题)一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为()A 36B .33142+C .32D .33142-6.(2022年新高考天津数学高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .277.(2024年新课标全国Ⅰ3则圆锥的体积为()A .3πB .33πC .3πD .93π考点3:空间直线、平面位置关系的判断8.(2024年天津高考数学真题)若,m n 为两条不同的直线,α为一个平面,则下列结论中正确的是()A .若//m α,//n α,则m n ⊥B .若//,//m n αα,则//m n C .若//,αα⊥m n ,则m n⊥D .若//,αα⊥m n ,则m 与n 相交9.(2024年高考全国甲卷数学(理)真题)设αβ、为两个平面,m n 、为两条直线,且m αβ= .下述四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则n α⊥或n β⊥③若//n α且//n β,则//m n ④若n 与α,β所成的角相等,则m n⊥其中所有真命题的编号是()A .①③B .②④C .①②③D .①③④考点4:线线角、线面角、二面角10.(多选题)(2022年新高考全国I 卷数学真题)已知正方体1111ABCD A B C D -,则()A .直线1BC 与1DA 所成的角为90︒B .直线1BC 与1CA 所成的角为90︒C .直线1BC 与平面11BBD D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒11.(2022年新高考浙江数学高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则()A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤12.(2024年新课标全国Ⅱ卷数学真题)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A与平面ABC 所成角的正切值为()A .12B .1C .2D .3考点5:外接球、内切球问题13.(2023年高考全国乙卷数学(文)真题)已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =.14.(2022年新高考全国II 卷数学真题)已知正三棱台的高为1,上、下底面边长分别为3343点都在同一球面上,则该球的表面积为()A .100πB .128πC .144πD .192π考点6:立体几何中的范围与最值问题及定值问题15.(2023年高考全国甲卷数学(文)真题)在正方体1111ABCD A B C D -中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是.16.(多选题)(2023年新课标全国Ⅰ卷数学真题)下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体17.(2022年高考全国乙卷数学(理)真题)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C 33D 2218.(2022年新高考全国I 卷数学真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]考点7:锥体的体积问题19.(2023年高考全国甲卷数学(文)真题)在三棱锥-P ABC 中,ABC 是边长为2的等边三角形,2,6PA PB PC ===)A .1B 3C .2D .320.(2023年天津高考数学真题)在三棱锥-P ABC 中,点M,N 分别在棱PC,PB 上,且13PM PC =,23PN PB =,则三棱锥P AMN -和三棱锥-P ABC 的体积之比为()A .19B .29C .13D .4921.(2022年高考全国乙卷数学(文)真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.22.(2022年高考全国甲卷数学(文)真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).23.(2023年高考全国乙卷数学(文)真题)如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,22BC =6PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥-P ABC 的体积.考点8:距离及几何体的高问题24.(2024年北京高考数学真题)如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,4PA PB ==,22PC PD ==).A .1B .2C 2D 325.(2024年高考全国甲卷数学(文)真题)如图,//,//AB CD CD EF ,2AB DE EF CF ====,104,CD AD BC ===AE 3=M 为CD 的中点.(1)证明://EM 平面BCF ;(2)求点M 到ADE 的距离.26.(2023年高考全国甲卷数学(文)真题)如图,在三棱柱111ABC A B C -中,1A C ⊥平面,90ABC ACB ∠=︒.(1)证明:平面11ACC A ⊥平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BB C C -的高.。

三年高考(2019-2021)数学(文)真题分类汇编——立体几何(解答题)(解析版)

三年高考(2019-2021)数学(文)真题分类汇编——立体几何(解答题)(解析版)

立体几何(解答题) 专项汇编1.【2021年全国高考甲卷数学(文)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥. 【答案】(1)13;(2)证明见解析. 【分析】(1)首先求得AC 的长度,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论. 【详解】(1)如图所示,连结AF ,由题意可得:22415BF BC CF =+=+=,由于AB ⊥BB 1,BC ⊥AB ,1BB BC B =,故AB ⊥平面11BCC B ,而BF ⊂平面11BCC B ,故AB BF ⊥, 从而有22453AF AB BF =+=+=, 从而229122AC AF CF =-=-=,则222,AB BC AC AB BC +=∴⊥,ABC 为等腰直角三角形,111221222BCE ABC S s ⎛⎫==⨯⨯⨯= ⎪⎝⎭△△,11111333F EBC BCE V S CF -=⨯⨯=⨯⨯=△. (2)由(1)的结论可将几何体补形为一个棱长为2的正方体1111ABCM A B C M -,如图所示,取棱,AM BC 的中点,H G ,连结11,,A H HG GB ,正方形11BCC B 中,,G F 为中点,则1BF B G ⊥,又111111,BF A B A B B G B ⊥=,故BF ⊥平面11A B GH ,而DE ⊂平面11A B GH , 从而BF ⊥DE . 【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.2.【2021年全国高考乙卷数学(文)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积. 【答案】(1)证明见解析;(2)23. 【分析】(1)由PD ⊥底面ABCD 可得PD AM ⊥,又PB AM ⊥,由线面垂直的判定定理可得AM ⊥平面PBD ,再根据面面垂直的判定定理即可证出平面PAM ⊥平面PBD ;(2)由(1)可知,AM BD ⊥,由平面知识可知,~DAB ABM ,由相似比可求出AD ,再根据四棱锥P ABCD -的体积公式即可求出. 【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD , 所以PD AM ⊥, 又PB AM ⊥,PBPD P =,所以AM ⊥平面PBD , 而AM ⊂平面PAM , 所以平面PAM ⊥平面PBD .(2)由(1)可知,AM ⊥平面PBD ,所以AM BD ⊥, 从而~DAB ABM ,设BM x =,2AD x =, 则BM AB AB AD =,即221x =,解得22x =,所以2AD =. 因为PD ⊥底面ABCD , 故四棱锥P ABCD -的体积为()1212133V =⨯⨯⨯=. 【点睛】本题第一问解题关键是找到平面PAM 或平面PBD 的垂线,结合题目条件PB AM ⊥,所以垂线可以从,PB AM 中产生,稍加分析即可判断出AM ⊥平面PBD ,从而证出;第二问关键是底面矩形面积的计算,利用第一问的结论结合平面几何知识可得出~DAB ABM ,从而求出矩形的另一个边长,从而求得该四棱锥的体积.3.【2021年全国新高考Ⅰ卷数学】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2) 36【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果; (2)先作出二面角平面角,再求得高,最后根据体积公式得结果. 【详解】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD 因为平面ABD平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F, 作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD, AO ⊥CD所以EF ⊥BD, EF ⊥CD, BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FMEF F =,所以BC ⊥平面EFM ,即BC ⊥ME则EMF ∠为二面角E-BC-D 的平面角, 4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形 因为2DE EA =,1112(1)2233FM BF ∴==+= 从而EF=FM=213AO ∴=AO ⊥平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法.4.【2020年高考全国Ⅰ卷文数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC △是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P −ABC 的体积. 【解析】(1)由题设可知,PA =PB = PC . 由于△ABC 是正三角形,故可得△PAC ≌△PAB . △PAC ≌△PBC .又∠APC =90°,故∠APB =90°,∠BPC =90°.从而PB ⊥PA ,PB ⊥PC ,故PB ⊥平面PAC ,所以平面PAB ⊥平面PAC . (2)设圆锥的底面半径为r ,母线长为l . 由题设可得rl =3,222l r -=.解得r =1,l =3,从而3AB =.由(1)可得222PA PB AB +=,故62PA PB PC ===. 所以三棱锥P -ABC 的体积为3111166()323228PA PB PC ⨯⨯⨯⨯=⨯⨯=.【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.5.【2020年高考全国Ⅱ卷文数】如图,已知三棱柱ABC −A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B −EB 1C 1F 的体积.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN ,平面A 1AMN 平面EB 1C 1F =PN ,故AO ∥PN .又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM 3PM =23AM 3EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B −EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离.作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F ,故MT =PM sin ∠MPN =3.底面EB 1C 1F 的面积为1111()(62)624.22B C EF PN ⨯+⨯=+⨯=所以四棱锥B −EB 1C 1F 的体积为1243243⨯⨯=.【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.6.【2020年高考全国Ⅲ卷文数】如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.【解析】(1)如图,连结BD ,11B D . 因为AB BC =,所以四边形ABCD 为正方形, 故AC BD ⊥.又因为1BB ⊥平面ABCD ,于是1AC BB ⊥. 所以AC ⊥平面11BB D D .由于EF ⊂平面11BB D D ,所以EF AC ⊥.(2)如图,在棱1AA 上取点G ,使得12AG GA =,连结1GD ,1FC ,FG ,因为1123D E DD =,123AG AA =,11DD AA =∥,所以1ED AG =∥,于是四边形1ED GA 为平行四边形,故1AE GD ∥.因为1113B F BB =,1113AG AA =,11BB AA =∥,所以11FG A B =∥,11FG C D =∥,四边形11FGD C 为平行四边形,故11GD FC ∥.于是1AE FC ∥.所以1,,,A E F C 四点共面,即点1C 在平面AEF 内. 【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题.7.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】(1)因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥.又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥. 又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C . 又因为AB ⊂平面1ABB , 所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题. 8.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥. 由45ACB ∠=︒,122BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角. 设22CD =.由2,2DO OC BO BC ====,得26,33BD OH = 所以3sin OH OCH OC ∠==, 因此,直线DF 与平面DBC 3. 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-. 设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,||||OC OC OC θ⋅===⋅n |n n |因此,直线DF 与平面DBC 3. 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题. 9.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =417CH =. 从而点C 到平面1C DE 417.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.10.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.11.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4. 【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.-中,PA⊥平面ABCD,底部12.【2019年高考北京卷文数】如图,在四棱锥P ABCDABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,⊥.所以PA BD又因为底面ABCD为菱形,⊥.所以BD AC所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD . 所以AB ⊥AE . 所以AE ⊥平面PAB . 所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG . 则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形. 所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE , 所以CF ∥平面PAE .【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.13.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值. 【答案】(1)见解析;(2)见解析;(3)33. 【解析】(1)连接BD ,易知AC BD H =,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC , 又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥. 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面PAC ,可知DAN ∠为直线AD 与平面PAC 所成的角,因为PCD △为等边三角形,CD =2且N 为PC 的中点,所以3DN =又DN AN ⊥,在Rt AND △中,3sin DN DAN AD ∠==所以,直线AD 与平面PAC 3【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.14.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC −A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.15.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3.由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅. 因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,2F ,C (0,2,0).因此,33(,22EF =,(BC =-. 由0EF BC ⋅=得EF BC ⊥.(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC AC --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨-=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。

