初二数学二元一次方程组复习题

合集下载

初二数学二元一次方程组试题答案及解析

初二数学二元一次方程组试题答案及解析

初二数学二元一次方程组试题答案及解析1.解方程组.【答案】.【解析】①+②得到方程3x=6,求出x的值,把x的值代入②得出一个关于y的方程,求出方程的解即可.试题解析:,①+②得:3x=6,解得x=2,将x=2代入②得:2﹣y=1,解得:y=1.∴原方程组的解为.【考点】解二元一次方程组.2.某工厂去年的利润(总收入-总支出)为100万元,今年总收入比去年增加了10%,总支出比去年减少了9%,今年的利润为300万元,去年的总收入、总支出各是多少万元?【答案】1100,1000.【解析】设去年的总产值为x万元,总支出为y万元,表示出今年总产值和总支出,根据两个关系列方程组求解.试题解析:设去年的总产值为x万元,总支出为y万元,根据题意得:解得:答:这个工厂去年的总收入和总支出分别为1100万元和1000万元。

考点: 二元一次方程组的应用.3.解下列二元一次方程组(1)(2)【答案】①;②.【解析】本题考查了解二元一次方程组的一般方法.解二元一次方程组的关键是消元,主要两种消元方法-代入消元法和加减消元法.(1)方程中未知数y的系数分别为5和-5,可直接用加减消元法解答;(2)先将方程①×2得到③,然后由③-②可消去未知数a,进而求解.试题解析:解:(1)①+②得:5x=10X=2把x=2代入方程①中得:6+5y=21解得:y=3∴方程组的解是.①×2-②得:15b=3解得:把代入①得:2a+1=2解得:a=1∴方程组的解是.【考点】解二元一次方程.4.小华早晨6点多钟去学校,去时看了一下手表,发现时针与分针的夹角为度(0<<180,为整数),到了学校,他又看了一下手表,发现此时还不到7点钟,且时针与分针的夹角为也为度,若小华去学校途中所用的时间是10的整数倍,那么,小华去学校途中所用的时间是多少?【答案】20分钟或40分钟【解析】设去时是6点x分,到校是6点y分,途中所用的时间为y-x.根据题意得,=(360+x)×0.5-6x=180-5.5x;=6y-(360+y)×0.5=5.5y-180.两式相加得:2=5.5(y-x),.设=10k(k为正整数),即可得到2=55k,因0<<180,所以0<55k<360,0<k<6.6,从而求得结果.设去时是6点x分,到校是6点y分,途中所用的时间为y-x.根据题意得,=(360+x)×0.5-6x=180-5.5x;=6y-(360+y)×0.5=5.5y-180.两式相加得:2=5.5(y-x),.设=10k(k为正整数) 所以2=55k,因0<<180,所以0<55k<360, 0<k<6.6.由2=55k知,k为偶数数,所以k=2或4. =55或110.=20或40.答:小华去学校途中所用的时间是20分钟或40分钟.【考点】二元一次方程的应用点评:方程的应用是初中数学的重点,是中考常见题,一般难度不大,需熟练掌握.5.已知│y-2x│+(x+y-3)2="0" 计算y-x【答案】【解析】先根据非负数的性质得到关于x、y的方程组,解出x、y的值,即可求得结果.由题意得,解得,∴【考点】本题考查的是非负数的性质点评:解答本题的关键是熟练掌握非负数的性质:几个非负数的和为0,这几个数均为0.6.解方程【答案】【解析】由①得,再代入②即可消去解得,再代入即可解得,从而得到方程组的解。

二元一次方程组的练习题

二元一次方程组的练习题

二元一次方程组的练习题一、选择题1. 已知方程组 $\begin{cases} 2x + 3y = 7 \\ 4x y = 5\end{cases}$,则 $x$ 的值为()A. 1B. 2C. 3D. 42. 下列方程组中,是二元一次方程组的是()A. $\begin{cases} x^2 + y = 1 \\ 2x y = 3 \end{cases}$B. $\begin{cases} x + y = 4 \\ 3x 2y = 7 \end{cases}$C. $\begin{cases} x + 2y = 5 \\ x^2 + y^2 = 10\end{cases}$D. $\begin{cases} x + y = 6 \\ 2x + 3y = 8 \end{cases}$3. 解方程组 $\begin{cases} 3x + 5y = 16 \\ 2x 3y = 7\end{cases}$,得到 $x$ 的值为()A. 2B. 3C. 4D. 5二、填空题1. 方程组 $\begin{cases} 2x + 3y = 9 \\ 4x y = 11\end{cases}$ 的解为 $x=$ ______,$y=$ ______。

2. 若方程组 $\begin{cases} x + y = a \\ 2x y = b\end{cases}$ 的解为 $x=3$,$y=1$,则 $a=$ ______,$b=$ ______。

三、解答题1. 解方程组 $\begin{cases} 5x + 3y = 14 \\ 2x 3y = 8\end{cases}$。

2. 已知方程组 $\begin{cases} 3x + 4y = 10 \\ 2x y = 5\end{cases}$ 的解为 $x=2$,求 $y$ 的值。

3. 某商店进了甲、乙两种商品,甲种商品每件进价80元,乙种商品每件进价50元。

(经典)北师大版八年级上册二元一次方程组复习题(带答案)

(经典)北师大版八年级上册二元一次方程组复习题(带答案)

北师大版八年级上册二元一次方程组复习题1、我们知道解二元一次方程组的基本思想方法是“消元”,那么解方程组宜用______法;解方程组宜用______法.2、若|x-2y+1|+|x+y-5|=0,则x=__________,y=__________.3、某年级有学生258人,其中男生比女生人数的2倍少3人,求男、女生各有多少人.设女生人数为x,男生人数为y,则可列出方程组为___________.4、在一段坡路,小明骑自行车上坡的速度为每小时千米,下坡时的速度为每小时千米,则他在这段路上、下坡的平均速度是每小时()A. 千米B. 千米C. 千米D.无法确定5、某校初一(一)班学生到操场观看“抗震救灾”义演,若每条长凳坐5人,则少10条长凳;若每条长凳坐6人,则又多余2条长凳。

