工程数学试卷及答案
大学工程数学考试题及答案
大学工程数学考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是微积分的基本定理?A. 积分中值定理B. 洛必达法则C. 牛顿-莱布尼茨公式D. 泰勒级数展开答案:C2. 在概率论中,随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 2B. 3C. 4D. 5答案:A3. 线性代数中,一个矩阵A可逆的充分必要条件是什么?A. 行列式非零B. 秩等于A的阶数C. A的所有特征值非零D. 所有选项都是答案:D4. 在复数域中,下列哪个表达式表示复数的共轭?A. z + z*B. z - z*C. |z|^2D. z * z*答案:B5. 傅里叶级数在工程数学中的应用之一是?A. 信号处理B. 量子力学C. 统计物理D. 所有选项都是答案:A二、填空题(每题3分,共15分)6. 函数f(x) = sin(x)的一阶导数是_________。
答案:cos(x)7. 矩阵的特征值是_________。
答案:λ8. 拉普拉斯变换的逆变换通常使用_________。
答案:拉普拉斯逆变换9. 随机变量X和Y相互独立,且P(X=x) = 2x,P(Y=y) = 3y,则P(X+Y=4)等于_________。
答案:1/410. 曲线y = x^2在点(1,1)处的切线斜率是_________。
答案:2三、解答题(共75分)11. (15分)证明函数f(x) = e^x在实数域上是单调递增的。
答案:由于f'(x) = e^x > 0对于所有实数x,因此f(x)在实数域上是单调递增的。
12. (20分)解线性方程组:\[\begin{align*}x + 2y &= 5 \\3x - y &= 4\end{align*}\]答案:使用高斯消元法或克拉默法则,解得 \( x = 2, y = 1.5 \)。
13. (20分)计算下列定积分:\[\int_{0}^{1} x^2 dx\]答案:使用基本积分公式,得到 \( \frac{1}{3}x^3 \) 在0到1的积分为 \( \frac{1}{3} \)。
工程数学试卷及标准答案
1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。
A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。
A. X 和Y 独立。
B. X 和Y 不独立。
C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。
A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。
B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。
7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。
8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。
9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。
工程数学试题A及答案
工程数学试题A及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^3 - 3x^2 + 2 \)的导数是:A. \( 3x^2 - 6x \)B. \( 3x^2 - 6x + 2 \)C. \( x^3 - 3x^2 + 2 \)D. \( 3x^2 - 6x + 3 \)答案:A2. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:A. 0B. 1C. \( \pi \)D. \( \infty \)答案:B3. 函数\( y = e^x \)的不定积分是:A. \( e^x + C \)B. \( \ln x + C \)C. \( x e^x + C \)D. \( \frac{1}{x} + C \)答案:A4. 微分方程\( y' + 2y = 0 \)的通解是:A. \( y = Ce^{-2x} \)B. \( y = Ce^{2x} \)C. \( y = C\sin(2x) \)D. \( y = C\cos(2x) \)答案:A5. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是:A. 5B. -2C. 2D. -5答案:B6. 函数\( f(x) = x^2 \)在区间\( [1, 2] \)上的定积分是:A. 1B. 2C. 3D. 4答案:C7. 函数\( y = \ln x \)的二阶导数是:A. \( \frac{1}{x^2} \)B. \( \frac{1}{x} \)C. \( x \)D. \( x^2 \)答案:A8. 矩阵\( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)的逆矩阵是:A. \( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \)B. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)D. \( \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \)答案:C9. 函数\( y = x^3 \)的不定积分是:A. \( \frac{x^4}{4} + C \)B. \( \frac{x^3}{3} + C \)C. \( \frac{x^2}{2} + C \)D. \( \frac{x}{3} + C \)答案:B10. 函数\( y = \sin x \)的不定积分是:A. \( \cos x + C \)B. \( \sin x + C \)C. \( -\cos x + C \)D. \( -\sin x + C \)答案:A二、填空题(每题4分,共20分)1. 函数\( f(x) = x^2 - 4x + 4 \)的极小值点是 \( x =\_\_\_\_\_ \)。
工程数学本科试题及答案