近五年(2017-2021)高考数学真题分类汇编11 立体几何

近五年(2017-2021)高考数学真题分类汇编11 立体几何

近五年(2017-2021)高考数学真题分类汇编十一、立体几何一、多选题1.(2021·全国高考真题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P二、单选题2.(2021·浙江高考真题)如图已知正方体1111ABCD A BC D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDDB C .直线1A D 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDDB 3.(2021·浙江高考真题)某几何体的三视图如图所示,则该几何体的体积是( )A .32B .3C .2D .4.(2021·全国高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A .12BC .4D 5.(2021·全国高考真题(文))在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A .B .C .D .6.(2021·全国高考真题(理))在正方体1111ABCD A BC D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π67.(2021·全国高考真题)圆锥的母线长为( )A .2B .C .4D .8.(2020·天津高考真题)若棱长为面积为( )A .12πB .24πC .36πD .144π 9.(2020·北京高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .6B .6+C .12D .12+10.(2020·浙江高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .611.(2020·海南高考真题)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°12.(2020·全国高考真题(文))下图为某几何体的三视图,则该几何体的表面积是( )A .B .C .D .13.(2020·全国高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π 14.(2020·全国高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .14B .12C .14D .1215.(2020·全国高考真题(理))已知△ABC 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D .216.(2020·全国高考真题(理))如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 17.(2019·浙江高考真题)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .32418.(2019·全国高考真题(理))如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线19.(2019·浙江高考真题)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .3220.(2019·浙江高考真题)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<21.(2019·全国高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D 22.(2019·全国高考真题(文))设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面23.(2019·上海高考真题)已知平面αβγ、、两两垂直,直线a b c 、、满足:,,a b c αβγ⊆⊆⊆,则直线a b c 、、不可能满足以下哪种关系A .两两垂直B .两两平行C .两两相交D .两两异面 24.(2018·浙江高考真题)已知直线,m n 和平面α,n ⊂α,则“//m n ”是“//m α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件25.(2018·上海高考真题)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1AA 为底面矩形的一边,则这样的阳马的个数是( )A .4B .8C .12D .1626.(2018·浙江高考真题)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤ 27.(2018·全国高考真题(文))在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30,则该长方体的体积为A .8B .C .D .28.(2018·北京高考真题(理))某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1 B.2C.3 D.429.(2018·全国高考真题(文))某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A.B.C.3D.2,,,是同一个半径为4的球的球面上四点,30.(2018·全国高考真题(理))设A B C D体积的最大值为ABC为等边三角形且其面积为D ABCA.B.C.D.31.(2018·全国高考真题(理))中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .32.(2018·浙江高考真题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .2B .4C .6D .8 33.(2018·全国高考真题(文))在正方体1111ABCD A BC D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .2BCD .2 34.(2018·全国高考真题(文))已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π35.(2018·全国高考真题(理))在长方体1111ABCD A BC D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为A .15BCD .2 36.(2018·全国高考真题(理))已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A B C D 37.(2017·全国高考真题(文))如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M 、N 、Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面 MNQ 不平行的是( )A .B .C .D .未命名未命名三、解答题38.(2021·全国高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.39.(2021·全国高考真题(文))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.40.(2021·浙江高考真题)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.41.(2021·全国高考真题(文))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.42.(2021·全国高考真题(理))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 43.(2021·全国高考真题(理))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.44.(2020·海南高考真题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB PB 与平面QCD 所成角的正弦值.45.(2020·天津高考真题)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.46.(2020·北京高考真题)如图,在正方体1111ABCD A BC D -中, E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.47.(2020·浙江高考真题)如图,三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.48.(2020·海南高考真题)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.49.(2020·江苏高考真题)在三棱锥A—BCD中,已知CB=CD BD=2,O为BD 的中点,AO⊥平面BCD,AO=2,E为AC的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.50.(2020·江苏高考真题)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F 分别是AC,B1C的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.51.(2020·全国高考真题(理))如图,在长方体1111ABCD A BC D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A--的正弦值. 52.(2020·全国高考真题(文))如图,在长方体1111ABCD A BC D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.53.(2020·全国高考真题(文))如图,D为圆锥的顶点,O是圆锥底面的圆心,ABC 是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面P AB⊥平面P AC;(2)设DO,求三棱锥P−ABC的体积. 54.(2020·全国高考真题(理))如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为=.ABC是底面的内接正三角形,P为DO上一点,PO=.底面直径,AE AD(1)证明:PA⊥平面PBC;--的余弦值.(2)求二面角B PC E55.(2020·全国高考真题(文))如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=π3,求四棱锥B–EB1C1F的体积.56.(2020·全国高考真题(理))如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.57.(2019·江苏高考真题)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC 的中点,AB=BC.求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .58.(2019·天津高考真题(理))如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 59.(2019·全国高考真题(理))图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B−CG−A 的大小.60.(2019·全国高考真题(文))如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.61.(2019·全国高考真题(理))如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.62.(2019·上海高考真题)如图,在正三棱锥P ABC -中,2,PA PB PC AB BC AC ======(1)若PB 的中点为M ,BC 的中点为N ,求AC 与MN 的夹角;(2)求P ABC -的体积.63.(2018·上海高考真题)已知圆锥的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.64.(2018·江苏高考真题)在平行六面体1111ABCD A BC D -中,1AA AB =,111AB B C ⊥. 求证:(1)11//AB A B C 平面;(2)111ABB A A BC ⊥平面平面.65.(2018·江苏高考真题)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.66.(2018·全国高考真题(文))如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.67.(2018·北京高考真题(理))如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11AC ,1BB 的中点,AB=BC AC =1AA =2.(1)求证:AC ⊥平面BEF ;(2)求二面角B−CD −C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.68.(2018·北京高考真题(文))如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .69.(2018·全国高考真题(理))如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.70.(2018·全国高考真题(理))如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.71.(2018·浙江高考真题)如图,已知多面体ABC-A 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.72.(2018·全国高考真题(文))如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.73.(2018·全国高考真题(文))如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.74.(2017·山东高考真题(文))由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:1AO ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.四、填空题75.(2021·全国高考真题(理))以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).76.(2021·全国高考真题(文))已知一个圆锥的底面半径为6,其体积为30 则该圆锥的侧面积为________.77.(2020·海南高考真题)已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________78.(2020·海南高考真题)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以D BCC1B1的交线长为________.179.(2020·江苏高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是____cm.80.(2020·全国高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.81.(2020·全国高考真题(理))设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝82.(2019·江苏高考真题)如图,长方体1111ABCD A BC D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.83.(2019·北京高考真题(理))某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.84.(2019·北京高考真题(理))已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.85.(2019·全国高考真题(理))学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A BC D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB=BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .86.(2019·天津高考真题(文)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.87.(2019·全国高考真题(文))已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________. 88.(2018·江苏高考真题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.89.(2018·全国高考真题(文))已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30,若SAB 的面积为8,则该圆锥的体积为__________.90.(2018·全国高考真题(理))已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB 的面积为面积为__________.91.(2018·天津高考真题(理))已知正方体1111ABCD A BC D -的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M EFGH 的体积为__________.五、双空题92.(2019·全国高考真题(文))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.近五年(2017-2021)高考数学真题分类汇编十一、立体几何(答案解析)1.BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值; 对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB BC λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,1A ⎫⎪⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫ ⎪⎝⎭,则11A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+,取1BB ,1CC 中点为,M N .BP BM MN λ=+,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫=- ⎪ ⎪⎝⎭,11,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确. 故选:BD .【小结】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.2.A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【解析】连1AD ,在正方体1111ABCD A BC D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A BC D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A.【小结】关键点小结:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系. 3.A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【解析】几何体为如图所示的四棱柱1111ABCD A BC D -,其高为1,底面为等腰梯形ABCD ,1=,故111113122ABCD A B C D V -=⨯=, 故选:A.4.A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【解析】,1AC BC AC BC ⊥==,ABC ∴为等腰直角三角形,AB ∴=则ABC ,又球的半径为1, 设O 到平面ABC 的距离为d ,则2d ==所以11111332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=. 故选:A.【小结】关键小结:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.D【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.【解析】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D6.D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=, 所以1PC ⊥平面1PBB ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D7.B【分析】 设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【解析】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=l =故选:B.8.C【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【小结】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.9.D【分析】首先确定几何体的结构特征,然后求解其表面积即可.【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D.【小结】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.10.A【分析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为: 11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A【小结】本小题主要考查根据三视图计算几何体的体积,属于基础题.11.B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选:B【小结】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.12.C【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++故选:C.【小结】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.13.A【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【小结】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题. 14.C【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.。