如果设学生数为人,长凳数为条,由题意可列方程组()A.B.C.D.6、方程(k2-4)x2+(k+2)x+(k-6)y=k+8是关于x,y的方程,试问当k为何值时:(1)方程为一元一次方程?(2)方程为二元一次方程?7、已知是方程的根,求代数式的值.8、根据题意列出方程组:将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?9、若是二元一次方程组的解,求a+2b的值。

10、已知是方程组的解,求代数式4a(a-b)+b(4a-b)+5的值.12、为响应县政府“创建绿色县城”的号召,一小区计划购进A,B两种树苗共20棵,已知A种树苗每棵80元,B种树苗每棵50元。

(1)若购进A、B两种树苗刚好用去1240元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最少的方案,并求出该方案所需费用。

13、“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.14、王明决定暑假期间到工厂打工.一天他到某厂了解情况,下面是厂方有关人员的谈话:厂方说:我厂实行计件工资制,就是在发给每人相同生活费的基础上,每生产一件产品得一定的工资,超过500件,超过部分每件再增加0.5元;工人甲说:我上个月完成了450件产品,月收入是2850元;工人乙说:我上个月完成了300件产品,月收入是2100元.根据上述内容,完成下面问题:(1)设该厂工人每生产一件产品得元,每月生活费为元,求,的值;(2)厂长决定聘用王明.由于王明工作积极肯干,一个月收入达3166元,他该月的产量是多少?15、某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案.16、某通信运营商的短信收费标准如下:发送网内短信0.1元/条,发送网际短信0.15元/条,该通信运营商的用户小王某月发送以上两种短信共计150条,依照该收费标准共支出短信费用19元,问小王该月发送网内、网际短信各多少条?17、计算:(1)(3)(4)18、已知是方程组的解,求和的值。

初中数学综合复习二元一次方程(组)及应用部分4

初中数学综合复习二元一次方程(组)及应用部分4

初中数学综合复习二元一次方程(组)及应用部分4一、选择题1. 若方程mx +ny =6的两个解是11x y =⎧⎨=⎩,⎩⎨⎧-==12y x ,则m ,n 的值为( )A .4,2B .2,4C .-4,-2D .-2,-4 【答案】A.2. “六.一”儿童节前夕,某超市用3360元购进A 、B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( ) A .⎩⎨⎧=+=+33602436120y x y x B .⎩⎨⎧=+=+33603624120y x y xC .⎩⎨⎧=+=+33601202436y x y x D .⎩⎨⎧=+=+33601203624y x y x 【答案】B3. 一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算? ( )A. 甲B. 乙C. 一样D.无法确定 【答案】B .4. 若二元一次联立方程式⎩⎪⎨⎪⎧5x -y =5,y =15x 的解为x =a ,y =b ,则a +b 之值为何?( )A .54B .7513C .3125D .2925分析:首先解方程组求得x 、y 的值,即可得到a 、b 的值,进而求得a +b 的值. 解:解方程组⎩⎪⎨⎪⎧5x -y =5,y =15x , 得:⎩⎨⎧x =2524,y =524.则a =2524,b =524,则a +b =3024=54.故选A5. 方程组125x y x y +=⎧⎨-=⎩的解为A. 12x y =-⎧⎨=⎩ B. 23x y =-⎧⎨=⎩ C. 21x y =⎧⎨=⎩ D. 21x y =⎧⎨=-⎩【答案】D 6.已知12x y =-⎧⎨=⎩是二元一次方程组321x y mnx y +=⎧⎨-=⎩的解,则m n -的值是A .1B .2C .3D .4【答案】D7.方程5x+2y=-9与下列方程构成的方程组的解为2,12x y =-⎧⎪⎨=⎪⎩的解是( )(A )x+2y=1 (B )3x+2y=-8(C )5x+4y=-3 (D )3x-4y=-8 【答案】D 。

初二数学二元一次方程练习题100题

初二数学二元一次方程练习题100题

这篇关于初⼆数学⼆元⼀次⽅程练习题100题,是⽆忧考特地为⼤家整理的,希望对⼤家有所帮助!⼆元⼀次⽅程组练习题100道(卷⼀) (范围:代数:⼆元⼀次⽅程组) ⼀、判断 1、是⽅程组的解…………() 2、⽅程组的解是⽅程3x-2y=13的⼀个解() 3、由两个⼆元⼀次⽅程组成⽅程组⼀定是⼆元⼀次⽅程组() 4、⽅程组,可以转化为() 5、若(a2-1)x2+(a-1)x+(2a-3)y=0是⼆元⼀次⽅程,则a的值为±1() 6、若x+y=0,且|x|=2,则y的值为2…………() 7、⽅程组有的解,那么m的值为m≠-5…………() 8、⽅程组有⽆数多个解…………() 9、x+y=5且x,y的绝对值都⼩于5的整数解共有5组…………() 10、⽅程组的解是⽅程x+5y=3的解,反过来⽅程x+5y=3的解也是⽅程组的解………() 11、若|a+5|=5,a+b=1则………() 12、在⽅程4x-3y=7⾥,如果⽤x的代数式表⽰y,则() ⼆、选择: 13、任何⼀个⼆元⼀次⽅程都有() (A)⼀个解;(B)两个解; (C)三个解;(D)⽆数多个解; 14、⼀个两位数,它的个位数字与⼗位数字之和为6,那么符合条件的两位数的个数有() (A)5个(B)6个(C)7个(D)8个 15、如果的解都是正数,那么a的取值范围是() (A)a<2;(B);(C);(D); 16、关于x、y的⽅程组的解是⽅程3x+2y=34的⼀组解,那么m的值是() (A)2;(B)-1;(C)1;(D)-2; 17、在下列⽅程中,只有⼀个解的是() (A)(B) (C)(D) 18、与已知⼆元⼀次⽅程5x-y=2组成的⽅程组有⽆数多个解的⽅程是() (A)15x-3y=6(B)4x-y=7(C)10x+2y=4(D)20x-4y=3 19、下列⽅程组中,是⼆元⼀次⽅程组的是() (A)(B) (C)(D) 20、已知⽅程组有⽆数多个解,则a、b的值等于() (A)a=-3,b=-14(B)a=3,b=-7 (C)a=-1,b=9(D)a=-3,b=14 21、若5x-6y=0,且xy≠0,则的值等于() (A)(B)(C)1(D)-1 22、若x、y均为⾮负数,则⽅程6x=-7y的解的情况是() (A)⽆解(B)有⼀个解 (C)有⽆数多个解(D)不能确定 23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy的值是() (A)14(B)-4(C)-12(D)12 24、已知与都是⽅程y=kx+b的解,则k与b的值为() (A),b=-4(B),b=4 (C),b=4(D),b=-4 三、填空: 25、在⽅程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______ 若x、y都是正整数,那么这个⽅程的解为___________; 26、⽅程2x+3y=10中,当3x-6=0时,y=_________; 27、如果0.4x-0.5y=1.2,那么⽤含有y的代数式表⽰的代数式是_____________; 28、若是⽅程组的解,则; 29、⽅程|a|+|b|=2的⾃然数解是_____________; 30、如果x=1,y=2满⾜⽅程,那么a=____________; 31、已知⽅程组有⽆数多解,则a=______,m=______; 32、若⽅程x-2y+3z=0,且当x=1时,y=2,则z=______; 33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________; 34、若x+y=a,x-y=1同时成⽴,且x、y都是正整数,则a的值为________; 35、从⽅程组中可以知道,x:z=_______;y:z=________; 36、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________; 四、解⽅程组 37、;38、; 39、;40、; 41、;42、; 43、;44、; 45、;46、; 五、解答题: 47、甲、⼄两⼈在解⽅程组时,甲看错了①式中的x的系数,解得;⼄看错了⽅程②中的y的系数,解得,若两⼈的计算都准确⽆误,请写出这个⽅程组,并求出此⽅程组的解; 48、使x+4y=|a|成⽴的x、y的值,满⾜(2x+y-1)2+|3y-x|=0,⼜|a|+a=0,求a的值; 49、代数式ax2+bx+c中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式; 50、要使下列三个⽅程组成的⽅程组有解,求常数a的值。