工程数学本科试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是微分方程 \( y'' - y' - 2y = e^{2x} \) 的一个解?A. \( y = e^{-x} \)B. \( y = e^{2x} \)C. \( y = e^{x} \)D. \( y = e^{3x} \)2. 在复数域中,下列哪个表达式是正确的?A. \( |z|^2 = z \cdot \bar{z} \)B. \( |z|^2 = z + \bar{z} \)C. \( |z|^2 = z - \bar{z} \)D. \( |z|^2 = z / \bar{z} \)3. 对于向量 \( \mathbf{A} = (2, -3, 4) \) 和 \( \mathbf{B} = (1, 2, -1) \),它们的点积 \( \mathbf{A} \cdot \mathbf{B} \) 等于:A. 1B. 2C. 3D. 54. 在 \( z = x^2 + y^2 \) 中,如果 \( \frac{\partialz}{\partial x} = 2x \),那么 \( \frac{\partial z}{\partial y} \) 等于:A. \( 2y \)B. \( -2y \)C. \( 2x \)D. \( -2x \)5. 一个函数 \( f(x) \) 在点 \( x = a \) 处连续的充分必要条件是:A. \( \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \)B. \( \lim_{x \to a} f(x) = f(a) \)C. \( f(a) \) 存在D. \( f(x) \) 在 \( x = a \) 处可导6. 微分方程 \( y' = y^2 \) 的解的形式是:A. \( y = Ce^x \)B. \( y = \frac{1}{Ce^x + 1} \)C. \( y = Ce^{-x} \)D. \( y = \frac{1}{Cx + 1} \)7. 傅里叶级数中的 \( a_n \) 系数是由以下哪个积分计算得出的?A. \( a_n = \frac{2}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)B. \( a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)C. \( a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)D. \( a_n = \frac{1}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)8. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( |A| \) 等于:A. 7B. 2C. 1D. -29. 函数 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的零点个数是:A. 1B. 2C. 3D. 410. 拉普拉斯变换 \( \mathcal{L} \{ f(t) \} \) 的定义是:A. \( \mathcal{L} \{ f(t) \} = \int_{0}^{\infty} e^{-st} f(t) dt \)B. \( \mathcal{L} \{ f(t) \} = \int_{-\infty}^{\infty} e^{-st} f(t) dt \)C. \( \mathcal。
工程数学 试卷(乙)及答案
工程数学 试卷(乙)一、选择题(8小题,每小题4分,共32分)。
将答案填入下表1.下列说法错误的是:( )A .互换行列式的任意两行(列),行列式仅改变符号。
B .将行列式某一行所有元素都乘以同一数λ,等于以数λ乘此行列式。
C .将行列式某一列所有元素都乘以同一数λ,等于以数λ乘此行列式。
D .若将行列式的某一行(列)的各元素都乘以同一数后,再加到另一行(列)的对应元素上,则行列式的值相应的也改变。
2.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且ACB 有意义,则C 是( )矩阵.A .n s ⨯B .s n ⨯C .t m ⨯D .m t ⨯ 3.如果1X 和2X 都是齐次线性方程组的解,则下列哪个不一定是该方程组的解( ) A .1X +2X ; B .1X —2X ; C .1X ∕2X ; D .11k X +22k X 4.矩阵的行向量组和列向量组的秩( )A .相等B .不相等C .可能相等D .可能不相等5. 甲、乙二人射击,A B ,分别表示甲、乙射中目标,则AB 表示( )的事件. A . 至少有一人没射中 B . 二人都没射中 C . 至少有一人射中 D . 两人都射中6. 若A B ,满足( ),则A 与B 是相互独立.A . )()()(B P A P AB P = B . )()()(A B P A P B P =C . )()()(B P A P B A P -=-D . )()()(B A P B P A P =7.假设 1112(,,,)n X X X θθ= 与 2212(,,,)nX X X θθ= 都是未知参数θ的 无偏估计量,如果方差 1()D θ< 2()D θ,则 1θ与 2θ之间有( ) A . 1θ比 2θ有效 B . 2θ比 1θ有效 C . 1θ与 2θ等效 D . 1θ与 2θ无关8.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的( ). A .点估计量 B . 无偏估计量 C .区间估计量 D . 最小二乘估计量二、填空题(5小题,每小题4分,共20分)。
工程数学试题及答案
工程数学试题及答案《工程数学试题及答案》1. 数列与级数问题:找出以下等差数列的通项公式,并计算前n项和。
1) 3, 6, 9, 12, ...2) 1, 5, 9, 13, ...答案:1) 通项公式为a_n = 3 + 3(n-1),前n项和为S_n = n(6 + 3(n-1))/2。
2) 通项公式为a_n = 1 + 4(n-1),前n项和为S_n = n(2 + 4(n-1))/2。
2. 三角函数问题:求解以下方程在给定区间内的所有解。
1) sin(x) = 0.5,其中0 ≤ x ≤ 2π。
2) cos(2x) = 0,其中0 ≤ x ≤ π。
答案:1) 解为x = π/6, 5π/6。
根据周期性,可加2πn得到无穷解。
2) 解为x = π/4, 3π/4。
根据周期性,可加πn得到无穷解。
3. 极限与连续性问题:计算以下极限。
1) lim(x→0) (3x^2 + 2x) / x。
2) lim(x→∞) (e^x + 2x) / e^x。
答案:1) 极限等于2。
2) 极限等于2。
4. 微分与积分问题:求以下函数的导数和不定积分。
1) f(x) = 3x^2 + 4x + 1。
2) g(x) = sin(x) + cos(x)。
答案:1) f'(x) = 6x + 4,∫f(x)dx = x^3 + 2x^2 + x + C。
2) g'(x) = cos(x) - sin(x),∫g(x)dx = -cos(x) - sin(x) + C。
5. 偏导数与多重积分问题:计算以下偏导数和二重积分。
1) 求f(x, y) = x^3 + 2xy - y^2的偏导数∂f/∂x和∂f/∂y。
2) 计算∬(x^2 + y^2)dA,其中积分范围为R = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 2}。