2012年-2021年(10年)全国高考数学真题分类汇编 立体几何客观题(精解精析版)

2012年-2021年(10年)全国高考数学真题分类汇编 立体几何客观题(精解精析版)

2012-2021十年全国高考数学真题分类汇编立体几何客观题(精解精析版)一、选择题1.(2021年高考全国乙卷理科)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D解析:如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D2.(2021年高考全国甲卷理科)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()()A.B.C.D.【答案】D解析:由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D3.(2021年高考全国甲卷理科)已如A.B.C是半径为1的球O的球面上的三个点,且,1AC BC AC BC⊥==,则三棱锥O ABC-的体积为()A.212B.312C.24D.34【答案】A解析:,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则22d =,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A .【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.4.(2020年高考数学课标Ⅰ卷理科)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.5.(2020年高考数学课标Ⅰ卷理科)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()()A .514-B .512-C .514+D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得154b a =(负值舍去).故选:C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.6.(2020年高考数学课标Ⅱ卷理科)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A .3B .32C .1D .32【答案】C解析:设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=-=,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.7.(2020年高考数学课标Ⅱ卷理科)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()()A .EB .FC .GD .H【答案】A解析:根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.(2020年高考数学课标Ⅲ卷理科)下图为某几何体的三视图,则该几何体的表面积是()()A .6+4B .C .D .【答案】C解析:根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.(2019年高考数学课标Ⅲ卷理科)如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线【答案】B 【解析】取DC 中点E ,如图连接辅助线,在BDE △中,N 为BD 中点,M 为DE 中点,所以//MN BE ,所以BM ,EN 共面相交,选项C ,D 错误. 平面CDE ⊥平面ABCD ,EF CD ⊥,EF ∴⊥平面ABCD ,又DC CD ⊥,∴DC ⊥平面DCE ,从而EF FN ⊥,BC MC ⊥.所以MCB △与EFN△均为直角三角形.不妨设正方形边长为2,易知3,1MC EF NF ===,所以22(3)27BM =+=,22(3)12EN =+=,BM EN ∴≠,故选B .【点评】本题比较具有综合性,既考查了面面垂直、线面垂直等线面关系,还考查了三角形中的一些计算问题,是一个比较经典的题目.10.(2019年高考数学课标全国Ⅱ卷理科)设α、β为两个平面,则αβ//的充要条件是()()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ//的充分条件,由面面平行性质定理知,若αβ//,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ//的必要条件,故选B .【点评】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.11.(2019年高考数学课标全国Ⅰ卷理科)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A .B .C .D 【答案】D解析:三棱锥P ABC -为正三棱锥,取AC 中点M ,连接,PM BM ,则,AC PM AB BM ⊥⊥,PM BM M = ,可得AC ⊥平面PBM ,从而AC PB ⊥,又//,PB EF EF CE ⊥,可得PB CE ⊥,又AC CE C = ,所以PB ⊥平面PAC ,从而,PB PA PB PC ⊥⊥,从而正三棱锥P ABC -的三条侧棱,,PA PB PC 两两垂直,且PA PB PC ===,,PA PB PC 为棱的正方体,正方体的体对角线即为球O 的直径,即22R R ==,所以球O 的体积为343V R π==.12.(2018年高考数学课标Ⅲ卷(理))设,,,A B C D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为()A.B.C.D.【答案】B解析:设ABC △的边长为a,则21sin 6062ABC S a a =︒=⇒=△,此时ABC △外接圆的半径为112sin 60232a r =⋅=⨯︒,故球心O 到面ABC2==,故点D 到面ABC 的最大距离为26R +=,此时11633D ABC ABC D ABC V S d --=⋅=⨯=△,故选B.点评:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到23BM BE ==,再由勾股定理得到OM ,进而得到结果,属于较难题型.13.(2018年高考数学课标Ⅲ卷(理))中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体.则咬合时带卯眼的木构件的俯视图可以是()()【答案】A解析:依题意,结合三视图的知识易知,带卯眼的木构件的俯视图可以是A 图.14.(2018年高考数学课标Ⅱ卷(理))在长方体1111ABCD A B C D -中,1AB BC ==,1AA =线1AD 与1DB 所成角的余弦值为()A .15B .56C .55D .22【答案】C解析:以D 为坐标原点,1,,DA DC DD DA 为,,x y z 轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,1,3),(0,0,3)D A B D ,所以11(1,0,3),(1,1,3)AD DB =-=因为111111135cos ,5||||25AD DB AD DB AD DB ⋅-+<>===⋅⨯所以异面直线1AD 与1DB 所成角的余弦值为55,故选C .15.(2018年高考数学课标卷Ⅰ(理))已知正方体的校长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面而积的最大值为()A .334B .233C .324D .32【答案】A【解析一】根据题意,平面α与正方体对角线垂直,记正方体为111ABCD A B C D -不妨设平面α与1AC 垂直,且交于点M .平面ABD 与平面11B D C 与1AC 分别交于,P Q .正方体中心为O ,则容易证明当M 从A 运动到P 时,截面为三角形且周长逐渐增大:当M 从P 运动到Q 时,截面为六边形且周长不变;当M 从Q 运动到1C 时,截面为三角形且周长还渐减小。

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 立体几何大题(原卷版)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 立体几何大题(原卷版)

2012-2021十年全国高考数学真题分类汇编 立体几何大题(原卷版)1.(2021年高考全国甲卷理科)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 中点,D 为棱11A B 上地点.11BF A B ⊥(1)证明:BF DE ⊥。

(2)当1B D 为何值时,面11BB C C 与面DFE 所成地二面角地正弦值最小?2.(2021年高考全国乙卷理科)如图,四棱锥P ABCD -地底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 地中点,且PB AM ⊥.(1)求BC 。

(2)求二面角A PM B --地正弦值.3.(2020年高考数学课标Ⅰ卷理科)如图,D 为圆锥地顶点,O 是圆锥底面地圆心,AE 为底面直径,AE AD =.ABC 是底面地内接正三角形,P 为DO 上一点,PO =.的(1)证明:PA ⊥平面PBC 。

(2)求二面角B PC E --地余弦值.4.(2020年高考数学课标Ⅱ卷理科)如图,已知三棱柱ABC -A 1B 1C 1地底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1地中点,P 为AM 上一点,过B 1C 1和P 地平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F 。

(2)设O 为△A 1B 1C 1地中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角地正弦值.5.(2020年高考数学课标Ⅲ卷理科)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 平面AEF 内。

(2)若2AB =,1AD =,13AA =,求二面角1A EF A --地正弦值.6.(2019年高考数学课标Ⅲ卷理科)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成地一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中地A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE 。

