高考数学试卷解析版

合集下载

2023年全国统一高考数学试卷(新高考II)(解析版)

2023年全国统一高考数学试卷(新高考II)(解析版)

2023年全国统一高考数学试卷(新高考Ⅱ)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共计40分。

每小题给出的四个选项中,只有一个选项是正确的。

请把正确的选项填涂在答题卡相应的位置上。

1.(5分)在复平面内,(1+3i)(3﹣i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解答】解:(1+3i)(3﹣i)=3﹣i+9i+3=6+8i,则在复平面内,(1+3i)(3﹣i)对应的点的坐标为(6,8),位于第一象限.故选:A.2.(5分)设集合A={0,﹣a},B={1,a﹣2,2a﹣2},若A⊆B,则a=( )A.2B.1C.D.﹣1【答案】B【解答】解:依题意,a﹣2=0或2a﹣2=0,当a﹣2=0时,解得a=2,此时A={0,﹣2},B={1,0,2},不符合题意;当2a﹣2=0时,解得a=1,此时A={0,﹣1},B={1,﹣1,0},符合题意.故选:B.3.(5分)某学校为了了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( )A.种B.种C.种D.种【答案】D【解答】解:∵初中部和高中部分别有400和200名学生,∴人数比例为400:200=2:1,则需要从初中部抽取40人,高中部取20人即可,则有种.故选:D.4.(5分)若f(x)=(x+a)为偶函数,则a=( )A.﹣1B.0C.D.1【答案】B【解答】解:由>0,得x>或x<﹣,由f(x)是偶函数,∴f(﹣x)=f(x),得(﹣x+a)ln=(x+a),即(﹣x+a)ln=(﹣x+a)ln()﹣1=(x﹣a)ln=(x+a),∴x﹣a=x+a,得﹣a=a,得a=0.故选:B.5.(5分)已知椭圆C:的左焦点和右焦点分别为F1和F2,直线y=x+m与C交于点A,B两点,若△F1AB面积是△F2AB面积的两倍,则m=( )A.B.C.D.【答案】C【解答】解:记直线y=x+m与x轴交于M(﹣m,0),椭圆C:的左,右焦点分别为F1(﹣,0),F2(,0),由△F1AB面积是△F2AB的2倍,可得|F1M|=2|F2M|,∴|﹣﹣x M|=2|﹣x M|,解得x M=或x M=3,∴﹣m=或﹣m=3,∴m=﹣或m=﹣3,联立可得,4x2+6mx+3m2﹣3=0,∵直线y=x+m与C相交,所以Δ>0,解得m2<4,∴m=﹣3不符合题意,故m=.故选:C.6.(5分)已知函数f(x)=ae x﹣lnx在区间(1,2)上单调递增,则a的最小值为( )A.e2B.e C.e﹣1D.e﹣2【答案】C【解答】解:对函数f(x)求导可得,,依题意,在(1,2)上恒成立,即在(1,2)上恒成立,设,则,易知当x∈(1,2)时,g′(x)<0,则函数g(x)在(1,2)上单调递减,则.故选:C.7.(5分)已知α为锐角,cosα=,则sin=( )A.B.C.D.【答案】D【解答】解:cosα=,则cosα=,故=1﹣cosα=,即==,∵α为锐角,∴,∴sin=.故选:D.8.(5分)记S n为等比数列{a n}的前n项和,若S4=﹣5,S6=21S2,则S8=( )A.120B.85C.﹣85D.﹣120【答案】C【解答】解:等比数列{a n}中,S4=﹣5,S6=21S2,显然公比q≠1,设首项为a1,则=﹣5①,=②,化简②得q4+q2﹣20=0,解得q2=4或q2=﹣5(不合题意,舍去),代入①得=,所以S8==(1﹣q4)(1+q4)=×(﹣15)×(1+16)=﹣85.故选:C.二、选择题:本大题共小4题,每小题5分,共计20分。

高考数学试卷全部解析

高考数学试卷全部解析

一、选择题解析1. 本题主要考查集合的概念。

答案为C。

解析:由题意可知,集合A={x|x≤1},集合B={x|x≥2},所以A∩B=∅,故选C。

2. 本题主要考查函数的单调性。

答案为A。

解析:函数f(x)=x^2-2x在定义域内单调递增,所以选A。

3. 本题主要考查数列的通项公式。

答案为B。

解析:由题意可知,数列{an}是等差数列,公差为2,首项为1,所以通项公式为an=2n-1,故选B。

4. 本题主要考查三角函数的性质。

答案为D。

解析:由题意可知,函数f(x)=sin(x+π/2)的周期为2π,所以选D。

5. 本题主要考查立体几何。

答案为C。

解析:由题意可知,正方体的对角线长度为2,所以棱长为√2,故选C。

二、填空题解析1. 本题主要考查一元二次方程的解法。

答案为x=1。

解析:由题意可知,方程x^2-2x+1=0的解为x=1。

2. 本题主要考查数列的前n项和。

答案为S_n=n(n+1)/2。

解析:由题意可知,数列{an}是等差数列,首项为1,公差为2,所以前n项和为S_n=n(n+1)/2。

3. 本题主要考查函数的导数。

答案为f'(x)=2x。

解析:由题意可知,函数f(x)=x^2的导数为f'(x)=2x。

4. 本题主要考查概率的计算。

答案为1/4。

解析:由题意可知,事件A、B、C相互独立,且P(A)=P(B)=P(C)=1/2,所以P(AB)=P(A)P(B)=1/4。

5. 本题主要考查平面几何。

答案为√3。

解析:由题意可知,等边三角形的边长为2,所以高为√3。

三、解答题解析1. 本题主要考查解析几何。

答案:圆心为(2,1),半径为2。

解析:设圆心为C(x,y),则由题意可知,圆C上任意一点到点A(0,0)的距离等于圆C的半径。

即√(x^2+y^2)=2,化简得x^2+y^2=4。

又因为点C在直线x+y-3=0上,所以联立方程组\begin{cases}x^2+y^2=4 \\x+y-3=0\end{cases}解得x=2,y=1,即圆心为(2,1)。

高考数学试卷及答案解析

高考数学试卷及答案解析

一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数f(x) = 2x - 1,那么f(3)的值为()A. 5B. 7C. 9D. 11答案:C解析:将x=3代入函数f(x) = 2x - 1,得到f(3) = 23 - 1 = 6 - 1 = 5。

2. 若|a| = 3,|b| = 4,则|a + b|的最大值为()A. 7B. 8C. 11D. 12答案:C解析:由三角不等式可知,|a + b| ≤ |a| + |b|,所以|a + b| ≤ 3 + 4 = 7。

当a和b同号时,|a + b|取最大值,即|a + b| = |a| + |b| = 3 + 4 = 7。

3. 若x^2 - 4x + 3 = 0,则x的值为()A. 1B. 3C. 2D. 5答案:A解析:这是一个一元二次方程,可以通过因式分解或使用求根公式来解。

因式分解得(x - 1)(x - 3) = 0,所以x = 1或x = 3。

故选A。

4. 在等差数列{an}中,若a1 = 3,公差d = 2,则a10的值为()A. 21B. 23C. 25D. 27答案:C解析:等差数列的通项公式为an = a1 + (n - 1)d,代入a1 = 3,d = 2,n = 10,得到a10 = 3 + (10 - 1)2 = 3 + 18 = 21。

5. 若log2(x + 1) = 3,则x的值为()A. 7B. 8C. 9D. 10答案:B解析:由对数定义可知,2^3 = x + 1,即8 = x + 1,解得x = 7。

6. 若复数z满足|z - 1| = 2,则复数z在复平面上的轨迹是()A. 圆B. 线段C. 直线D. 双曲线答案:A解析:复数z可以表示为z = x + yi,其中x和y是实数。

由|z - 1| = 2,即|(x - 1) + yi| = 2,表示复数z到点(1, 0)的距离为2,因此z在复平面上的轨迹是以(1, 0)为圆心,2为半径的圆。

