高中数学必修5导学案 第二章 数列
高中数学 第二章 数列 24 等比数列学案(无答案)新人教A版必修5 学案
2.4等比数列【学习目标】理解等比数列、等比中项的概念,能推导并掌握通项公式,能熟练运用通项公式和一些常用性质解决有关问题. 【重点难点】重点:等比数列的定义和通项公式及其应用.难点:等比数列的通项公式的应用.【学法指导】学习本节一定要认真阅读教材,运用从特殊到一般和类比等差数列的定义、通项公式的方法归纳等比数列的定义、通项公式. 一.课前预习阅读课本4852P P 页,弄清下列问题:1.等比数列的概念: .2.用数学式子表示等比数列的定义: {}n a 是等比数列,则*1()n na q n N a +=∈. 强调:(1)“从第二项起,每一项与它的前一项的比都等于同一个常数”,要防止在求公比 时,把相邻两项比的次序颠倒.(3)当公比q = 时,等比数列是常数列,该数列也是等差数列.(4)等比数列的每一项都不为 .3.等比数列的通项公式: . 4.等比中项的定义: . 5.快乐体验:(1)若等比数列155,45a a ==,求公比q ; (2)若等比数列12,33a q ==,求4a .(3)若等比数列3312,2a q ==,求1a ; (4)若等比数列的12,54,3,n a a q ===求n .(5)若4,9a b ==,求,a b 的等比中项.二.课堂学习与研讨例1.某种放射性物质不断变化为其他物质,每经过一年剩留量是原来的84%.这种物质的半衰期为多长?(精确到1年)(参考数据:lg 20.3010,lg0.840.0757,0.30100.0757 3.98==-÷≈)练习1.(教材53P 练习5)某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度折旧. (1)用一个式子表示*()n n N ∈年后这辆车的价值;(2)如果他打算用满4年时卖掉这辆车,他大概能得到多少钱?例2.等比数列的第3项和第4项分别是12和18,求它的第1项和第2项.练习2. 在等比数列{}n a 中,473,81,n a a a ==求.小结:3.等比中项:若,,a G b 成等比数列,则2G ab =. 三.课堂检测1.若a ,22a +,33a +成等比数列,则实数a 的为 .2.在等比数列中,(1)若已知2514,2a a ==-求n a . (2)若253618,9,1n a a a a a +=+==,求n .四.作业 1. P53A1 2. 在83和272之间插入3个数,使这五个数成等比数列,求这三数?3. 在等比数列{}n a 中,已知1910185,100,a a a a =⋅=求.2.5等比数列的前n 项和公式【学习目标】1.掌握等比数列的前n 项和公式11,1(1),11n n na q S a q q q =⎧⎪=-⎨⎪≠-⎩2.在等比数列{}n a 中,n n s n d a a 、、、、1五个量中“知三求二”.3.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想和等价转化的思想. 【重点难点】重点:等比数列前n 项和公式的推导和运用.难点:等比数列前n 项和公式的推导. 【学法指导】学习本节时好好体会错位相减法求和的思路,分析等比数列的通项公式和前n 项和公式的特点,体会知三求二的方程思想. 一.课前预习 预习课本5557P P 页,回答下列问题:1.传说,很早以前,印度的一位宰相发明了国际象棋,当时的国王非常高兴,决定奖赏他,国王允许宰相提出任何要求,于是这位聪明的宰相便请国王在国际象棋棋盘的第一个格子里放入一颗麦粒,第二个格子里放入两颗麦粒,第三个……,就这样,依此类推,要求从第二个格子起,每个格子里的麦粒数是前一个格子里麦粒数的两倍,他请求国王给予他这些麦粒的总和。
人教课标版(B版)高中数学必修5导学案2-数列
2.1数列学习目标知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。
过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
学习重点数列及其有关概念,通项公式及其应用 学习难点根据一些数列的前几项抽象、归纳数列的通项公式 基本知识1. 叫做数列, 叫做这个数列的项.2. 就叫做这个数列的通项公式.3.数列可用图象来表示,在直角坐标系中,以 来表示一个数列,图象是一些 ,它们位于 .4.根椐数列的项数可以把数列分为 和 .根据数列中项与项的大小关系可以把数列分为 、 、 和 . 5. 那么这个公式就叫做这个数列的递推公式.6.若数列{}n a 的前n 项和记为n S ,即,321n n a a a a S ++++= 则⎪⎩⎪⎨⎧≥==).2(),1(n n a n1.数列的通项公式实际上是一个以正整数集+N 或它的有限子集{}n ,,2,1 为定义域的函数的表达式;2.如果知道了数列的通项公式,那么依次用 ,3,2,1去替代公式中的n 就可以求出这个数列的各项;同时,用数列的通项公式也可以判断某数是否是某数列中的一项,如果是的话,是第几项;3.像所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到 ,0001.0,001.0,01.0,1.0,1所构成的数列,4142.1,414.1,41.1,4.1,1就没有通项公式.4.有的数列的通项公式,在形式上不一定是唯一的,例如数列:,1,1,1,1,1,1---它可以写成,)1(n n a -=也可以写成⎩⎨⎧-=.,1,,1为偶数为奇数n n a n 还可以写成2)1(+-=n n a 等.这些通项公式,形式上虽然不同,但都表示同一个数列. 5.有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一. 典例精析题型一 根据数列{}n a 的前几项,写出数列的通项公式. 例1 写出下列数列的一个通项公式: (1) ,33,17,9,5,3;(2) ,544,433,322,211; (3) ,777,,7777,777,77,7;(4).,1337,1126,917,710,1,32 --- 命题意图:寻求规律,写出通项公式.用观察归纳法写出数列的一个通项公式,体现了由特殊到一般的思维规律,观察、分析问题的特点是最重要的,观察要有目的,要能观察出特点,观察出项与项之间的关系、规律.这类问题就是要观察各项与对应的项数之间的联系,利用我们熟知的一些基本数列(如自然数数列、奇偶数列、自然数列的前n 项和数列、自然数的平方数列、简单的指数数列……),建立合理的联想,转换而达到问题的解决.一题一练 分别写出下列数列的一个通项公式,数列的前4项已给出.(1);,515,414,313,2122222 ----(2);,201,121,61,21 -- (3);9999.0,999.0,99.0,9.0 (4).,4,5,4,5 题型二 数列通项公式的简单应用 例2 已知有穷数列 ,2625,1716,109,54 (1)指出这个数列的一个通项公式;(2)判定0.98是不是这个数列中的项?若是,是第几项? 命题意图:考察对通项公式的理解及应用方法提升(1)本题中极容易错误地认为122+n n 是数列的通项公式,为避免这样的错误,可验证你所写通项公式是否适合数列的前几项.(2)要判断一个数是否为该数列中的项,可由通项等于这数解出n ,根据n 是否为正整数便可确写这个数是否为数列中的项,也就是说,判定某一数是否是数列中的某一项,其实质就是看方程是否有正整数解.一题一练 已知数列{}n a 的通项公式n n q a =,且.7224=-a a(1)求实数q 的值;(2)判断81-是否为此数列的某一项.题型三 已知n S 求n a例3 已知数列{}n a 的前n 项和n S ,求数列{}n a 的通项公式. (1);12-=n n S (2).322++=n n S n命题意图 本题为通过n S 求n a ,因为n n a a a S +++= 21,所以n S 与n a 有关系⎩⎨⎧≥-==-)2()1(11n S S n S a n nn 可求得.n a解 (1)由,12-=n n S 当1=n 时,;112111=-==S a 当2≥n 时, )12(1211---=-=--n n n n n S S a.22211--=-=n n n当1=n 时也适合,12111==-a 所以.21-=n n a(2)由,322++=n n S n 当1=n 时,.611==S a当2≥n 时,[].143)1()1(2)32(221-=+-+--++=-=-n n n n n S S a n n n.)2(14)1(6⎩⎨⎧≥-==∴n n n a n由n S 求n a 时,当1a 不符合1--=n n n S S a 表达式时,通项公式要分段表示. 即⎩⎨⎧≥==2)(11n n f n a a n 的形式.一题一练(1)已知数列{}n a 的前n 项和n n S n 322-=,求数列通项公式; (2)已知数列⎣⎦n a 的前n 项和35-=n n S ,求数列通项公式题型四 数列的递推公式例4 已知数列{}n a 分别满足下列条件,写出它的前五项,并归纳出各数列的一个通项公式.(1));12(,011-+==+n a a a n n (2).22,111+==+n nn a a a a 命题意图 此数列是用递推公式给出的,已知1a 就可递推出,,2 a 依此类推,可求出它的任一项.再根据前5项归纳猜想n a 的一个通项公式.由递推公式,求出数列前5项,再归纳出通项公式,猜想不一定正确,还需严格证明(今后学到),也可以直接求出. 巩固练习 一、选择题1.下列说法不正确的是( )A. 数列可以用图像来表示B. 数列的通项公式不唯一C. 数列的项不能相等D. 数列可以用一群狐立的点表示2.已知数列{}n a 的通项公式为n a n 225-=,下列各数中,不是{}n a 的项的是( )A. 1B. -1C. 2D. 33.设数列,,11,22,5,2 则52是这个数列的( )A. 第六项B. 第七项C. 第八项D. 第九项4.无穷数列 1,3,6,10,的通项公式为( )A. 12+-=n n a nB. 12-+=n n a nC. 22nn a n +=D. 22nn a n -=5.数列{}n a ,其中,,6,31221n n n a a a a a -===++,那么这个数列的第五项为( )A. 6B. -3C. -12D. -6二、填空题6.数列{}n a 中,)2(,211≥+==-n n a a a n n ,则=10a .7.在数列 ,55,34,,13,8,5,3,2,1,1x 中,x 的值 .8.已知数列{}n a 通项公式*)(1242N n n n a n ∈--=,则:(1)这个数列的第四项是 ;(2)65是这个数列的第 项; (3)这个数列从第 项起各项为正数. 三、解答题9.写出下列数列的一个通项公式 (1);,811,271,91,31,1 --(2);,0,3,0,3(3) ,1716,109,54,21-- (4);,7777.0,777.0,77.0,7.010.在数列{}n a 中,.66,2171==a a 通项公式n a 是项数n 的一次函数. (1)求数列{}n a 的通项公式; (2)88是否是数列{}n a 中的项.11.已知数列{}n a 的前n 项和)(242*∈+-=N n n n S n .(1)求{}n a 的通项公式; (2)当n 为何值时, n S 达到最大?最大值是多少?12.设数列{}n a 的通项公式为)(2+∈+=N n kn n a n ,若数列{}n a 是单调递增数列,求实数k 的取值范围.锁定高考(2007年广东)已知数列{}n a 的前几项和n n S n 92-=,则其通项=n a ;若它的第k 项满足85<<k a ,则k = .。
高中数学 第二章 数列习题课教案 新人教B版必修5-新人教B版高二必修5数学教案
教学内容
教师行为
学生行为
设计意图
时间
1.
课前3分钟
1、展示《优化设计》第20页预习测评
2、目标解读
检查,评价总结。
1.展示答案
2.提出自主学习困惑.
明确本节课学习目标,准备学习。
3分钟
2.
承接结 果
1、求通项公式的方法和步骤;
2、通项公式含义的理解
1.巡视检查学生预习习题完成情况,进行及时评价。
1、巡视学生完成情况,让学生更准确的认识计算〔化简〕的方法。
2、抽查记忆情况。
1、独立完成练习册习题。
2、归纳出计算〔化简〕的方法。
。
通过具体例题,总结出计算〔化简〕的方法。
10分钟
思考1:数列通项公式的ຫໍສະໝຸດ 义和谁密不可分?思考2:研究数列的项,本质是在研究什么?
思考3:面对一个数列,最在意的应该是什么?
思考4:如何利用通项看其单调性?
