广西贵港市港南区2021届九年级第四次模拟考试数学试题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)试说明:△ ≌△ ;
(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;
(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.
(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;
(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
23.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.
B.两边及其一角相等的两个三角形全等
C. 的算术平方根为3
D.数据4,0,4,6,6的方差是4.8
9.P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知 、 的度数别为88°、32°,则∠P的度数为( )
A.26°B.28°C.30°D.32°
10.如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为( )
3.下列运算正确的是( )
A.(y+1)(y﹣1)=y2﹣1B.x3+x5=x8
C.a10÷a2=a5D.(﹣a2b)3=a6b3
4.下列图形中,既是轴对称图形又是中心对称图形的是
A. B. C. D.
5.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.
22.九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.
根据以上信息解决下列问题:
(1) , ;
18.如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数 (k≠0)的图象经过圆心P,则k=________.
三、解答题
19.(1)计算: .
(2)解不等式组: .
20.如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:
13.在实数范围内因式分解:2y3﹣6y=_____.
14.若2x=3,2y=5,则22x+y=_____.
15.如图,将平行四边形 沿对角线 折叠,使点 落在点 处, ,则 的度数为_______.
16.关于x的方程a2x2﹣(2a+1)x+1=0有实数根,则a满足的条件是_____.
17.如图,菱形ACBD中,AB与CD相交于点O,∠ACB=120°,以C为圆心,CA为半径作弧AB,再以C为圆心,CO为半径作弧EF,分别交CA、CB于点F、E,若CB=2,则图中阴影部分的面积是_____.
(1)画出△ABC关于原点O对称的△A1B1C1.
(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.
(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2与成中心对称,其对称中心的坐标为.
21.如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数 的图象在第一象限内的交点为M,若△OBM的面积为2.
A.5B.6C.8D.10
11.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③当x<0时,y随x的增大而增大;④2c<3b;⑤a+b>m(am+b)(其中m≠1)其中正确的个数是( )
A.1B.2C.3D.4
二、填空题
12.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度 ,则AC的长度是_____cm.
6.若分式 的值为0,则( )
A. B. C. D.
7.为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中,下列说法正确的是( )
A.300名学生是总体B.300是众数
C.30名学生是抽取的一个样本D.30是样本的容量
8.下列命题正确的是( )
A.对角线互相垂直平分的四边形是正方形
(1)求高铁列车的平均时速;
(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?
(1)求二次函数的表达式;
(2)当点P运动到抛物线顶点时,求四边形ABPC的面积;
(3)点Q是x轴上的一个动点,当点P与点C关于对称轴对称且以点B、C、P、Q为顶点的四边形是平行四边形时,求点Q的坐标.
26.(1)如图1,在Rt△ABC中, ,D、E是斜边BC上两动点,且∠DAE=45°,将△ 绕点 逆时针旋转90后,得到△ ,连接 .
广西贵港市港南区2019届九年级第四次模拟考试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1. ( )
A.2019B.-2019Hale Waihona Puke Baidu. D.
2.把实数 用小数表示为()
A.0.0612B.6120C.0.00612D.612000
24.如图,BC是半⊙O的直径,A是⊙O上一点,过点的切线交CB的延长线于点P,过点B的切线交CA的延长线于点E,AP与BE相交于点F.
(1)求证:BF=EF;
(2)若AF= ,半⊙O的半径为2,求PA的长度.
25.如图,在平面直角坐标系中,二次函数y=ax2﹣2x+c的图象与x轴交于A、B两点,点A在原点的左侧,点B的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方的抛物线上一动点.
(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;
(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.
(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;
(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
23.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.
B.两边及其一角相等的两个三角形全等
C. 的算术平方根为3
D.数据4,0,4,6,6的方差是4.8
9.P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知 、 的度数别为88°、32°,则∠P的度数为( )
A.26°B.28°C.30°D.32°
10.如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为( )
3.下列运算正确的是( )
A.(y+1)(y﹣1)=y2﹣1B.x3+x5=x8
C.a10÷a2=a5D.(﹣a2b)3=a6b3
4.下列图形中,既是轴对称图形又是中心对称图形的是
A. B. C. D.
5.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.
22.九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.
根据以上信息解决下列问题:
(1) , ;
18.如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数 (k≠0)的图象经过圆心P,则k=________.
三、解答题
19.(1)计算: .
(2)解不等式组: .
20.如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:
13.在实数范围内因式分解:2y3﹣6y=_____.
14.若2x=3,2y=5,则22x+y=_____.
15.如图,将平行四边形 沿对角线 折叠,使点 落在点 处, ,则 的度数为_______.
16.关于x的方程a2x2﹣(2a+1)x+1=0有实数根,则a满足的条件是_____.
17.如图,菱形ACBD中,AB与CD相交于点O,∠ACB=120°,以C为圆心,CA为半径作弧AB,再以C为圆心,CO为半径作弧EF,分别交CA、CB于点F、E,若CB=2,则图中阴影部分的面积是_____.
(1)画出△ABC关于原点O对称的△A1B1C1.
(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.
(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2与成中心对称,其对称中心的坐标为.
21.如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数 的图象在第一象限内的交点为M,若△OBM的面积为2.
A.5B.6C.8D.10
11.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③当x<0时,y随x的增大而增大;④2c<3b;⑤a+b>m(am+b)(其中m≠1)其中正确的个数是( )
A.1B.2C.3D.4
二、填空题
12.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度 ,则AC的长度是_____cm.
6.若分式 的值为0,则( )
A. B. C. D.
7.为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中,下列说法正确的是( )
A.300名学生是总体B.300是众数
C.30名学生是抽取的一个样本D.30是样本的容量
8.下列命题正确的是( )
A.对角线互相垂直平分的四边形是正方形
(1)求高铁列车的平均时速;
(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?
(1)求二次函数的表达式;
(2)当点P运动到抛物线顶点时,求四边形ABPC的面积;
(3)点Q是x轴上的一个动点,当点P与点C关于对称轴对称且以点B、C、P、Q为顶点的四边形是平行四边形时,求点Q的坐标.
26.(1)如图1,在Rt△ABC中, ,D、E是斜边BC上两动点,且∠DAE=45°,将△ 绕点 逆时针旋转90后,得到△ ,连接 .
广西贵港市港南区2019届九年级第四次模拟考试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1. ( )
A.2019B.-2019Hale Waihona Puke Baidu. D.
2.把实数 用小数表示为()
A.0.0612B.6120C.0.00612D.612000
24.如图,BC是半⊙O的直径,A是⊙O上一点,过点的切线交CB的延长线于点P,过点B的切线交CA的延长线于点E,AP与BE相交于点F.
(1)求证:BF=EF;
(2)若AF= ,半⊙O的半径为2,求PA的长度.
25.如图,在平面直角坐标系中,二次函数y=ax2﹣2x+c的图象与x轴交于A、B两点,点A在原点的左侧,点B的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方的抛物线上一动点.