2024年上海市高考数学真题试卷及解析

2024年上海市高考数学真题试卷及解析

2024年上海市高考数学试卷一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分).1.设全集{}1,2,3,4,5U =,集合{2,4}A =,则A =____________.2.已知0(),(3)1,0x f x f x >==⎪⎩ _____________.3.已知2,230x R x x ∈--<的解集为____________.4.已知3(),f x x a x R =+∈,若()f x 是奇函数,则a =_____________.5.已知,(2,5),(6,),//k R a b k a b ∈==,则k 的值为_____________.6.在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为______.7.已知抛物线24y x =上有一点P 到准线的距离为9,那么P 到x 轴的距离为_______.8.某校举办科学竞技比赛,有A B C 、、三种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72,他从所有题中随机选一题,正确率是________.9.已知虚数z ,其实部为1,Im 0,z ≠且2()z m m R z+=∈,则实数m 为________.10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两数之积皆为偶数,则集合中元素个数的最大值是____________.11.海面上有两个灯塔O T 、和两艘货船A B 、,其中货船A 在O 正东方向,B 在O 的正北方向,观测知O 到A B 、距离相等,16.5o BTO ∠=,37ATO ︒∠=,则BOT ∠=__________.(精确到0.1度)12.无穷等比数列{}n a 首项10,1a q >>,记集合121{|,[,][,]}n n n I x y x y a a a a +=-∈ ,若对任意正整数,n n I 都是闭区间,则q 的取值范围是__________.二、选择题(本大题共4题,满分18分,13-14题每题4分,第15-16题每题5分).13.人们通过统计沿海地区的气候温度和海水表层温度的数据,研究发现两者息息相关,且相关系数为正数,对此描述正确的是()A.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势14.下列函数()f x 的最小正周期是2π的是()A.()sin cos f x x x =+ B.()sin cos f x x x =C.22()sin cos f x x x=+ D.22()sin cos f x x x=-15.定义一个集合Ω,集合中的元素是空间内的点集,任取123,,P P P ∈Ω,存在不全为0的实数123,,λλλ,使得1231230.OP OP OP λλλ++=已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是()A.(0,0,0)∈ΩB.(-1,0,0)∈ΩC.(0,1,0∈Ω)D.(0,0,-1)∈Ω16.定义集合000{|(,),()()}M x x x f x f x =∀∈-∞<,若[1,1]M =-的所有()f x 中,下列成立的是()A.存在()y f x =是偶函数B.存在()y f x =在2x =处取最大值C.存在()y f x =是严格增函数D.存在()y f x =在1x =-处取到极小值三、解答题(本大题共5题,第17-19题每题14分,第20-21题每题18分,共78分)17.如图:正四棱锥,P ABCD O -为底面ABCD 的中心.(1)若5,AP AD ==求POA ∆绕PO 旋转一周形成几何体的体积.(2)若,AP AD E =为棱PD 的中点,求直线BD 与平面AEC 所成角的大小.18.若()log (0,1).a f x x a a =>≠(1)()y f x =过(4,2)求(22)()f x f x -<的解集;(2)存在x 使得(1)f x +,()f ax ,(2)f x +成等差数列,求实数a 的取值范围.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩[)0,0.5[)0.5,1[)1,1.5[)1.5,2[)2,2.5合计优秀544423195不优秀1341471374027485合计1391911794328580(1)该地区29000名学生中体育锻炼时长大于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?[)1,2其它合计优秀a b a b+不优秀c d c d+合计a c+b d+a b c d+++附22():()()()()n ad bca b c d a c b dχ-=++++其中n a b c d=+++2,( 3.841)0.05Pχ≥≈20.双曲线22122:1,(0),,y x b A A bΓ-=>为左右顶点,过点(2,0)M -的直线l 交双曲线Γ于,P Q 两点.(1)若2e =时,求b 的值(2)若点P 在第一象限,226,3b MA P =∆为等腰三角形时,求点P 的坐标.(3)过点Q 作OQ 延长线交Γ于点R ,若121A R A R ⋅=,求b 取值范围.21.已知D 是R 的非空子集,()y f x =是定义在R 的函数.对于点(,)M a b ,令22()()(())s x x a f x b =-+-,若对于00(,())P x f x ,满足()s x 在0x x =处取得最小值,则称P 是M 的f 最近点.(1)对于1(),(0,)f x D x==+∞,求证:对于点(0,0)M ,存在点M 的f 最近点;(2)对于(),x f x e D R ==,(1,0)M ,若()y f x =上一点P 满足MP 垂直于()y f x =在点P 处的切线,则P 是否是M 的f 最近点?(3),D R =()y f x =是可导的,()y g x =在定义域R 上函数值恒正,已知,t R ∈12(1,()()),(1,()())M t f t g t M t f t g t --++.若对任意的t R ∈,都存在点P ,满足P 是1M 的f 最近点,也是2M 的f 最近点,试求()y f x =的单调性.2024年上海市高考数学试卷解析一、填空题.1.设全集{}1,2,3,4,5U =,集合{2,4}A =,则A =____________.【答案】{1,3,5}A =2.已知0(),(3)1,0x f x f x >==⎪⎩ _____________.3.已知2,230x R x x ∈--<的解集为____________.【答案】(-1,3)【解析】223(1)(3)0(1,3)x x x x x --=+-<⇒∈-4.已知3(),f x x a x R =+∈,若()f x 是奇函数,则a =_____________.【答案】0a =【解析】(0)00f a =⇒=5.已知,(2,5),(6,),//k R a b k a b ∈==,则k 的值为_____________.【答案】15【解析】//25615a b k k ⇒=⨯⇒=6.在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为______.【答案】10【解析】2325n n =⇒=3510C ∴=7.已知抛物线24y x =上有一点P 到准线的距离为9,那么P 到x 轴的距离为_______.【答案】【解析】198P P x x +=⇒=244832P P P y x y ==⨯=⇒=±所以P 到x 轴的距离为8.某校举办科学竞技比赛,有A B C 、、三种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72,他从所有题中随机选一题,正确率是________.【答案】0.85【解析】5430.920.860.830.85121212⨯+⨯+⨯=9.已知虚数z ,其实部为1,Im 0,z ≠且2()z m m R z+=∈,则实数m 为________.【答案】2【解析】设z a bi=+222(1)111(1)(1)bi z bi bi z bi bi bi -+=++=++++-222222211111bi b bi b i b b b-⎛⎫⎛⎫=++=++-⎪ ⎪+++⎝⎭⎝⎭所以22011bb b b-=⇒=±+ 所以2m =10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两数之积皆为偶数,则集合中元素个数的最大值是____________.【答案】329【解析】A 中的奇数至多1个A 中的偶数,对于三个数码若个位为0,则有9872⨯=个若个位为2,4,6,8,则有488256⨯⨯=,故A 中最多有329个元素.11.海面上有两个灯塔O T 、和两艘货船A B 、,其中货船A 在O 正东方向,B 在O 的正北方向,观测知O 到A B 、距离相等,16.5o BTO ∠=,37ATO ︒∠=,则BOT ∠=__________.(精确到0.1度)【答案】7.8o【解析】设BOT α∠=,则90AOT α︒∠=-,53A α︒∠=+OT OT OA OB = sin sin sin(53)sin(16.5)sin sin sin 37sin16.5A B ATO BTO αα︒︒︒︒++∴=⇒=∠∠sin cos53cos sin 53sin cos16.5cos sin16.5cos53sin16.5o o o o o o αααα++⇒=sin cos tan 53sin cot16.5cos o o a a a a ⇒+=+7.8oa ⇒≈12.无穷等比数列{}n a 首项10,1a q >>,记集合121{|,[,][,]}n n n I x y x y a a a a +=-∈ ,若对任意正整数,n n I 都是闭区间,则q 的取值范围是__________.【答案】[2,)+∞【解析】由题意,不妨设x y >,若,x y 均在[]12,a a ,则有x y -[]210,a a ∈-,者,x y 均在[]1,n n a a +,则有x y -[]10,n n a a +∈-若,x y 分别在两个区间则211[,]n n x y a a a a +-∈--,又因为1q >,总有ln 是闭区间,则21n n n a a a a +-≤-恒成立即可,化简得1(2)0n q q q --+≥,所以有2q ≥恒成立二、选择题.13.人们通过统计沿海地区的气候温度和海水表层温度的数据,研究发现两者息息相关,且相关系数为正数,对此描述正确的是()A.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】随着气候温度由低到高,海水表层温度呈上升趋势,相关系数为正数所以选C14.下列函数()f x 的最小正周期是2π的是()A.()sin cos f x x x =+ B.()sin cos f x x x =C.22()sin cos f x x x =+ D.22()sin cos f x x x=-【答案】A【解析】A.()cos sin ,24f x x x x T ππ⎛⎫=+=+= ⎪⎝⎭,正确B.(f )sin x =cos x 1sin 2x =2,x T π=错误C.2()sin x f x =2cos x +1=,错误;D.22()sin cos cos 2,,f x x x T π=-=-=错误;所以选A15.定义一个集合Ω,集合中的元素是空间内的点集,任取123,,P P P ∈Ω,存在不全为0的实数123,,λλλ,使得1231230.OP OP OP λλλ++=已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是()A.(0,0,0)∈Ω B.(-1,0,0)∈ΩC.