1、巡视学生的完成情况。
2、对学生的展示和评价要给予及时的反馈。
3.要对学生不同的解题过程和答案给出准确的评价,总结。
1、学生先独立完成教辅习题,然后以小组为单位统一答案。
2、小组讨论并展示自己组所写的答案。
3、其他组给予评价〔主要是找错,纠错〕
在具体问题中,探索、挖掘内在规律、发现数学的本质。
2分钟
7
板书设 计
数列
学习目标: 例题: 练习:
8
课 后反 思
本节课,重点在于对数列通项公式的理解与应用上,唯一干扰学生思绪的地方在于函数的概念和性质的应用上;所以只有充分的理解了函数,才能真正明确通项公式的意义。
1、小考卷上作答。
2、同桌互批。
高中数学 2.2等差数列的性质导学案 新人教A版必修5
2.2等差数列性质预习案【学习目标】1.准确理解等差数列的性质,掌握由等差数列的通项公式研究其图象的方法,提高运算求解能力.2.通过对等差数列通项公式的推导和等差数列性质的探究,进一步渗透数形结合思想、函数思想及方程思想.3.激情参与、惜时高效,激励学生自主探究,发现规律,感受等差数列的内在奥妙. 【重点】:等差数列的性质. 【难点】:等差数列的性质的应用. 【学法指导】1. 阅读探究课本上的基础知识,初步掌握等差数列通项公式的求法;2. 完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测;3. 将预习中不能解决的问题标出来,并写到后面“我的疑惑”处.Ⅰ.相关知识1. 等差数列的通项公式是什么?与一次函数有什么关系?2. 利用等差数列的通项公式可以解决那些问题?3. 若a 、A 、b 成等差数列,则A 叫做a 、b 的________,即A=_______________4. 判断一个数列是否为等差数列的方法有哪些? Ⅱ.教材助读1.依据等差数列的概念,你能写出等差数列的通项公式吗?公差对数列的增减性有何影响?2.已知等差数列的公差为d ,第m 项为m a ,第n 项为n a (n>m )则n a =m a +_________3.已知一个等差数列的首项是1a ,公差为d ,(1)将数列的前m 项去掉,其余各项组成的数列是等差数列吗?如果是,它的首项和公差各是什么?(2)取出数列的所有奇数项,组成一个新的数列,这个数列是等差数列吗?如果是,它的首项和公差各是什么?(3)取出数列中所有项数是7的倍数的项,组成一个新的数列,这个数列是等差数列吗?如果是,它的首项和公差各是什么?(4)数列,,,543432321a a a a a a a a a ++++++......是等差数列吗?如果是,它的首项和公差各是什么?【预习自测】1.在△ABC 中,A 、B 、C 成等差数列,则B 等于( ) A .30 B.60 C.90 D.不能确定2.若{a n }是等差数列,则,,,543432321a a a a a a a a a ++++++987a a a ++,……,n n n a a a 31323++--,……( )A.一定不是等差数列B.一定是递增数列C.一定是等差数列D .一定是递减数列 3.已知等差数列{a n }中,741a a a ++=39,33852=++a a a ,则963a a a ++等于( ) A .30 B.27 C.24D.21【我的疑惑】探究案Ⅰ.质疑探究——质疑解惑、合作探究 探究一:等差数列的性质问题1:如果数列{a n}是等差数列,首项为a1,公差为d,则通项公式a n=____________=___________.其中变化的量为n,a n,则点(n,a n)在直线____________上;点(n,a n)的横坐标每增加1,函数值增加_____.问题2:等差数列的性质:已知一个等差数列{a n},其中首项是a1,公差为d,(1)下标成等差数列且公差为m的项a k,a k+m,a k+2m,…(k,m∈N*)组成公差为_____的等差数列.(2)a1+a2,a3+a4,a5+a6,…组成公差为_____的等差数列. a1+a2+…+a m,a m+1+a m+2+…+a2m,a2m+1+a2m+2+…+a3m,…组成公差为_____的等差数列.(3)若{b n}是公差为d0的等差数列,则数列{pa n+qb n}(p,q为常数)是公差为________的等差数列.(4)若{a n}是有穷等差数列,则与首末两项等距离的两项之和都_______,且等于_______________.(5)若正整数m,n,p,q满足m+n=p+q,则a m+a n与a p+a q相等吗?说明理由.(6)若m+n=2p,则a m+a n_____2a p,a m+a n_____a2p(填“=”或“≠”).【归纳总结】等差数列的性质有哪些?数列{a n}为等差数列,首项是a1,公差为d.(1)d>0,{a n}是递增数列;d<0,{a n}是递减数列;d=0,{a n}是常数列.(2)a n=a m+(n-m)d(m,n∈N*).(3)a1+a2+…+a m,a m+1+a m+2+…+a2m,…组成公差为m2d的等差数列.(4)a m,a2m,a3m,…,a km,…组成公差为md的等差数列.(5)若数列{b n}是公差为b的等差数列,p,q为常数,则{pa n±qb n}是公差为pd±qb的等差数列.(6)若m,n,p,q∈N*,且满足m+n=p+q,则a m+a n=a p+a q.探究二:等差数列性质的应用(重难点)【例1】若{a n}是等差数列,a15=8,a60=20,求a75的值. 【规律方法总结】等差数列{an}的性质:(1)a1+a n=a2+a n-1=….(2)m,n,p,q∈N*,且m+n=p+q a m+a n=a p+a q.(3)若m,n,p∈N*,且m,n,p 成等差数列,则a m,a n,a p成等差数列.(4)a n=a m+(n-m)d.(5)若数列{a n}是等差数列,则a n=an+b(a,b为常数,n∈N*).(6)若{a n}与{b n}均为等差数列,则{a n±b n}也是等差数列.【拓展提升】已知等差数列{a n}中,a3a7=-16,a4+a6=0,求{a n}的通项公式.探究三:综合应用(重难点)【例2】数列{a n}的首项为3,{b n}为等差数列且b n=a n+1-a n(n∈N*).若b3=-2,b10=12,则a8等于( )A.0B.3C.8D.11【规律方法总结】(1)求通项公式常用的方法:①不完全归纳法;②公式法;③叠加法;④累积法.(2)判断一个数列是等差数列常用的方法有:①定义法;②等差中项法;③函数法:若a n=an+b(a,b为常数),则数列{a n}是等差数列.(3)求数列的最大(小)项常用的方法:①不等式组法;②函数单调性判断法.Ⅱ.我的知识网络图训练案一、基础巩固------把简单的事做好就叫不简单!1.已知等差数列{a n}中,a7+a9=16,a4=1,则a12的值是( )A.15 B.30 C.31 D.642.已知{a n}是等差数列,a3+a11=40,则a6-a7+a8等于( )A.20 B.48 C.60 D.723. 已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有( ).A.a1+a101>0 B.a2+a100<0 Ca3+a100≤0 D.a51=04.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m等于( ) A.4 B.6 C.8 D.125. 在等差数列{a n}中,a18=95,a32=123,a n=199,则n=________.6. 已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=_________7. 设数列{a n},{b n}都是等差数列, 若711=+ba,2133=+ba, 则=+55ba___。
北师大版必修5高中数学1.3等比数列导学案(二)
高中数学 1.3等比数列导学案北师大版必修5【学习目标】个性笔记1.在等差数列的基础上,通过类比的方法复述等比数列的定义;2.利用上述的定义、公式能判断一个数列是否为等比数列,并能确定其公比;3.记住等比数列的通项公式,能类比等差数列通项公式的推导方法推导等比数列的通项公式。
【学习重点】等比数列的定义和通项公式。
【学法指导】通过类比等差数列的知识研究等比数列的定义和通项公式。
【使用说明】......1.请同学们认真阅读课本21-----23页内容,规范完成导学案上的内容,用红笔做好疑难标记。
2.该学案分为AB三个层次,其中A,B每个同学都必须完成;C为拓展延伸,供学有余力的同学选作。
3.在课堂上联系课本知识和已学过的知识,小组合作、讨论完成导学案上的内容;组长负责,拿出讨论结果,准备展示、点评。
【学习过程】一、基础学习1. 自主阅读课本第21页至23页内容,思考:(1)等比数列的定义是什么?焦点词语有哪些?(用红笔画出来)(2)类比等差数列的定义,请你用数学符号表示出等比数列的定义。
(3)定义的作用是什么?2.自主阅读课本第22页至23页内容,思考:(1)等比数列的通项公式是?怎样推导?除了课本的方法,你还有没有其他的方法进行推导?(请类比等差数列推导方法,即等差数列用“累加法”,想一想,等比数列用什么方法?请你动手推导,将你所用到的方法写在下面的空白处。
)(2)它的作用是什么?(B)【探究二】(1)已知等比数列的第2项与第3项分别是10与20,求这个数列的第1项与第4项。
(2)已知{a n }为等比数列,且a 5=8,a 7=2,该数列的各项都为正数,求a n .. (思路点拨:结合知识点2完成)【探究三】(C)+11{}3a 2 4.(1){}12n n n n a a a a ==-已知数列满足,且求证:是等比数列。
(2)-13是否是这个数列中的项?如果是,是第几项?(请参照结合课本24也例3,写出详细规范的解答过程,相信你一定能做到。
苏教版高中数学必修5-2.1《数列(第2课时)》导学案
数列(第2课时)【学习导航】知识网络学习要求1.进一步理解数列概念,了解数列的分类;2.理解数列和函数之间的关系,会用列表法和图象法表示数列;3.了解递推数列的概念。
【自学评价】1.数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项。
2.数列的分类:按n a 的增减分类:(i )递增数列:n N *∈任意,总有1n n a a +>;(ii )递减数列:n N *∈任意,总有1n n a a +<;(iii) 摆动数列:l N *∈任意k,,有1k k a a +>,也有1l l a a +<,例如1,2,4,6,8,---;(iv )常数列:n N *∈任意,1n n a a +=;(v )有界数列:存在正整数M 使||n a M ≤;(vi )无界数列:对任意正整数M 总存在n a 使||n a M >。
3.递推数列:如果已知数列{}n a 的前一项(或前几项),且任意一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,则这个数列叫递推数列,这个公式叫这个数列的递推公式。
递推公式是给出数列的一种重要方式。
【精典范例】【例1】写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)222221314151,,,2345----; (2)12341,2,3,42345; (3)9,99,999,9999。
【解】(1)这个数列的前4项的分母都是序号加上1,分子都是分母的平方减去1,所以它的一个通项公式是:2(1)11n n a n +-=+; (2)这个数列的前4项每一项都可以分为整数部分n 与分数部分1n n +的和,所以它的一个通项公式是:1n n a n n =++; (3)这个数列的前4项每一项加1后变成10,100,1000,10000,所以它的一个通项公式是:101n n a =-。
高中数学必修5导学案_第二章_数列
§2.1数列的概念与简单表示法(1)学习目标1. 理解数列及其有关概念,了解数列和函数之间的关系;2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式.学习过程一、课前准备复习:函数,当x 依次取1,2,3,…时,其函数值有什么特点?二、新课导学学习探究⒈ 数列的定义: 的一列数叫做数列.⒉ 数列的项:数列中的 都叫做这个数列的项.反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第 项.4.数列的分类:1)根据数列项数的多少分 数列和 数列;2)根据数列中项的大小变化情况分为 数列, 数列,数列和 数列.5.数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 一个式子 来表示,那么 这个公式 就叫做这个数列的通项公式.典型例题写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴ 1,-12,13,-14; ⑵ 1, 0, 1, 0.变式:写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴12,45,910,1617;⑵1,-1,1,-1;反思:⑴所有数列都能写出其通项公式?⑵一个数列的通项公式是唯一?例2已知数列2,74,2,…的通项公式为2nan bacn+=,求这个数列的第四项和第五项.变式:已知数列5,11,17,23,29,…,则55是它的第项.小结:已知数列的通项公式,只要将数列中的项代入通项公式,就可以求出项数和项.三、总结提升知识拓展数列可以看作是定义域为正整数集的特殊函数.思考:设()f n=1+12+13+…+131n-(n∈*N)那么(1)()f n f n+-等于()A.132n+B.11331n n++C.113132n n+++D.11133132n n n++++。
人教版数学高二 数学A版必修五导学案第二章 数列(复习)
第二章 数列(复习)1. 系统掌握数列的有关概念和公式;2. 了解数列的通项公式n a 与前n 项和公式n S 的关系;3. 能通过前n 项和公式n S 求出数列的通项公式n a .一、课前准备(复习教材P 28 ~P 69,找出疑惑之处)(1)数列的概念,通项公式,数列的分类,从函数的观点看数列.(2)等差、等比数列的定义.(3)等差、等比数列的通项公式.(4)等差中项、等比中项.(5)等差、等比数列的前n 项和公式及其推导方法.二、新课导学※ 学习探究1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.2.等差、等比数列中,a 1、n a 、n 、d (q )、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法.3. 求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想.4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等.5. 数列求和主要:(1)逆序相加;(2)错位相消;(3)叠加、叠乘;(4)分组求和;(5)裂项相消,如111(1)1n n n n =-++.※ 典型例题例1在数列{}n a 中,1a =1,n ≥2时,n a 、n S 、n S -12成等比数列. (1)求234,,a a a ; (2)求数列{}n a 的通项公式.例2已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对任意正整数n ,均有3121123n n nc c c c a b b b b ++++⋯⋯+=, 求c 1+c 2+c 3+…+c 2004的值.※ 动手试试练 1. 等差数列{}n a 的首项为,a 公差为d ;等差数列{}n b 的首项为,b 公差为e . 如果(1)n n n c a b n =+≥,且124,8.c c == 求数列{}n c 的通项公式.练2. 如图,作边长为a 的正三角形的内切圆,在这个圆内作内接正三角形,然后,再作新三角形的内切圆.如此下去,求前n 个内切圆的面积和.练3. 一个蜂巢里有1只蜜蜂,第1天,它飞出去回了5个伙伴; 第2天, 6只蜜蜂飞出去,各自找回了5个伙伴,……,如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂.A. 55986B. 46656C. 216D. 36三、总结提升 ※ 学习小结1. 数列的有关概念和公式;2. 熟练掌握有关概念和公式并能灵活运用,培养解决实际问题的能力.※ 知识拓展数列前n 项和重要公式:2222(1)(21)1236n n n n +++++=; 3332112[(1)]2n n n ++=+ 学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 集合{}*21,,60M m m n n N m ==-∈<的元素个数是( ). A. 59 B. 31 C. 30 D. 292. 若在8和5832之间插入五个数,使其构成一个等比数列,则此等比数列的第五项是( ).A .648B .832C .1168D .19443. 设数列{}n a 是单调递增的等差数列,前三项的和是12, 前三项的积是48,则它的首项是( ).A. 1B. 2C. 4D. 84. 已知等差数列245,4,3, (77)的前n 项和为n S ,则使得n S 最大的序号n 的值为 . 5. 在小于100的正整数中,被5除余1的数的个数有 个;这些数的和是1. 观察下面的数阵, 容易看出, 第n 行最右边的数是2n , 那么第20行最左边的数是几?第20行所有数的和是多少?12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25… … … … … …2. 选菜问题:学校餐厅每天供应500名学生用餐,每星期一有A ,B 两种菜可供选择.调查资料表明,凡是在星期一选A 种菜的,下星期一会有20% 改选B 种菜;而选B 种菜的,下星期一会有30% 改选A 种菜. 用,n n a b 分别表示在第n 个星期选A 的人数和选B 的人数,如果1300,a = 求10a .。
高中数学第二章数列2.2.1等差数列(第1课时)等差数列的概念及通项公式学案(含解析)新人教B版必修5