初二数学上学期第七章二元一次方程组知识点加试题

初二数学上学期第七章二元一次方程组知识点加试题

第七章:二元一次方程组考点1: 方程组及其解法一、考点讲解:1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程. 2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组. 3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解. 4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法. 5.整体思想解方程组.(1)整体代入.如解方程组3(1) 5 5(1)3(5) x y y x -=+⎧⎨-=+⎩①②,方程①的左边可化为3(x+5)-18=y+5③,把②中的3(x+5)看作一个整体代入③中,可简化计算过程,求得y .然后求出方程组的解.(2)整体加减,如1+3y 19 313x+y 11 3x ⎧=⎪⎪⎨⎪=⎪⎩①②因为方程①和②的未知数x 、y 的系数正好对调,所以可采用两个方程整体相加减求解.利用①+②,得x+y=9③,利用②-①得x -y=3④,可使③、④组成简单的方程组求得x ,y . 二、经典考题剖析:【考题1-1】(2004、汉中)若x+y+4则 3x+2y =_______解:-6 点拨:由x+y+4=0, x-2=0,解得x=2, y=-6,故3x+2y =3×2+2×(-6)= -6 【考题1-2】(2004、北碚,5分) 解方程组:x-y=42x+y=5⎧⎨⎩点拨:此题用加减消元法较容易,也可用代人消元法解. 三、针对性训练:( 20分钟) (答案:242 ) 1、对方程组4x+7y=-19 4x-5y=17 ⎧⎨⎩①②,用加减法消去x ,得到的方程为( )A 、2y=-2 =-36 C. 12y=-2 =-36 2.二元一次方程组x+y=102x-y=-1⎧⎨⎩的解是( ) A .11x=x=2x=73 C. D.19y=8y=3y=3x=3 B.y=7⎧⎪⎧⎧⎪⎪⎪⎨⎨⎨⎪⎪⎩⎩⎪⎪⎩⎧⎨⎩ 3.若x=-2y=1⎧⎨⎩ 是方程组ax+by=1bx+ay=7⎧⎨⎩的解,则(a+b ) (a -b )的值为( )A. -353B. 353 C. -164.解方程组:⑴2x+5y=53x+2y=53x-5y=102x+5y=7⎧⎧⎨⎨⎩⎩⑵ 5.已知方程组ax+5y=15 4x-by=-2 ⎧⎨⎩①②由于甲看错了方程①中的a 得到的方程组的解为x=-3y=-1⎧⎨⎩乙看错了方程②中的b ,得到方程组的解为x=5y=4⎧⎨⎩若按正确的a 、b 为计算,求原方程组的解x 与y 的差.6.若a+b4b 与3a+b 是同类二次根式,求a 、b 的值.7.已知关于x ,y 的方程组2x-y=32kx+(k+1)y=10⎧⎨⎩的解互为相反数,则k 的值是多少?8.甲、乙两人解同一个二元一次方程组,甲正确地得出解x=3,y=-2,乙因把这个方程组中的第二个方程X 的系数抄错了,得到一个错误的解为x=-2,y=2.他们解先后,原方程组的三个系数又被污染而看不清楚,变成下面的形式:请你把原方程组的三个被污染的系数填上.考点2:方程组的实际应用 一、考点讲解:方程组解决实际问题:应用方程组解决实际问题的关键在于正确找出问题中的两个等量关系,列出方程并组成方程组,同时注意检验解的合理性. 二、经典考题剖析: 【考题2-1】(2004、宁安)某商品按进价的100%加价后出售.经过一段时间,商家为了减少库存,决定5折销售,这时每件商品( )A .赚50%B .赔50%C .赔25%D .不赔不赚【考题2-2】(2004、南山区正题3分)如图1-7-1,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( )A .9015x y x y +=⎧⎨=-⎩ B .90215x y x y +=⎧⎨=-⎩ C .90152x y x y+=⎧⎨=-⎩ D .290215x x y =⎧⎨=-⎩【考题2-3】(2004、宁安)如图,如果横行上的两个数字之和相等,竖列上的两个数字之和相等,那么a 、b 、c 、d 依次可为 。

北师大版八年级数学上册第五章《二元一次方程组》综合练习题(含答案)

北师大版八年级数学上册第五章《二元一次方程组》综合练习题(含答案)