(0,1,0∈Ω)D.(0,0,-1)∈Ω【答案】C【解析】若(0,1,0)-∈Ω,假设(0,0,1)∈Ω取()()()1231,0,0,0, 1,0,0,0,1,P P P -则1122330OP OP OP λλλ++=1230λλλ∴===矛盾!(∴0,0,1)∉Ω所以选C.16.定义集合000{|(,),()()}M x x x f x f x =∀∈-∞<,若[1,1]M =-的所有()f x 中,下列成立的是()A.存在()y f x =是偶函数B.存在()y f x =在2x =处取最大值C.存在()y f x =是严格增函数D.存在()y f x =在1x =-处取到极小值【答案】B 【解析】1M-∈ 1x ∴<-时,()(1)f x f <-1x ∴=-不是极小值点,排除D假设()f x 严格递增,则M R =,矛盾!排除C 任取12,x x ,使得1211x x -≤<≤2x M ∈ 12()()f x f x ∴<() f x ∴在[]1,1-严格递增,排除A所以选B.三、解答题17.如图:正四棱锥,P ABCD O -为底面ABCD 的中心.(1)若5,AP AD ==求POA ∆绕PO 旋转一周形成几何体的体积.(2)若,AP AD E =为棱PD 的中点,求直线BD 与平面AEC 所成角的大小.【答案】(1)12;π(2)4π【解析】(1)因为P ABCD -是正四棱锥,所以底面ABCD 是正方形,且OP ⊥底面ABCD ,因为32AD =,所以3AO OD OB OC ====因为5AP =,所以224PO AP AO =-=所以POA ∆绕OP 旋转一周形成的几何体是以3为底面半径,4为高的圆锥所以211341233V Sh ππ==⨯⨯=.(2)如图建立空间直角坐标系因为AP AD =,由题知P ABCD -是正四棱锥,所以该四梭锥各核长相等,设2AB a=则AO OD OB OC a ====,PO a==则可得(0,0,0),(0,0,),(0,,0),(,0,0),(0,,0),(,0,0),,0,22aa O P a A a B a C a D a E ⎛⎫-- ⎪⎝⎭故(2,0,0),(0,2,0),,22a a BD a AC a AE a ⎛⎫=-== ⎪⎝⎭ 设111(,,)n x y z =为平面AEC 的法向量,则11112000022a y n AC a ax a y z n AE ⋅=⎧⎧⋅=⎪⎪⇒⎨⎨⋅+⋅+⋅=⋅=⎪⎪⎩⎩ ,令11x =,则110,1y z ==-,所以(1,01)n =-则cos ,2n BD n BD n BD ⋅===-⋅设直线BD 与面AEC 所成角为θ,因为sin 2cos ,0,22n BD πθθ⎡⎤==∈⎢⎥⎣⎦,所以.4πθ=18.若()log (0,1).a f x x a a =>≠(1)()y f x =过(4,2)求(22)()f x f x -<的解集;(2)存在x 使得(1)f x +,()f ax ,(2)f x +成等差数列,求实数a 的取值范围【答案】(1)(1,2);(2)1a >(1)由()y f x =过(4,2)可得log 42a =,得:242a a =⇒=±, 0a > , 2a ∴=因为2()log f x x =在()0,+∞上是严格增函数()()2202212f x f x x x x -<⇒<-<⇒<<,所以解集为()1,2(2)因为(1)f x +,()f ax ,(2)f x +成等差数列,所以(1)(2)2()f x f x f ax +++=即log (1)log (2)2log ()a a a x x ax +++=有解,化简可得2log (1)(2)log ()a a x x ax ++=得2(1)(2)()x x ax ++=且1020000,1x x x ax a a +>⎧⎪+>⎪⇒>⎨>⎪⎪>≠⎩,则22(1)(2)x x a x++=在(0,)+∞上有解,又222(1)(2)231311248x x x x x x ++⎛⎫=++=+- ⎪⎝⎭,故在(0,)+∞上22(1)(2)31,20148x x x ++⎛⎫>+-= ⎪⎝⎭即211a a >⇒<-或1,0a a >> ,所以 1.a >19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩[)0,0.5[)0.5,1[)1,1.5[)1.5,2[)2,2.5合计优秀544423195不优秀1341471374027485合计1391911794328580(1)该地区29000名学生中体育锻炼时长大于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?[)1,2其它合计优秀a b a b +不优秀c d c d +合计a c+b d+a b c d+++附22():()()()()n ad bc a b c d a c b d χ-=++++其中n a b c d =+++2,( 3.841)0.05P χ≥≈【答案】(1)12500人;(2)0.9h;(3)学业成绩与锻炼时长不小于1小时且小于2两小时有关【解析】(1)580人中体育银炼时长不小于1小时人数占比423113740272558058P +++++==该地区29000名初中学生中体育锻炼时长不小于1小时的人数约为29000×251250058=人(2)该地区初中学生锻炼平均时长约为:10.50.511 1.5 1.52513444147421373405802222[()()()()+++⨯++⨯++++⨯++2 2.5271270.91229()]+⨯+=≈(3)①提出原假设0:H 成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关.②确定显著性水平20.05,( 3.841)0.05P αχ=≥≈③()()()()()225804530817750 3.976 3.84145501773084517750308χ⨯⨯-⨯=≈>+⨯+⨯+⨯+④否定原假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.20.双曲线22122:1,(0),,y x b A A bΓ-=>为左右顶点,过点(2,0)M -的直线l 交双曲线Γ于,P Q 两点.(1)若2e =时,求b 的值(2)若点P 在第一象限,226,3b MA P =∆为等腰三角形时,求点P 的坐标.(3)过点Q 作OQ 延长线交Γ于点R ,若121A R A R ⋅=,求b 取值范围.【答案】(1)b =(2,P ;(3)10(0,3)3,3b ⎛⎤∈ ⎥⎝⎦ 【解析】(1)因为22222,2, 4.1,4c c e a c a a=∴∴=∴=== 因为222a b c +=,所以23b =,所以b =负含).(2)因为2MA P ∆为等腰三角形①若2MA 为底,则点P 在直线12x =-时,与P 在第一象限矛盾,故合去②若2A P 为底,则2MP MA =,与2MP MA >矛盾,故舍去.③若MP 为底,则22,MA PA =设00(,),P x y 000,0.x y >>3=,即2200(1)9x y -+=,又因为220182y x -=得22008(1)(1)93x x -+-⨯=,得200116320x x --=,得002,x y ==,即(2,P(3)由1(1,0)A -,设1122(,),(,)P x y Q x y ,则22(,)R x y --,设直线1:2()l x my m b =->联立212222222222212222142()1(1)430,311b m x my m y y b b m b m y b my b y b x y y b b m ⎧⎧=->+=⎪⎪-⎪⎪⎪⎪∴--+=⎨⎨⎪⎪⎪⎪-=⋅=⎪⎪-⎩∴⎩122211(1,),(1,)A R x y A P x y =-+-=- ,又由121A R A P ⋅=,得2112(1)(1)1x x y y -+--=即2112(1)(1)1x x y y --+=-,即2112(3)(3)1my my y y --+=-化简后可得到21212(1)3()100m y y m y y +-++=再由韦达定理得2222223(1)1210(1)0b m m b b m +-+-=,化简:2223100b m b +-=所以221010033,b m ⎛⎤=∈ ⎥+⎝⎦222210103311b b b b ≠+=+得23,b ≠,10(0,3)3,3b ⎛⎤∴∈ ⎥⎝⎦21.已知D 是R 的非空子集,()y f x =是定义在R 的函数.对于点(,)M a b ,令22()()(())s x x a f x b =-+-,若对于00(,())P x f x ,满足()s x 在0x x =处取得最小值,则称P 是M 的f 最近点.(1)对于1(),(0,)f x D x==+∞,求证:对于点(0,0)M ,存在点M 的f 最近点;(2)对于(),x f x e D R ==,(1,0)M ,若()y f x =上一点P 满足MP 垂直于()y f x =在点P 处的切线,则P 是否是M 的f 最近点?(3),D R =()y f x =是可导的,()y g x =在定义域R 上函数值恒正,已知,t R ∈12(1,()()),(1,()())M t f t g t M t f t g t --++.若对任意的t R ∈,都存在点P ,满足P 是1M 的f 最近点,也是2M 的f 最近点,试求()y f x =的单调性.【解析】(l)证明:222211()(0)(0)2s x x x w w =-+-=+≥,当且仅当221x w=即1x =时取到最小值,所以对于点(0,0)M 存在点(1,1)P 使得P 是M 在()f x 的最近点(2)设(P 00,xx e ),显然01x ≠00002200000()(),()11011x x x x xMP MP e e f x e f x e k f x k e x x x '''=⇒==∴⋅==-∴+-=-- 设22()1()210x x h x e x h x e '=+-⇒=+>,则显然()h x 在R 严格增,且0(0)00h x =⇒=(0,1)P ∴()S x =22(1)()2x x e S x '-+⇒=(1)x -222x e +=2(1)x e x +-()2S x '=(21)00x e x x +->⇒>2()2(1)00x S x e x x '=⋅+-<⇒<()S x ∴在(,0]-∞递减,[0,)+∞递增0x ∴=是()S x 的最小值点P ∴是M 关于f 的最近点(3)设21()(1)(S x x t =-++()f x -2()()),f tg t +2()(S x =21)(x t --+(f )(x f -)(t g -2))t 设(,())t t P x f x 由题知,t x 是12(),()S x S x 的最小值点,故()()()()()()()()()2221111t t t S t S x g t x t f x f t g t≥⇒+≥-++-+()()()()()()2222211()()()t t t S t S x g t x t f x f t g t ≥⇒+≥-++--两式相加得()()22222(1(()))21(()())()t t g t x t f x f t g t ⎦+-++-⎡⎤⎣≥()()()()220t t x t f x f t ∴-+-≤⇒t x t =()()1()212()()()()S x x t f x f t g t f x ''=-++-+ 2()2(1)2(S x x t '=--+()f x -()())f t g t -()f x 't x 是12(),()S x S x 的最小值点12,(),()S x S x 的定义域为R t x∴ 是12(),()S x S x 的极小值点121()()01()()0()0()S x S x g t f t f t g t ''''∴==∴+=∴=-<()f x ∴在R 上严格递减.。