学习目标 1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3.掌握等差中项的概念.知识点一 等差数列的概念一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,可正可负可为零. 知识点二 等差中项的概念如果三个数x ,A ,y 组成等差数列,那么A 叫做x 与y 的等差中项,且A =x +y2.思考 下列所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列: (1)2,4;(2)-1,5;(3)0,0;(4)a ,b . 答案 插入的数分别为(1)3,(2)2,(3)0,(4)a +b2.知识点三 等差数列的通项公式若一个等差数列{a n },首项是a 1,公差为d ,则a n =a 1+(n -1)d .此公式可用叠加法证明.1.数列4,4,4,……是等差数列.( √ ) 2.数列3,2,1是等差数列.( √ )3.数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,n +1,n ≥2,则{a n }是等差数列.( × )4.等差数列{a n }中,a 1,n ,d ,a n 任给三个,可求其余.( √ )题型一 等差数列的概念例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…; (2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…; (4)1,2,4,6,8,10,…; (5)a ,a ,a ,a ,a ,….解 由等差数列的定义得(1)(2)(5)为等差数列,(3)(4)不是等差数列.反思感悟 判断一个数列是不是等差数列,就是判断从第二项起该数列的每一项减去它的前一项的差是否为同一个常数,但当数列项数较多或是无穷数列时,逐一验证显然不行,这时可以验证a n +1-a n (n ≥1,n ∈N +)是不是一个与n 无关的常数. 跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列 答案 A解析 ∵a n +1-a n =2(n +1)+5-(2n +5)=2, ∴{a n }是公差为2的等差数列. 题型二 等差中项例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列. 解 ∵-1,a ,b ,c ,7成等差数列, ∴b 是-1与7的等差中项, ∴b =-1+72=3.又a 是-1与3的等差中项,∴a =-1+32=1.又c 是3与7的等差中项,∴c =3+72=5.∴该数列为-1,1,3,5,7.反思感悟 在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n ≥2,n ∈N +),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 解 由m 和2n 的等差中项为4,得m +2n =8. 又由2m 和n 的等差中项为5,得2m +n =10. 两式相加,得3m +3n =18,即m +n =6. 所以m 和n 的等差中项为m +n2=3.题型三 等差数列通项公式的求法及应用 例3 在等差数列{a n }中,(1)若a 5=15,a 17=39,试判断91是否为此数列中的项. (2)若a 2=11,a 8=5,求a 10.解 (1)因为⎩⎪⎨⎪⎧a 1+4d =15.a 1+16d =39,解得⎩⎪⎨⎪⎧a 1=7,d =2,所以a n =7+2(n -1)=2n +5. 令2n +5=91,得n =43.因为43为正整数,所以91是此数列中的项.(2)设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+d =11,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=12,d =-1.∴a n =12+(n -1)×(-1)=13-n , 所以a 10=13-10=3.反思感悟 根据已知量和未知量之间的关系,列出方程求解的思想方法,称为方程思想.等差数列{a n }中的每一项均可用a 1和d 表示,这里的a 1和d 就像构成物质的基本粒子,我们可以称为基本量.跟踪训练3 (1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项? 解 (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 由n =20,得a 20=8+(20-1)×(-3)=-49.(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1.由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的判定与证明典例1 已知数列{a n }满足a n +1=3a n +3n,且a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫a n 3n 是等差数列;(2)求数列{a n }的通项公式.(1)证明 由a n +1=3a n +3n,两边同时除以3n +1,得a n +13n +1=a n 3n +13,即a n +13n +1-a n 3n =13. 由等差数列的定义知,数列⎩⎨⎧⎭⎬⎫a n 3n 是以a 13=13为首项,13为公差的等差数列.(2)解 由(1)知a n 3n =13+(n -1)×13=n3,故a n =n ·3n -1,n ∈N +.典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3). (1)判断数列{a n }是否为等差数列?说明理由; (2)求{a n }的通项公式.解 (1)当n ≥3时,a n =a n -1+2,即a n -a n -1=2, 而a 2-a 1=0不满足a n -a n -1=2(n ≥3), ∴{a n }不是等差数列.(2)当n ≥2时,a n 是等差数列,公差为2. 当n ≥2时,a n =1+2(n -2)=2n -3, 又a 1=1不适合上式,∴{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.[素养评析] (1)证明一个数列是等差数列的基本方法:定义法,即证明a n -a n -1=d (n ≥2,d 为常数)或a n +1-a n =d (d 为常数),若证明一个数列不是等差数列,则只需举出反例即可.(2)证明一个数列是等差数列,主要的推理形式为演绎推理,通过学习,使学生形成重论据、有条理、合乎逻辑的思维品质,培养学生的数学核心素养.1.下列数列不是等差数列的是( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2答案 D2.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( ) A .2B .3C .-2D .-3 答案 C解析 由等差数列的定义,得d =a 2-a 1=-1-1=-2.3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A .30°B.60°C.90°D.120° 答案 B解析 因为A ,B ,C 成等差数列,所以B 是A ,C 的等差中项,则有A +C =2B , 又因为A +B +C =180°, 所以3B =180°,从而B =60°.4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A .公差为1的等差数列 B .公差为13的等差数列C .公差为-13的等差数列D .不是等差数列 答案 B解析 由3a n +1=3a n +1,得3a n +1-3a n =1,即a n +1-a n =13.所以数列{a n }是公差为13的等差数列.5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( ) A .92B .47C .46D .45 答案 C解析 d =-1-1=-2,设-89为第n 项,则-89=a 1+(n -1)d =1+(n -1)·(-2),∴n =46.1.判断一个数列是否为等差数列的常用方法 (1)a n +1-a n =d (d 为常数,n ∈N +)⇔{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N +)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数,n ∈N +)⇔{a n }是等差数列. 但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.一、选择题1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( ) A .4B .3C .2D .1 答案 D解析 ∵a 4-a 2=2d =6-4=2.∴d =1.2.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A .52B .62C .-62D .-52 答案 A解析 公差d =-2-(-5)=3,a 20=a 1+(20-1)d =-5+19×3=52. 3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( ) A .52B .51C .50D .49 答案 A解析 因为2a n +1-2a n =1,a 1=2,所以数列{a n }是首项a 1=2,公差d =12的等差数列,所以a 101=a 1+100d =2+100×12=52.4.若5,x ,y ,z ,21成等差数列,则x +y +z 的值为( ) A .26B .29C .39D .52 答案 C解析 ∵5,x ,y ,z ,21成等差数列,∴y 既是5和21的等差中项也是x 和z 的等差中项. ∴5+21=2y ,∴y =13,x +z =2y =26, ∴x +y +z =39.5.已知在等差数列{a n }中,a 3+a 8=22,a 6=7,则a 5等于( ) A .15B .22C .7D .29 答案 A解析 设{a n }的首项为a 1,公差为d , 根据题意得⎩⎪⎨⎪⎧a 3+a 8=a 1+2d +a 1+7d =22,a 6=a 1+5d =7,解得a 1=47,d =-8.所以a 5=47+(5-1)×(-8)=15.6.等差数列20,17,14,11,…中第一个负数项是( ) A .第7项 B .第8项 C .第9项 D .第10项答案 B解析 ∵a 1=20,d =-3,∴a n =20+(n -1)×(-3)=23-3n , ∴a 7=2>0,a 8=-1<0.故数列中第一个负数项是第8项.7.一个等差数列的前4项是a ,x ,b ,2x ,则a b等于( ) A.14B.12C.13D.23 答案 C解析 ∵b 是x,2x 的等差中项,∴b =x +2x 2=3x2,又∵x 是a ,b 的等差中项,∴2x =a +b ,∴a =x 2,∴a b =13.8.在数列{a n }中,a 2=2,a 6=0,且数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,则a 4等于( ) A.12B.13C.14D.16 答案 A 解析 由题意可得2a 4+1=1a 2+1+1a 6+1,解得a 4=12,故选A. 二、填空题9.若一个等差数列的前三项为a,2a -1,3-a ,则这个数列的通项公式为__________________. 答案 a n =n4+1,n ∈N +解析 ∵a +(3-a )=2(2a -1),∴a =54.∴这个等差数列的前三项依次为54,32,74,∴d =14,a n =54+(n -1)×14=n4+1,n ∈N +.10.现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案6766解析 设此等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,∴⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766,∴a 5=a 1+4d =1322+4×766=6766.11.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤83,3解析 设a n =-24+(n -1)d ,则⎩⎪⎨⎪⎧a 9=-24+8d ≤0,a 10=-24+9d >0,解得83<d ≤3.三、解答题12.已知{a n }为等差数列,且a 3=-6,a 6=0,求{a n }的通项公式. 解 设数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0,解得⎩⎪⎨⎪⎧a 1=-10,d =2,所以数列{a n }的通项公式为a n =a 1+(n -1)d =-10+(n -1)×2=2n -12. 13.已知数列{a n }满足a n +1=6a n -4a n +2,且a 1=3(n ∈N +). (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)求数列{a n }的通项公式. (1)证明 由1a n +1-2=16a n -4a n +2-2=a n +26a n -4-2a n +2=a n +24a n -8=a n -2+44a n -2=1a n -2+14, 得1a n +1-2-1a n -2=14,n ∈N +,故数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列. (2)解 由(1)知1a n -2=1a 1-2+(n -1)×14=n +34, 所以a n =2n +10n +3,n ∈N +.14.已知数列{a n }中,a 1=1,a n -1-a n =a n a n -1(n ≥2,n ∈N +),则a 10=________. 答案110解析 易知a n ≠0,∵数列{a n }满足a n -1-a n =a n a n -1(n ≥2,n ∈N +),∴1a n -1a n -1=1(n ≥2,n ∈N +),故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为1,首项为1,∴1a 10=1+9=10,∴a 10=110.15.已知数列{a n }满足:a 1=10,a 2=5,a n -a n +2=2(n ∈N +),求数列{a n }的通项公式. 解 由a n -a n +2=2知,{a n }的奇数项,偶数项 分别构成公差为-2的等差数列.当n =2k -1时,2k =n +1,a 2k -1=a 1+(k -1)·(-2)=12-2k , ∴a n =12-(n +1)=11-n (n 为奇数).当n =2k 时,a 2k =a 2+(k -1)·(-2)=5-2k +2=7-2k . ∴a n =7-n (n 为偶数).∴a n =⎩⎪⎨⎪⎧7-n ,n 为偶数,11-n ,n 为奇数.。
高中数学教案:必修5第二章教学设计(新人教A版)
数学 5 第二章数列一、课程要求数列作为一种特殊的函数,是反映自然规律的基本模型。
在本模块中,学生将通过对日常中大量实际问题的分析,建立等差数列和等比数列这两种模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。
1、了解数列的概念,概念2、理解等差数列的概念,探索并掌握等差数列的通项公式,体会等差数列的通项公式与一次函数之间的关系。
3、探索并掌握等差数列的前n 项和公式,体会等差数列的前n 项和公式与二次函数之间的关系。
4、理解等比数列的概念,探索并掌握等比数列的通项公式,体会等比数列的通项公式与指数函数之间的关系。
5、探索并掌握等比数列的前n 项和公式,体会等比数列的前n 项和公式与指数型函数之间的关系。
6、能在具体的问题情境中,发现数列的等差或等比关系,并能用有关知识解决相应的问题。
二、编写意图:1、数列是刻画离散过程的重要数学模型,数列的知识也是高等数学的基础,它可以看成是定义在正整数集或其有限子集的函数,因此,从函数的角度来研究数列,即是对函数学习的延伸,也是一种特殊的函数模型。
2、本章力求通过具体的问题情景展现,帮助学生了解数列的概念,通过对具体问题的探究,理解与掌握两类特殊的数列,并应用它们解决实际生活中相关的一些问题。
编写中体现了数学来源于生活,又服务于生活的这种基础学科的特点,使学生感觉到又亲切又好奇,充满魅力。
3、教材在例题、习题的编排上,注重让学生重点掌握数列的概念、特殊数列的通项公式、求和公式等,并应用这些知识解决实际生活中的问题,渗透函数思想解决问题。
4、教材在内容设计上突出了一些重要的数学思想方法。
如类比思想、归纳思想、数形结合思想、算法思想、方程思想、特殊到一般等思想贯穿于全章内容的始终。
5、教材在知识内容设计上,注意了数列与函数、算法、微积分、方程等的联系,适度应用现代信息计术,帮助学生理解数学,提高数学学习的兴趣。
三、教学内容及课时安排建议本章教学时间约 12 课时2.数列的概念与简单表示法约2课时12.2 等差数列约2课时2.3 等差数列的前 n 项和约 2 课时2.4 等比数列约 2 课时2.5 等比数列的前 n 项和约 2 课时问题与小结约 2 课时四、评价建议1、重视对学生数学学习过程的评价关注学生在数列知识学习过程中,是否对所呈现的现实问题情境充满兴趣;在学习过程中,能否发现数列的等差关系或等比关系,体会等差数列、等比数列与一次函数、指数函数的关系。
高中数学《等比数列的性质》导学案
12
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
课后课时精练
数学 ·必修5
【跟踪训练 1】 在等比数列{an}中,已知 a7·a12=5, 则 a8·a9·a10·a11 等于( )
A.10 B.25 C.50 D.75 解析 运用等比数列的性质,若 m+n=p+q,则 am·an =ap·aq 可得 a8·a11=a9·a10=a7·a12=5,所以 a8·a9·a10·a11=25. 故选 B.