北师大版八年级数学上册第五章《二元一次方程组》综合练习题(含答案)一、单选题1.如果方程3x y -=与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,那么这个方程可以是( ) A .3416x y -= B .1254x y +=C .1382x y +=D .2()6x y y -=2.在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( )A .15x y =-⎧⎨=⎩B .13x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .95x y =⎧⎨=-⎩3.已知方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则()()()()2213313230.951x y x y ⎧-=++⎪⎨-=-+⎪⎩的解是( )A .8.31.2x y =⎧⎨=⎩B .10.32.2x y =⎧⎨=⎩C . 6.32.2x y =⎧⎨=⎩D .10.30.2x y =⎧⎨=⎩4.已知关于x ,y 的二元一次方程组24,2x y kx y -=⎧⎨+=⎩,的解为2,x y =⎧⎨=♥⎩,其中“♥”是不小心被墨水涂的,则k 的值为( ) A .1B .1-C .2D .2-5.如图,直线y =x +5和直线y =ax +b 相交于点P ,观察其图象可知方程x +5=ax +b 的解( )A .x =15B .x =25C .x =10D .x =206.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( ) A .30B .26C .24D .227.如图,直线2y x =与y kx b =+相交于点(),2P m ,则关于x 的方程2kx b +=的解是( )A .12x =B .1x =C .2x =D .4x =8.某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( ) A .1032019xy= B .1032019yx= C .1019320x y -= D .1910320x y -=9.《九章算术》是我国古代著名的数学专著,其“方程”章中给出了“遍乘直除”的算法解方程组.比如对于方程组323923342326x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩,将其中数字排成长方形形式,然后执行如下步骤(如图);第一步,将第二行的数乘以3,然后不断地减第一行,直到第二行第一个数变为0;第二步,对第三行做同样的操作,其余步骤都类似.其本质就是在消元.那么其中的a ,b 的值分别是( )A .24,4B .17,4C .24,0D .17,010.如图,在方格纸中,点P ,Q ,M 的坐标分别记为(0,2),(3,0),(1,4).若MN ∥PQ ,则点N 的坐标可能是( )A .(2,3)B .(3,3)C .(4,2)D .(5,1)11.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1212.如图,直线11y k x b =+和直线22y k x b =+相交于点2,23M ⎛⎫- ⎪⎝⎭,则关于x ,y 的方程组1122y k x b y k x b =+⎧⎨=+⎩,的解为( )A .2,32x y ⎧=⎪⎨⎪=-⎩B .2,23x y =-⎧⎪⎨=⎪⎩C .2,32x y ⎧=⎪⎨⎪=⎩D .2,23x y =-⎧⎪⎨=-⎪⎩二、填空题13.关于x 、y 的二元一次方程组2354343x y mx y m -=-⎧⎨+=+⎩的解满足55x y +=,则m 的值是______.14.若()225240x y x y +-++=,则x y -的值是________.15.某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案.16.若方程组()23312y kx y k x =-⎧⎨=-+⎩无解,则2y kx =-图象不经过第________象限.17.如图点D 、E 分别在ABC 的边AC 、AB 上,2,,3AD AE EB BD DC ==与CE 交于点F ,40ABC S =△,则AEFD S =_______.18.如图,直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,13OB OA =,点C 是直线AB上的一点,且位于第二象限,当△OBC 的面积为3时,点C 的坐标为______.三、解答题19.已知点(4,0)A 及在第一象限的动点(,)P x y ,且6x y +=,O 为坐标原点,设OPA 面积为S .(1)求S 关于x 的函数解析式; (2)求x 的取值范围; (3)当6S =时,求P 点坐标.20.某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)40 90售价(元/件)60 120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式;(2)若获得的利润恰好为2800元,求该商场购进甲、乙两种商品各多少件?21.如图,一次函数y=x+3的图象1l与x轴交于点B,与过点A(3,0)的一次函数的图象2l交于点C(1,m).(1)求m的值;(2)求一次函数图象2l相应的函数表达式;(3)求ABC的面积.22.已知0k ≠,将关于x 的方程0kx b +=记作方程☆. (1)当3k =,2b =-时,方程☆的解为______.(2)若方程☆的解为5x =-,写出一组满足条件的k ,b 值:k =______,b =______; (3)若方程☆的解为3x =,求关于y 的方程()250k y b --=的解.23.A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ; (2)分别求出,y y 甲乙与x 之间的函数解析式; (3)求出点C 的坐标,并写点C 的实际意义.24.数学乐园:解二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩①②,21b ⨯-⨯①②b 得:()12211221a b a b x c b c b -=-,当12210a b a b -≠时,12211221c b c b x a b a b -=-,同理:12211221a c a c y ab a b -=-;符号a b c d称之为二阶行列式,规定:a b ad bc c d=-,设1122a b D a b =,1122x c b D c b =,1122y a c D a c =,那么方程组的解就是x y D x DD y D⎧=⎪⎪⎨⎪=⎪⎩ (1)求二阶行列式3456的值;(2)解不等式:2224x x -≥--;(3)用二阶行列式解方程组3262317x y x y -=⎧⎨+=⎩;(4)若关于x 、y 的二元一次方程组362317x my x y -=⎧⎨+=⎩无解,求m 的值.25.在新年联欢会上,同学们组织了精彩的猜谜活动,为了奖励猜对的同学,老师决定购买笔袋或彩色铅笔作为奖品,已知1个笔袋和2筒彩色铅笔原价共需44元;2个笔袋和3筒彩色铅笔原价共需73元.(1)求每个笔袋、每筒彩色铅笔的原价各多少元?(2)时逢新年期间,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠.如果买m 个笔袋需要1y 元,买n 筒彩色铅笔需要2y 元.请用含m ,n 的代数式分别表示1y 和2y ;(3)如果在(2)的条件下一共购买同一种奖品95件,请分析买哪种奖品省钱.26.如图1,在平面直角坐标xOy 中,直线1l :1y x =+与x 抽交于点A ,直线2l :33y x =-与x 轴交于点B ,与1l 相交于C 点.(1)请直接写出点A ,点B ,点C 的坐标:A _________,B ________,C _______. (2)如图2,动直线x t =分别与直线1l 、2l 交于P 、Q 两点. ①若2PQ =,求t 的值;②若存在2AQC ABC S S =△△,求出此时点Q 的坐标;若不存在,请说明理由.27.小华从家里出发到学校去上学,前15路段小华步行,其余路段小华骑自行车. 已知小华步行的平均速度为60m/min ,骑自行车的平均速度为200m/min ,小华从家里到学校一共用了22min .(1)小红同学提出问题:小华家里离学校有多少m ? 前15路段小华步行所用时间是多少min ? 请你就小红同学提出的问题直接设出未知数列方程组进行解答.(2)请你再根据题目的信息,就小华走的“路程”或“时间”,提出一个能用二元一次方程组解答但与第(1)问不完全相同的问题,并设出未知数、列出方程组。