精品解析:2023年全国高考甲卷数学(文)试题(解析版)

精品解析:2023年全国高考甲卷数学(文)试题(解析版)

绝密★启用前2023年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己地姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上地准考证号、姓名、考场号、座位号及科目,在规定地位置贴好条形码.2.回答选择题时,选出每小题解析后,用铅笔把答题卡上对应题目地解析标号涂黑,如需改动,用橡皮擦干净后,再选涂其他解析标号.回答非选择题时,将解析写在答题卡上、写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1. 设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( )A. {}0,1,2 B. {2,1,0}-- C. {0,1}D. {1,2}【解析】A 【解析】【分析】根据集合地交集运算即可解出.【详解】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.2. 某社区通过公益讲座以普及社区居民地垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题地正确率如下图:则( )A. 讲座前问卷答题地正确率地中位数小于70%B. 讲座后问卷答题地正确率地平均数大于85%C. 讲座前问卷答题地正确率地标准差小于讲座后正确率地标准差D. 讲座后问卷答题地正确率地极差大于讲座前正确率地极差【解析】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差地概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题地正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题地正确率地平均数大于85%,所以B 对;讲座前问卷答题地正确率更加分散,所以讲座前问卷答题地正确率地标准差大于讲座后正确率地标准差,所以C 错;讲座后问卷答题地正确率地极差为100%80%20%-=,讲座前问卷答题正确率地极差为95%60%35%20%-=>,所以D 错.故选:B3. 若1i z =+.则|i 3|z z +=( )A.B.C.D. 【解析】D的.【解析】【分析】根据复数代数形式地运算法则,共轭复数地概念以及复数模地计算公式即可求出.【详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z +==故选:D.4. 如图,网格纸上绘制地是一个多面体地三视图,网格小正方形地边长为1,则该多面体地体积为( )A. 8B. 12C. 16D. 20【解析】B 【解析】【分析】由三视图还原几何体,再由棱柱地体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱地体积2422122V +=⨯⨯=.故选:B.5. 将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭地图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω地最小值是( )A.16B.14C.13D.12【解析】C 【解析】【分析】先由平移求出曲线C 地解析式,再结合对称性得,232k k ωππππ+=+∈Z ,即可求出ω地最小值.【详解】由题意知:曲线C 为sin sin(2323y x x ππωππωω⎡⎤⎛⎫=++=++ ⎪⎢⎥⎝⎭⎣⎦,又C 关于y 轴对称,则,232k k ωππππ+=+∈Z ,解得12,3k k ω=+∈Z ,又0>ω,故当0k =时,ω地最小值为13.故选:C.6. 从分别写有1,2,3,4,5,6地6张卡片中无放回随机抽取2张,则抽到地2张卡片上地数字之积是4地倍数地概率为( )A.15B.13C.25D.23【解析】C 【解析】【分析】先列举出所有情况,再从中挑出数字之积是4地倍数地情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4地倍数地有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=.故选:C.7. 函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦地图象大致为( )A. B.C. D.【解析】A 【解析】【分析】由函数地奇偶性结合指数函数、三角函数地性质逐项排除即可得解.【详解】令()()33cos ,,22xxf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x xx -->>,所以()0f x >,排除C.故选:A.8. 当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( )A. 1- B. 12-C.12D. 1【解析】B 【解析】【分析】根据题意可知()12f =-,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x '=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B.9. 在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成地角均为30°,则( )A. 2AB AD= B. AB 与平面11AB C D 所成地角为30°C. 1AC CB =D. 1B D 与平面11BB C C 所成地角为45︒【解析】D 【解析】【分析】根据线面角地定义以及长方体地结构特征即可求出.【详解】如下图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体地结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D==,即b c =,12B D c ==,解得a =.对于A ,AB a =,AD b =,AB =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为tan c BAE a ∠==所以30BAE ∠≠ ,B 错误;对于C,AC ==,1CB ==,1AC CB ≠,C 错误;对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,11sin 2CD a DB C B D c ∠===,而1090DB C <∠<,所以145DB C ∠=.D 正确.故选:D .10. 甲、乙两个圆锥地母线长相等,侧面展开图地圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙()A.B.C.D.【解析】C 【解析】【分析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥地侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥地高,再根据圆锥地体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl r S r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r rl+=,所以1221,33r l r l ==,所以甲圆锥地高1h ==,乙圆锥地高2h ==,所以2112221313r h V V r h ππ===甲乙.故选:C.11. 已知椭圆2222:1(0)x y C a b a b+=>>地离心率为13,12,A A 分别为C 地左、右顶点,B 为C 地上顶点.若121BA BA ⋅=-,则C 地方程为( )A. 2211816x y += B. 22198x y += C. 22132x y += D. 2212x y +=【解析】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 地等量关系式,即可得解.【详解】解:因为离心率13c e a ===,解得2289b a =,2289=b a ,12,A A 分别为C 左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=- BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆地方程为22198x y +=.故选:B.12. 已知910,1011,89m m m a b ==-=-,则( )A. 0a b >> B. 0a b >> C. 0b a >> D. 0b a>>【解析】A 【解析】【分析】根据指对互化以及对数函数地单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数地单调性即可解出.【详解】由910m =可得9lg10log 101lg 9m ==>,而()222lg 9lg11lg 99lg 9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg 922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg 9lg10lg8lg 9>,即8log 9m >,所以8log 989890m b =-<-=.综上,0a b >>.故选:A.二、填空题:本题共4小题,每小题5分,共20分.13. 已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =______________.【解析】34-##0.75-的【分析】直接由向量垂直地坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故解析为:34-.14. 设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 地方程为______________.【解析】22(1)(1)5x y -++=【解析】【分析】设出点M 地坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆地方程.【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点地距离相等且为半径R ,==R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 地方程为22(1)(1)5x y -++=.故解析为:22(1)(1)5x y -++=15. 记双曲线2222:1(0,0)x y C a b a b -=>>地离心率为e ,写出满足条件"直线2y x =与C 无公共点"地e 地一个值______________.【解析】2(满足1e <≤皆可)【解析】【分析】根据题干信息,只需双曲线渐近线by x a =±中02b a<≤即可求得满足要求地e 值.【详解】解:2222:1(0,0)x y C a b a b -=>>,所以C 地渐近线方程为b y x a=±,结合渐近线地特点,只需02b a <≤,即224b a≤,可满足条件"直线2y x =与C 无公共点"所以==≤=c e a 又因为1e >,所以1e <≤,故解析为:2(满足1e <≤皆可)16. 已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________.1-##-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++44≥=-,当且仅当311mm +=+即1m =-时,等号成立,所以当ACAB取最小值时,1m =.故解析为1-.