高考数学立体几何试题汇编

高考数学立体几何试题汇编

高考数学立体几何试题汇编一、选择题1.(全国Ⅰ•理•7题)如图,正四棱柱1111D C B A ABCD -中,AB AA 21=,则异面直线11AD B A 与所成角的余弦值为( D )A .51 B .52 C .53 D .542.(全国Ⅱ•理•7题)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于( A )A .6 B .10C .22D .33.(北京•理•3题)平面α∥平面β的一个充分条件是( D )A .存在一条直线a a ααβ,∥,∥B .存在一条直线a a a αβ⊂,,∥C .存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥D .存在两条异面直线a b a a b αβα⊂,,,∥,∥4.(安徽•理•2题)设l ,m ,n 均为直线,其中m ,n 在平面α内,“l α⊥”是l m⊥且“l n ⊥”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.(安徽•理•8题)半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为( )A .)33arccos(-B .)36arccos(- C .)31arccos(-D .)41arccos(- 6.(福建•理•8题)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( D )A .,,//,////m n m n ααββαβ⊂⊂⇒B . //,,//m n m n αβαβ⊂⊂⇒C .,//m m n n αα⊥⊥⇒D . //,m n n m αα⊥⇒⊥7.(福建•理•10题)顶点在同一球面上的正四棱柱ABCD -A 1B 1C 1D 1中,AB =1,AA 1=,则A 、C 两点间的球面距离为( B )A .4π B . 2πC .24πD . 22π8.(湖北•理•4题)平面α外有两条直线m 和n ,假如m 和n 在平面α内的射影分别是1m 和1n ,给出下列四个命题:①1m ⊥1n ⇒m ⊥n ; ②m ⊥n ⇒1m ⊥1n ;③1m 与1n 相交⇒m 与n 相交或重合; ④1m 与1n 平行⇒m 与n 平行或重合; 其中不正确的命题个数是( D )A.1B.2C.3D.4 9.(湖南•理•8题)棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( D )A .22B .1C .212+D .210.(江苏•理•4题)已知两条直线,m n ,两个平面,αβ,给出下面四个命题: ①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒ ③//,////m n m n αα⇒ ④//,//,m n m n αβαβ⊥⇒⊥ 其中正确命题的序号是( C )A .①③B .②④C .①④D .②③ 11.(江西•理•7题)如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H .则以下命题中,错误..的命题是( D ) A .点H 是△A 1BD 的垂心 B .AH 垂直平面CB 1D 1C .AH 的延长线通过点C 1D .直线AH 和BB 1所成角为45° 12.(辽宁•理•7题)若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中的真命题是( )A .若m βαβ⊂⊥,,则m α⊥B .若m αγ=n βγ=,m n ∥,则αβ∥C .若m β⊥,m α∥,则αβ⊥D .若αγ⊥,αβ⊥,则βγ⊥13.(陕西•理•6题)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( B )A .433 B .33 C . 43 D .12314.(四川•理•4题)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( D )A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1 D .异面直线AD 与CB 1角为60°15.(宁夏•理•8题) 已知某个几何体的三视图如下,依照图中标出的尺寸(单位:cm ),可得那个几何体的体积是( B )A.34000cm 3 B.38000cm 3C.32000cmD.34000cm16.(四川•理•6题)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离差不多上2π,且三面角B -OA -C 的大小为3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是( C ) A .67π B .45π C .34π D .23π17.(天津•理•6题)设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( D )A.若a b ,与α所成的角相等,则a b ∥ B.若a b αβ,∥∥,αβ∥,则a b ∥C.若a b a b αβ⊂⊂,,∥,则αβ∥ D.若a b αβ⊥⊥,,αβ⊥,则a b ⊥18.(浙江•理•6题)若P 是两条异面直线,l m 外的任意一点,则( B )A .过点P 有且仅有一条直线与,l m 都平行B .过点P 有且仅有一条直线与,l m都垂直C .过点P 有且仅有一条直线与,l m 都相交D .过点P 有且仅有一条直线与,l m2020正视图20侧视图101020俯视图都异面二、填空题19.(全国Ⅰ•理•16题)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上。

历年(2019-2023)全国高考数学真题分项(立体几何)汇编(附答案)

历年(2019-2023)全国高考数学真题分项(立体几何)汇编(附答案)