数学 ·必修5
拓展提升 运用等比数列的性质应注意的问题
运用等比数列的性质 am·an=ak·al=a2t (m,n,k,l,t∈ N*)的关键是发现各项的序号之间满足关系 m+n=k+l= 2t,它们往往涉及其中的四项或三项,注意不要和等差数列 相应的性质混淆.
13
课前自主预习
课堂互动探究
随堂达标自测
7
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
2.做一做
(1)(教材改编 P53 练习 T4)已知等比数列{an}中,a4=7,
a6=21,则 a8 的值( )
A.35 B.63 C.21 3 D.±21 3
(2)等比数列{an}中,a5a7a9=27,则 a7=___3_____.
□ ①{can}(c 为任一不为零的常数)是公比为____0____0_7_|_q_| ___的等比数列. □ ③{amn }(m 为常数,m∈N*)是公比为____0_8__q_m___的等比
高一数学必修5第二章导学案案(2)
第二章数列§2.1.1 数列的概念与简单表示法(一)§2.1.2 数列的概念与简单表示法(二)§2.2.1 等差数列(一)§2.2.2 等差数列(二)§2.3.1 等差数列的前n项和(一)§2.3.2 等差数列的前n项和(二)§2.4.1 等比数列(一)§2.4.2 等比数列(二)§2.5.1 等比数列的前n项和(一)§2.5.2 等比数列的前n项和(二)§2.6.1 小结与复习第二章 数列课题:§2.1.1数列的概念与简单表示法(一)编写: 审核: 时间:一、教学目标:1、理解数列及其有关概念;2、了解数列和函数之间的关系;3、了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项的特征写出它的一个通项公式.教学重点:数列及其有关概念,通项公式及其应用.教学难点:根据一些数列的前几项,抽象、归纳出数列的通项公式. 二、问题导学:1、数列概念:_________________________________2、通项公式:_________________________________ 三、问题探究:1. 教学数列及其有关概念:(1)三角形数:1,3,6,10,··· (2)正方形数:1,4,9,16,···(2)1,2,3,4……的倒数排列成的一列数:(3)-1的1次幂,2次幂,3次幂,……排列成一列数:-1,1,-1,1,-1,。
(4)无穷多个1排列成的一列数:1,1,1,1,。
有什么共同特点? 1. 都是一列数;2. 都有一定的顺序① 数列的概念:_________________________________ 叫做这个数列的项.数列与集合区别:集合:无序性、互异性、确定性,数列:有序性、可重复性、确定性。
必修5等差数列导学案
§2.2等差数列(2)1. 进一步熟练掌握等差数列的通项公式及推导公式;2. 灵活应用等差数列的定义及性质解决一些相关问题.3940找出疑惑之处) 复习1:什么叫等差数列?复习2:等差数列的通项公式是什么?二、新课导学 ※ 典型例题例1 在等差数列{}n a 中,已知510a =,1231a =,求首项1a 与公差d .变式:在等差数列{}n a 中, 若56a =,2a +815a =,求公差d 及14a .小结:在等差数列{}n a 中,公差d 可以由数列中任意两项m a 与n a 通过公式m na a d m n-=-求出. 例2 如果数列}{n a 是等差数列,则( )A. 5481a a a a +<+B. 5481a a a a +=+C. 5481a a a a +>+D. 5481a a a a =变式1在等差数列{}n a 中,18103=+a a ,求58a a +,67a a +和121a a +变式:在等差数列{}n a 中,已知234534a a a a +++=,且2552a a = ,求公差d .小结:在等差数列中,若m +n =p +q ,则m n p q a a a a +=+,可以使得计算简化.※ 动手试试练1. 在等差数列{}n a 中,14739a a a ++=,25833a a a ++=,求369a a a ++的值.练2. 已知两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个相同项?3、在数列{}n a 中,2,841==a a 且0212=+-++n n n a a a ,n *∈N .求数列{}n a 的通项公式。
4、在数列}{n a 中,11a =,122n n n a a +=+. (Ⅰ)设12nn n a b -=.证明:数列}{n b 是等差数列; (2)求数列}{n a 的通项公式三、总结提升 ※ 学习小结1. 在等差数列中,若m +n =p +q ,则m n p q a a a a +=+注意:m n m n a a a ++≠,左右两边项数一定要相同才能用上述性质.2. 在等差数列中,公差m na a d m n-=-.※ 知识拓展判别一个数列是否等差数列的三种方法,即:(1)a a d -=;(2)(0)n a pn q p =+≠;(3)2n S an bn =+.1. 一个等差数列中,1533a =,2566a =,则35a =( ). A. 99 B. 49.5 C. 48 D. 492. 等差数列{}n a 中16a a +=,41a =,则12a 的值为( ). A . 15 B. 30 C. 31 D. 643. 等差数列{}n a 中,3a ,10a 是方程2350x x --=,则56a a +=( ). A. 3 B. 5 C. -3 D. -54. 等差数列{}n a 中,25a =-,611a =,则公差d = .12是等差数列中连续五项,则a = ,b = ,c = .1. 若 12530a a a +++= , 671080a a a +++= , 求111215a a a +++ .2. 成等差数列的三个数和为9,三数的平方和为35,求这三个数.3、求等差数列1,2,3,4,5,6, n 的前10项的和;你能求其前100项的和吗?前n 项的和呢?。
北师大版必修5高中数学1.1数列求和(2)导学案(二)
【学习目标】 1. 熟记数列 求和的五种方法:公式求和法,分组求和法,倒序相加法,裂项 相消法,错位相减法。 2. 能够对简单的数列求和问题进行分析、辨认,并选择正确的方法求解 【学习重点】 3. 重点:裂项相消法,错位相减法。 【学法指导】 自己通过查询资料,搜集整理裂项相消法,错位相减法的相关内容,并与 组内同学交流形成共识后完成基础学习。 【使用说明】
当堂检测 (A) 1、 已 知等差数列 an 满足:a3 7 ,a5 a7 26 . an 的前 n 项和为 Sn . (1) 、求 an 及 Sn ; (2) 、令 bn
1 ( n N ),求数列 bn 的前 n 项和 Tn . an 1
2
2
(C)3 设数列{bn}的前 n 项和为 Sn, 且 bn=2-2Sn;数列{an}为等差数列,且 a5 =14,a7=20. (1)求数列{bn}的通项公式; (2)若 cn=an·bn(n=1,2,3…),Tn 为数列{cn}的前 n 项和,求 Tn.
Tn= -
7 2
1 3n-1 . n-2- n 2·3 3
4
总结反思
5
6
总结反思
7
个 性 笔 记
(B) 2、错位相减法的适用范围是?
(一) 学习探究
(A)探究一
1 已知数列 an 的通项 an = n(n 1) ,求数列的前 n 项和 sn.
(提示:本小题用裂项相消法)
1
(B)探究二
已知数列 an 的通项 an =n•3 , 求数列的前 n 项和 sn.