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试卷考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 甲、乙两城之间地长途客车均由A和B两家公司运营,为了解这两家公司长途客车地运行情况,随机调查了甲、乙两城之间地500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间地长途客车准点地概率;(2)能否有90%地把握认为甲、乙两城之间地长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bcKa b c d a c b d-=++++, ()2P K k…0.1000.0500.010 k 2.706 3.841 6.635【解析】(1)A,B两家公司长途客车准点地概率分别为12 13,78(2)有【解析】【分析】(1)根据表格中数据以及古典概型地概率公式可求得结果;(2)根据表格中数据及公式计算2K,再利用临界值表比较即可得结论.【小问1详解】根据表中数据,A共有班次260次,准点班次有240次,设A家公司长途客车准点事件为M,则24012 ()26013==P M;B共有班次240次,准点班次有210次,设B家公司长途客车准点事件为N,则210 ()27840==P N.A 家公司长途客车准点地概率为1213;B 家公司长途客车准点地概率为78.【小问2详解】列联表准点班次数未准点班次数合计A 24020260B 21030240合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%地把握认为甲、乙两城之间地长途客车是否准点与客车所属公司有关.18. 记n S 为数列{}n a 地前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 地最小值.【解析】(1)证明见解析; (2)78-.【解析】【分析】(1)依题意可得222n nS n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)由(1)及等比中项地性质求出1a ,即可得到{}n a 地通项公式与前n 项和,再根据二次函数地性质计算可得.【小问1详解】解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差地等差数列.【小问2详解】解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.19. 小明同学参加综合实践活动,设计了一个封闭地包装盒,包装盒如下图所示:底面ABCD 是边长为8(单位:cm )地正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在地平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒地容积(不计包装盒材料地厚度).【解析】(1)证明见解析;(2【解析】【分析】(1)分别取,AB BC 地中点,M N ,连接MN ,由平面知识可知,EM AB FN BC ⊥⊥,EM FN =,依题从而可证EM ⊥平面ABCD ,FN ⊥平面ABCD ,根据线面垂直地性质定理可知//EM FN ,即可知四边形EMNF 为平行四边形,于是//EF MN ,最后根据线面平行地判定定理即可证出;(2)再分别取,AD DC 中点,K L ,由(1)知,该几何体地体积等于长方体KMNL EFGH -地体积加上四棱锥B MNFE -体积地4倍,即可解出.【小问1详解】如下图所示:,分别取,AB BC 地中点,M N ,连接MN ,因为,EAB FBC 为全等地正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直地性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .【小问2详解】如下图所示:,分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体地体积等于长方体KMNL EFGH -地体积加上四棱锥B MNFE-体积地4倍.因为MN NL LK KM ====,8sin 60EM == 点B 到平面MNFE 地距离即为点B 到直线MN 地距离d ,d =,所以该几何体地体积(2143V =⨯+⨯⨯=+=20. 已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处地切线也是曲线()y g x =地切线.(1)若11x =-,求a ;(2)求a 地取值范围.【解析】(1)3 (2)[)1,-+∞【解析】【分析】(1)先由()f x 上地切点求出切线方程,设出()g x 上地切点坐标,由斜率求出切点坐标,再由函数值求出a 即可;(2)设出()g x 上地切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 地取值范围.【小问1详解】由题意知,(1)1(1)0f -=---=,2()31x f x '=-,(1)312f '-=-=,则()y f x =在点()1,0-处地切线方程为2(1)y x =+,即22y x =+,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()22g x x '==,解得21x =,则(1)122g a =+=+,解得3a =;【小问2详解】2()31x f x '=-,则()y f x =在点()11(),x f x 处地切线方程为()()32111131()y x x x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a ⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭,令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >,令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '地变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭13-1,03⎛⎫- ⎪⎝⎭()0,11()1,+∞()h x '-0+0-+()h x527141-则()h x 地值域为[)1,-+∞,故a 地取值范围为[)1,-+∞.21. 设抛物线2:2(0)C y px p =>地焦点为F ,点(),0D p ,过F 地直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 地方程;(2)设直线,MD ND 与C 地另一个交点分别为A ,B ,记直线,MN AB 地倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 地方程.【解析】(1)24y x =; (2):4AB x =+.【解析】【分析】(1)由抛物线地定义可得=2pMF p +,即可得解;(2)设点地坐标及直线:1MN x my =+,由韦达定理及斜率公式可得2MN AB k k =,再由差角地正切公式及基本不等式可得AB k =,设直线:AB x n =+,结合韦达定理可解.【小问1详解】抛物线地准线为2px =-,当MD 与x 轴垂直时,点M 地横坐标为p ,此时=32pMF p +=,所以2p =,所以抛物线C 地方程为24y x =;【小问2详解】设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my --=,120,4y y ∆>=-,由斜率公式可得12221212444MN y y k y y y y -==+-,34223434444AB y y k y y y y -==+-,直线112:2x MD x y y -=⋅+,代入抛物线方程可得()1214280x y y y --⋅-=,130,8y y ∆>=-,所以322y y =,同理可得412y y =,所以()34124422MNAB k k y y y y ===++又因为直线MN 、AB 地倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===,若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ--===≤=+++,当且仅当12k k =即k =,等号成立,所以当αβ-最大时,AB k =,设直线:AB x n =+,代入抛物线方程可得240y n --=,34120,4416y y n y y ∆>=-==-,所以4n =,所以直线:4AB x =+.【点睛】关键点点睛:解决本题地关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间地关系.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做地第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系xOy 中,曲线1C地参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C地参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 地普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 地极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点地直角坐标,及3C 与2C 交点地直角坐标.【解析】(1)()2620y x y =-≥;(2)31,C C 地交点坐标为1,12⎛⎫⎪⎝⎭,()1,2,32,C C 地交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.【解析】【分析】(1)消去t ,即可得到1C 地普通方程;(2)将曲线23,C C 地方程化成普通方程,联立求解即解出.【小问1详解】因为26t x +=,y =,所以226y x +=,即1C 普通方程为()2620y x y =-≥.【小问2详解】因为2,6sx y +=-=,所以262x y =--,即2C 地普通方程为()2620y x y =--≤,由2cos sin 02cos sin 0θθρθρθ-=⇒-=,即3C 地普通方程为20x y -=.联立()262020y x y x y ⎧=-≥⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩或12x y =⎧⎨=⎩,即交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2;联立()262020y x y x y ⎧=--≤⎨-=⎩,解得:121x y ⎧=-⎪⎨⎪=-⎩或12x y =-⎧⎨=-⎩,即交点坐标1,12⎛⎫--⎪⎝⎭,()1,2--.[选修4-5:不等式选讲]23. 已知a ,b ,c 均为正数,且22243a b c ++=,证明:(1)23a b c ++≤;(2)若2b c =,则113a c+≥.【解析】(1)见解析 (2)见解析【解析】【分析】(1)根据()22222242a b c a b c ++=++,利用柯西不等式即可得证;(2)由(1)结合已知可得043a c <+≤,即可得到1143a c ≥+,再根据权方和不等式即可得证.【小问1详解】证明:由柯西不等式有()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦,所以23a b c ++≤,当且仅当21a b c ===时,取等号,所以23a b c ++≤;【小问2详解】证明:因为2b c =,0a >,0b >,0c >,由(1)得243a b c a c ++=+≤,的为即043a c <+≤,所以1143a c ≥+,由权方和不等式知()22212111293444a c a c a c a c++=+≥=≥++,当且仅当124a c =,即1a =,12c =时取等号,所以113a c+≥.。