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。

初中二元一次方程组题100道附带答案

初中二元一次方程组题100道附带答案

1) 66x+17y=3967 25x+y=1200答案:x=48 y=47 (2) 18x+23y=2303 74x-y=1998答案:x=27 y=79 (3) 44x+90y=7796 44x+y=3476答案:x=79 y=48 (4) 76x-66y=4082 30x-y=2940答案:x=98 y=51 (5) 67x+54y=8546 71x-y=5680答案:x=80 y=59 (6) 42x-95y=-1410 21x-y=1575答案:x=75 y=48 (7) 47x-40y=853 34x-y=2006答案:x=59 y=48 (8) 19x-32y=-178675x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12 (14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=8259x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=7619 47x-y=799答案:x=17 y=91(23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74 (30) 78x+74y=1292814x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=3254 94x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55 (39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=3629x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=84 20x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92(51) 17x+62y=3216 75x-y=7350答案:x=98 y=2514x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45 (59) 51x-61y=-190789x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46 (64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=7064 85x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=10524 84x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95(74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21 (81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55 (88) 70x+35y=8295 40x+y=2920答案:x=73 y=91 (89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53(96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-450 67x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=39。

初二数学(二元一次方程组专题复习)

初二数学(二元一次方程组专题复习)

初⼆数学(⼆元⼀次⽅程组专题复习)⼆元⼀次⽅程组【知识点⼀:⼆元⼀次⽅程组的有关概念】⼆元⼀次⽅程:含有两个未知数,并且含有未知数的项的次数都是1的整式⽅程叫做⼆元⼀次⽅程.【典型例题】1.在下列⽅程中,不是⼆元⼀次⽅程的有()A . x+y=3 B. xy=3 C. x —y=3 D . x=3 —y1 12.下列⽅程中,①2x —xy =1 :②⼀x —0 :③x2—x=1 :④3x —5 y=6有()⼆元2 y⼀次⽅程.A . 1个B. 2个C. 3个 D . 4个3.若关于x, y的⽅程x m+1+ y n —2=0是⼆元⼀次⽅程,则m + n的和为()A . 0B . 1C2D.3【变式练习】1 .下列各式中,属于⼆元⼀次⽅程的是()A . x2—25=0B. x=2 yC.y —6=0D.x+ y+ z=02.下列四个⽅程中,是⼆元⼀次⽅程的是( )A . xy =3B . 2x —y2=9C .1D . 3x —2y=0 2x3 y3 .若x a —2+3 y b+3=15是关于x, y的⼆元「⼀次⽅程,则a+ b的值为()A . 1B. —1 C . 2D. —2A . 2x+3= x —5B. x+ y v 2 C . 3x —仁2 —5y D . xy ⼯12.已知:mx —3y=2 x+6是关于x、y的⼆元⼀次⽅程,则m的值为()C . m ⼯⼀2⼆元⼀次⽅程的解集:适合⼀个⼆元⼀次⽅程的每⼀对未知数的值,叫做这个⼆元⼀次⽅程的⼀个解?对于任何⼀个⼆元⼀次⽅程,令其中⼀个未知数取任意⼀个值,都能求出与它对应的另⼀个未知数的值?因此,任何⼀个⼆元⼀次⽅程都有⽆数多个解?由这些解组成的集合,叫做这个⼆元⼀次⽅程的解集.【典型例题】r11.若2是关于x、y的⼆兀⼀次⽅程ax —3y=1的解,则a的值为()A . —5 B. —1 C . 2 D. 72.⽅程x+2 y=5的正整数解有()A. ⼀组B.⼆组C.三组 D .四组3 .已知⽅程5x —2y=1 ,当x与y相等时,x与y的值分别是()11A . x=-,y=x= —1 , y= —1 C . x=1 , y=1D. x=2 ,33【变式练习】1 .⼆兀⼀次⽅程5a—11 b=21( ) y=2的⼆元⼀次⽅程,f m— 1m、n的值是((m= I3 .已知x2m—1+3 y4 —2n= —7 是关于x,D . — 3 4、⽅程2x +y =9在正整数范围内的解有(B 、2个【提⾼练习】1 .⽅程x + y =6的⾮负整数解有()A . 6个B . 7个C . 8个D .⽆数个2 .⼆兀⼀次⽅程在⾃然数范围内的解的个数是( )A . 1个B . 2个C . 3个D . 4个⼆元⼀次⽅程组及其解:两个⼆元⼀次⽅程合在⼀起就组成了⼀个⼆元⼀次⽅程组.⼀般地,能使⼆元⼀次⽅程组的两个⽅程左右两边的值都相等的两个未知数的值,叫做⼆元⼀次⽅程组的解.【典型例题】1、下列⽅程组中,属于⼆兀-次⽅程组的是( )1 2x — 13x 5yx 5y2yx y 4 x 2y 8A 、 xy 7B 、3x 4y 0C 、 4 3 3D 、 x 3y 12A ?