nபைடு நூலகம்
(提示:本小题用错位相减法)
( 三)教与学反思 本节课你有哪些收获?请写下来,与组内的同学分享
人教A版高中数学必修五人教教案第二章数列全章教案
课题: §2.1数列的概念与简单表示法授课类型:新授课(第1课时)●教学目标知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。
过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
●教学重点数列及其有关概念,通项公式及其应用 ●教学难点根据一些数列的前几项抽象、归纳数列的通项公式 ●教学过程 Ⅰ.课题导入三角形数:1,3,6,10,… 正方形数:1,4,9,16,25,… Ⅱ.讲授新课⒈ 数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“31”是这个数列的第“3”项,等等下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系:项 1 51413121↓ ↓ ↓ ↓ ↓序号 1 2 3 4 5这个数的第一项与这一项的序号可用一个公式:na n 1=来表示其对应关系 即:只要依次用1,2,3…代替公式中的n ,就可以求出该数列相应的各项 结合上述其他例子,练习找其对应关系⒋ 数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意:⑴并不是所有数列都能写出其通项公式,如上述数列④;⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是2)1(11+-+=n n a ,也可以是|21cos |π+=n a n .⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项. 5.数列与函数的关系数列可以看成以正整数集N *(或它的有限子集{1,2,3,…,n})为定义域的函数()n a f n =,当自变量从小到大依次取值时对应的一列函数值。
数学必修5导学案:1-1 第2课时数列的函数特性
第2课时数列的函数特性知能目标解读1.熟练掌握数列与函数之间的关系,了解数列是一种特殊的函数的含义.2.能够用函数的观点、方法研究数列的增减性、最值、图像等问题.3.能够通过探求数列的增减性或画出数列的图像来求数列中的最大项或最小项.重点难点点拨重点:1.了解数列是一种特殊的函数的含义.2.能够用函数的观点、方法研究数列的增减性、最值、图像等问题.难点:用函数的观点、方法研究数列的增减性、最值、图像等问题.学习方法指导1.数列的概念与函数概念的联系(1)数列是一种特殊的函数,特殊在定义域是正整数集或是它的有限子集{1,2,3,…,n},它是一种自变量“等距离”地离散取值的函数.(2)数列与函数不能画等号,数列是相应函数的一系列函数值.(3)利用函数与数列的关系,可以从函数的观点研究数列的表示方法及有关性质.2.数列的表示方法(1)数列的图像是无限个或有限个离散的孤立的点.(2)若数列是以解析式的形式给出的,则数列的图像是相应函数图像上的一系列孤立的点.(3)数列是一类离散函数,它是刻画离散过程的重要数学模型,有很广泛的应用.(4)列表法不必通过计算就能知道两个变量间的对应关系,比较直观,但是它只能表示有限个元素间的对应关系.3.数列的单调性(1)递增数列:一般地,一个数列{a n},如果从第2项起,每一项都大于它前面的一项,即a n+1>a n(n∈N+),那么这个数列叫做递增数列.(2)递减数列:一般地,一个数列{a n},如果从第2项起,每一项都小于它前面的项,即a n+1<a n(n∈N+),那么这个数列叫做递减数列.(3)常数列:如果数列{a n}的各项都相等,那么这个数列叫做常数列.(4)摆动数列:一个数列{a n},从第2项起,有些项大于它的前一项,有些项小于它的前一项,那么这个数列叫做摆动数列.注意:(ⅰ)有关数列的分类,由于分类的标准不同,分类方法也不一致:(ⅱ)数列的单调性的判断,定义法是十分重要的方法,即计算a n+1-a n,并研究差的符号的正负;除了应用定义判断外,也可以利用其函数性质判定,例如数列a n=3-n,因为一次函数y=3-x是减函数,因此可判断4.如何证明数列的单调性证明数列的单调性的主要方法有:(1)定义法:其中之一是作差比较,为了便于判断a n+1-a n的符号,通常将a n+1-a n变成常数形式或因式连乘积的形式或平方和形式.除了作差比较外,也可以采用作商的方法,作商时,首先应明确数列的项a n的符号(a n>0还是a n<0),将其商与1进行比较,从而确定数列的单调性,对于多项式应进行因式分解,对于根式,进行分子(或分母)有理化.(2)借助于数列图像的直观性,证明数列的单调性.知能自主梳理1.几种数列的概念(1)数列按照项与项之间的大小关系可分为数列,数列,数列和数列.(2)一般地,一个数列{a n},如果从第2项起,每一项都大于它前面的一项,即,那么这个数列叫做数列;(3)一个数列,如果从第2项起,每一项都小于它前面的一项,即,那么这个数列叫做数列;(4)一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫做数列;(5)如果数列{a n}的各项都相等,那么这个数列叫做数列.2.数列的递推公式如果已知数列的(或前几项),且从第二项(或某一项)开始的与它的(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的公式.3.a n与S n的关系S1(n=1)若数列{a n}的前n项和记为S n,即S n=a1+a2+…+a n,则a n=(n≥2)[答案] 1.(1)递增递减摆动常(2)a n+1>a n递增(3)a n+1<a n递减(4)摆动(5)常2.第1项任一项a n前一项a n-1递推3.S n-S n-1思路方法技巧命题方向数列表示法的应用[例1](1)根据数列的通项公式填表:(2)画出数列{a n}的图像,其中a n=3.[分析](1)根据数列的通项公式,代入相应的n值得到所求的项,解关于n的方程得项对应的n值. (2)在直角坐标系下,描出点(n,a n).所以a 1=3×(4×1+3)=21,a 2=3×(4×2+3)=33,a 5=3×(4×5+3)=69. 令3(4n +3)=153,解得n =12. 故填充完整的表格为:(2)∵a n =3,列表:在直角坐标系中图像如下:[说明] (1)列表法不必通过计算就能知道两个变量间的对应关系,比较直观,但它只能表示有限个元素之间的对应关系;(2)数列a n =3n -1的图像是函数y =3x -1 (x >0)上的无穷多个孤立的点. 变式应用1 已知数列{a n }的通项公式为a n =2n -1,作出该数列的图像.[解析] 分别取n =1,2,3,…,得到点(1,1),(2,3),(3,5),…,描点作出图像.如图,它的图像是直线y =2x -1上的一些等间隔的点.命题方向 数列单调性的判断[例2] 已知函数f (x )=2x -2-x ,数列{a n }满足f (log 2a n ) =-2n . (1)求数列{a n }的通项公式; (2)求证数列{a n }是递减数列.[分析] (1)已知函数关系式,由条件可得出2log 2a n -2-log 2a n =-2n ,解这个关于a n 的方程即可;(2)只需证明a -a <0或na >1(a >0)即可.[解析] (1)∵f (x )=2x -2-x ,f (log 2a n )=-2n , ∴2log 2a n -2-log 2a n =-2n ,a n -na 1=-2n , ∴a n 2+2na n -1=0,解得a n =-n ±12+n . ∵a n >0,∴a n =12+n -n .(2)n n a a 1+=nn n n -++-++1)1(1)1(22=)1(1)1(122++++++n n n n <1.即{a n }是递减数列.[说明] 我们常把递增数列和递减数列统称为单调数列,由于数列可看作是一个特殊的函数,因此,判断函数性质的方法同样适用于数列.比较a n 与a n +1大小的常用方法有:①作差法:若a n +1-a n >0,则数列{a n }是递增数列;若a n +1-a n <0,则数列{a n }是递减数列.②作商法:若n n a a 1+>1,则数列{a n }是递增数列;若nn a a1+<1,则数列{a n }是递减数列. 变式应用2 写出数列1,42,73,104,135,…的通项公式,并判断它的增减性. [解析] 该数列的通项公式为a n =23-n n,∴a n +1-a n =2)1(31-++n n -23-n n =)23)(13(2-+-n n .∵n ∈N +,∴(3n+1)(3n-2)>0, ∴a n +1<a n ,∴该数列为递减数列.命题方向 数列中最大项与最小项的求法 [例3] 求数列{-2n 2+9n +3}中的最大项.[分析] 由通项公式可以看出a n 与n 构成二次函数关系,求二次函数的最值可采用配方法.此时应注意自变量n 为正整数.[解析] 由已知a n =-2n 2+9n +3=-2(n -49)2+8105. 由于n 为正整数,故当n =2时,a n 取得最大值为13. 所以数列{-2n 2+9n +3}的最大值为a 2=13.[说明] 数列的项与项数之间构成特殊的函数关系,因此有关数列的最大项与最小项问题可用函数最值的求法去解决,但要注意函数的定义域为正整数集这一约束条件.(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值. [解析] (1)由n 2-5n +4<0,解得1<n <4. ∵n ∈N +,∴n =2,3. ∴数列有两项是负数. (2)∵a n =n 2-5n +4=(n -25)2-49,可知对称轴方程为n =25=2.5. 又∵n ∈N +,∴n =2或3时,a n 有最小值,其最小值为22-5×2+4=-2.探索延拓创新命题方向 数列的实际应用题[例4] 在一次人才招聘会上,有A 、B 两家公司分别开出它们的工资标准:A 公司允诺第一年月工资1500元,以后每年月工资比上年月工资增加230元,B 公司允诺第一年月工资为2000元,以后每年月工资在上年月工资的基础上增加5%,设某人年初被A 、B 两家公司同时录取,试问:该人在A 公司工作比在B 公司工作月工资收入最多可以多多少元?并说明理由(精确到1元).[分析] 根据题意,先建立实际问题的数学模型,根据建立的函数模型解决问题.由于自变量n ∈N +,函数解析式可以看作数列的通项公式,因此可运用数列的单调性求解. [解析] 设在A 公司月工资为a n ,在B 公司月工资为b n ,则 问题等价于求c n =a n -b n =1270+230n -2000×1.05n -1 (n ∈N +)的最大值. 当n ≥2时,c n -c n -1=230-100×1.05n -2;当c n -c n -1>0,即230-100×1.05n -2>0时,1.05n -2<2.3,得n <19.1. 因此,当2≤n ≤19时,c n -1<c n , 于是当n ≥20时,c n <c n -1. 所以c 19=a 19-b 19≈827(元).即在A 公司工作比在B 公司工作的月工资收入最多可以多827元.[说明] 数列是一种特殊的函数,定义域为正整数集N +(或它的有限子集{1,2,3,…,n })的函数,数列的通项公式就是相应的函数解析式,因此,用函数的观点去考察数列问题也是一种有效的途径.变式应用4 某企业由于受2011年国家财政紧缩政策的影响,预测2012年的月产值(万元)组成数列{a n },满足a n =2n 2-15n +3,问第几个月的产值最少,最少是多少万元? [解析] 由题意知,实质是求数列{a n }的最小项. 由于a n =2n 2-15n +3=2(n -415)2-8201,图像如图所示,由图像知n =4时,a 4最小,a 4=-25,即第4个月产值最少,最少为-25万元.名师辨误做答[例5] 已知a n =a ·(21)n(a ≠0且a 为常数),试判断数列{a n }的单调性. [误解] ∵a n -a n -1=a (21)n -a (21)n -1=-a (21)n <0, ∴数列{a n }为递减数列.[辨析] 错误原因是误认为a >0,其实对非零实数a 应分a >0和a <0两种情况讨论. [正解] ∵a n -a n -1=-a (21)n(n ≥2,n ∈N *), ∴①当a >0时,a n -a n -1<0,∴a n <a n -1, ∴数列{a n }是递减数列. ②当a <0时,a n -a n -1>0,∴a n >a n -1, ∴数列{a n }是递增数列.课堂巩固训练一、选择题1.已知数列{a n },a 1=1,a n -a n -1=n -1(n ≥2),则a 6=( )A.7B.11C.16D.17 [答案] C[解析] ∵a 1=1,a n -a n -1=n -1(n ≥2), ∴a 2-a 1=1,∴a 2=a 1+1=2, ∴a 3-a 2=2,∴a 3=a 2+2=4, ∴a 4-a 3=3,∴a 4=a 3+3=7, ∴a 5-a 4=4,∴a 5=a 4+4=11, ∴a 6-a 5=5,∴a 6=a 5+5=16.2.(2012·济南高二检测)数列{a n }中,a n =-n 2+11n ,则此数列最大项的值是( ) A.4121B.30C.31D.32[解析] a n =-n 2+11n =-(n -211)2+4121, ∵n ∈N +,∴当n =5或6时,a n 取最大值30,故选B.3.一给定函数y =f (x )的图像在下列图中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到数列{a n }满足a n +1>a n (n ∈N +),则该函数的图像是( )[答案] A[解析] 由关系式a n +1=f (a n )得到数列{a n }满足a n+1>a n ,可得f (a n )>a n ,即f (x )>x .故要使该函数y =f (x )图像上任一点(x ,y )都满足y >x ,图像必在直线y =x 的上方,所以A 正确.说明:借用函数的图像与性质来研究数列时,要注意函数的一般性及数列的特殊性之间的关系,不可不加区分,混为一谈,表达时要清楚明白,数列问题有时用图像来处理,往往可以使问题巧妙、简捷地获得解决.二、填空题 4.已知f (1)=2,f (n +1)=21)(+n f (n ∈N +),则f (4)= . [答案]89 [解析] ∵f (1)=2,f (n +1)=21)(+n f (n ∈N +), ∴f (2)=21)1(+f =23, f (3)= 21)2(+f =225=45,f (4)= 21)3(+f =2145+=89.5.已知数列{a n }中,a n =a n +m (a <0,n ∈N +)满足a 1=2,a 2=4,则a 3= .2=a+m a =2 a =-1 [解析] ∵a 1=2,a 2=4, ∴ , ∴ (舍去)或 ,4=a 2+m m =0 m =3∴a 3=(-1) 3+3=2. 三、解答题 6.证明数列{)1(1+n n }是递减数列.[证明] 令a n =)1(1+n n ,∴a n +1-a n =)2)(1(1++n n -)1(1+n n=n n n n ⋅++)2)(1(-)2()1(2+⋅++n n n n=-)2)(1(2++n n n <0,∴a n +1<a n .所以数列{)1(1+n n }是递减数列.课后强化作业一、选择题1.