答案:1) ∂f/∂x = 3x^2 + 2y,∂f/∂y = 2x - 2y。
工程数学试卷及答案
一、 选择填空题1. 某数x 的有四位有效数字且绝对误差限是4105.0-⨯的近似值是(A ) (A )0.693 (B)0.6930 (C )0.06930 (D)0.006930 2. n 次拉格朗日插值多项式的余项是( A)(A))()!1()()(1)1(x n f x R n n n +++=ωξ (B)()()()()!n n n f R x x n ξω= (C))!1()()()1(+=+n f x R n n ξ (D)()()()!n n f R x n ξ=3. 求积公式)1()1()(11f f dx x f +-≈⎰-具有(A )次代数精度(A )1 (B )2 (C )4 (D )34. 用牛顿法计算)0(>a a n ,构造迭代公式时,下列方程不可用的是(A )(A )0)(=-≡n a x x f (B )0)(=-≡n a x x f (C )0)(=-≡nx a x f (D )01)(=-≡nx ax f 5. 由数据0051152252171 022 42......x y --- 所确定的插值多项式是次数不大于( D )的多项式.(A )二次 (B )三次 (C )四次 (D )五次 6. 在牛顿—柯特斯公式()()()()nbn i i ai f x dx b a C f x =≈-∑⎰中,当系数()n i C 有负值时,公式的稳定性不能保证,所以实际应用中,当n ( B )时的牛顿—柯特斯公式不使用。
(A )10≥ (B )8≥ (C )6≥ (D )4≥ 7. 经过点)3,2(),2,1(),1,0(C B A 的插值多项式=)(x P ( B ) 8. (A )x (B ) 1+x (C )12+x (D )12+x 9. 给定向量Tx )4,3,2(-=,则∞xx x,,21分别为( A )(A )4,29,9 (B )5,29,9 (C )4,29,5.8 (D )5,29,5.8 10. 精确值x =36.85用四舍五入保留三位有效数字的近似数为 36.9 。
工程数学试题及答案
第1页2009学年第二学期_____________________(院校)义马函授站《工程数学》结业考试试题注意事项:1.请首先按要求在试卷的标封处填写您的姓名、专业、学号。
2.在试题后答题,写在其它处无效。
一、填空题(每小题4分,共20分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________.2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________.4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________.5. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________.二、单项选择题(每小题4分,共20分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立.(D )若C B ⊂,则A 与C 也独立. ( ) 2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为 (A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ. ( ) 3.设随机变量X 和Y 不相关,则下列结论中正确的是(A )X 与Y 独立. (B )()D X Y DX DY -=+.(C )()D X Y DX DY -=-. (D )()D XY DXDY =. ( ) 4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==. ( ) 5.设总体X 的数学期望为12,,,,n X X X μ 为来自X 的样本,则下列结论中正确的是(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. ( )三、(20分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.四、(20分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数,求X 的分布列、分布函数、数学期望和方差.五、(20分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关于X 的边缘概率密度;(2)Z X Y =+的分布函数与概率密度.专业_______ 姓名________ 学号______……………………………………密……………………………封………………………………………..。
大学工程数学试题及答案
大学工程数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是微分方程的解?A. \( y = e^x \)B. \( y = e^{-x} \)C. \( y = x^2 \)D. \( y = \ln(x) \)答案:A2. 矩阵的行列式值表示了什么?A. 矩阵的面积B. 矩阵的体积C. 矩阵的旋转角度D. 矩阵的缩放因子答案:D3. 以下哪个是线性代数中的基本概念?A. 微分B. 积分C. 向量空间D. 极限答案:C4. 傅里叶变换用于解决什么问题?A. 微分方程B. 积分方程C. 信号处理D. 线性代数答案:C5. 欧拉公式 \( e^{ix} = \cos(x) + i\sin(x) \) 中,\( i \) 代表什么?A. 虚数单位B. 矩阵C. 行列式D. 向量答案:A6. 以下哪一项是拉普拉斯变换的基本性质?A. 线性性质B. 微分性质C. 积分性质D. 反演性质答案:A7. 泰勒级数展开是用于什么目的?A. 近似计算B. 精确计算C. 矩阵计算D. 向量计算答案:A8. 以下哪个函数是周期函数?A. \( y = x^2 \)B. \( y = e^x \)C. \( y = \sin(x) \)D. \( y = \ln(x) \)答案:C9. 以下哪一项是偏微分方程的解?A. \( u(x, y) = x^2 + y^2 \)B. \( u(x, y) = e^{x+y} \)C. \( u(x, y) = \ln(x+y) \)D. \( u(x, y) = \sin(x)\cos(y) \)答案:D10. 以下哪个选项是复数的性质?A. 可加性B. 可乘性C. 可除性D. 所有选项答案:D二、填空题(每题4分,共20分)1. 如果 \( f(x) = x^3 - 6x^2 + 11x - 6 \),则 \( f'(x) \) 等于 _______。
答案:\( 3x^2 - 12x + 11 \)2. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( \det(A) \) 等于 _______。