历年(2019-2023)全国高考数学真题分项(立体几何)汇编考点一 空间几何体的侧面积和表面积1.(2021( )A .2B .C .4D .2.(2022•上海)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为 .3.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC ∆的面积的取值范围为 .4.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为 .5.(2019•上海)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( ) A .1B .2C .4D .86.(2020•浙江)已知圆锥的侧面积(单位:2)cm 为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:)cm 是 .7.(2022•新高考Ⅱ)已知正三棱台的高为1,上、下底面边长分别为,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π8.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积22(1cos )S r πα=-(单位:2)km ,则S 占地球表面积的百分比约为( ) A .26%B .34%C .42%D .50%考点二 空间几何体的体积9.(2022•新高考Ⅰ)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l 剟,则该正四棱锥体积的取值范围是( )A .[18,81]4B .27[4,814C .27[4,643D .[18,27]10.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为2140.0km ;水位为海拔157.5m 时,相应水面的面积为2180.0km .将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为 2.65)(≈ ) A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯11.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .20+B .C .563D .312.【多选】(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:)m 的正方体容器(容器壁厚度忽略不计)内的有( ) A .直径为0.99m 的球体 B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体13.【多选】(2022•新高考Ⅱ)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,//FB ED ,2AB ED FB ==.记三棱锥E ACD -,F ABC -,F ACE -的体积分别为1V ,2V ,3V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =14.【多选】(2021•新高考Ⅰ)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[0λ∈,1],[0μ∈,1],则( ) A .当1λ=时,△1AB P 的周长为定值 B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 15.(2023•新高考Ⅱ)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .16.(2023•新高考Ⅰ)在正四棱台1111ABCD A B C D -中,2AB =,111A B =,1AA =,则该棱台的体积为 . 17.(2020•海南)已知正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点,则三棱锥1A NMD -的体积为 .18.(2022•上海)如图所示三棱锥,底面为等边ABC ∆,O 为AC 边中点,且PO ⊥底面ABC ,2AP AC ==. (1)求三棱锥体积P ABC V -;(2)若M 为BC 中点,求PM 与面PAC 所成角大小.19.(2020•上海)已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD . (1)若5PC =,求四棱锥P ABCD -的体积; (2)若直线AD 与BP 的夹角为60︒,求PD 的长.考点三 空间中直线与直线之间的位置关系20.(2022•上海)如图正方体1111ABCD A B C D -中,P 、Q 、R 、S 分别为棱AB 、BC 、1BB 、CD 的中点,联结1A S ,1B D .空间任意两点M 、N ,若线段MN 上不存在点在线段1A S 、1B D 上,则称MN 两点可视,则下列选项中与点1D 可视的为( )A .点PB .点BC .点RD .点Q21.(2021•浙江)如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B22.(2020•上海)在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线交正方体于P 、Q 两点,则Q 点所在的平面是( )A .11AAB BB .11BBC CC .11CCD DD .ABCD23.(2023•上海)如图所示,在正方体1111ABCD A B C D -中,点P 为边11A C 上的动点,则下列直线中,始终与直线BP 异面的是( )A .1DDB .ACC .1ADD .1B C考点四 异面直线及其所成的角24.【多选】(2022•新高考Ⅰ)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒考点五 空间中直线与平面之间的位置关系25.(2019•上海)已知平面α、β、γ两两垂直,直线a 、b 、c 满足:a α⊆,b β⊆,c γ⊆,则直线a 、b 、c 不可能满足以下哪种关系( )A .两两垂直B .两两平行C .两两相交D .两两异面26.【多选】(2021•新高考Ⅱ)如图,下列正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点,则满足MN OP ⊥的是( )A .B .C .D .考点六 直线与平面所成的角27.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为)O ,地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为( )A .20︒B .40︒C .50︒D .90︒28.(2021•上海)如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =. (1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积; (2)求直线1AB 与平面11ACC A 的夹角大小.29.(2021•浙江)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=︒,1AB =,4BC =,PA =M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥.(Ⅰ)证明:AB PM ⊥;(Ⅱ)求直线AN 与平面PDM 所成角的正弦值.30.(2020•海南)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,QB =,求PB 与平面QCD 所成角的正弦值.31.(2020•上海)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.32.(2020•山东)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.33.(2020•浙江)如图,在三棱台ABC DEF -中,平面ACFD ⊥平面ABC ,45ACB ACD ∠=∠=︒,2DC BC =. (Ⅰ)证明:EF DB ⊥;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.34.(2019•上海)如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,已知2BM =,3CD =,4AD =,15AA =.(1)求直线1A C 和平面ABCD 的夹角; (2)求点A 到平面1A MC 的距离.35.(2019•浙江)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A A C AC ==,E ,F 分别是AC ,11A B 的中点.(Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.考点七 二面角的平面角及求法36.(2022•浙江)如图,已知正三棱柱111ABC A B C -,1AC AA =,E ,F 分别是棱BC ,11A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ剟B .βαγ剟C .βγα剟D .αγβ剟37.(2019•浙江)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<38.【多选】(2023•新高考Ⅱ)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45︒,则( )A .该圆锥的体积为πB .该圆锥的侧面积为C .AC =D .PAC ∆39.(2023•上海)已知直四棱柱1111ABCD A B C D -,AB AD ⊥,//AB CD ,2AB =,3AD =,4CD =. (1)证明:直线1//A B 平面11DCC D ;(2)若该四棱柱的体积为36,求二面角1A BD A --的大小.40.(2023•新高考Ⅱ)如图,三棱锥A BCD -中,DA DB DC ==,BD CD ⊥,60ADB ADC ∠=∠=︒,E 为BC 中点.(1)证明BC DA ⊥;(2)点F 满足EF DA =,求二面角D AB F --的正弦值.41.(2023•新高考Ⅰ)如图,在正四棱柱111ABCD A B C D -中,2AB =,14AA =.点2A ,2B ,2C ,2D 分别在棱1AA ,1BB ,1CC ,1DD 上,21AA =,222BB DD ==,23CC =. (1)证明:2222//B C A D ;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P .42.(2022•浙江)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为AE ,BC 的中点.(Ⅰ)证明:FN AD ⊥;(Ⅱ)求直线BM 与平面ADE 所成角的正弦值.43.(2022•新高考Ⅱ)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 为PB 的中点. (1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.44.(2022•新高考Ⅰ)如图,直三棱柱111ABC A B C -的体积为4,△1A BC 的面积为 (1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.45.(2021•新高考Ⅱ)在四棱锥Q ABCD -中,底面ABCD 是正方形,若2AD =,QD QA ==3QC =.(Ⅰ)求证:平面QAD ⊥平面ABCD ; (Ⅱ)求二面角B QD A --的平面角的余弦值.46.(2021•新高考Ⅰ)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点. (1)证明:OA CD ⊥;(2)若OCD ∆是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.考点八 立体几何的交线问题47.(2020•山东)已知直四棱柱1111ABCD A B C D -的棱长均为2,60BAD ∠=︒.以1D 为半径的球面与侧面11BCC B 的交线长为 .参考答案考点一 空间几何体的侧面积和表面积1.(2021,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B .C .4D .【详细解析】由题意,设母线长为l ,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有2l ππ=⋅,解得l =所以该圆锥的母线长为 故选:B .2.(2022•上海)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为 . 【详细解析】因为圆柱的底面积为9π,即29R ππ=, 所以3R =,所以224S Rh ππ==侧.故答案为:24π.3.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC ∆的面积的取值范围为 .【详细解析】如图1,上底面圆心记为O ,下底面圆心记为O ',连接OC ,过点C 作CM AB ⊥,垂足为点M , 则12ABC S AB CM ∆=⨯⨯, 根据题意,AB 为定值2,所以ABC S ∆的大小随着CM 的长短变化而变化,如图2所示,当点M 与点O 重合时,CM OC ==,此时ABC S ∆取得最大值为122⨯=;如图3所示,当点M 与点B 重合,CM 取最小值2, 此时ABC S ∆取得最小值为12222⨯⨯=.综上所述,ABC S ∆的取值范围为.故答案为:.4.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为 . 【详细解析】圆柱的底面半径为1r =,高为2h =, 所以圆柱的侧面积为22124S rh πππ==⨯⨯=侧. 故答案为:4π.5.(2019•上海)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( ) A .1B .2C .4D .8【详细解析】如图,则21142133V ππ=⨯⨯=,22121233V ππ=⨯⨯=,∴两个圆锥的体积之比为43223ππ=. 故选:B .6.(2020•浙江)已知圆锥的侧面积(单位:2)cm 为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:)cm 是 .【详细解析】 圆锥侧面展开图是半圆,面积为22cm π,设圆锥的母线长为acm ,则2122a ππ⨯=,2a cm ∴=,∴侧面展开扇形的弧长为2cm π,设圆锥的底面半径OC rcm =,则22r ππ=,解得1r cm =. 故答案为:1cm .7.(2022•新高考Ⅱ)已知正三棱台的高为1,上、下底面边长分别为,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π3=4=,如图,设球的半径为R 1=,解得5R =, ∴该球的表面积为24425100R πππ=⨯=.当球心在台体内时,如图,1=,无解. 综上,该球的表面积为100π. 故选:A .8.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积22(1cos )S r πα=-(单位:2)km ,则S 占地球表面积的百分比约为( ) A .26%B .34%C .42%D .50%【详细解析】由题意,作出地球静止同步卫星轨道的左右两端的竖直截面图,则36000640042400OP =+=,那么64008cos 4240053α==; 卫星信号覆盖的地球表面面积22(1cos )S r πα=-,那么,S 占地球表面积的百分比为222(1cos )4542%4106r r παπ-=≈.故选:C .考点二 空间几何体的体积9.(2022•新高考Ⅰ)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l 剟,则该正四棱锥体积的取值范围是( )A .[18,814B .27[4,814C .27[4,643D .[18,27]【详细解析】如图所示,正四棱锥P ABCD -各顶点都在同一球面上,连接AC 与BD 交于点E ,连接PE ,则球心O 在直线PE 上,连接OA , 设正四棱锥的底面边长为a ,高为h ,在Rt PAE ∆中,222PA AE PE =+,即222221(22l h a h =+=+, 球O 的体积为36π,∴球O 的半径3R =,在Rt OAE ∆中,222OA OE AE =+,即222(3)(2R h =-+, ∴221602a h h +-=,∴22162a h h +=,26l h ∴=,又3l 剟∴3922h剟, ∴该正四棱锥体积2232112()(122)4333V h a h h h h h h ==-=-+,2()282(4)V h h h h h '=-+=- ,∴当342h <…时,()0V h '>,()V h 单调递增;当942h <…时,()0V h '<,()V h 单调递减,()max V h V ∴=(4)643=, 又327(24V = ,981()24V =,且278144<,∴2764()43V h 剟, 即该正四棱锥体积的取值范围是27[4,643, 故选:C .10.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为2140.0km ;水位为海拔157.5m 时,相应水面的面积为2180.0km .将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为 2.65)(≈ )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯【详细解析】26214014010km m =⨯,26218018010km m =⨯,根据题意,增加的水量约为661401018010(157.5148.5)3⨯+⨯⨯-9=6693(32060 2.65)103143710 1.410m ≈+⨯⨯⨯=⨯≈⨯.故选:C .11.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .20+B .C .563D 【详细解析】解法一:如图1111ABCD A B C D -为正四棱台,2AB =,114A B =,12AA =. 在等腰梯形11A B BA 中,过A 作11AE A B ⊥,可得14212A E -==,AE ==. 连接AC ,11A C ,AC ==,11A C ==,过A 作11AG A C ⊥,12A G -==AG ==, ∴正四棱台的体积为:V h =22243+== 解法二:作出图形,连接该正四棱台上下底面的中心,如图,该四棱台上下底面边长分别为2,4,侧棱长为2,∴该棱台的记h ==下底面面积116S =,上底面面积24S =, 则该棱台的体积为:1211((16433V h S S =++=+=故选:D .12.【多选】(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:)m 的正方体容器(容器壁厚度忽略不计)内的有( )A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体【详细解析】对于A ,棱长为1的正方体内切球的直径为10.99>,选项A 正确; 对于B ,如图,正方体内部最大的正四面体11D A BC - 1.4=>,选项B 正确;对于C ,棱长为1 1.8<,选项C 错误;对于D ,如图,六边形EFGHIJ 为正六边形,E ,F ,G ,H ,I ,J 为棱的中点,高为0.01米可忽略不计,看作直径为1.2米的平面圆,六边形EFGHIJ 棱长为2米,30GFH GHF ∠=∠=︒,所以FH ===米,故六边形EFGHIJ而223()(1.2) 1.4422=>=,选项D 正确. 故选:ABD .13.【多选】(2022•新高考Ⅱ)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,//FB ED ,2AB ED FB ==.记三棱锥E ACD -,F ABC -,F ACE -的体积分别为1V ,2V ,3V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【详细解析】设22AB ED FB ===, 114||33ACD V S ED ∆=⨯⨯=,212||33ABC V S FB ∆=⨯⨯=,如图所示,连接BD 交AC 于点M ,连接EM 、FM ,则FM =EM =,3EF =,故12EMF S ∆==,3112332EMF V S AC ∆=⨯=⨯⨯=,故C 、D 正确,A 、B 错误. 故选:CD .14.