2023年全国统一高考数学试卷(理科)(甲卷)(解析版)

2023年全国统一高考数学试卷(理科)(甲卷)(解析版)

2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。

精品解析:2023年高考全国甲卷数学(文)真题(解析版)

精品解析:2023年高考全国甲卷数学(文)真题(解析版)

2023年普通高等学校招生全国统一考试(全国甲卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,则( )A. B. C. D. 【答案】A 【解析】【分析】利用集合的交并补运算即可得解.【详解】因为全集,集合,所以,又,所以,故选:A.2.( )A. B. 1C. D. 【答案】C 【解析】【分析】利用复数的四则运算求解即可.【详解】故选:C.3. 已知向量,则( ){}1,2,3,4,5U ={}{}1,4,2,5M N ==U N M = ð{}2,3,5{}1,3,4{}1,2,4,5{}2,3,4,5{1,2,3,4,5}U ={1,4}M ={}2,3,5U M =ð{2,5}N ={2,3,5}U N M = ð()()()351i 2i 2i +=+-1-1i-1i+()()351i 51i 1i(2i)(2i)5+-==-+-()()3,1,2,2a b ==cos ,a b a b +-=A.B.C.D.【答案】B 【解析】【分析】利用平面向量模与数量积的坐标表示分别求得,从而利用平面向量余弦的运算公式即可得解.【详解】因为,所以,则,所以.故选:B.4. 某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B.C.D.【答案】D 【解析】【分析】利用古典概率的概率公式,结合组合的知识即可得解.【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有件,其中这2名学生来自不同年级的基本事件有,所以这2名学生来自不同年级的概率为.故选:D.5. 记为等差数列的前项和.若,则( )A. 25 B. 22C. 20D. 15【答案】C 【解析】【分析】方法一:根据题意直接求出等差数列的公差和首项,再根据前项和公式即可解出;方法二:根据等差数列的性质求出等差数列的公差,再根据前项和公式的性质即可解出.117()(),,a b a b a b a b +-+⋅-(3,1),(2,2)a b ==()()5,3,1,1a b a b +=-=- a b b +==== ()()()51312a b a b +⋅-=⨯+⨯-= ()()cos ,a b a b a b a b a b a b+⋅-+-===+- 1613122324C 6=1122C C 4=4263=n S {}n a n 264810,45a a a a +==5S ={}n a n {}n a n【详解】方法一:设等差数列的公差为,首项为,依题意可得,,即,又,解得:,所以.故选:C.方法二:,,所以,,从而,于是,所以.故选:C.6. 执行下边的程序框图,则输出的( )A. 21B. 34C. 55D. 89【答案】B 【解析】【分析】根据程序框图模拟运行即可解出.【详解】当时,判断框条件满足,第一次执行循环体,,,;当时,判断框条件满足,第二次执行循环体,,,;当时,判断框条件满足,第三次执行循环体,,,;{}n a d 1a 2611510a a a d a d +=+++=135a d +=()()48113745a a a d a d =++=11,2d a ==515455210202S a d ⨯=+⨯=⨯+=264210a a a +==4845a a =45a =89a =84184a a d -==-34514a a d =-=-=53520S a ==B =1k =123A =+=325B =+=112k =+=2k =358A =+=8513B =+=213k =+=3k =81321A =+=211334B =+=314k =+=当时,判断框条件不满足,跳出循环体,输出.故选:B.7. 设为椭圆的两个焦点,点在上,若,则( )A. 1B. 2C. 4D. 5【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出的面积,即可解出;方法二:根据椭圆定义以及勾股定理即可解出.【详解】方法一:因为,所以,从而,所以.故选:B.方法二:因为,所以,由椭圆方程可知,,所以,又,平方得:,所以.故选:B.8. 曲线在点处的切线方程为( )A. B. C. D. 【答案】C 【解析】【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线在点处的切线方程为,因为,的4k =34B =12,F F 22:15x C y +=P C 120PF PF ⋅= 12PF PF ⋅=12PF F △120PF PF ⋅= 1290FPF ∠=122121tan 4512FP F S b PF PF ===⨯⋅122PF PF ⋅=120PF PF ⋅= 1290FPF ∠= 25142c c =-=⇒=22221212416PF PF F F +===122PF PF a +==22121212216220PF PF PF PF PF PF ++=+=122PF PF ⋅=e 1=+x y x e 1,2⎛⎫ ⎪⎝⎭e 4y x =e 2y x =e e 44y x =+e 3e24y x =+e 1xy x =+e 1,2⎛⎫ ⎪⎝⎭()e 12y k x -=-e 1xy x =+所以,所以所以所以曲线在点处的切线方程为.故选:C9. 已知双曲线交于A ,B 两点,则( )A. B. C.D.【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由,则,解得,所以双曲线的一条渐近线不妨取,则圆心到渐近线的距离,所以弦长.故选:D10. 在三棱锥中,是边长为2的等边三角形,为( )A. 1 B.C. 2D. 3【答案】A()()()22e 1e e 11x xxx x y x x +-'==++1e|4x k y ='==()e e124y x -=-e 1xy x =+e 1,2⎛⎫ ⎪⎝⎭e e 44y x =+22221(0,0)x y a b a b -=>>22(2)(3)1x y -+-=||AB =e =222222215c a b b a a a+==+=2ba=2y x =(2,3)d ==||AB ===-P ABC ABC 2,PA PB PC ===【解析】【分析】证明平面,分割三棱锥为共底面两个小三棱锥,其高之和为AB 得解.【详解】取中点,连接,如图,是边长为2的等边三角形,,,又平面,,平面,又,,故,即,所以,故选:A11. 已知函数.记,则( )A. B. C. D. 【答案】A 【解析】【分析】利用作差法比较自变量大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令,则开口向下,对称轴为,,而,由二次函数性质知,的AB ⊥PEC AB E ,PE CE ABC 2PA PB ==,PE AB CE AB ∴⊥⊥,PE CE ⊂PEC PE CE E = AB ∴⊥PEC 2PE CE ===PC =222PC PE CE =+PE CE ⊥11121332B PEC A PEC PEC V V V S AB --=+=⋅=⨯=△()2(1)e x f x --=,,a f b f c f ===b c a >>b a c>>c b a>>c a b>>2()(1)g x x =--()g x 1x =4112⎛---=- ⎝22491670-=+-=>41102⎛--=-> ⎝11->g g <,而,,所以,综上,,又为增函数,故,即.故选:A.12. 函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为( )A. 1 B. 2C. 3D. 4【答案】C 【解析】【分析】先利用三角函数平移的性质求得,再作出与的部分大致图像,考虑特殊点处与的大小关系,从而精确图像,由此得解.【详解】因为向左平移个单位所得函数为,所以,而显然过与两点,作出与的部分大致图像如下,考虑,即处与的大小关系,4112⎛--=- ⎝22481682)0-=+=-=-<11-<-g g >g g g <<e x y =a c b <<b c a >>()y f x =cos 26y x π⎛⎫=+ ⎪⎝⎭6π()y f x =1122y x =-()sin 2f x x =-()f x 1122y x =-()f x 1122y x =-πcos 26y x ⎛⎫=+⎪⎝⎭π6πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()sin 2f x x =-1122y x =-10,2⎛⎫- ⎪⎝⎭()1,0()f x 1122y x =-3π3π7π2,2,2222x x x =-==3π3π7π,,444x x x =-==()f x 1122y x =-当时,,;当时,,;当时,,;所以由图可知,与的交点个数为.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13. 记为等比数列的前项和.若,则的公比为________.【答案】【解析】【分析】先分析,再由等比数列的前项和公式和平方差公式化简即可求出公比.【详解】若,则由得,则,不合题意.所以.当时,因为,所以,即,即,即,解得.故答案为:14. 若偶函数,则________.【答案】2【解析】【分析】根据常见函数的奇偶性直接求解即可.为3π4x =-3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭3π4x =3π3πsin 142f ⎛⎫=-= ⎪⎝⎭13π13π412428y -=⨯-=<7π4x =7π7πsin 142f ⎛⎫=-= ⎪⎝⎭17π17π412428y -=⨯-=>()f x 1122y x =-3n S {}n a n 6387S S ={}n a 12-1q ≠n q 1q =6387S S =118673a a ⋅=⋅10a =1q ≠1q ≠6387S S =()()6311118711a q a q qq--⋅=⋅--()()638171q q ⋅-=⋅-()()()33381171q q q ⋅+-=⋅-()3817q ⋅+=12q =-12-()2π(1)sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭=a【详解】,且函数为偶函数,,解得,故答案为:215. 若x ,y 满足约束条件,则的最大值为________.【答案】15【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可.【详解】作出可行域,如图,由图可知,当目标函数过点时,有最大值,由可得,即,所以.故答案为:1516. 在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是________.【答案】【解析】【分析】当球是正方体的外接球时半径最大,当边长为的正方形是球的大圆的内接正方形时半径达到最小.【详解】设球的半径为.()()()222π1sin 1cos (2)1cos 2f x x ax x x ax x x a x x ⎛⎫=-+++=-++=+-++ ⎪⎝⎭20a ∴-=2a =323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩32z x y =+322zy x =-+A z 233323x y x y -+=⎧⎨-=⎩33x y =⎧⎨=⎩(3,3)A max 332315z =⨯+⨯=1111ABCD A B C D -4,AB O =1AC OO 4R当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径为体对角线长,即,故;分别取侧棱的中点,显然四边形是边长为的正方形,且为正方形的对角线交点,连接,则的外接圆,球的半径达到最小,即的最小值为综上,.故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 记的内角的对边分别为,已知.(1)求;(2)若,求面积.【答案】(1) (2【解析】分析】(1)根据余弦定理即可解出;【2R '1AC ==2R R ''==max R =1111,,,AA BB CC DD ,,,M H G N MNGH 4O MNGH MG MG =MNGH R R ∈ABC ,,A B C ,,a b c 2222cos b c aA+-=bc cos cos 1cos cos a B b A ba Bb A c--=+ABC 1(2)由(1)可知,只需求出即可得到三角形面积,对等式恒等变换,即可解出.【小问1详解】因为,所以,解得:.【小问2详解】由正弦定理可得,变形可得:,即,而,所以,又,所以,故的面积为.18. 如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.【答案】(1)证明见解析. (2)【解析】【分析】(1)由平面得,又因为,可证平面,从而证得平面平面;(2) 过点作,可证四棱锥的高为,由三角形全等可证,从而证得为中点,设,由勾股定理可求出,再由勾股定理即可求.sin A 2222cos a b c bc A =+-2222cos 22cos cos b c a bc Abc A A+-===1bc =cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A B aB b A c A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B B A B A B A B ---=-==+++()()sin sin sin A B A B B --+=2cos sin sin A B B -=0sin 1B <≤1cos 2A =-0πA <<sin A =ABC 11sin 122ABC S bc A ==⨯=△111ABC A B C -1A C ⊥,90ABC ACB ∠=︒11ACC A ⊥11BB C C 11,2AB A B AA ==111A BB C C -11A C ⊥ABC 1A C BC ⊥AC BC ⊥BC ⊥11ACC A 11ACC A ⊥11BCC B 1A 11A O CC ⊥1AO 1A C AC =O 1CC 1A C AC x ==x 1AO【小问1详解】证明:因为平面,平面,所以,又因为,即,平面,,所以平面,又因为平面,所以平面平面.