自考工程数学试题及答案
自考工程数学试题及答案一、单项选择题(每题2分,共10分)1. 以下哪个选项是微分方程的解?A. y = 3x + 2B. y = x^2 + 3x + 2C. y = e^xD. y = ln(x)答案:A2. 定积分∫(0,1) x^2 dx的值是多少?A. 1/3B. 1/2C. 1D. 2答案:B3. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B4. 以下哪个选项是线性方程组的解?A. x = 1, y = 2B. x = 2, y = 4C. x = 3, y = 6D. x = 4, y = 8答案:A5. 以下哪个矩阵是可逆的?A. [1 2; 3 4]B. [2 0; 0 2]C. [1 0; 0 0]D. [0 1; 1 0]答案:B二、填空题(每题2分,共10分)1. 函数f(x) = x^3 - 3x + 2的导数是______。
答案:3x^2 - 32. 函数f(x) = e^x的不定积分是______。
答案:e^x + C3. 函数f(x) = sin(x)的原函数是______。
答案:-cos(x) + C4. 矩阵A = [1 2; 3 4]的行列式是______。
答案:-25. 函数f(x) = x^2在区间[0,1]上的定积分是______。
答案:1/3三、解答题(每题15分,共30分)1. 求函数f(x) = x^2 - 4x + 3的极值点,并说明极值类型。
答案:函数f(x) = x^2 - 4x + 3的导数为f'(x) = 2x - 4,令f'(x) = 0,得到x = 2。
将x = 2代入原函数,得到f(2) = -1,为极小值点。
2. 求解线性方程组:\begin{cases}x + y = 5 \\2x - y = 1\end{cases}答案:将方程组写成增广矩阵形式,通过行变换得到:\begin{bmatrix}1 & 1 & | & 5 \\0 & 1 & | & 3\end{bmatrix}由此可得y = 3,代入第一个方程得到x = 2,所以方程组的解为x = 2,y = 3。
工程数学期末考试试题与标准答案及评分标准模板
《工程数学》试题(A 卷)(考试时间: 90 分钟)一、选择题(共30分,共10小题,每小题3分)1.函数293x x xy -++=的定义域是( ). A.{}3|-≥x x ; B.{}3|≤x x ;C.{}33|≤≤-x x ; D .{}33|≤<-x x . 2.函数x y =在0=x 处( ) .A.连续且可导;B.不连续且不可导; C 不可导但连续;D.不连续但可导. 3.x x arctan lim +∞→=﹙ ).A.0;B.不存在 ;C. 2π-; D.2π. 4.若11,1,22()3,1,1,1x x f x x x ⎧+<⎪⎪==⎨⎪>⎪⎩,则1lim ()x f x →=( ). A.2; B. 1; C.1-; D.不存在. 5.函数11)(-=x x f 的水平渐近线是( ). A. 1=x ; B. 1-=y ; C. 0=x ; D. 0=y . 6.函数()y f x =在x 处可导是该点可微的( )条件.A.必要;B.充分;C.充要;D.无关.7.若),)(b a x f 在(内二阶可导,且0)(,0)(<''<'x f x f ,则在),(b a 内函数( ). A.单调减,凸函数; B. 单调增,凸函数; C. 单调减,凹函数; D. 单调增,凹函数.8.函数22,1(),1x x f x x x >⎧=⎨≤⎩,在点1x =处( ).A.不连续;B.连续;C. ()2f x '=可导且;D.无法判断. 9.设函数()f x ,()g x 在[,]a b 上连续,且()()f x g x ≥,则( ).A.()d ()d bbaaf x xg x x ≥⎰⎰ ; B.()d ()d bbaaf x xg x x ≤⎰⎰;C.()d ()d f x x g x x ≥⎰⎰ ; D.()d ()d f x x g x x ≤⎰⎰.10. 曲线x y x y ==与2所围成的平面图形绕x 轴旋转而成的旋转体的体积为( ).A. ⎰-124d )(x x x π; B. ⎰-142d )(x x x π;C.⎰-12d )(y y y π; D. ⎰-12d )(y y y π.二、填空题(共20分,共5小题,每小题4分)1.函数654)(22+--=x x x x f ,则2=x 是_______间断点,3=x 是 _______间断点.2. 复合而成和是由函数函数 e arcsin x y =. 3.点()1,0是曲线b ax x y +-=233 的拐点,则=a ______,=b ______. 4. 设 ()f x 的一个原函数为1x,则=)(x f . 5. ⎪⎩⎪⎨⎧==tty x 2ee,=x y d d __________.2.已知y x x y '+=求,cos sin 22.三、计算题(共42分,共6小题,每小题7分)1.求x x x2)51(lim +∞→ 2.已知y x x y '+=求,cos sin 22. 3. 已知.d ,2cos e 2y x y x 求= 4.求x x x d e 2⎰. 5.求⎰exdx x 1ln .6.求由曲线2,,1===x x y xy 围成的平面图形的面积. 四、证明题(共8分,共1小题,每小题8分)1.证明不等式()()0,1ln 1><+<+x x x xx.《工程数学》试题(B 卷)(考试时间: 90 分钟)一、选择题(共30分,共10小题,每小题3分)1.函数242y x x x-++=的定义域是( )..A {}2|-≥x x ; B.{}2|≤x x ;C.{}22|≤≤-x x ; D . {}22|≤<-x x2. 当0→x 时,下列变量为无穷小的是( )A.;cos x x B. ;sin xxC.;12-xD..sin 1x - 3.x x arctan lim ∞→=﹙ ﹚.A.0 ;B.不存在 ;C. —2π ; D.2π. 4.若⎩⎨⎧>-≤=1,21,)(2x x x x x f ,则1lim ()x f x →=( ).2;A .1;B .1;C - .;D 不存在5.函数xx f 1)(=的水平渐近线是( ). A. 1=x B. 1-=y C. 0=x D. 0=y6.函数()y f x =在x 处可导是该点连续的( )条件.;A 必要 .;B 充分 .;C 充要 .;D 无关7.若),)(b a x f 在(内二阶可导,且0)(,0)(///>>x f x f ,则在),(b a 内函数( ).A.单调减,凸函数B. 单调增,凸函数C. 单调减,凹函数D. 单调增,凹函数8.函数⎪⎩⎪⎨⎧>+≤=1,21211,)(2x x x x x f ,在点1x =处( )A.连续且可导;B.不连续且不可导; C 不可导但连续;D.不连续但可导.9.