有且只有⼀解B .有⽆数解C .⽆解D .有且只有两解3 .已知 _1是⽅程2x — 3y +a =1的解, a 的值是(Ik(⼫-孤是⼆元⼀次⽅程2x — y =14 的解,的值是(C 、C . 32.3 .若⽅程组是⼆元⼀次⽅程组,则a 的值为 ______________________________(3x~y ~ tn f* ⼆ 14 .关于x 、y 的⽅程组\^my = n 的解是[y=\,则⼝ — n |的值是()D . 1【变式练习】3.已知1是⼆元⼀次⽅程组nx-my= 1的解,则2m — n 的算术平⽅根为()A . ±2B . 72C . 2J-B 、= 2p 3-l=0c 、AD 、Lg5.若⽅程组ax y 0 的解是2x by 6x 1,贝U a + b =i .下列⽅程组中,是⼆元⼀次⽅程组的是(x y 42a 3b 11 2c x9 A .B. C.2x 3y 72 .下列⽅程组中,不是⼆元⼀次⽅程组的是({富4.若⽅程组2x y b的解是 x byax 1y 0,那么"—b ⼖―))【提⾼练习】1.⽅程2x+3 y=11和下列⽅程构成的⽅程组的解是的⽅程是()A. 3x+4 y=20 B . 4x —7y=3C. 2x —7y=1 D . 5x —4y=62 .已知 |2x—y-3 | +(2x+y+11 ) 2=0,则( )x 2x 0x1x 2A. B. C. D.y 1y 3y5y 73 2a b 34 6 a bx y x y3、若4与3是同类项,则a b( )A、⼀3B、0C、3D、6【知识点⼆:⼆元⼀次⽅程组的两种解法】【例1】若X 1是⽅程组ax by 7的解,则a= __________________ , b= _____ . y 2 ax by 1【变式练习】1、以x、y为未知数的⽅程组ax by2x 3y4x 5y46的解相同, 试求a、b的值.4x y 5 3x y 9与的解相同,试求a 、b 的值.ax by1 3ax 4by 18【例四】已知⼆元⼀次⽅程 3x +4y =6,当x 、y 互为相反数时, 时,x= _____ ,y= ______ .【例五】已知2x 2m —3n ―7 — 3y m +3n +6=8是关于x , y 的⼆元⼀次⽅程,求 n 2m【变式练习】1、若 2a y +5b 3x 与⼀4a 2x b 2 —4y 是同类项,贝U a = ________ , b = ________ .2、如果(5a — 7b +3 ) 2+ 3a b 5 =0,求 a 与 b 的值.2、若把上⾯题⽬改成⽅程组x= ___ ,y= _____ ;当 x 、y 相等【扩展】代⼊法在⼀些特殊⽅程中的巧妙应⽤x y 85x 2(x y) 1【例五】⽅程组2X 3y2x 5y 1中,x的系数特点是2是________ 这两个⽅程组⽤法解⽐较⽅便.【变式练习】x 【例六】已知⽅程mx+ ny=10有两个解,分别是y1和X 2,则m = 2 y 1【变式练习】1、若2a+3 b=4和3a —b= —5能同时成⽴,则a= _______2、如果⼆元⼀次⽅程组x y a那么a的值是⽅程组5x 3y 8中,7x 3y 4 y的系数特点3、若关于x、y的⼆元次⽅程组x 2y m 3x5y m1的解x与y的差是7,求m的值?x 3m 14、右y 2m 2是⽅程组4x 3y 10的⼀组解,求m的值.5、⼆兀⼀次⽅程3x my 4和mx ny 3有⼀个公共解x 1,求m和n的值. y 12x y 7【例七】已知' ,那么x —y的值是x 2y 8【变式练习】.2xy7“xy … 2xya x1、已知y,则——-= __________ .2、已知y , a丸,则⼀= __________________x 2y 8 x y x 2y a y观察思考,选择适当的⽅法消元并加以归纳总结3x5y19x 2y 3(1) 4x3y6⑵ 7x 5y 62x 3y ⼻1 y4x y(4)43 2【知识点三:⼀次函数与⼆元⼀次⽅程(组)的综合应⽤】1 .若直线y = x —+ n 2 与y = :mx — 1相交于点(1 ,— 2),则(). 1 5 1 C . m = — 1,1 ,2 112 .直线y =x — 6与直线y =— x 的交点坐标是( ) 2 31 32C . (10,- 1) A . (— 8 , — 10)B . (0,— 6) 以上答案均不对3 .在 y = kx + b 中,当 x =1 时 y =2 ;当 x =2 时y =4,贝U k , b 的值是( k 2 B .b 0 C . D . 4 .直线 kx — 3y =8 , 2x +5 y = — 4交点的纵坐标为 0, A . 4 B . —4 C . 2 D . — 2 的值为(x 5 .已知 4 3 3,是⽅程组 5 y 3y 3, x 的解,那么⼀次函数 1 2y =3 — x 和 y = x+1 2 的交点是6 .⼀次函数 y =3 x +7的图像与 y 轴的交点在⼆元⼀次⽅程⼀ 2x + by =18 上,贝U7 .已知关系 x , y 的⼆元⼀次⽅程 3ax +2 by =0和5ax — 3by =19化成的两个⼀次函数的图像的交点坐标为(1 , —1),贝U a = 8.已知⽅程组y 2x 3 0,的解为 2y 3x 6 0 4x , 33则⼀次函数y =3 x — 3与y = — — x +3的交点P 的坐 y1,2标是 9 .若直线y =ax +7经过⼀次函数 y =4 — 3x 和y =2 x — 1的交点,求 a 的值.10 . (1)在同⼀直⾓坐标系中作出⼀次函数y =x +2 , y =x — 3的图像.(2) 两者的图像有何关系?x y 2,(3) 你能找出⼀组数适合⽅程 x — y =2 ,x — y =3吗? _______ 这说明⽅程组x y 3,11 .如图所⽰,求两直线的解析式及图像的交点坐标.12 .在直⾓坐标系中,直线 L i 经过点(2 , 3)和(-1, -3),直线L 2经过原点,且与直线 2,a ). (1) 求a 的值.(2)( —2, a)可看成怎样的⼆元⼀次⽅程组的解?⑶设交点为P,直线L i与y轴交于点A,你能求出△ APO的⾯积吗?【知识点四:⼆元⼀次⽅程组应⽤题】【⼀、百分数问题】1.某市现有42万⼈⼝,计划⼀年后城镇⼈⼝增加0.8 %,农村⼈⼝增加⼯⼚ 1.1 %,这样全市⼈⼝将增加1 %,求这个市现在的城镇⼈⼝与农村⼈⼝?2.要配浓度是45%的盐⽔12千克,现有10%的盐⽔与85%的盐⽔,这两种盐⽔各需多少3.校办⼯⼚去年的总收⼊⽐总⽀出多50万元,今年的总收⼊⽐去年增加了10%,总⽀出节约了20%,因⽽总收⼊⽐总⽀出多100万元.求去年我校校办⼯⼚的总收⼊和总⽀出各多少万元?4.某⼯⼚去年的利润(总产值⼀总⽀出)为200万元,今年的总产值⽐去年增加了20%,总⽀出⽐去年减少了10%,今年的利润为780万元。