【多选】(2021•新高考Ⅰ)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[0λ∈,1],[0μ∈,1],则( )A .当1λ=时,△1AB P 的周长为定值 B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【详细解析】对于A ,当1λ=时,1BP BC BB μ=+ ,即1CP BB μ= ,所以1//CP BB,故点P 在线段1CC 上,此时△1AB P 的周长为11AB B P AP ++,当点P 为1CC 的中点时,△1AB P ,当点P 在点1C 处时,△1AB P 的周长为1, 故周长不为定值,故选项A 错误;对于B ,当1μ=时,1BP BC BB λ=+ ,即1B P BC λ= ,所以1//B P BC, 故点P 在线段11B C 上, 因为11//B C 平面1A BC ,所以直线11B C 上的点到平面1A BC 的距离相等, 又△1A BC 的面积为定值,所以三棱锥1P A BC -的体积为定值,故选项B 正确;对于C ,当12λ=时,取线段BC ,11B C 的中点分别为M ,1M ,连结1M M , 因为112BP BC BB μ=+,即1MP BB μ= ,所以1//MP BB ,则点P 在线段1M M 上,当点P 在1M 处时,1111A M B C ⊥,111A M B B ⊥, 又1111B C B B B = ,所以11A M ⊥平面11BB C C ,又1BM ⊂平面11BB C C ,所以111A M BM ⊥,即1A P BP ⊥, 同理,当点P 在M 处,1A P BP ⊥,故选项C 错误;对于D ,当12μ=时,取1CC 的中点1D ,1BB 的中点D , 因为112BP BC BB λ=+ ,即DP BC λ= ,所以//DP BC ,则点P 在线的1DD 上,当点P 在点1D 处时,取AC 的中点E ,连结1A E ,BE ,因为BE ⊥平面11ACC A ,又1AD ⊂平面11ACC A ,所以1AD BE ⊥, 在正方形11ACC A 中,11AD A E ⊥, 又1BE A E E = ,BE ,1A E ⊂平面1A BE ,故1AD ⊥平面1A BE ,又1A B ⊂平面1A BE ,所以11A B AD ⊥, 在正方体形11ABB A 中,11A B AB ⊥,又11AD AB A = ,1AD ,1AB ⊂平面11AB D ,所以1A B ⊥平面11AB D , 因为过定点A 与定直线1A B 垂直的平面有且只有一个, 故有且仅有一个点P ,使得1A B ⊥平面1AB P ,故选项D 正确.故选:BD .15.(2023•新高考Ⅱ)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .【详细解析】如图所示,根据题意易知△11SO A SOA ∆∽,∴11112SO O A SO OA ===,又13SO =, 6SO ∴=,13OO ∴=,又上下底面正方形边长分别为2,4,∴所得棱台的体积为1(4163283⨯++⨯=.故答案为:28.16.(2023•新高考Ⅰ)在正四棱台1111ABCD A B C D -中,2AB =,111A B =,1AA =,则该棱台的体积为 . 【详细解析】如图,设正四棱台1111ABCD A B C D -的上下底面中心分别为M ,N ,过1A 作1A H AC ⊥,垂足点为H ,由题意易知12A M HN ==,又AN =,2AH AN HN ∴=-=,又1AA =,1A H MN ∴==∴该四棱台的体积为1(143⨯++故答案为:6.17.(2020•海南)已知正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点,则三棱锥1A NMD -的体积为 .【详细解析】如图,正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点, ∴111122ANM S ∆=⨯⨯=, ∴111112323A NMD D AMN V V --==⨯⨯=.故答案为:13.18.(2022•上海)如图所示三棱锥,底面为等边ABC ∆,O 为AC 边中点,且PO ⊥底面ABC ,2AP AC ==. (1)求三棱锥体积P ABC V -;(2)若M 为BC 中点,求PM 与面PAC 所成角大小.【详细解析】(1)在三棱锥P ABC -中,因为PO ⊥底面ABC ,所以PO AC ⊥, 又O 为AC 边中点,所以PAC ∆为等腰三角形,又2AP AC ==.所以PAC ∆是边长为2的为等边三角形,PO ∴=,三棱锥体积2112133P ABC ABC V S PO -∆=⋅==, (2)以O 为坐标原点,OB 为x 轴,OC 为y 轴,OP 为z 轴,建立空间直角坐标系,则(0P ,0,B 0,0),(0C ,1,0),M 12,0),(2PM = ,12,, 平面PAC的法向量OB =0,0), 设直线PM 与平面PAC 所成角为θ,则直线PM 与平面PAC所成角的正弦值为3sin ||||||PM OB PM OB θ⋅===⋅所以PM 与面PAC所成角大小为arcsin4. 19.(2020•上海)已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD . (1)若5PC =,求四棱锥P ABCD -的体积; (2)若直线AD 与BP 的夹角为60︒,求PD 的长.【详细解析】(1)PD ⊥ 平面ABCD ,PD DC ∴⊥. 3CD = ,5PC ∴=,4PD ∴=,2134123P ABCD V -∴=⨯⨯=,所以四棱锥P ABCD -的体积为12.(2)ABCD 是正方形,PD ⊥平面ABCD , BC PD ∴⊥,BC CD ⊥又PD CD D = BC ∴⊥平面PCDBC PC ∴⊥异面直线AD 与PB 所成角为60︒,//BC AD ∴在Rt PBC ∆中,60PBC ∠=︒,3BC =故PC =在Rt PDC ∆中,3CD =PD ∴=考点三 空间中直线与直线之间的位置关系20.(2022•上海)如图正方体1111ABCD A B C D -中,P 、Q 、R 、S 分别为棱AB 、BC 、1BB 、CD 的中点,联结1A S ,1B D .空间任意两点M 、N ,若线段MN 上不存在点在线段1A S 、1B D 上,则称MN 两点可视,则下列选项中与点1D 可视的为( )A .点PB .点BC .点RD .点Q【详细解析】线段MN 上不存在点在线段1A S 、1B D 上,即直线MN 与线段1A S 、1B D 不相交,因此所求与1D 可视的点,即求哪条线段不与线段1A S 、1B D 相交,对A 选项,如图,连接1A P 、PS 、1D S ,因为P 、S 分别为AB 、CD 的中点, ∴易证11//A D PS ,故1A 、1D 、P 、S 四点共面,1D P ∴与1A S 相交,A ∴错误;对B 、C 选项,如图,连接1D B 、DB ,易证1D 、1B 、B 、D 四点共面, 故1D B 、1D R 都与1B D 相交,B ∴、C 错误;对D 选项,连接1D Q ,由A 选项分析知1A 、1D 、P 、S 四点共面记为平面11A D PS , 1D ∈ 平面11A D PS ,Q ∉平面11A D PS ,且1A S ⊂平面11A D PS ,点11D A S ∉, 1D Q ∴与1A S 为异面直线,同理由B ,C 选项的分析知1D 、1B 、B 、D 四点共面记为平面11D B BD , 1D ∈ 平面11D B BD ,Q ∉平面11D B BD ,且1B D ⊂平面11D B BD ,点11D B D ∉,1D Q ∴与1B D 为异面直线,故1D Q 与1A S ,1B D 都没有公共点,D ∴选项正确.故选:D .21.(2021•浙江)如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B【详细解析】连接1AD ,如图:由正方体可知11A D AD ⊥,1A D AB ⊥,1A D ∴⊥平面1ABD , 11A D D B ∴⊥,由题意知MN 为△1D AB 的中位线,//MN AB ∴,又AB ⊂ 平面ABCD ,MN ⊂/平面ABCD ,//MN ∴平面ABCD .A ∴对; 由正方体可知1A D 与平面1BDD 相交于点D ,1D B ⊂平面1BDD ,1D D B ∉, ∴直线1A D 与直线1D B 是异面直线,B ∴、C 错;//MN AB ,AB 不与平面11BDD B 垂直,MN ∴不与平面11BDD B 垂直,D ∴错.故选:A .22.(2020•上海)在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线交正方体于P 、Q 两点,则Q 点所在的平面是( )A .11AAB B B .11BBC C C .11CCD DD .ABCD【详细解析】如图,由点P 到11A D 的距离为3,P 到1AA 的距离为2,可得P 在△1AA D 内,过P 作1//EF A D ,且1EF AA 于E ,EF AD 于F , 在平面ABCD 中,过F 作//FG CD ,交BC 于G ,则平面//EFG 平面1A DC .连接AC ,交FG 于M ,连接EM ,平面//EFG 平面1A DC ,平面1A AC ⋂平面11A DC A C =,平面1A AC ⋂平面EFM EM =, 1//EM A C ∴.在EFM ∆中,过P 作//PQ EM ,且PQ FM 于Q ,则1//PQ A C .线段FM 在四边形ABCD 内,Q 在线段FM 上,Q ∴在四边形ABCD 内. ∴则Q 点所在的平面是平面ABCD .故选:D .23.(2023•上海)如图所示,在正方体1111ABCD A B C D -中,点P 为边11A C 上的动点,则下列直线中,始终与直线BP 异面的是( )A .1DDB .ACC .1ADD .1B C【详细解析】对于A ,当P 是11A C 的中点时,BP 与1DD 是相交直线; 对于B ,根据异面直线的定义知,BP 与AC 是异面直线; 对于C ,当点P 与1C 重合时,BP 与1AD 是平行直线; 对于D ,当点P 与1C 重合时,BP 与1B C 是相交直线. 故选:B .考点四 异面直线及其所成的角24.【多选】(2022•新高考Ⅰ)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒ 【详细解析】如图,连接1B C ,由11//A B DC ,11A B DC =,得四边形11DA B C 为平行四边形, 可得11//DA B C ,11BC B C ⊥ ,∴直线1BC 与1DA 所成的角为90︒,故A 正确;111A B BC ⊥ ,11BC B C ⊥,1111A B B C B = ,1BC ∴⊥平面11DA B C ,而1CA ⊂平面11DA B C ,11BC CA ∴⊥,即直线1BC 与1CA 所成的角为90︒,故B 正确;设1111A C B D O = ,连接BO ,可得1C O ⊥平面11BB D D ,即1C BO ∠为直线1BC 与平面11BB D D 所成的角,1111sin 2OC C BO BC ∠== ,∴直线1BC 与平面11BB D D 所成的角为30︒,故C 错误; 1CC ⊥ 底面ABCD ,1C BC ∴∠为直线1BC 与平面ABCD 所成的角为45︒,故D 正确.故选:ABD .考点五 空间中直线与平面之间的位置关系25.(2019•上海)已知平面α、β、γ两两垂直,直线a 、b 、c 满足:a α⊆,b β⊆,c γ⊆,则直线a 、b 、c 不可能满足以下哪种关系( )A .两两垂直B .两两平行C .两两相交D .两两异面【详细解析】如图1,可得a 、b 、c 可能两两垂直; 如图2,可得a 、b 、c 可能两两相交; 如图3,可得a 、b 、c 可能两两异面;故选:B .26.【多选】(2021•新高考Ⅱ)如图,下列正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点,则满足MN OP ⊥的是( )A .B .C .D .【详细解析】对于A ,设正方体棱长为2,设MN 与OP 所成角为θ,则1tan 12θ==,∴不满足MN OP ⊥,故A 错误; 对于B ,如图,作出平面直角坐标系,设正方体棱长为2,则(2N ,0,0),(0M ,0,2),(2P ,0,1),(1O ,1,0),(2MN = ,0,2)-,(1OP = ,1-,1),0MN OP ⋅= ,∴满足MN OP ⊥,故B 正确;对于C ,如图,作出平面直角坐标系,设正方体棱长为2,则(2M ,2,2),(0N ,2,0),(1O ,1,0),(0P ,0,1),(2MN =- ,0,2)-,(1OP =- ,1-,1),0MN OP ⋅= ,∴满足MN OP ⊥,故C 正确;对于D ,如图,作出平面直角坐标系,设正方体棱长为2,则(0M ,2,0),(0N ,0,2),(2P ,1,2),(1O ,1,0),(0MN = ,2-,2),(1OP = ,0,2),4MN OP ⋅= ,∴不满足MN OP ⊥,故D 错误.故选:BC .考点六 直线与平面所成的角27.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为)O ,地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为( )A .20︒B .40︒C .50︒D .90︒【详细解析】可设A 所在的纬线圈的圆心为O ',OO '垂直于纬线所在的圆面,由图可得OHA ∠为晷针与点A 处的水平面所成角,又OAO '∠为40︒且OA AH ⊥,在Rt OHA ∆中,O A OH '⊥,40OHA OAO '∴∠=∠=︒,另解:画出截面图,如下图所示,其中CD 是赤道所在平面的截线.l 是点A 处的水平面的截线,由题意可得OA l ⊥,AB 是晷针所在直线.m 是晷面的截线,由题意晷面和赤道面平行,晷针与晷面垂直,根据平面平行的性质定理可得//m CD ,根据线面垂直的定义可得AB m ⊥,由于40AOC ∠=︒,//m CD ,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与A 处的水平面所成角为40BAE ∠=︒,故选:B .28.(2021•上海)如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =.(1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积;(2)求直线1AB 与平面11ACC A 的夹角大小.【详细解析】(1)如图,在长方体1111ABCD A B C D -中,1112322332C PAD PAD C PAD V S h -∆-⎛⎫=⋅=⨯⨯⨯⨯= ⎪⎝⎭平面; (2)连接1111A C B D O = ,AB BC = ,∴四边形1111A B C D 为正方形,则11OB OA ⊥,又11AA OB ⊥,111OA AA A = ,1OB ∴⊥平面11ACC A ,∴直线1AB 与平面11ACC A 所成的角为1OAB ∠,∴111sin OB OAB AB ∠=== ∴直线1AB 与平面11ACC A所成的角为29.(2021•浙江)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=︒,1AB =,4BC =,PA =M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥.(Ⅰ)证明:AB PM ⊥;(Ⅱ)求直线AN 与平面PDM 所成角的正弦值.【详细解析】(Ⅰ)证明:在平行四边形ABCD 中,由已知可得,1CD AB ==,122CM BC ==,60DCM ∠=︒, ∴由余弦定理可得,2222cos60DM CD CM CD CM =+-⨯⨯︒11421232=+-⨯⨯⨯=, 则222134CD DM CM +=+==,即CD DM ⊥,又PD DC ⊥,PD DM D = ,CD ∴⊥平面PDM ,而PM ⊂平面PDM ,CD PM ∴⊥,//CD AB ,AB PM ∴⊥;(Ⅱ)解:由(Ⅰ)知,CD ⊥平面PDM ,又CD ⊂平面ABCD ,∴平面ABCD ⊥平面PDM ,且平面ABCD ⋂平面PDM DM =,PM MD ⊥ ,且PM ⊂平面PDM ,PM ∴⊥平面ABCD ,连接AM ,则PM MA ⊥,在ABM ∆中,1AB =,2BM =,120ABM ∠=︒, 可得2114212(72AM =+-⨯⨯⨯-=,又PA =Rt PMA ∆中,求得PM ==,取AD 中点E ,连接ME ,则//ME CD ,可得ME 、MD 、MP 两两互相垂直,以M 为坐标原点,分别以MD 、ME 、MP 为x 、y 、z 轴建立空间直角坐标系,则(A ,2,0),(0P ,0,,1,0)C -,又N 为PC的中点,1(22N ∴-,5(,22AN =- , 平面PDM 的一个法向量为(0,1,0)n = ,设直线AN 与平面PDM 所成角为θ,则5||sin |cos ,|6||||AN n AN n AN n θ⋅=<>===⋅ . 故直线AN 与平面PDM所成角的正弦值为6.30.(2020•海南)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l上的点,QB =,求PB 与平面QCD 所成角的正弦值.【详细解析】(1)证明:过P 在平面PAD 内作直线//l AD ,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线,PD ⊥ 平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CD PD D = ,BC ∴⊥平面PCD ,设m 为平面PCD 中任意一条直线,则BC m ⊥,//l BC ,l m ∴⊥,由线面垂直的定义是l ⊥平面PCD ;(2)解:如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,1PD AD == ,Q 为l上的点,QB =,PB ∴=,1QP =,则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0),作//PQ AD ,则PQ 为平面PAD 与平面PBC 的交线为l,因为QB =,QAB ∆是等腰直角三角形,所以(1Q ,0,1),则(1DQ = ,0,1),(1PB = ,1,1)-,(0DC = ,1,0),设平面QCD 的法向量为(n a = ,b ,)c ,则00n DC n DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,∴00b a c =⎧⎨+=⎩,取1c =,可得(1n =- ,0,1),|cos n ∴<,||||||||n PB PB n PB ⋅>=== , PB ∴与平面QCD所成角的正弦值为3. 31.(2020•上海)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.【详细解析】(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成, 221214S πππ∴=⨯⨯+⨯=.故该圆柱的表面积为4π.(2) 正方形11ABC D ,1AD AB ∴⊥, 又12DAD π∠=,1AD AD ∴⊥,AD AB A = ,且AD 、AB ⊂平面ADB ,1AD ∴⊥平面ADB ,即1D 在面ADB 上的投影为A ,连接1CD ,则1D CA ∠即为线段1CD 与平面ABCD 所成的角,而11cos 3AC D CA CD ∠==, ∴线段1CD 与平面ABCD所成的角为3. 32.(2020•山东)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.【详细解析】(1)证明:过P 在平面PAD 内作直线//l AD ,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线, PD ⊥ 平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CD PD D = ,BC ∴⊥平面PCD , 设平面PCD 中有任一直线l ',则BC ⊥直线l ',//l BC ,l ∴⊥直线l ',∴由线面垂直的定义得l ⊥平面PCD ;(2)如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz-则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0),设(Q m ,0,1),(DQ m = ,0,1),(1PB = ,1,1)-,(0DC = ,1,0),设平面QCD 的法向量为(n a = ,b ,)c ,则00n DC n DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,∴00b am c =⎧⎨+=⎩,取1a =-,可得(1n =- ,0,)m , cos n ∴<,||||n PB PB n PB ⋅>==⋅ , PB ∴与平面QCD。