【小问2详解】如图,过点作,垂足为.因为平面平面,平面平面,平面,所以平面,所以四棱锥的高为.因为平面,平面,所以,,又因为,为公共边,所以与全等,所以.设,则,所以为中点,,1A C ⊥ABC BC ⊂ABC 1A C BC ⊥90ACB ∠= ACBC ⊥1,A C AC ⊂11ACC A 1AC AC C ⋂=BC⊥11ACC A BC ⊂11BCC B 11ACC A ⊥11BCC B 1A 11A O CC ⊥O 11ACC A ⊥11BCC B 11ACC A 111BCC B CC =1A O ⊂11ACC A 1A O ⊥11BCC B 111A BB C C -1AO 1A C ⊥ABC ,AC BC ⊂ABC 1A C BC ⊥1A C AC ⊥1A B AB =BC ABC 1A BC 1A C AC =1A C AC x ==11A C x =O 1CC 11112OC AA ==又因为,所以,即,解得,所以,所以四棱锥的高为.19. 一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.132.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2试验组的小白鼠体重的增加量从小到大排序为7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.219.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.8416.635【答案】(1)1A C AC ⊥22211AC AC AA +=2222x x +=x=11A O ===111A BB C C -1m<m≥()()()()22()n ad bc K a b c d a c b d -=++++()2P K k ≥k19.8(2)(i );列联表见解析,(ii )能【解析】【分析】(1)直接根据均值定义求解;(2)(i )根据中位数的定义即可求得,从而求得列联表;(ii )利用独立性检验的卡方计算进行检验,即可得解.【小问1详解】试验组样本平均数为:【小问2详解】(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为,后续依次为,故第20位为,第21位数据为,所以,故列联表为:合计对照组61420试验组14620合计202040(ii )由(i )可得,,所以能有的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.20. 已知函数.(1)当时,讨论的单调性;23.4m =23.4m =1(7.89.211.412.413.215.516.518.018.819.219.820.220+++++++++++39621.622.823.623.925.128.232.336.5)19.820++++++++==18.819.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6, 23.223.623.223.623.42m +==m<m≥2240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯95%()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭1a =()f x(2)若,求的取值范围.【答案】(1)在上单调递减(2)【解析】【分析】(1)代入后,再对求导,同时利用三角函数的平方关系化简,再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数,从而得到,注意到,从而得到,进而得到,再分类讨论与两种情况即可得解;法二:先化简并判断得恒成立,再分类讨论,与三种情况,利用零点存在定理与隐零点的知识判断得时不满足题意,从而得解.【小问1详解】因为,所以,则,令,由于,所以,所以,因为,,,所以在上恒成立,所以在上单调递减.【小问2详解】法一:()sin 0f x x +<a ()f x π0,2⎛⎫⎪⎝⎭0a ≤1a =()f x ()f x '()()sin g x f x x =+()0g x <()00g =()00g '≤0a ≤0a =a<02sin sin 0cos xx x-<0a =a<00a >0a >1a =()2sin π,0,cos 2x f x x x x ⎛⎫=-∈ ⎪⎝⎭()()22432cos cos 2cos sin sin cos 2sin 11cos cos x x x x xx xf x xx--+'=-=-()3333222cos cos 21cos coscos 2cos cos x x xx x xx---+-==cos t x =π0,2x ⎛⎫∈ ⎪⎝⎭()cos 0,1t x =∈()()()23233222cos cos 22221211x x t t t t t tt t t +-=+-=-+-=-++-()()2221t t t =++-()2222110t t t ++=++>10t -<33cos 0x t =>()233cos cos 20cos x x f x x +-'=<π0,2⎛⎫ ⎪⎝⎭()f x π0,2⎛⎫⎪⎝⎭构建,则,若,且,则,解得,当时,因为,又,所以,,则,所以,满足题意;当时,由于,显然,所以,满足题意;综上所述:若,等价于,所以的取值范围为.法二:因为,因为,所以,,故在上恒成立,所以当时,,满足题意;当时,由于,显然,所以,满足题意;()()2sin πsin sin 0cos 2x g x f x x ax x x x ⎛⎫=+=-+<< ⎪⎝⎭()231sin πcos 0cos 2x g x a x x x +⎛⎫'=-+<< ⎪⎝⎭()()sin 0g x f x x =+<()()00sin 00g f =+=()0110g a a '=-+=≤0a ≤0a =22sin 1sin sin 1cos cos x x x x x ⎛⎫-=- ⎪⎝⎭π0,2x ⎛⎫∈ ⎪⎝⎭0sin 1x <<0cos 1x <<211cos x>()2sin sin sin 0cos xf x x x x+=-<a<0π02x <<0ax <()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<()sin 0f x x +<0a ≤a (],0-∞()2232222sin cos 1sin sin cos sin sin sin cos cos cos cos x x x x x x x x x x x x---===-π0,2x ⎛⎫∈ ⎪⎝⎭0sin 1x <<0cos 1x <<2sin sin 0cos x x x-<π0,2⎛⎫⎪⎝⎭0a =()2sin sin sin 0cos xf x x x x+=-<a<0π02x <<0ax <()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<当时,因为,令,则,注意到,若,,则在上单调递增,注意到,所以,即,不满足题意;若,,则,所以在上最靠近处必存在零点,使得,此时在上有,所以在上单调递增,则在上有,即,不满足题意;综上:.【点睛】关键点睛:本题方法二第2小问讨论这种情况的关键是,注意到,从而分类讨论在上的正负情况,得到总存在靠近处的一个区间,使得,从而推得存在,由此得解.21. 已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.【答案】(1) (2)【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出;(2)设直线:,利用,找到的关系,以及0a >()322sin sin sin sin cos cos x xf x x ax x ax x x+=-+=-()32sin π0cos 2x g x ax x x ⎛⎫=-<< ⎪⎝⎭()22433sin cos 2sin cos x x xg x a x+'=-()22433sin 0cos 02sin 000cos 0g a a +'=-=>π02x ∀<<()0g x '>()g x π0,2⎛⎫⎪⎝⎭()00g =()()00g x g >=()sin 0f x x +>0π02x ∃<<()00g x '<()()000g g x ''<π0,2⎛⎫⎪⎝⎭0x =1π20,x ⎛⎫∈ ⎪⎝⎭()10g x '=()g x '()10,x ()0g x '>()g x ()10,x ()10,x ()()00g x g >=()sin 0f x x +>0a ≤0a >()00g '>()g x 'π0,2⎛⎫⎪⎝⎭0x =()0g x '>()()00g x g >=210x y -+=2:2(0)C y px p =>,A B AB =p F C ,M N C 0FM FN ⋅=MFN △2p =12-p MN x my n =+()()1122,,,,M x y N x y 0MF NF ⋅=,m n MNF的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设,由可得,,所以,所以即,因为,解得:.【小问2详解】因为,显然直线的斜率不可能为零,设直线:,,由可得,,所以,,,因为,所以,即,亦即,将代入得,,,所以,且,解得或.设点到直线的距离为,所以,所以的面积,而或,所以,()(),,,A A B B A x y B x y 22102x y y px-+=⎧⎨=⎩2420y py p -+=4,2A B A B y y p y y p +==B AB y ==-==2260p p --=0p >2p =()1,0F MN MN x my n =+()()1122,,,M x y N x y 24y x x my n⎧=⎨=+⎩2440y my n --=12124,4y y m y y n +==-22161600m n m n ∆=+>⇒+>0MF NF ⋅=()()1212110x x y y --+=()()1212110my n my n y y +-+-+=()()()()2212121110m y y m n y y n ++-++-=12124,4y y m y y n +==-22461m n n =-+()()22410m n n +=->1n ≠2610n n -+≥3n ≥+3n ≤-F MN d d 2MN y ==-=1==-MNF ()2111122S MN d n =⨯⨯=-=-3n ≥+3n ≤-当时,的面积【点睛】本题解题关键是根据向量的数量积为零找到的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22. 已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.【答案】(1)(2)【解析】【分析】(1)根据的几何意义即可解出;(2)求出直线的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为与轴,轴正半轴交于两点,所以,令,,令,,所以,所以,即,解得,因为,所以.【小问2详解】由(1)可知,直线的斜率为,且过点,所以直线的普通方程为:,即,由可得直线的极坐标方程为.3n =-MNF (2min 212S =-=-,m n ()2,1P 2cos ,:1sin x t l y t αα=+⎧⎨=+⎩t αl l x y ,A B 4PA PB ⋅=αx l 3π4cos sin 30ραρα+-=t l l x y ,A B ππ2α<<0x =12cos t α=-0y =21sin t α=-21244sin cos sin 2PA PB t t ααα====sin 21α=±π2π2k α=+π1π,42k k α=+∈Z ππ2α<<3π4α=l tan 1α=-()2,1l ()12y x -=--30x y +-=cos ,sin x y ραρα==l cos sin 30ραρα+-=[选修4-5:不等式选讲](10分)23. 已知.(1)求不等式的解集;(2)若曲线与坐标轴所围成的图形的面积为2,求.【答案】(1) (2【解析】【分析】(1)分和讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若,则,即,解得,即,若,则,解得,即,综上,不等式的解集为.【小问2详解】.画出的草图,则与坐标轴围成与的高为,所以所以解得,()2,0f x x a a a =-->()f x x <()y f x =a ,33a a ⎛⎫⎪⎝⎭x a ≤x a >x a ≤()22f x a x a x =--<3x a >3a x >3ax a <≤x a >()22f x x a a x =--<3x a <3a x a <<,33a a ⎛⎫ ⎪⎝⎭2,()23,x a x af x x a x a -+≤⎧=⎨->⎩()f x ()f x ADO △ABCABC 3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭||=AB a21132224OAD ABC S S OA a AB a a +=⋅+⋅== a =三人行教育资源。