已知数列{a n }满足a n +1-a n -3=0,则数列{a n }是( )A.递增数列B.递减数列C.常数列D.不能确定 [答案] A[解析] 由条件得a n +1-a n =3>0可知a n +1>a n , 所以数列{a n }是递增数列.2.设a n =-n 2+10n +11,则数列{a n }的最大项为( )A.5B.11C.10或11D.36 [答案] D[解析] ∵a n =-n 2+10n +11=-(n -5) 2+36, ∴当n =5时,a n 取最大值36.3.数列{a n }中,a 1=0,以后各项由公式a 1·a 2·a 3·…·a n =n 2给出,则a 3+a 5等于( ) A.925 B. 1625 C. 1661 D. 1531 [答案] C[解析] ∵a 1·a 2·a 3·…·a n =n 2, ∴a 1·a 2·a 3=9,a 1·a 2=4,∴a 3=49. 同理a =25,∴a +a =9+25=61.4.已知数列{a n }的通项公式a n =lg1536-(n -1)lg2,则使得a n <0成立的最小正整数n 的值为( ) A.11 B.13 C.15 D.12 [答案] D[解析] lg1536-lg2n -1<0,lg1536<lg2n -1, 即2n -1>1536,代入验证得答案为D. 5.已知数列{a n }中,a 1=1,a 2=3,a n =a n -1+21 n a (n ≥3),则a 5=( )A.1255 B. 313 C.4 D.5[答案] A [解析] a 3=a 2+11a =3+1=4. a 4=a 3+21a =4+31=313.a 5=a 4+31a =313+41=1255. 6.在数列{a n }中,a 1=1,a n ·a n -1=a n -1+(-1) n (n ≥2),则53a a 的值是( ) A.21 B. 32 C. 43 D. 54 [答案] C[解析] ∵a 1=1,∴a 2=1+1=2,a 3a 2=a 2+(-1) 3=2+(-1)=1,∴a 3=21, 又a 3a 4=a 3+(-1) 4,∴a 4=3, ∵a 4a 5=a 4+(-1) 5=2,∴a 5=32, ∴53a a=3221=43. 7.已知S k 表示数列的前k 项和,且S k +S k +1=a k +1 (k ∈N +),那么此数列是( ) A.递增数列 B.递减数列 C.常数列 D.摆动数列 [答案] C[解析] ∵a k +1=S k +1-S k =S k +S k +1, ∴S k =0(k ∈N +).可知此数列每一项均为0, 即a n =0是常数列.8.已知数列{a n }的通项公式为a n =(43)n -1[(43)n -1-1],则关于a n 的最大项,最小项叙述正确的是( ) A.最大项为a 1,最小项为a 3 B.最大项为a 1,最小项不存在 C.最大项不存在,最小项为a 3 D.最大项为a 1,最小项为a 4 [答案] A [解析] 令t =(43)n -1,则它在N +上递减且0<t ≤1,而a n =t 2-t ,在0<t ≤21时递减,在t ≥21时递增,且n =1时,t =1,n =2时,t =43,n =3时,t =169,n =4时,t =6427,且a 4>a 3,故选A. 二、填空题9.已知数列{a n }的通项公式a n =n 2-4n -12(n ∈N +),则 (1)这个数列的第四项是 ; (2)65是这个数列的第 项; (3)这个数列从第 项起以后各项为正数. [答案] -12 11 7[解析] (1)a 4=42-4×4-12=-12. (2)令65=n 2-4n -12,∴n 2-4n -77=0, ∴n =11或n =-7(舍去). 故65是这个数列的第11项. (3)令n 2-4n -12>0,得n >6或n <2. ∴这个数列从第7项起各项为正数. 10.已知数列{a n }的通项a n =cnb na+ (a 、b 、c 都是正实数),则a n 与a n +1的大小关系是 .[答案] a n +1>a n[解析] ∵a,b,c 均为实数,f (x )=cbx ax+=xc b a +在(0,+∞)上是增函数,故数列a n =cbn an+在n ∈N +时为递增数列,∴a n <a n +1.11.已知{a n }是递增数列,且对任意的自然数n (n ≥1),都有a n =n 2+λn 恒成立,则实数λ的取值范围为 . [答案] λ>-3[解析] 由{a n }为递增数列,得a n +1-a n =(n +1) 2+λ(n +1)-n 2-λn =2n +1+λ>0恒成立, 即λ>-2n -1在n ≥1时恒成立, 令f (n )=-2n -1,f (n ) max =-3. 只需λ>f (n ) max =-3即可.(1)该数列有无限多个正数项;(2)该数列有无限多个负数项;(3)该数列的最大项就是函数f (x )=-2x 2+13x 的最大值;(4)-70是该数列中的一项.其中正确的说法有 .(把所有正确的序号都填上)[答案] (2)(4)[解析] 令-2n 2+13n >0,得0<n <213,故数列{a n }有6项是正数项,有无限个负数项.当n =3时,数列{a n }取到最大值,而当x =3.25时函数f (x )取到最大值.令-2n 2+13n =-70,得n =10,或n =-27(舍去).即-70是该数列的第10项. 三、解答题13.已知数列1,2,37,25,513,…. (1)写出这个数列的一个通项公式a n ;(2)判断数列{a n }的增减性.[解析] (1)数列1,2,37,25,513,….可变为11,24,37,410,513,….观察该数列可知,每一项的分母恰与该项序号n 对应,而分子比序号n 的3倍少2, ∴a n =n n 23-. (2)∵a n =n n 23-=3-n2, ∴a n +1=3-12+n , ∴a n +1-a n =3-12+n -3+n 2=n 2-12+n =)1(2+n n >0, ∴a n +1>a n .故数列{a n }为递增数列. 14.根据数列的通项公式,写出数列的前5项,并用图像表示出来.(1)a n =(-1) n +2;(2)a n =nn 1+. [解析] (1)a 1=1,a 2=3,a 3=1,a 4=3,a 5=1.图像如图1.(2)a 1=2,a 2=23,a 3=34,a 4=45,a 5=56.图像如图2.15.已知数列{a n },a 1=2,a n +1=2a n ,写出数列的前4项,猜想a n ,并加以证明.[证明] 由a 1=2,a n +1=2a n ,得a 2=2a 1=4=22,a 3=2a 2=2·22=23, a 4=2a 3=2·23=24.猜想a n =2n (n ∈N +).证明如下:由a 1=2,a n +1=2a n , 得1-n n a a =21--n n a a =…=23a a =12a a =2. ∴a n =1-n n a a ·21--n n a a …23a a ·12a a ·a 1=2·2…2·2=2n . 16.已知函数f (x )= 122+x x ,设f (n )=a n (n ∈N +).求证:21≤a n <1. [解析] 解法一:因为a n -1=122+n n -1=-112+n <0, a n -21=122+n n -21=)1(2122+-n n ≥0, 所以21≤a n <1. 解法二:a n =122+n n =11122+-+n n =1-112+n <1, a n +1-a n =1)1()1(22+++n n -122+n n =]1)1[()1(]1)1[()1()1(222222++⋅+++⋅-+⋅+n n n n n n =]1)1[()1(1222++⋅++n n n . 由n ∈N +得a n +1-a n >0,即a n +1>a n , 所以数列{a n }是递增数列. 所以a n 的最小值为a 1=21,即a n ≥21. 所以21≤a n <1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1数列的概念与简单表示法(1)学习目标1. 理解数列及其有关概念,了解数列和函数之间的关系;2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式.学习过程一、课前准备(预习教材P 28 ~ P 30 ,找出疑惑之处) 复习1:函数,当x 依次取1,2,3,…时,其函数值有什么特点?复习2:函数y =7x +9,当x 依次取1,2,3,…时,其函数值有什么特点?二、新课导学 ※ 学习探究探究任务:数列的概念⒈ 数列的定义: 的一列数叫做数列.⒉ 数列的项:数列中的 都叫做这个数列的项. 反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第 项.4.数列的分类:1)根据数列项数的多少分 数列和 数列;2)根据数列中项的大小变化情况分为 数列, 数列, 数列和 数列.5.数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 一个式子 来表示,那么 这个公式 就叫做这个数列的通项公式.※ 典型例题例1写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴1,-12,13,-14;⑵1,0,1,0.变式:写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴12,45,910,1617;⑵1,-1,1,-1;小结:要由数列的若干项写出数列的一个通项公式,只需观察分析数列中的项的构成规律,将项表示为项数的函数关系.反思:⑴所有数列都能写出其通项公式?⑵一个数列的通项公式是唯一?⑶数列与函数有关系吗?如果有关,是什么关系?例2已知数列2,74,2,…的通项公式为2nan bacn+=,求这个数列的第四项和第五项.变式:已知数列5,11,17,23,29,…,则55是它的第项.小结:已知数列的通项公式,只要将数列中的项代入通项公式,就可以求出项数和项.※动手试试练1. 写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴1,13,15,17;⑵1,2,3,2 .练2. 写出数列2{}n n-的第20项,第n+1项.三、总结提升※学习小结1. 对于比较简单的数列,会根据其前几项写出它的一个通项公式;2. 会用通项公式写出数列的任意一项.※知识拓展数列可以看作是定义域为正整数集的特殊函数.思考:设()f n=1+12+13+…+131n-(n∈*N)那么(1)()f n f n+-等于()A.132n+B.11331n n++C.113132n n+++D.11133132n n n++++学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列说法正确的是().A. 数列中不能重复出现同一个数B. 1,2,3,4与4,3,2,1是同一数列C. 1,1,1,1…不是数列D. 两个数列的每一项相同,则数列相同2. 下列四个数中,哪个是数列{(1)}n n+中的一项().A. 380B. 392C. 321D. 2323. 在横线上填上适当的数:3,8,15,,35,48.4.数列(1)2{(1)}n n--的第4项是.5. 写出数列121-⨯,122⨯,123-⨯,124⨯的一个通项公式.课后作业1. 写出数列{2n}的前5项.2. (1)写出数列2212-,2313-,2414-,2515-的一个通项公式为.(2)已知数列3,7,11,15,19,…那么311是这个数列的第项.§2.1数列的概念与简单表示法(2)学习目标1. 了解数列的递推公式,明确递推公式与通项公式的异同;2. 会由递推公式写出数列的前几项,并掌握求简单数列的通项公式的方法.学习过程一、课前准备(预习教材P 31 ~ P 34 ,找出疑惑之处)复习1:什么是数列?什么是数列的通项公式?复习2:数列如何分类?二、新课导学 ※ 学习探究探究任务:数列的表示方法问题:全体正偶数按从小到大的顺序构成数列:2,4,6, (2)1. 通项公式法:试试:上面数列中n a 与项数n 之间关系的一个通项公式是 .2 .列表法:试试:上面数列中n a 与项数n 之间关系用列表法如何表示?n 1 2 3 …… n …… n a246……2n……3.图象法:数列的图形是 ,因为横坐标为 数,所以这些点都在y 轴的 侧,而点的个数取决于数列的 .从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.4. 递推公式法: 递推公式:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.反思:所有数列都能有四种表示方法吗?※ 典型例题例1 设数列{}n a 满足11111(1).nn a a n a -=⎧⎪⎨=+>⎪⎩写出这个数列的前五项.变式:已知12a =,12n n a a +=,写出前5项,并猜想通项公式n a .小结:由递推公式求数列的项,只要让n 依次取不同的值代入递推公式就可求出数列的项.例2 已知数列{}n a 满足10a =,12n n a a n +=+, 那么2007a =( ). A. 2003×2004 B. 2004×2005 C. 2007×2006 D. 22004变式:已知数列{}n a 满足10a =,12n n a a n +=+,求n a .小结:由递推公式求数列的通项公式,适当的变形与化归及归纳猜想都是常用方法. ※ 动手试试练1. 已知数列{}n a 满足11a =,223a =,且111120n n n n n n a a a a a a -+-++-= (2n ≥),求34,a a .练2.(2005年湖南)已知数列{}n a 满足10a =,1331n n n a a a +-=+ (*n N ∈),则20a =( ).A .0 B.-3 C.3 D.32练3. 在数列{}n a 中,12a =,1766a =,通项公式是项数n 的一次函数. ⑴ 求数列{}n a 的通项公式; ⑵ 88是否是数列{}n a 中的项.三、总结提升 ※ 学习小结1. 数列的表示方法;2. 数列的递推公式.※ 知识拓展n 刀最多能将比萨饼切成几块?意大利一家比萨饼店的员工乔治喜欢将比萨饼切成形状各异的小块,以便出售. 他发现一刀能将饼切成两块,两刀最多能切成4块,而三刀最多能切成7块(如图).请你帮他算算看,四刀最多能将饼切成多少块?n 刀呢?解析:将比萨饼抽象成一个圆,每一刀的切痕看成圆的一条弦. 因为任意两条弦最多只能有一个交点,所以第n 刀最多与前n -1刀的切痕都各有一个不同的交点,因此第n 刀的切痕最多被前n -1刀分成n 段,而每一段则将相应的一块饼分成两块. 也就是说n 刀切下去最多能使饼增加n 块. 记刀数为1时,饼的块数最多为1a ,……,刀数为n 时,饼的块数最多为n a ,所以n a =1n a n -+. 由此可求得n a =1+2)1(+n n .学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测1. 已知数列130n n a a +--=,则数列{}n a 是( ).A. 递增数列B. 递减数列C. 摆动数列D. 常数列2. 数列{}n a 中,2293n a n n =-++,则此数列最大项的值是( ).A. 3B. 13C. 1318D. 123. 数列{}n a 满足11a =,12n n a a +=+(n ≥1),则该数列的通项n a =( ). A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 4. 