设函数()f x 在[,]a b 上连续,则( )dx x f dx x f A b ab a⎰⎰≤)()(. dx x f dx x f B bab a⎰⎰≥)()(.dx x f dx x f C b ab a⎰⎰=)()(. dx x f dx x f D bab a⎰⎰>)()(.10. 曲线12==x x y 与及x 轴所围成的平面图形绕x 轴旋转而成的旋转体的体积为( ) A. ⎰14dx x πB. ⎰102dx x π C. ⎰10ydy π D. ⎰12dy y π二、填空题(共20分,共5小题,每小题4分)1.函数231)(22+--=x x x x f ,则2=x 是_______间断点,1=x 是 _______间断点. 2. 复合而成和是由函数函数 sin x e y =. 3.点(1,3)是曲线y=23bx ax + 的拐点,则a=______,b=______. 4. 设 ()f x 的一个原函数为x sin ,则=)(x f .5. ⎩⎨⎧==3x bt y at ,=dxdy__________. 三、计算题(共42分,共6小题,每小题7分)1.x x x2)31(lim +∞→2.已知')),ln(ln(ln y x y 求=.3. 已知.dy ,2sin 求x x y =4.求dx xe x ⎰.5.求⎰-224dx x .6.求由曲线0,1,2===y x x y 围成的平面图形的面积.四、证明题(共8分,共1小题,每小题8分)1.证明:当x x x 211,0+>+>时一、单项选择题(共30分,共10小题,每小题3分)1、D2、C3、D4、B5、D6、C7、A8、A9、A 10、B 二、填空题(共20分,共5小题,每小题4分)1、可去(或者第一类);无穷(或者第二类)2、x u e y u arcsin ,==;3、a=0,b=1;4、21x-;5、t2e . 三、计算题(共42分,共6小题,每小题7分)1..7(5())5111(lim (3()5111(lim )51(lim 101051)51(102分)分)分)e x x xx x x x x x =+=+=+∞→∞→∞→ 2..7(sin 2cos sin 24()(sin )(sin sin 22'22''分)分)x x x x x x x x y -=-= 3..7()2sin 2(cos 23(2cos 2cos 222分)分)dx x x e x d e xde dy x x x -=+= 4. C e x d e dx e x dx xe x x x x +===⎰⎰⎰2222215)((213()(212'2分)分).(7分) 5.1ln ex xdx ⎰=211ln 2exdx ⎰(3分)=2221111111ln 2244ee x x x dx e x -⋅=+⎰(7分).6..72ln 235(|)ln 21(3()1(21221分)(分)分)-=-=-=⎰x x dx x x S 四、证明题(共8分,共1小题,每小题8分)1、证:令f(x)=ln(1+x), 在[]x 0,上连续,在(0,x )内可导, )(x f '=x11+,(2分) 由拉格朗日中值定理,在(0,x )内至少存在一点ξ,使得ξ+=-+-+110)01ln()x 1ln x ((4分) 有 ln(1+x)=ξ+1x ,又 0<x <ξ, 1<1+x +<1ξ, x xx x <+<+ξ11,(7分) 所以,x x xx<+<+)1ln(1 (8分)一、单项选择题(共30分,共10小题,每小题3分)1、D2、C3、B4、B5、D6、B7、D8、C9、A 10、A . 二、填空题(共20分,共5小题,每小题4分)1、无穷(或者第二类);可去(或者第一类)2、x u e y u sin ,==;3、29,23=-=b a ;4、x cos ;5、abt 23.三、计算题(共42分,共6小题,每小题7分)1..7(5())3111(lim (3()3111(lim )31(lim 6631)31(62分)分)分)e x x xx x x x x x =+=+=+∞→∞→∞→ 2..7(1ln 1)ln(ln 16()(ln ln 1)ln(ln 13())(ln(ln )ln(ln 1'''分)分)分)xx x x x x x x y ===3..7()2cos 22(sin 3(2sin 2sin 分)分)dx x x x x xd xdx dy +=+=4. .7(4()(''分)分)C e xe dx e x xe dx ex dx xe x x x x x x +-=-==⎰⎰⎰5.令2,2;0,0,cos 2sin 2π======t x t x tdt dx t x 当当则.(1分)⎰-224dx x =tdt ⎰202cos 4π(3分)=⎰+20)2cos 1(2πdt t (4分)=20|)2sin 21(2πt t +(6分)=π.(7分))6..7315(|313(10312分)(分)分)===⎰x dx x S 四、证明题(共8分,共1小题,每小题8分)1、证:令x x x f 211)(+-+=, )(x f '=02x1121>+-+x ,0>x (3分)0)0()(,0],0[)(=>>f x f x x x f 单调递增,在,(6分) ,0211)(>+-+=x x x f 即x x 211+>+.(8分)。
工程数学本期末试题及答案
工程数学本期末试题及答案【工程数学本期末试题及答案】一、选择题(每题5分,共20题)1. 下列哪个不是函数的定义?A. 函数的定义域B. 函数的值域C. 函数的图像D. 函数的导数2. 设函数 f(x) = 2x^3 + 3x^2 - 6x + 1,求 f'(2) 的值。
A. 24B. 28C. 32D. 363. 若函数 f(x) = e^x,则 f'(x) 等于:A. e^xB. x^eC. e^(x-1)D. 04. 以下哪个不是极限的定义?A. 函数在某点处的连续性B. 函数的左极限C. 函数的右极限D. 函数的无穷极限5. 设函数 f(x) = x^2 - 3x + 2,求 f(-2) 的值。
A. 2B. 4C. 6D. 86. 已知函数 f(x) = sin(2x),则 f"(x) 的值为:A. -2sin(2x)B. 2cos(2x)C. -4sin(2x)D. 4cos(2x)7. 若函数 f(x) = ln(x),则 f'(x) 等于:A. e^(1/x)B. 1/xC. 1/(ex)D. x^28. 函数 f(x) = x^3 + 2x^2 - 5x + 3 的最大值为:A. 5B. 6C. 7D. 89. 函数 f(x) = 2x^2 + 3x - 1 的最小值为:A. -1B. 0C. 1D. 210. 已知函数 f(x) = x^3,则函数 f(x) 在(-∞,+∞)上的取值范围是:A. [0,+∞)B. (-∞,0]C. (-∞, +∞)D. [0,1]二、填空题(每题5分,共10题)1. 设函数 f(x) = 3x^2 + 2x - 5,则 f'(x) = ___________。
2. 函数 y = e^(-x) 的图像是一条 ___________ 曲线。