初二数学二元一次方程组试题答案及解析

初二数学二元一次方程组试题答案及解析

初二数学二元一次方程组试题答案及解析1.下面四条直线中,直线上每个点的坐标都是方程x-2y=2的解的是()A. B. C. D.【答案】C.【解析】∵x﹣2y=2,∴y=x﹣1,∴当x=0,y=﹣1,当y=0,x=2,∴一次函数y=x﹣1,与y轴交于点(0,﹣1),与x轴交于点(2,0),即可得出C符合要求.故选C.【考点】一次函数与二元一次方程(组).2.福林制衣厂现有24名制作服装工人,每天都制作某种品牌衬衫和裤子,每人每天可制作衬衫3件或裤子5条。

(1)若该厂要求每天制作的衬衫和裤子数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润不少于2100元,则至少需要安排多少名工人制作衬衫?【答案】(1)制作衬衫和裤子的人分别为15人,9人;(2)需要安排18名工人制作衬衫.【解析】本题中每人每天生产的衬衫或裤子的数目不变,每件衬衫或裤子的利润也不变,这是解题的关键.(1)设安排x人制作衬衫,安排y人制作裤子.由关键语句“现有24名制作服装的工人”和“每天制作的衬衫和裤子数量相等”,可得到等量关系.(2)同样的,设制作衬衫和裤子的人数为a,b,利用“现有24名制作服装的工人”和“每天获得利润不少于2100元”,也可列出方程组求解.试题解析:解:设制作衬衫和裤子的人为x,y.可得方程组解得:答:制作衬衫和裤子的人为15人,9人.(2)设安排a人制作衬衫,b人制作裤子,可获得要求的利润2100元.可列方程组:解得:答:需要安排18名工人制作衬衫.【考点】二元一次方程组的应用.3.为实现区域教育均衡发展,我市计划对某县、两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所类学校和两所类学校共需资金230万元;改造两所类学校和一所类学校共需资金205万元.(1)改造一所类学校和一所类学校所需的资金分别是多少万元?(2)若该县的类学校不超过5所,则类学校至少有多少所?(3)我市计划今年对该县、两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到、两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?【答案】(1)(2)若该县的类学校不超过5所,则类学校至少有15所。

完整版初中数学专项练习《二元一次方程组》100道解答题包含答案

完整版初中数学专项练习《二元一次方程组》100道解答题包含答案

初中数学专项练习《二元一次方程组》100道解答题包含答案一、解答题(共100题)1、南山植物园以其优美独特的自然植物景观,现已成为重庆市民春游踏青、赏四季花卉、观山城夜景的重要旅游景区.若该植物园中现有A、B两个园区,已知A园区为矩形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A、B两园区的面积之和并化简;(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如下表:C D投入(元/平方米)13 16收益(元/平方米)18 26求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)2、某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价/(元2.4 2)零售价/(元3.6 2.8)他当天卖完这些黄瓜和茄子可赚多少元钱?3、已知方程组的解满足x+y=-1,求k的值。

4、解方程组:5、甲、乙两人同求方程ax﹣by=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.6、已知方程组,王芳看错了方程(1)中的a,得到的方程组的解为,李明看错了方程(2)中的b,得到的方程组的解为,求原方程组的解.7、为了净化空气,美化环境,我县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?8、敦煌莫高窟是世界上现存最完好的石窟艺术宝库,是重要的爱国主义教育基地,某校组织八年级540名学生去莫高窟研学参观,现租用大、小两种客车共10辆,恰好能一次性运完全部学生.已知这两种车的限载人数分别为40人和60人,求这两种客车各租用多少辆?9、请阅读求绝对值不等式和的解集过程.对于绝对值不等式,从图1的数轴上看:大于-3而小于3的绝对值是是小于3的,所以的解集为;对于绝对值不等式,从图2的数轴上看:小于-3而大于3的绝对值是是大于3的,所以的解集为或.已知关于x、y的二元一次方程组的解满足,其中m是负整数,求m的值.10、已知2a-1的算术平方根是3,3a+b-1的立方根是2,求a-2b的平方根。

初二数学二元一次方程练习题及答案

初二数学二元一次方程练习题及答案

初二数学二元一次方程练习题及答案一、选择题1、下列方程中,是二元一次方程的是()A 3x 2y = 4zB 6xy + 9 = 0C 1/x + 4y = 6D 4x = y 2答案:D解析:A 选项中有三个未知数,不是二元一次方程;B 选项中未知数的最高次数是 2 ,不是一次方程;C 选项中 1/x 不是整式,不是二元一次方程;D 选项符合二元一次方程的定义。

2、二元一次方程 5a 11b = 21 ()A 有且只有一解B 有无数解C 无解D 有且只有两解答案:B解析:对于二元一次方程,只要给定一个 a 的值,就可以求出对应的 b 的值,所以有无数组解。

3、方程组{x + y = 3 ,x y =-1} 的解是()A {x = 1 ,y = 2}B {x = 1 ,y =-2}C {x = 2 ,y = 1}D {x = 0 ,y =-1}答案:C解析:将两个方程相加,可得 2x = 2 ,解得 x = 1 ;将两个方程相减,可得 2y = 4 ,解得 y = 2 ,所以方程组的解是{x = 1 ,y =2} 。

二、填空题1、已知方程 2x + 3y 4 = 0 ,用含 x 的代数式表示 y 为:y =____________。

答案:y =(4 2x) / 3解析:首先将方程移项可得 3y = 4 2x ,然后两边同时除以 3 ,得到 y =(4 2x) / 3 。

2、在二元一次方程-1/2 x + 3y = 2 中,当 x = 4 时,y =____________。

答案:y = 10 / 3解析:将 x = 4 代入方程-1/2 x + 3y = 2 中,可得-1/2 × 4 +3y = 2 ,即-2 + 3y = 2 ,解得 3y = 4 ,y = 4 / 3 。