已知数列{}n a 满足113a =,1(1)2n n n a a -=- (n ≥2),则5a = .5. 已知数列{}n a 满足112a =,111n n a a +=-(n ≥2),则6a = .课后作业1. 数列{}n a 中,1a =0,1n a +=n a +(2n -1) (n ∈N ),写出前五项,并归纳出通项公式.2. 数列{}n a 满足11a =,12()2nn n a a n N a +=∈+,写出前5项,并猜想通项公式n a .§2.2等差数列(1)学习目标1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2. 探索并掌握等差数列的通项公式;3. 正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.学习过程一、课前准备(预习教材P 36 ~ P 39 ,找出疑惑之处) 复习1:什么是数列?复习2:数列有几种表示方法?分别是哪几种方法?二、新课导学 ※ 学习探究探究任务一:等差数列的概念问题1:请同学们仔细观察,看看以下四个数列有什么共同特征? ① 0,5,10,15,20,25,… ② 48,53,58,63③ 18,15.5,13,10.5,8,5.5④ 10072,10144,10216,10288,10366新知:1.等差数列:一般地,如果一个数列从第 2 项起,每一项与它 前 一项的 差 等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的 公差 , 常用字母 d 表示.2.等差中项:由三个数a ,A , b 组成的等差数列,这时数 叫做数 和 的等差中项,用等式表示为A =探究任务二:等差数列的通项公式问题2:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得: 21a a -= ,即:21a a =+ 32a a -= , 即:321a a d a =+=+ 43a a -= ,即:431a a d a =+=+……由此归纳等差数列的通项公式可得:n a =∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a .※ 典型例题例1 ⑴求等差数列8,5,2…的第20项;⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?变式:(1)求等差数列3,7,11,……的第10项.(2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.小结:要求出数列中的项,关键是求出通项公式;要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n 值,使得n a 等于这一数.例2 已知数列{n a }的通项公式n a pn q =+,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是多少?变式:已知数列的通项公式为61n a n =-,问这个数列是否一定是等差数列?若是,首项与公差分别是什么?小结:要判定{}n a 是不是等差数列,只要看1n n a a --(n ≥2)是不是一个与n 无关的常数.※ 动手试试练1. 等差数列1,-3,-7,-11,…,求它的通项公式和第20项.练2.在等差数列{}n a 的首项是51210,31a a ==, 求数列的首项与公差.三、总结提升 ※ 学习小结1. 等差数列定义: 1n n a a d --= (n ≥2);2. 等差数列通项公式:n a =1(1)a n d +- (n ≥1).※ 知识拓展1. 若三个数成等差数列,且已知和时,可设这三个数为,,a d a a d -+.2. 若四个数成等差数列,可设这四个数为3,,,3a d a d a d a d --++.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 等差数列1,-1,-3,…,-89的项数是( ). A. 92 B. 47 C. 46 D. 452. 数列{}n a 的通项公式25n a n =+,则此数列是( ).A.公差为2的等差数列B.公差为5的等差数列C.首项为2的等差数列D.公差为n 的等差数列3. 等差数列的第1项是7,第7项是-1,则它的第5项是( ).A. 2B. 3C. 4D. 64. 在△ABC 中,三个内角A ,B ,C 成等差数列,则∠B = .5. 等差数列的相邻4项是a +1,a +3,b ,a +b ,那么a = ,b = .课后作业1. 在等差数列{}n a 中,⑴已知12a =,d =3,n =10,求n a ;⑵已知13a =,21n a =,d =2,求n ;⑶已知112a =,627a =,求d ;⑷已知d =-13,78a =,求1a .§2.2等差数列(2)学习目标1. 进一步熟练掌握等差数列的通项公式及推导公式;2. 灵活应用等差数列的定义及性质解决一些相关问题.学习过程一、课前准备(预习教材P 39 ~ P 40,找出疑惑之处) 复习1:什么叫等差数列?复习2:等差数列的通项公式是什么?二、新课导学 ※ 学习探究探究任务:等差数列的性质1. 在等差数列{}n a 中,d 为公差, m a 与n a 有何关系?2. 在等差数列{}n a 中,d 为公差,若,,,m n p q N +∈且m n p q +=+,则m a ,n a ,p a ,q a 有何关系?※ 典型例题例1 在等差数列{}n a 中,已知510a =,1231a =,求首项1a 与公差d .变式:在等差数列{}n a 中, 若56a =,815a =,求公差d 及14a .小结:在等差数列{}n a 中,公差d 可以由数列中任意两项m a 与n a 通过公式m na a d m n-=-求出.例2 在等差数列{}n a 中,23101136a a a a +++=,求58a a +和67a a +.变式:在等差数列{}n a 中,已知234534a a a a +++=,且2552a a = ,求公差d .小结:在等差数列中,若m +n =p +q ,则 m n p qa a a a +=+,可以使得计算简化. ※ 动手试试练1. 在等差数列{}n a 中,14739a a a ++=,25833a a a ++=,求369a a a ++的值.练2. 已知两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个相同项?三、总结提升 ※ 学习小结1. 在等差数列中,若m +n =p +q ,则m n p q a a a a +=+注意:m n m n a a a ++≠,左右两边项数一定要相同才能用上述性质.2. 在等差数列中,公差m na a d m n-=-.※ 知识拓展判别一个数列是否等差数列的三种方法,即: (1)1n n a a d +-=; (2)(0)n a pn q p =+≠; (3)2n S an bn =+.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 一个等差数列中,1533a =,2566a =,则35a =( ).A. 99B. 49.5C. 48D. 492. 等差数列{}n a 中7916a a +=,41a =,则12a 的值为( ). A . 15 B. 30 C. 31 D. 643. 等差数列{}n a 中,3a ,10a 是方程2350x x --=,则56a a +=( ). A. 3 B. 5 C. -3 D. -54. 等差数列{}n a 中,25a =-,611a =,则公差d = .5. 若48,a ,b ,c ,-12是等差数列中连续五项,则a = ,b = ,c = .课后作业1. 若 12530a a a +++= , 671080a a a +++= , 求111215a a a +++ .2. 成等差数列的三个数和为9,三数的平方和为35,求这三个数.§2.3 等差数列的前n 项和(1)学习目标1. 掌握等差数列前n 项和公式及其获取思路;2. 会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题.学习过程一、课前准备(预习教材P 42 ~ P 44,找出疑惑之处)复习1:什么是等差数列?等差数列的通项公式是什么?复习2:等差数列有哪些性质?二、新课导学 ※ 学习探究探究:等差数列的前n 项和公式 问题:1. 计算1+2+…+100=?2. 如何求1+2+…+n =?新知:数列{}n a 的前n 项的和:一般地,称 为数列{}n a 的前n 项的和,用n S 表示,即n S反思:① 如何求首项为1a ,第n 项为n a 的等差数列{}n a 的前n 项的和?② 如何求首项为1a ,公差为d 的等差数列{}n a 的前n 项的和?试试:根据下列各题中的条件,求相应的等差数列{}n a 的前n 项和n S . ⑴184188a a n =-=-=,,;⑵114.50.715a d n ===,,.小结:1. 用1()2n n n a a S +=,必须具备三个条件: . 2. 用1(1)2n n n dS na -=+,必须已知三个条件: .※ 典型例题例1 2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的统治》. 某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元. 为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元. 那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?小结:解实际问题的注意:① 从问题中提取有用的信息,构建等差数列模型;② 写这个等差数列的首项和公差,并根据首项和公差选择前n 项和公式进行求解. 例2 已知一个等差数列{}n a 前10项的和是310,前20项的和是1220. 由这些条件能确定这个等差数列的前n 项和的公式吗?变式:等差数列{}n a 中,已知1030a =,2050a =,242n S =,求n .小结:等差数列前n 项和公式就是一个关于11n a a n a n d 、、或者、、的方程,已知几个量,通过解方程,得出其余的未知量.三、总结提升 ※ 学习小结1. 等差数列前n 项和公式的两种形式;2. 两个公式适用条件,并能灵活运用;3. 等差数列中的“知三求二”问题,即:已知等差数列之1,,,,n n a a q n S 五个量中任意的三个,列方程组可以求出其余的两个.※ 知识拓展1. 若数列{}n a 的前n 项的和2n S An Bn =+(A 0≠,A 、B 是与n 无关的常数),则数列{}n a 是等差数列.2. 已知数列{},n a 是公差为d 的等差数列,S n 是其前n 项和,设232,,,k k k k k k N S S S S S +∈--也成等差数列,公差为2k d .学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在等差数列{}n a 中,10120S =,那么110a a +=( ).A. 12B. 24C. 36D. 482. 在50和350之间,所有末位数字是1的整数之和是( ). A .5880 B .5684 C .4877 D .45663. 已知等差数列的前4项和为21,末4项和为67,前n 项和为286,则项数n 为( ) A. 24 B. 26 C. 27 D. 284. 在等差数列{}n a 中,12a =,1d =-,则8S = .5. 在等差数列{}n a 中,125a =,533a =,则6S = .课后作业1. 数列{n a }是等差数列,公差为3,n a =11,前n 和n S =14,求n 和3a .§2.3 等差数列的前n 项和(2)学习目标1. 进一步熟练掌握等差数列的通项公式和前n 项和公式;2. 了解等差数列的一些性质,并会用它们解决一些相关问题;3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值.学习过程一、课前准备(预习教材P 45 ~ P 46,找出疑惑之处)复习1:等差数列{n a }中, 4a =-15, 公差d =3,求5S .复习2:等差数列{n a }中,已知31a =,511a =,求和8S .二、新课导学 ※ 学习探究问题:如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?※ 典型例题例1已知数列{}n a 的前n 项为212n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?变式:已知数列{}n a 的前n 项为212343n S n n =++,求这个数列的通项公式.小结:数列通项n a 和前n 项和n S 关系为n a =11(1)(2)nn S n S S n -=⎧⎨-≥⎩,由此可由n S 求n a .例2 已知等差数列2454377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值.变式:等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.小结:等差数列前项和的最大(小)值的求法. (1)利用n a : 当n a >0,d <0,前n 项和有最大值,可由n a ≥0,且1n a +≤0,求得n 的值;当n a <0,d >0,前n 项和有最小值,可由n a ≤0,且1n a +≥0,求得n 的值(2)利用n S :由21()22n d dS n a n =+-,利用二次函数配方法求得最大(小)值时n 的值.※ 动手试试练1. 已知232n S n n =+,求数列的通项n a .三、总结提升 ※ 学习小结1. 数列通项n a 和前n 项和n S 关系;2. 等差数列前项和最大(小)值的两种求法.※ 知识拓展等差数列奇数项与偶数项的性质如下: 1°若项数为偶数2n ,则S S nd 偶奇-=;1(2)n n S an S a +≥奇偶=; 2°若项数为奇数2n +1,则1n S S a +奇偶-=;1n S na +=偶;1(1)n S n a ++奇=;1S n S n +偶奇=. 学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列数列是等差数列的是( ). A. 2n a n = B. 21n S n =+C. 221n S n =+D. 22n S n n =-2. 等差数列{n a }中,已知1590S =,那么8a =( ).A. 3B. 4C. 6D. 123. 等差数列{n a }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ). A. 70 B. 130 C. 140 D. 1704. 在小于100的正整数中共有 个数被7除余2,这些数的和为 .5. 在等差数列中,公差d =12,100145S =,则13599...a a a a ++++= .课后作业1. 在项数为2n +1的等差数列中,所有奇数项和为165,所有偶数项和为150,求n 的值.2. 等差数列{n a },10a <,912S S =,该数列前多少项的和最小?§2.4等比数列(1)学习目标1理解等比数列的概念;探索并掌握等比数列的通项公式、性质;2. 