3. 若函数 f(x) = ln(x),则 f"(x) = ___________。
成考工程数学试题及答案
成考工程数学试题及答案一、选择题(每题3分,共30分)1. 已知函数f(x)=2x^3-3x^2+1,求f'(x)。
A. 6x^2-6xB. 6x^2-6x+1C. 6x^2-6x-1D. 6x^2+6x-12. 对于定积分∫(0,1) x^2 dx,其值是多少?A. 1/3B. 1/2C. 2/3D. 3/23. 已知矩阵A=[1,2;3,4],求矩阵A的行列式。
A. -2B. 2C. -5D. 54. 求极限lim(x→0) (sin(x)/x)的值。
A. 0B. 1C. -1D. 25. 已知等比数列{a_n},首项a_1=2,公比q=3,求a_5的值。
A. 486C. 81D. 276. 对于二阶常系数线性微分方程y''+4y'+4y=0,其通解为?A. y=c1*e^(-2x)+c2*e^(-2x)B. y=c1*e^(-2x)+c2*e^(2x)C. y=c1*cos(2x)+c2*sin(2x)D. y=c1*cosh(2x)+c2*sinh(2x)7. 已知函数f(x)=x^3-3x^2+2x,求f''(x)。
A. 6x-6B. 6x-6+2C. 6x-6+4D. 6x-6+68. 对于定积分∫(0,π/2) sin(x) dx,其值是多少?A. 1B. π/2C. 2D. π9. 求极限lim(x→∞) (x^2/e^x)的值。
A. 0B. 1C. ∞D. -∞10. 已知等差数列{b_n},首项b_1=1,公差d=2,求b_10的值。
A. 19B. 18D. 16二、填空题(每题4分,共20分)1. 函数y=ln(x)的反函数为______。
2. 函数y=e^x的导数为______。
3. 矩阵A=[1,0;0,2]的逆矩阵为______。
4. 函数y=x^2-4x+4的最小值为______。
5. 函数y=x^3-3x^2+2x的极值点为______。
工程数学试题及参考答案
工程数学试题B一、单项选择题(每小题3分,本题共21分)1.设B A ,为n 阶矩阵,则下列等式成立的是( ).(A) BA AB = (B) T T T )(B A AB =(C) T T T )(B A B A +=+ (D) AB AB =T )(2.设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321432143214321A ,则=)(A r ( ). (A) 0 (B) 1(C) 3 (D) 43.设B A ,为n 阶矩阵,λ既是A 又是B 的特征值,x 既是A 又是B 的特征向量,则结论( )成立.(A) λ是B A +的特征值 (B) λ是B A -的特征值(C) x 是B A +的特征向量 (D) λ是AB 的特征值4.设A B ,为随机事件,下列等式成立的是( ).(A) )()()(B P A P B A P -=- (B) )()()(B P A P B A P +=+(C) )()()(B P A P B A P +=+ (D) )()()(AB P A P B A P -=-5.随机事件A B ,相互独立的充分必要条件是( ).(A) )()()(B P A P AB P = (B) )()(A P B A P =(C) 0)(=AB P (D) )()()()(AB P B P A P B A P -+=+6.设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有=≤<)(b X a P ( ).(A) ⎰b a x x F d )( (B) ⎰ba x x f d )( (C) )()(a fb f - (D) )()(b F a F -7. 对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,∑==3131i i X X ,则下列各式中( )不是统计量.(A) X (B) ∑=31i i X(C) ∑=-312)(31i i X μ (D) ∑=-312)(31i i X X 二、填空题(每小题3分,共15分)1.设B A ,均为3阶矩阵,2=A ,3=B ,则=--1T 3B A .2.线性无关的向量组的部分组一定 .3.已知5.0)(,3.0)(=-=A B P A P ,则=+)(B A P .4.设连续型随机变量X 的密度函数是)(x f ,则=)(X E .5.若参数θ的估计量θˆ满足θθ=)ˆ(E ,则称θˆ为θ的 估计.三、计算题(每小题10分,共60分)1.设矩阵⎥⎦⎤⎢⎣⎡=3021A ,求A 的特征值与特征向量. 2.线性方程组的增广矩阵为求此线性方程组的全部解.3.用配方法将二次型322322213216537),,(x x x x x x x x f +++=化为标准型,并求出所作的满秩变换.4.两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。
工程数学自考试题及答案
工程数学自考试题及答案一、单项选择题(每题2分,共20分)1. 下列哪项是线性方程组的解?A. 解存在且唯一B. 解不存在C. 解有无穷多个D. 无解答案:A2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行数或列数D. 矩阵的元素个数答案:C3. 微分方程的解是下列哪一项?A. 函数B. 数值C. 矩阵D. 向量答案:A4. 泰勒级数展开的中心点是?A. 0B. 1C. 任意点D. 函数的零点答案:C5. 傅里叶级数是用于什么?A. 函数的近似B. 函数的精确表示C. 函数的积分D. 函数的微分答案:A6. 线性代数中,向量空间的基是什么?A. 一组线性无关的向量B. 一组线性相关的向量C. 一组向量D. 一组标量答案:A7. 拉普拉斯变换是用于解决什么问题?A. 微分方程B. 积分方程C. 代数方程D. 线性方程组答案:A8. 欧拉公式是用于解决什么问题?A. 微分方程B. 积分方程C. 代数方程D. 线性方程组答案:A9. 概率论中,随机变量的期望值是什么?A. 随机变量的平均值B. 随机变量的中位数C. 随机变量的众数D. 随机变量的方差答案:A10. 泊松分布适用于描述什么?A. 连续型随机变量B. 离散型随机变量C. 正态分布的随机变量D. 二项分布的随机变量答案:B二、填空题(每题2分,共20分)1. 如果一个线性方程组有唯一解,则该方程组是_________的。
答案:相容2. 矩阵的对角线元素之和称为矩阵的_________。
答案:迹3. 微分方程的通解是包含_________的解。
答案:任意常数4. 泰勒级数展开的公式是_________。
答案:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ...5. 傅里叶级数的公式是_________。
答案:f(x) = a0/2 + Σ[an*cos(nπx/L) + bn*sin(nπx/L)]6. 向量空间的基有_________个向量。