历年(2020-2022)全国高考数学真题分类专项(文科版立体几何解答题)汇编(附答案)

历年(2020-2022)全国高考数学真题分类专项(文科版立体几何解答题)汇编(附答案)

历年(2020-2022)全国高考数学真题分类专项(文科版立体几何解答题)汇编1.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,△EAB,△FBC,△GCD,△HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明:EF//平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).2.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD CD,∠ADB ∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB BD 2,∠ACB 60°,点F 在BD 上,当△AFC 的面积最小时,求三棱锥F ABC 的体积.3.【2021年甲卷文科】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.4.【2021年乙卷文科】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.5.【2020年新课标1卷文科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO ,求三棱锥P −ABC 的体积.6.【2020年新课标2卷文科】如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积. 7.【2020年新课标3卷文科】如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.。

2024届全国高考数学真题分类专项(立体几何)汇编(附答案)

2024届全国高考数学真题分类专项(立体几何)汇编(附答案)

2024届全国高考数学真题分类专项(立体几何)汇编1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧)A .B .C .D .2.(2024年新课标全国Ⅱ卷)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( )A .12 B .1 C .2 D .33.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙.4.(2024年新课标全国Ⅰ卷)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB =.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD 中,8AB =,3CD =,AD =90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.6.(2024年高考全国甲卷数学(理))如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M为AD 的中点.(1)证明://BM 平面CDE ; (2)求二面角F BM E --的正弦值.参考答案1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高,则圆锥的体积为( )A .B .C .D .【详细详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.2.(2024年新课标全国Ⅱ卷)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( ) A .12B .1C .2D .3【详细详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D =可知11111662222ABC A B C S S =⨯⨯==⨯= 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -==,解得h = 如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AA DN AD AM MN x =--=-,可得1DD ==结合等腰梯形11BCC B 可得22211622BB DD -⎛⎫=+ ⎪⎝⎭,即()221616433x x +=++,解得x = 所以1A A 与平面ABC 所成角的正切值为11tan 1A MA ADAM?=; 解法二:将正三棱台111ABC A B C -补成正三棱锥-P ABC ,则1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,因为11113PA A B PA AB ==,则111127P A B C P ABC V V --=, 可知1112652273ABC A B C P ABC V --==,则18P ABC V -=, 设正三棱锥-P ABC 的高为d,则116618322P ABC V d -=⨯⨯⨯=,解得d =,取底面ABC 的中心为O ,则PO ⊥底面ABC,且AO = 所以PA 与平面ABC 所成角的正切值tan 1POPAO AO∠==. 故选:B.3.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙. 【详细详解】由题可得两个圆台的高分别为)12h r r ==-甲,)12h r r ==-乙,所以((212113143S S h r r V h V h S S h +-====+甲甲甲乙乙乙.4.(2024年新课标全国Ⅰ卷)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB =.(1)若AD PB ⊥,证明://AD 平面PBC ; (2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD . 【详细详解】(1)(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥, 又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB , 而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥, 根据平面知识可知//AD BC , 又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF , 因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =, 所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF , 根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠= 因为AD DC ⊥,设AD x =,则CD =2DE =,又242xCE -=,而EFC 为等腰直角三角形,所以2EF=,故22tan DFE∠==x =AD =5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD 中,8AB =,3CD =,AD =,90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.【详细详解】(1)由218,,52AB AD AE AD AF AB ====, 得4AE AF ==,又30BAD ︒∠=,在AEF △中,由余弦定理得2EF =,所以222AE EF AF +=,则AE EF ⊥,即EF AD ⊥, 所以,EF PE EF DE ⊥⊥,又,PE DE E PE DE =⊂ 、平面PDE , 所以EF ⊥平面PDE ,又PD ⊂平面PDE , 故EF ⊥PD ;(2)连接CE ,由90,3ADC ED CD ︒∠===,则22236CE ED CD =+=,在PEC 中,6PC PE EC ===,得222EC PE PC +=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD , 所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -, 由F 是AB的中点,得(4,B ,所以(4,(2,0,PC PD PB PF =-=-=-=-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z ==,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令122,y x ==11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==- ,所以cos ,m nm n m n ⋅===设平面PCD 和平面PBF 所成角为θ,则sin θ== 即平面PCD 和平面PBF所成角的正弦值为65.6.(2024年高考全国甲卷数学(理))如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求二面角F BM E --的正弦值.【详细详解】(1)因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;(2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =, 结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =, 所以ABM 为等边三角形,O 为AM中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =, 四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m = ,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,m n =故二面角F BM E --的正弦值为13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013高考数学—立体几何分类汇编1.(2013山东卷理4)已知三棱柱111C B A ABC -的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面111C B A 的中心,则PA 与平面ABC 所成角的大小为.A π125 .B 3π .C 4π .D 6π2.(2013山东卷理18)如图所示,在三棱锥ABQ P -中,⊥PB 平面ABQ ,BQ BP BA ==,F E C D ,,,分别是BP AP BQ AQ ,,,的中点,BD AQ 2=,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH 。