能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;3. 体会等比数列与指数函数的关系.学习过程一、课前准备(预习教材P 48 ~ P 51,找出疑惑之处) 复习1:等差数列的定义?复习2:等差数列的通项公式n a = , 等差数列的性质有:二、新课导学 ※ 学习探究观察:①1,2,4,8,16,…②1,12,14,18,116,…③1,20,220,320,420,…思考以上四个数列有什么共同特征?新知:1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1n n aa -= (q ≠0)2. 等比数列的通项公式: 21a a = ; 3211()a a q a q q a === ; 24311()a a q a q q a === ; … …∴ 11n n a a q a -==⋅ 等式成立的条件3. 等比数列中任意两项n a 与m a 的关系是:※ 典型例题例1 (1) 一个等比数列的第9项是49,公比是-13,求它的第1项; (2)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项.小结:关于等比数列的问题首先应想到它的通项公式11n n a a q -=.例2 已知数列{n a }中,lg 35n a n =+ ,试用定义证明数列{n a }是等比数列.小结:要证明一个数列是等比数列,只需证明对于任意正整数n ,1n na a +是一个不为0的常数就行了.※ 动手试试练1. 某种放射性物质不断变化为其他物质,每经过一年剩留的这种物质是原来的84%. 这种物质的半衰期为多长(精确到1年)?三、总结提升 ※ 学习小结1. 等比数列定义;2. 等比数列的通项公式和任意两项n a 与m a 的关系.※ 知识拓展在等比数列{}n a 中,⑴ 当10a >,q >1时,数列{}n a 是递增数列; ⑵ 当10a <,01q <<,数列{}n a 是递增数列; ⑶ 当10a >,01q <<时,数列{}n a 是递减数列; ⑷ 当10a <,q >1时,数列{}n a 是递减数列; ⑸ 当0q <时,数列{}n a 是摆动数列; ⑹ 当1q =时,数列{}n a 是常数列.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在{}n a 为等比数列,112a =,224a =,则3a =( ).A. 36B. 48C. 60D. 722. 等比数列的首项为98,末项为13,公比为23,这个数列的项数n =( ).A. 3B. 4C. 5D. 63. 已知数列a ,a (1-a ),2(1)a a -,…是等比数列,则实数a 的取值范围是( ). A. a ≠1 B. a ≠0且a ≠1 C. a ≠0 D. a ≠0或a ≠14. 设1a ,2a ,3a ,4a 成等比数列,公比为2,则123422a a a a ++= .5. 在等比数列{}n a 中,4652a a a =-,则公比q = .课后作业在等比数列{}n a 中, ⑴ 427a =,q =-3,求7a ;⑵ 218a =,48a =,求1a 和q ;⑶ 44a =,76a =,求9a ;⑷ 514215,6a a a a -=-=,求3a .§2.4等比数列(2)学习目标1.灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;2. 熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法.学习过程一、课前准备(预习教材P 51 ~ P 54,找出疑惑之处)复习1:等比数列的通项公式n a = = . 公比q 满足的条件是复习2:等差数列有何性质?二、新课导学 ※ 学习探究问题1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G bG ab G a G=⇒=⇒=新知1:等比中项定义如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a 与b 的等比中项. 即G = (a ,b 同号).试试:数4和6的等比中项是 .问题2:1.在等比数列{n a }中,2537a a a =是否成立呢?2.211(1)n n n a a a n -+=>是否成立?你据此能得到什么结论?3.2(0)n n k n k a a a n k -+=>>是否成立?你又能得到什么结论?新知2:等比数列的性质在等比数列中,若m +n =p +q ,则m n p k a a a a =.试试:在等比数列{}n a ,已知19105,100a a a ==,那么18a = .※ 典型例题例1已知{},{}n n a b 是项数相同的等比数列,仿照下表中的例子填写表格,从中你能得出什么结论?证明你的结论.例 自选1 自选2 n a 23()3n ⨯n b152n --⨯n n a b 1410()3n --⨯{}n n a b 是否等比 是变式:项数相同等比数列{n a }与{n b },数列{nna b }也一定是等比数列吗?证明你的结论.小结:两个等比数列的积和商仍然是等比数列.例2在等比数列{n a }中,已知47512a a =- ,且38124a a +=,公比为整数,求10a .变式:在等比数列{n a }中,已知7125a a = ,则891011a a a a = .※ 动手试试练1. 一个直角三角形三边成等比数列,则( ).A. 三边之比为3:4:5B. 三边之比为1:3:3C. 较小锐角的正弦为512-D. 较大锐角的正弦为512-练2. 在7和56之间插入a 、b ,使7、a 、b 、56成等比数列,若插入c 、d ,使7、c 、d 、56成等差数列,求a +b +c +d 的值.三、总结提升 ※ 学习小结1. 等比中项定义;2. 等比数列的性质.※ 知识拓展公比为q 的等比数列{}n a 具有如下基本性质:1. 数列{||}n a ,2{}n a ,{}(0)n ca c ≠,*{}()nm a m N ∈,{}k n a 等,也为等比数列,公比分别为2||,,,,m k q q q q q . 若数列{}n b 为等比数列,则{}n n a b,{}n n ab 也等比. 2. 若*m N ∈,则n m n m a a q -= . 当m =1时,便得到等比数列的通项公式. 3. 若m n k l +=+,*,,,m n k l N ∈,则m n k l a a a a = .4. 若{}n a 各项为正,c >0,则{l o g }c n a 是一个以1log c a 为首项,log c q 为公差的等差数列. 若{}n b 是以d 为公差的等差数列,则{}n b c 是以1b c 为首项,d c 为公比的等比数列. 当一个数列既是等差数列又是等比数列时,这个数列是非零的常数列.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在{}n a 为等比数列中,0n a >,224355216a a a a a ++=,那么35a a +=( ).A. ±4B. 4C. 2D. 82. 若-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( ).A .8B .-8C .±8D .983. 若正数a ,b ,c 依次成公比大于1的等比数列,则当x >1时,log a x ,log b x ,log c x ( ) A.依次成等差数列 B.各项的倒数依次成等差数列 C.依次成等比数列 D.各项的倒数依次成等比数列4. 在两数1,16之间插入三个数,使它们成为等比数列,则中间数等于 .5. 在各项都为正数的等比数列{}n a 中,569a a = ,则log 31a + log 32a +…+ log 310a = .课后作业1. 在{}n a 为等比数列中,1964a a = ,3720a a +=,求11a 的值.2. 已知等差数列{}n a 的公差d ≠0,且1a ,3a ,9a 成等比数列,求1392410a a a a a a ++++.§2.5等比数列的前n 项和(1)学习目标1. 掌握等比数列的前n 项和公式;2. 能用等比数列的前n 项和公式解决实际问题.学习过程一、课前准备(预习教材P 55 ~ P 56,找出疑惑之处)复习1:什么是数列前n 项和?等差数列的数列前n 项和公式是什么?复习2:已知等比数列中,33a =,681a =,求910,a a .二、新课导学 ※ 学习探究探究任务: 等比数列的前n 项和故事:“国王对国际象棋的发明者的奖励”新知:等比数列的前n 项和公式设等比数列123,,,n a a a a 它的前n 项和是n S =123n a a a a +++ ,公比为q ≠0,公式的推导方法一:则22111111n n n nS a a q a q a q a q qS --⎧=++++⎪⎨=⎪⎩(1)n q S ∴-= 当1q ≠时,n S = ①或n S = ②当q =1时,n S =公式的推导方法二:由等比数列的定义,32121n n a a a q a a a -==== , 有231121n n n n na a a S a q a a a S a -+++-==+++- ,即1n n nS a q S a -=-.∴ 1(1)n n q S a a q -=-(结论同上)公式的推导方法三:n S =123n a a a a +++=11231()n a q a a a a -++++ =11n a qS -+=1()n n a q S a +-. ∴ 1(1)n n q S a a q -=-(结论同上)试试:求等比数列12,14,18,…的前8项的和.※ 典型例题 例1已知a 1=27,a 9=1243,q <0,求这个等比数列前5项的和.变式:13a =,548a =. 求此等比数列的前5项和.例2某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保留到个位)?※ 动手试试练1. 等比数列中,33139,.22a S a q ==,求及练2. 一个球从100m 高出处自由落下,每次着地后又弹回到原来高度的一半再落下,当它第10次着地时,共经过的路程是多少?(精确到1m )三、总结提升 ※ 学习小结1. 等比数列的前n 项和公式;2. 等比数列的前n 项和公式的推导方法;3. “知三求二”问题,即:已知等比数列之1,,,,n n a a q n S 五个量中任意的三个,列方程组可以求出其余的两个.※ 知识拓展1. 若1q ≠-,*m N ∈,则232,,,m m m m m S S S S S --⋅⋅⋅构成新的等比数列,公比为m q .2. 若三个数成等比数列,且已知积时,可设这三个数为,,aa aq q. 若四个同符号的数成等比数列,可设这四个数为33,,,a aaq aq q q .3. 证明等比数列的方法有:(1)定义法:1n naq a +=;(2)中项法:212n n n a a a ++= .4. 数列的前n 项和构成一个新的数列,可用递推公式111(1)n n n S a S S a n -=⎧⎨=+>⎩表示.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 数列1,a ,2a ,3a ,…,1n a -,…的前n 项和为( ).A. 11n a a --B. 111n a a +--C. 211n a a+-- D. 以上都不对2. 等比数列中,已知1220a a +=,3440a a +=,则56a a +=( ).A. 30B. 60C. 80D. 1603. 设{}n a 是由正数组成的等比数列,公比为2,且30123302a a a a ⋅⋅⋅=,那么36930a a a a ⋅⋅⋅=( ).A. 102B. 202C. 1D. 6024. 等比数列的各项都是正数,若1581,16a a ==,则它的前5项和为 .5. 等比数列的前n 项和3n n S a =+,则a = .课后作业1. 等比数列中,已知1441,64,.a a q S =-=求及2. 在等比数列{}n a 中,162533,32a a a a +== ,求6S .§2.5等比数列的前n 项和(2)学习目标1. 进一步熟练掌握等比数列的通项公式和前n 项和公式;2. 会用公式解决有关等比数列的1,,,,n n S a a n q 中知道三个数求另外两个数的一些简单问题.学习过程一、课前准备(预习教材P 57 ~ P 62,找出疑惑之处) 复习1:等比数列的前n 项和公式.当1q ≠时,n S = = 当q =1时,n S =复习2:等比数列的通项公式. n a = = .二、新课导学 ※ 学习探究探究任务:等比数列的前n 项和与通项关系 问题:等比数列的前n 项和 n S =1231n n a a a a a -+++++ , 1n S -=1231n a a a a -++++ (n ≥2),∴ 1n n S S --= , 当n =1时,1S = .反思:等比数列前n 项和n S 与通项n a 的关系是什么?※ 典型例题例1 数列{}n a 的前n 项和1n n S a =-(a ≠0,a ≠1),试证明数列{}n a 是等比数列.变式:已知数列{}n a 的前n 项和n S ,且142n n S a +=+, 11a =,设12n n n b a a +=-,求证:数列{}n b 是等比数列.例2 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S ,3n S ,求证:n S ,2n n S S -,32n n S S -也成等比.变式:在等比数列中,已知248,60n n S S ==,求3n S .※ 动手试试练1. 等比数列{}n a 中,301013S S =,1030140S S +=,求20S .练2. 求数列1,1+2,1+2+22,1+2+22+23,…的前n 项和S n .三、总结提升 ※ 学习小结1. 等比数列的前n 项和与通项关系;2. 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S ,3n S ,则数列n S ,2n n S S -,32n n S S -也成为等比数列.※ 知识拓展1. 等差数列中,m n m n S S S mnd +=++;2. 等比数列中,n m m n n m m n S S q S S q S +=+=+.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 等比数列{}n a 中,33S =,69S =,则9S =( ).A. 21B. 12C. 18D. 242. 在等比数列中,14a =,q =2,使4000n S >的最小n 值是( ).A. 11B. 10C. 12D. 93. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”.如(1101)2表示二进制的数, 将它转换成十进制的形式是32101212021213⨯+⨯+⨯+⨯=,那么将二进制数(11111111)2转换成十进制的形式是( ).A. 922-B. 821-C. 822-D. 721-4. 在等比数列中,若332422S a S a +=+,则公比q = .5. 在等比数列中,11a =,512n a =-,341n S =-,则q = ,n = .课后作业1. 等比数列的前n 项和12nn s =-,求通项n a .2. 设a 为常数,求数列a ,2a 2,3a 3,…,na n ,…的前n 项和;。