工程数学试题及答案专科
工程数学试题及答案专科工程数学试题及答案(专科)一、单项选择题(每题3分,共30分)1. 极限的定义中,ε和δ的取值范围是()。
A. ε>0,δ>0B. ε<0,δ<0C. ε≥0,δ≥0D. ε≤0,δ≤0答案:A2. 函数f(x)=x^2在x=0处的导数是()。
A. 0B. 1C. 2D. -1答案:B3. 以下哪个函数是偶函数()。
A. f(x)=x^3B. f(x)=x^2C. f(x)=xD. f(x)=|x|答案:B4. 曲线y=x^2+2x+1的拐点是()。
A. (-1,0)B. (0,1)C. (1,2)D. (-1,2)答案:A5. 积分∫(0,1) x^2 dx的结果是()。
A. 1/3B. 1/2C. 2/3D. 3/2答案:B6. 以下哪个级数是收敛的()。
A. 1+1/2+1/4+1/8+...B. 1-1/2+1/3-1/4+...C. 1+2+3+4+...D. 1/2+1/4+1/8+1/16+...答案:D7. 函数f(x)=e^x的不定积分是()。
A. e^x+CB. e^(-x)+CC. -e^x+CD. -e^(-x)+C答案:A8. 矩阵A和B的乘积AB,当A和B都是方阵时,AB的行列式等于()。
A. |A|*|B|B. |A|/|B|C. |B|/|A|D. |A|+|B|答案:A9. 线性方程组的解的个数取决于()。
A. 系数矩阵的秩B. 增广矩阵的秩C. 系数矩阵和增广矩阵的秩D. 系数矩阵的行列式答案:C10. 以下哪个矩阵是可逆的()。
A. [1 2; 3 4]B. [1 0; 0 0]C. [1 1; 1 1]D. [2 0; 0 2]答案:D二、填空题(每题4分,共20分)11. 函数f(x)=sin(x)的导数是_________。
答案:cos(x)12. 曲线y=ln(x)在x=e处的切线斜率是_________。
工程数学试题及答案北京
工程数学试题及答案北京一、单项选择题(每题2分,共10分)1. 函数y=f(x)的导数表示的是函数在x处的()。
A. 斜率B. 截距C. 极值点D. 拐点答案:A2. 积分∫(2x+3)dx的结果是()。
A. x^2 + 3x + CB. 2x^2 + 3x + CC. x^2 + 2x + CD. 2x^2 + 3x^2 + C答案:B3. 微分方程y'' + 4y' + 4y = 0的通解是()。
A. y = e^(-2x)(C1cos(2x) + C2sin(2x))B. y = e^(2x)(C1cos(2x) + C2sin(2x))C. y = e^(-2x)(C1 + C2x)D. y = e^(2x)(C1 + C2x)答案:A4. 矩阵A=[1,2;3,4]的行列式是()。
A. -2B. 2C. -5D. 5答案:D5. 线性方程组x+y+z=6,2x-y+z=1,x+2y-3z=-3的解是()。
A. x=1, y=2, z=3B. x=2, y=1, z=3C. x=1, y=3, z=2D. x=3, y=2, z=1答案:A二、填空题(每题2分,共10分)1. 函数y=x^3-3x^2+2的极值点是x=______。
答案:12. 函数y=ln(x)的不定积分是______。
答案:xln(x) - x + C3. 微分方程y'+2y=e^(-2x)的特解是______。
答案:-1/2e^(-2x)4. 矩阵A=[1,0;0,0]的秩是______。
答案:15. 线性方程组x+2y=5,3x-y=1的解是x=______,y=______。
答案:2,2三、解答题(每题15分,共30分)1. 求函数y=x^2-4x+4在区间[1,3]上的定积分,并说明其几何意义。
解:∫(x^2-4x+4)dx从1到3的积分等于(1/3x^3-2x^2+4x)从1到3的值,即(9-6+12)-(1/3-2+4)=16/3。
国家开放大学电大本科《工程数学》2023-2024期末试题及答案(试卷代号:1080)
国家开放大学电大本科《工程数学(本)》2023-2024期末试题及答案(试卷代号:1080)一、单项选择题(每小题3分,共15分)I.设方阵A可逆.则下列命8S中不正确的是<).A.人尹OK税性方程组AX =。
必有非冬解C. I A |# OD.矩阵A'可逆2 .若向at组到血.・〃•线忤相关,则(MKM内(> 可被该向败组内其余向屈线性表出・A.任何一个向歌B.没有一个向量C.至多一个向量D.至少有一个向做3. 设A.B均为”阶方阵.则下列结论正确的是().A.若A既乂是H的特征值,叫必是A +B的特征值Lk若A既是人,又是B的特征值,则必是八B的特征值C. 若x既是A,又是B的特征向量,则必是A+8的特征向量D. A的特征向量的线性组合仍为A的特征向足4. 设袋中有3个红球■?个白球,现从中随机抽取2 4球-则2个球恰好不同色的横率屉();Q a To5. 对箪•正态.总体X 〜巳知时,关于均值“的假设检弗应采用()・A.F检脸法氏』检验法C・U检睑法D・F检验法二、填空题(每小题3分,共15分)6. 设A为3X5地阵,H为1X3矩阵,且乘人C'B有意义,则「为矩阵•pcj += I7. 当A=_ —时.非齐次线性方秘纽j有无列多觥・[3z(— 6 工】=38. 设人,B是两个随机事件•若P(人)=0.7/(人耳〉=0.3.则P<AB) =.9. 设随挑变地X ~ N<2.妒〉,则随机要址Y=~ N(0.l〉.10. 设Rfi挑变地X/E(X〉=L则E(2X 1)~・三、计算题(每小题16分,共64分)H.解炬阵方程人X-X = B,其中八=12.当人取何值时•齐次。
性方Ktfl有作零解?II TW的情况F求力程蛆的通解.13.世 X - NOS.bt >R I <I>P (X<5)I (2)F (X > 9).(CM0(n 0. 8413.0(2) ■ 0.9772.也(3)・Q. 9987〉为r 对完成某项工作所箫时间建立・个标准,工厂随机抽查了 16名工人分别去完成 这项工作.结果发现他们所需的平均时间为15分钟,佯本标准差为3分钟•假设完成这项工作 所需的时间服从正态分布•在标准差不变的情况下,试确定完成此项工作所需平均时间的置信 度为0.95的置值区间(已知 5 =1.96).四、证明题(本题6分)15.设随机事件A 与B 相互:独立.IS 证A 与百也相互独立.试题答案及评分标准:一•单顼堆择JH (哥小Bl X 分■共15分)L B 2. fj3.CLA二、坡空踏(<3小《1彳分出葺分)C. 4 X 5-2H.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,单选题1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( B )。
A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( C )。
A. X 和Y 独立。
B. X 和Y 不独立。