(1)证明:AB ∥GH ;(2)求二面角E GH D --的余弦值。

3.(2013陕西卷理12)某几何体的三视图如图所示,则其体积为 。

俯视图主视图左视图4.(2013陕西卷理18)如图,四棱柱1111D C B A ABCD -的底面ABCD 是正方形,O 为底面中心,⊥O A 1平面ABCD ,21==AA AB 。

(1) 证明:⊥C A 1平面D D BB 11;(2) 求平面1OCB 与平面D D BB 11的夹角θ的大小。

5.(2013新课标2卷理4)已知n m ,为异面直线,m ⊥平面α,⊥n 平面β,直线l 满足m l ⊥,n l ⊥,βα⊄⊄l l ,,则.A α∥β且l ∥α .B α⊥β且l ⊥β.C α与β相交,且交线垂直于l .D α与β相交,且交线平行于l6.(2013新课标2卷理7)一个四面的顶点在空间直角坐标系xyz O -中的坐标分别是)1,0,1(,)0,1,1(,)1,1,0(,)0,0,0(,画该四面体的正视图时,以zOx 平面为投影面,则得正视图可以为A B C D7.(2013新课标2卷理18)如图,直三棱柱111C B A ABC -中,E D ,分别1,BB AB的中点,A1AB CB AC AA 221===. (1)证明:1BC ∥平面CD A 1; (2)求二面角E C A D --1的正弦值。

8.(2013新课标1卷理8)某几何体的三视图如图所示,则该几何体的体积为.A π816+ .B π88+ .C π1616+ .D π168+9.(2013新课标1卷6)如图,有一个平面放置的透明无盖的正方体容器,容器高cm 8,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为cm 6,如果不计容器的厚度,则球的体积为.A 33500cm π .B 33866cm π .C 331372cm π .D 332048cm π侧视图俯视图A 1C 1AC10.(2013新课标1卷18)如图,三棱柱111C B A ABC -中,CB CA =,1AA AB =,0160=∠BAA(1)证明:C A AB 1⊥;(2)若平面ABC ⊥平面B B AA 11,CB AB =,求直线C A 1与平面C C BB 11所成角的正弦值11.(2013江西卷理8)如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体六个面所在的平面与直线EF CE ,相交的平面个数分别记为n m ,,那么=+n m.A 8 9.B 10.C 11.D12.(2013江西卷理19)如图,四棱锥ABCD P -中,⊥PA 平面ABCD ,E 为BD 中点,ABCC 1A 1B 1G 为PD 中点,DAB ∆≌DCB ∆,1===AB EB EA ,23=PA ,连结CE 并延长交AD 于点F 。

(1)求证:⊥AD 平面CFG ;(2)求平面BCP 与平面DCP 的夹角的余弦值。

13.(2013大纲卷理10)已知正四棱柱1111D C B A ABCD -中,AB AA 21=,则CD 与平面1BDC 所成角的正弦值等于.A 32 .B 33 .C 32 .D 3114.(2013大纲卷理16)已知圆O 与圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,23=OK ,且圆O 与圆K 所在的平面所成的一个二面角为060,则球O 的表面积等于 。

15.(2013大纲卷理19)如图,四棱锥ABCD P -中,090=∠=∠BAD ABC ,AD BC 2=,PAB ∆和PAD ∆都是等边三角形。

(1)证明:CD PB ⊥;(2)求二面角C PD A --的大小。

CD16.(2013辽宁卷理10)已知直三棱柱111C B A ABC -的6个顶点都在球O 的球面上,若4,3==AC AB ,AC AB ⊥,121=AA ,则球O 的半径为.A 2173 .B 102 .C 213.D 103 17.(2013辽宁卷理13)某几何体的三视图如图所示,则该几何体的体积是 。

18.(2013辽宁卷理18)如图,AB 是圆的直径,⊥PA 圆所在的平面,C 是圆上的点。

(1)求证:平面PAC ⊥平面PBC ;(2)若1,1,2===PA AC AB ,求二面角A PB C --的余弦值。

19.(2013湖南卷理7)已知棱长为1的正方体其俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于.A 1 .B 2 .C 212- .D 212+20.(2013湖南卷理19)如图5,在直棱柱1111D C B A ABCD -中,AD ∥BC ,90=∠BAD ,ABD AC ⊥,1=BC ,31==AA AD(1)证明:D B AC 1⊥;(2)求直线11C B 与平面1ACD 所成角的正弦值。

21(2013北京卷理14)如图,在棱长为2的正方体1111D C B A ABCD -中,E 为BC 中点,点P 在线段E D 1上。

点P 在线段E D 1上,点P 到直线1CC 距离的最小值为 。

A BA 1C 1D 122.(2013北京卷理17)如图,在三棱柱111C B A ABC -中,C C AA 11是边长为4的正方形,平面⊥ABC 平面C C AA 11,5,3==BC AB . (1)求证:⊥1AA 平面ABC ; (2)求二面角111B BC A --的余弦值;(3)证明:在线段1BC 上存在点D ,使得B A AD 1⊥,并求1BC BD的值。

23.(2013重庆卷理5).某几何体的三视图如图所示,则该几何体的体积为左视图正(主)视图俯视图24.(2013天津卷理17)如图,四棱柱1111D C B A ABCD -中,侧棱⊥A A 1底面ABCD ,AB ∥DC ,AD AB ⊥,1==CD AD ,21==AB AA ,E 为棱1AA 的中点。

(1)证明:CE C B ⊥11;(2)求二面角11C CE B --的正弦值;(3)设点M 在线段E C 1上,且直线AM 与平面11A ADD 所成角的正弦值为62,求线段AM 的长。

25.(2013重庆卷理19)如图,四棱锥ABCD P -中,⊥PA 底面A B C D ,CB 1C B2==CD BC ,4=AC ,3π=∠=∠ACD ACB ,F 是PC 的中点,PB AF ⊥。

(1)求PA 的长;(2)求二面角D AF B --的正弦值。

26.(2013湖北卷理8)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有A .1243V V V V <<<B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<< 27.(2013湖北卷理19)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(Ⅰ)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;B(Ⅱ)设(Ⅰ)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =. 记直线PQ与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.28.(2013四川卷理19)如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.29.(2013广东卷理5)某四棱台的三视图如图1所示,则该四棱台的体积是( )第19题图1C正视图俯视图侧视图图1BC图6OA.4 B.314C.316D.630.(2013广东卷理6) 设nm,是两条不同的直线,βα,是两个不同的平面,下列命题正确的是()A.若m nαβαβ⊥⊂⊂,,,则m n⊥B.若m nαβαβ⊂⊂∥,,,则m n∥C.若m n m nαβ⊥⊂⊂,,,则αβ⊥D.若m m n nαβ⊥,∥,∥,则αβ⊥31.(2013广东卷理18)如图5,在等腰直角三角形ABC中,∠A 90=︒,6BC=,D,E分别是AC,AB上的点,CD BE==O为BC的中点.将△ADE沿DE折起,得到如图6所示的四棱椎'A BCDE-,其中'A(1)证明:'A O⊥平面BCDE;(2)求二面角'A CD B--平面角的余弦值.32.(2013安徽卷理15)如图,正方体ABCD-A 1B 1C 1D 1棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S,则下列命题正确的_____(写出所有正确的命题的编号) ①当0<CQ<21时,S 为四边形 ②当CQ=21时,S 为等腰梯形 ③当CQ=43时,S 与C 1D 1的交点R 满足C 1R=31 ④当43<CQ<1时,S 为六边形 ⑤当CQ=1时,S 的面积为26 33.(2013安徽卷理19)如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.50,AB 和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为600, (1)证明:平面PAB 与平面PCD 的交线平行于底面; (2)求cos ∠COD.34.(2013浙江卷理10)在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=。

相关文档
最新文档