3、若方程 x²m 1 + 5y³n 2 = 7 是关于 x 、y 的二元一次方程,则m =____________ ,n =____________ 。

最新初二数学二元一次方程组计算题专项练习50题

最新初二数学二元一次方程组计算题专项练习50题

中考真题之《二元一次方程组计算题》-----专项练习50题(有答案)1.已知,则a+b 等于( )A. 3 BC. 2D. 12.已知⎩⎨⎧==12y x 是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则n m -2的算术平方根为( )A .±2B . 2C .2D . 4 3.关于x 、y 的方程组3,x y m x my n -=⎧⎨+=⎩的解是1,1,x y =⎧⎨=⎩ 则m n -的值是( ) A .5 B .3 C .2 D .14.已知关于x ,y 的方程组,其中﹣3≤a ≤1,给出下列结论:①是方程组的解;②当a=﹣2时,x ,y 的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a 的解;④若x ≤1,则1≤y ≤4.其中正确的是( )A .①②B .②③C .②③④D .①③④5. 请写出一个二元一次方程组 ,使它的解是.6.若x ,y 为实数,且满足|x ﹣3|+=0,则()2012的值是 1 .7.以方程组的解为坐标的点(x ,y )在第 象限.8.方程组的解为 .9.解方程组.10.解方程组:.11.解方程组.12、解方程组:⎩⎨⎧==+1-25y x y x 13. 二元一次方程21-=x y 有无数多个解,下列四组值中不是..该方程的解的是 A .012x y =⎧⎪⎨=-⎪⎩ B .11x y =⎧⎨=⎩ C .10x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩14. 下列方程组中是二元一次方程组的是( ) A .12xy x y =⎧⎨+=⎩ B . 52313x y y x-=⎧⎪⎨+=⎪⎩ C . 20135x z x y +=⎧⎪⎨-=⎪⎩ D .5723z x y =⎧⎪⎨+=⎪⎩ 15. 方程组⎩⎨⎧=+=-422y x y x 的解是A .⎩⎨⎧==21y xB .⎩⎨⎧==13y xC .⎩⎨⎧-==20y xD .⎩⎨⎧==02y x16. 方程组31x y x y +=⎧⎨-=-⎩,的解是 A .12.x y =⎧⎨=⎩, B .12.x y =⎧⎨=-⎩, C .21.x y =⎧⎨=⎩, D .01.x y =⎧⎨=-⎩,17. 已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ) A .-1 B .1 C .2 D .318. 方程组237,38.x y x y +=⎧⎨-=⎩的解是 . 19. 方程组257x y x y ì+=ïïíï-=ïî的解是 . 20. 已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x -y 的值为.21. 方程组524050x y x y --=⎧⎨+-=⎩的解是___________________. 22. 方程组257x y x y ì+=ïïíï-=ïî的解是 . ① ②23. 方程组237,38.x y x y +=⎧⎨-=⎩的解是 .24. 若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______. 25. 解方程组:38.53 4.x y x y +=⎧⎨-=⎩26. 解方程组:222,230.x y x xy y -=⎧⎨--=⎩ 27.解方程:0)10553(4222=--+--y x y x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章二元一次方程组复习题
班级 姓名 学号
一、你能填得又快又准吗?
1、已知 是二元一次方程x-ay=1的一个解,则a= 。

2、对于二元一次方程3x+2y=8,当x=3时,y= 。

3、写出二元一次方程2x-y=4的一组正整数解 。

4、已知方程3x+2y=5,用含x 的代数式表示y ,则y= 。

5、乙组人数是甲组人数的一半,若将乙组人数的三分之一调入甲组,则甲组人数比乙组多15人。

设甲组原有x 人,乙组原有y 人,则可得方程组为 。

二、你一定能选对!
6、下列方程组中,是二元一次方程组的为( ) A 、 B 、
C 、
D 、
7、以 为解的方程组的是( )
A 、
B 、
C 、
D 、
8、将方程12
1
=+-y x 中的x 的系数变为整数,则下列结果正确的是( ) A 、-x+y=1 B 、-x+y=2 C 、x-2y=2 D 、x-2y=-2 9、若方程mx-2y=3x+4是二元一次方程,则m 满足( ) A 、m ≠0 B 、m ≠-2 C 、m ≠3 D 、m ≠4
10、一台微波炉成本价是a 元,销售价比成本价多22%,因库存积压按销售价的60%出售,则每台实际销售为( )元。

A 、a(1+22%)(1+60%)
B 、a(1+22%)60%
C 、a(1+22%)(1-60%)
D 、a(1+22%+60%) x=2 y=1
11
=-y x
y=3x
x 2-x=2 y=1+x
3x-y=1 y=x+3 x=y+2 xy=1
x=-1.5 y=-0.5 x-y+1=0 3x+y+5=0
x-y-1=0 3x+y-5=0
x-y=1
3x+y=5
x-y=1 3x+5=-y
三、你来算一算,解下列方程组,千万别出错哟!! 11、 12、
⎩⎨⎧⨯=⋅+⋅=+⎪⎩⎪
⎨⎧=--+=-++%.72500%80%60,500)4(;2)(5)(4,63
2)3(y x y x y x y x y
x y x
四、用心想一想,你一定是生活中的智者!
13、初一(6)班举办一次集邮展览,展出的邮票比平均每人3张多32张,比平均每人4 张少15张,求这个班的学生数及展出邮票的张数。

y=x-2
2x+3y=4
2x-3y=1 -4x+2y=-3
14、小明去帮学校购买体育用品,足球每只100元,篮球每只60元, 共购买了20只球,
用去1680元.你能求出足球、篮球各买了多少只吗?
15、一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车。

已知过去
两次租用这两种货车的记录如下表所示。

这批蔬菜需租用5辆甲种货车、2辆乙种货车刚好一次运完,如果每吨付20元运费,问:菜农应付运费多少元?
16、甲、乙两人分别从相距91千米的A,B两地同时相向而行,经过10小时相遇;如果甲比乙先出发4小时20分,那么乙出发8小时后相遇,求甲、乙二人的速度
17、一列快车长306米,一列慢车长344米两车相向而行,从相遇到离开需13秒
若两车同向而行,快车从追及慢车到离开慢车需65秒求快、慢车的速度分别是多少?
18、小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路。

她跑步去学校共用了16分,已知小颖在上坡路上的平均速度是4.8千米/小时,而她在下坡路上平均速度是12千米/小时。

小颖上坡、下坡各用了多长时间?。

相关文档
最新文档