C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( D )。
A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。
B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( A )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( A )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)二、填空题6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 9 。
7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 1 。
8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为1–(1–P)3 。
9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 3/4 。
10.设二维连续型随机变量),(Y X 的联合概率密度函数为其它当0,00),()43(>>⎩⎨⎧=+-y x ke y x f y x ,则系数=k 12 。
三、计算题 11.求函数tet f β-=)(的傅氏变换 (这里0>β),并由此证明:te d t ββπωωβω-+∞=+⎰2cos 022 解答:函数f(t)的付氏变换为:F (w )=dt e dt edt eeet j tj tj t t ⎰⎰⎰+∞--+∞+--+∞∞---+==ℜ0)(0)(||||][ϖβϖβϖββ=22211ϖββϖβϖβ+=-++j j 由付氏积分公式有f(t)=[1-ℜF(w )]=ϖϖπϖd e F tj ⎰+∞∞-)(21=ϖϖϖϖββπd t j t ⎰+∞∞-++)sin (cos 22122 ==ϖϖβϖπβϖϖϖββπd td t ⎰⎰+∞+∞∞-+=+02222cos 2cos 221所以te d t ββπωωβω-+∞=+⎰2cos 022 12.发报台分别以概率0.6和0.4发出信号“1”和“0”。
由于通讯系统受到干扰,当发出信号“1”时,收报台未必收到信号“1”,而是分别以概率0.8和0.2收到信号“1”和“0”;同时,当发出信号“0”时,收报台分别以概率0.9和0.1收到信号“0”和“1”。
求(1)收报台收到信号“1”的概率;(2)当收报台收到信号“1”时,发报台确是发出信号“1”的概率。
解答:设 A1=“发出信号1”,A0=“发出信号0”,A=“收到信号1” (1)由全概率公式 有 P(A)=P(A|A1)P(A1)+P(A|A0)P(A0) =0.8x 0.6+0.1 x0.4=0.52 (2)由贝叶斯公式 有 P(A1|A)=P(A|A1)P(A1)/ P(A) =0.8x 0.6/0.52=12/13 13.设二维随机变量),(Y X 的联合概率函数是其它0,00),()42(>>⎩⎨⎧=+-y x ce y x f y x 求:(1)常数c ;(2)概率P (X ≥Y );(3)X 与Y 相互独立吗?请说出理由。
解答:(1) 由联合概率密度的性质有⎰⎰+∞∞-+∞∞-=1),(dy y x f dx即⎰⎰+∞+-+∞=0)42(01dy cedx y x从而 c =8(2)⎰⎰≥==≥yx dxdy y x f Y X P ),()(⎰⎰=+-+∞xy x dy e dx 0)42(0328 (3) 当x >0时, ⎰⎰∞∞-∞-+-===2)42(28),()(x y x X e dy e dy y x f x f当x <=0时, 0)(=x f X同理有 其它04)(4>⎩⎨⎧=-y e y f y Y因 y x y f x f y x f Y X ,)()(),(∀=故X 与Y 相互独立14.将n 个球随机的放入N 个盒子中去,设每个球放入各个盒子是等可能的,求有球盒子数X 的数学期望。
解答:设 否则个盒子有球第i X i ⎩⎨⎧=01i =1,2,…,N则 ∑==Ni iXX 1因 nni NN X P )1()0(-== nni i N N X P X P )1(1)0(1)1(--==-==因而 nni i i NN X P X P EX )1(1)1(1)0(0--==⋅+=⋅= 所以 ))11(1(1nNi i NN EX EX --==∑= 15.设一口袋中依此标有1,2,2,2,3,3数字的六个球。
从中任取一球,记随机变量X 为取得的球上标有的数字,求 (1)X 的概率分布律和分布函数。
(2)EX 解答:(1)随机变量X 的取值为1,2,3。
依题意有:62)3(;63}2{;61}1{======X P X P X P X 的分布函数}{)(x X P x F ≤=由条件知:当1<x 时,;0(=)x F 当21<≤x 时,;61)1((===X P x F )当32<≤x 时,;32)2()1((==+==X P X P x F )当3≥x时,;1(=)x F(2)EX=1 x 1/6+2 x 3/6+3 x 2/6= 13/6四、证明题16.设a=(a 1,a 2,…,a n )T ,a 1≠0,其长度为║a ║,又A=aa T,(1) 证明A 2=║a ║2A ;(2) 证明a 是A 的一个特征向量,而0是A 的n-1重特征值; (3) A 能相似于对角阵Λ吗?若能,写出对角阵Λ.证明:(1) A 2=aa T ·aa T =a T a ·aa T =║a ║2A(2)因 Aa= aa T ·a=a T a ·a= ║a ║2a 故a 是A 的一个特征向量。
又A 对称,故A 必相似于对角阵 设A ∽ diag(λ1,λ2,…,λn )=B, 其中λ1,λ2,…,λn 是A 的特征值 因rank(A)=1, 所以 rank(B)=1 从而λ1,λ2,…,λn 中必有n-1个为0, 即0是A 的n-1重特征值 (3) A 对称,故A 必相似于对角阵Λ,Λ=diag(║a ║2, 0, 0五、应用题17.设在国际市场上每年对我国某种出口商品的需求量X 是随机变量,它在[2000,4000]( 单位:吨 )上服从均匀分布,又设每售出这种商品一吨,可为国家挣得外汇3万元,但假如销售不出而囤积在仓库,则每吨需保养费1万元。
问需要组织多少货源,才能使国家收益最大。
解答:设y 为预备出口的该商品的数量,这个数量可只介于2000与4000之间,用Z 表示国家的收益(万元), 则有 yX yX X y X y X g Z <≥⎩⎨⎧--==)(33)( 因 X 服从R(2000,4000), 故有其它4000200002000/1)(<<⎩⎨⎧=x x f X所以dx ydx x y x dx x f x g EZ yyX ⎰⎰⎰+--==∞∞-40002000200032000)(3)()( =–( y 2 –7000y + 4•106 ) /1000 求极值得 y=3500 (吨)。