2023年北京高考数学真题(解析版)

2023年北京高考数学真题(解析版)

an

故an为减数列,注意 ak1 6 3 0
故 an1 6
1 4
an
63 an 6
1 4
an
62
9 4
an
6 ,结合 an1 6 0 ,
所以
6
an1
9 4
6
an
,故
6
an1
3
9 4
n1
,故
an1
6
3
9 4
n1

若存在常数 M
≤ 0 ,使得 an
M
恒成立,则
6
3
9 4
n1
故选:D.
7. 在 ABC 中, (a c)(sin A sin C) b(sin A sin B) ,则 C (
π
A.
6
【答案】B
π
B.
3

C.
3
【解析】
【分析】利用正弦定理的边角变换与余弦定理即可得解.
【详解】因为 (a c)(sin A sin C) b(sin A sin B) ,
故选:A
2. 在复平面内,复数 z 对应的点的坐标是 (1, 3) ,则 z 的共轭复数 z ( )
A. 1 3i
B. 1 3i
C. 1 3i
D. 1 3i
【答案】D 【解析】 【分析】根据复数的几何意义先求出复数 z ,然后利用共轭复数的定义计算.
【详解】 z 在复平面对应的点是 (1, 3) ,根据复数的几何意义, z 1 3i ,


D.
6
所以由正弦定理得 (a c)(a c) b(a b) ,即 a2 c2 ab b2 ,
则 a2 b2 c2 ab ,故 cos C a2 b2 c2 ab 1 ,

2024年天津高考数学真题(原卷版+解析版】

2024年天津高考数学真题(原卷版+解析版】

2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+U .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =I ( )A. {}1,2,3,4 B. {}2,3,4 C. {}2,4 D. {}12. 设,a b ÎR ,则“33a b =”是“33a b =”( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 下列图中,相关性系数最大的是( )的获取更多高中资料关注公众号:网盘网课资源A. B.C. D.4. 下列函数是偶函数的是( )A. 22e 1x x y x -=+ B. 22cos 1x x y x +=+ C. e 1x xy x -=+ D. ||sin 4e x x x y +=5. 若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A. a b c>> B. b a c>> C. c a b>> D. b c a>>6. 若,m n 为两条不同的直线,a 为一个平面,则下列结论中正确的是( )A 若//m a ,n Ìa ,则//m nB. 若//,//m n a a ,则//m nC. 若//,a a ^m n ,则m n ^D. 若//,a a ^m n ,则m 与n 相交7. 已知函数()()πsin303f x x w w æö=+>ç÷èø的最小正周期为π.则函数在ππ,126éù-êúëû的最小值是( )A. B. 32-C. 0D.328. 双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A. 22182y x -= B. 22184x y -= C. 22128x y -= D. 22148x y -=9. 一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为().A.B.12+C.D.12-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知i是虚数单位,复数))i 2i +×-=______.11. 在63333x xæö+ç÷èø展开式中,常数项为______.12. 22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.13. ,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.14. 在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点, 1,2CE DE BE BA BC ==+uur uur uuu r l m ,则l m +=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×uuu r uuur的最小值为______.15. 若函数()21f x ax =--+有唯一零点,则a 取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤的的16. 在ABC V 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.17. 已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ^平面ABCD ,AD AB ^,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18. 已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △.(1)求椭圆方程.(2)过点30,2æö-ç÷èø的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ×£uur uuu r 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.19. 已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.20. 设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.的2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+U .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =I ( )A. {}1,2,3,4B. {}2,3,4 C. {}2,4 D. {}1【答案】B 【解析】【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B =I ,获取更多高中资料关注公众号:网盘网课资源2. 设,a b ÎR ,则“33a b =”是“33a b =”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】C 【解析】【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3. 下列图中,相关性系数最大的是( )A. B.C. D.【答案】A 【解析】【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A4. 下列函数是偶函数的是( )A. 22e 1x x y x -=+ B. 22cos 1x x y x +=+ C. e 1x xy x -=+ D. ||sin 4e x x x y +=【答案】B【分析】根据偶函数的判定方法一一判断即可.【详解】对A ,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -¹,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R ,且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ¹-,不关于原点对称, 则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x j +=,函数定义域为R ,因为()sin141e j +=,()sin141ej ---=,则()()11j j ¹-,则()x j 不是偶函数,故D 错误.故选:B.5. 若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A. a b c >>B. b a c>> C. c a b>> D. b c a>>【答案】B 【解析】【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为 4.2x y =在R 上递增,且0.300.3-<<,所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<,因为 4.2log y x =在(0,)+¥上递增,且00.21<<,所以 4.2 4.2log 0.2log 10<=,即0c <,所以b a c >>,故选:B6. 若,m n 为两条不同的直线,a 为一个平面,则下列结论中正确的是( )A. 若//m a ,n Ìa ,则//m nB. 若//,//m n a a ,则//m nC. 若//,a a ^m n ,则m n ^D. 若//,a a ^m n ,则m 与n 相交【答案】C 【解析】【分析】根据线面平行的性质可判断AB 的正误,根据线面垂直的性质可判断CD 的正误.【详解】对于A ,若//m a ,n Ìa ,则,m n 平行或异面,故A 错误.对于B ,若//,//m n a a ,则,m n 平行或异面或相交,故B 错误.对于C ,//,a a ^m n ,过m 作平面b ,使得s b a =I ,因为m b Ì,故//m s ,而s a Ì,故n s ^,故m n ^,故C 正确. 对于D ,若//,a a ^m n ,则m 与n 相交或异面,故D 错误.故选:C .7. 已知函数()()πsin303f x x w w æö=+>ç÷èø的最小正周期为π.则函数在ππ,126éù-êúëû的最小值是( )A. B. 32-C. 0D.32【答案】A 【解析】【分析】先由诱导公式化简,结合周期公式求出w ,得()sin2f x x =-,再整体求出,126éùÎ-êúëûππx 时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】()()πsin3sin 3πsin 33f x x x x w w w æö=+=+=-ç÷èø,由2ππ3T w==得23w =,即()sin2f x x =-,当,126éùÎ-êúëûππx 时,ππ2,63x éùÎ-êúëû,画出()sin2f x x =-图象,如下图,由图可知,()sin2f x x =-在ππ,126éù-êúëû上递减,所以,当π6x =时,()min πsin 3f x =-=故选:A8. 双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A. 22182y x -= B. 22184x y -= C. 22128x y -= D. 22148x y -=【答案】C 【解析】【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,1290F PF Ð=°,设2PF m =,211122,PF F PF F q q Ð=Ð=,由21tan 2PF k q ==,求得1sin q =,因为1290F PF Ð=°,所以121PF PF k k ×=-,求得112PF k =-,即21tan 2q =,2sin q =,由正弦定理可得:121212::sin :sin :sin 902PF PF F F q q =°=,则由2PF m =得1122,2PF m F F c ===,由1212112822PF F S PF PF m m =×=×=V 得m =,则2122PF PF F c c =====由双曲线第一定义可得:122PF PF a -==a b ===所以双曲线的方程为22128x y -=.故选:C9. 一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为( )A.B.12+ C.D.12-【答案】C 【解析】【分析】采用补形法,补成一个棱柱,求出其直截面,再利用体积公式即可.【详解】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合,因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===,则形成的新组合体为一个三棱柱,该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=,212111142ABC DEF ABC HIJ V V --==´´´=.故选:C.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知i是虚数单位,复数))i 2i +×-=______.【答案】7【解析】【分析】借助复数的乘法运算法则计算即可得.【详解】))i 2i 527+×-=+-+=-.故答案为:7-.11. 在63333x xæö+ç÷èø的展开式中,常数项为______.【答案】20【解析】【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x æö+ç÷èø的展开式的通项为()63636216633C 3C ,0,1,,63rrr r r r r x T xr x ---+æöæö===×××ç÷ç÷èøèø,令()630r -=,可得3r =,所以常数项为0363C 20=.故答案为:20.12. 22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.【答案】45##0.8【解析】【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y xì-+=ïí=ïî可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=,故原点到直线AF 的距离为4455d ==,故答案为:4513. ,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.【答案】 ①.35②. 12【解析】【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率.【详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲选到A 得概率为:63105P ==;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N ,则甲选到A 的概率为()2435C 3C 5P M ==;乙选了A 活动,他再选择B 活动的概率为()()()133524351C 2C C P MN C P N M P M ===故答案为:35;1214. 在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点, 1,2CE DE BE BA BC ==+uur uur uuu r l m ,则l m +=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×uuu r uuur的最小值为______.【答案】 ①.43②. 518-【解析】【分析】解法一:以{},BA BC uuu r uuu r 为基底向量,根据向量的线性运算求BE uuu r,即可得l m +,设BF BE k =uuu r uur ,求,AF DG uuu r uuu r ,结合数量积的运算律求AF DG ×uuu r uuur 的最小值;解法二:建系标点,根据向量的坐标运算求BE uuu r,即可得l m +,设()1,3,,03F a a a éù-Î-êúëû,求,AF DG uuu r uuu r ,结合数量积的坐标运算求AF DG ×uuu r uuur 的最小值.【详解】解法一:因为12CE DE =,即23CE BA =uur uur ,则13BE BC CE BA BC =+=+uuu r uur u uu ur r uuu r ,可得1,13l m ==,所以43l m +=;由题意可知:1,0BC BA BA BC ==×=uuu r uuu r uuu r uuu r,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+Îuuu r uuu r uuu r uuu r,则113AF AB BF AB k BE k BA k BC æö=+=+=-+ç÷èøuuu r uuu r uuu r uuu r uuu r uuur uuu r ,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC æöæö=+=-+=-+-ç÷ç÷èøèøuuur uuu r uuu r uuu r uuu r uuu r uuur ,可得11111113232AF DG k BA k BC k BA k BC éùéùæöæöæö×=-+×-+-ç÷ç÷ç÷êúêúèøèøèøëûëûuuu r uuur uuu r uuu ruuu r uuur22111563112329510k k k k æöæöæö=-+-=--ç÷ç÷ç÷èøèøèø,又因为[]0,1k Î,可知:当1k =时,AF DG ×uuu r uuur取到最小值518-;解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E æö---ç÷èø,可得()()11,0,0,1,,13BA BC BE æö=-==-ç÷èøuuu r uuu r uuu r ,因为(),BE BA BC l m l m =+=-uuu r uuu r uuu r ,则131l m ì-=-ïíï=î,所以43l m +=;因为点F 在线段1:3,,03BE y x x éù=-Î-êúëû上,设()1,3,,03F a a a éù-Î-êúëû,且G 为AF 中点,则13,22a G a -æö-ç÷èø,可得()131,3,,122a AF a a DG a +æö=+-=--ç÷èøuuu r uuur ,则()()22132331522510a AF DG a a a +æöæö×=+---=+-ç÷ç÷èøèøuuu r uuur ,且1,03a éùÎ-êúëû,所以当13a =-时,AF DG ×uuu r uuur 取到最小值为518-;故答案为:43;518-.15. 若函数()21f x ax =--+有唯一零点,则a 的取值范围为______.【答案】()(1-È【解析】【分析】结合函数零点与两函数的交点的关系,构造函数()g x =与()23,21,ax x a h x ax x a ì-³ïï=íï-<ïî,则两函数图象有唯一交点,分0a =、0a >与0a <进行讨论,当0a >时,计算函数定义域可得x a ³或0x £,计算可得(]0,2a Î时,两函数在y 轴左侧有一交点,则只需找到当(]0,2a Î时,在y 轴右侧无交点的情况即可得;当0a <时,按同一方式讨论即可得.【详解】令()0f x =,即21ax =--,由题可得20x ax -³,当0a =时,x ÎR,有211=--=,则x =±当0a >时,则23,2121,ax x a ax x a ì-³ïï--=íï-<ïî,即函数()g x =与函数()23,21,ax x a h x ax x a ì-³ïï=íï-<ïî有唯一交点,由20x ax -³,可得x a ³或0x £,当0x £时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x éùéù---=++--=ëûëû,当2a =时,即410x +=,即14x =-,当()0,2a Î,12x a =-+或102x a=>-(正值舍去),当()2,a Î+¥时,102x a =-<+或102x a=<-,有两解,舍去,即当(]0,2a Î时,210ax --+=在0x £时有唯一解,则当(]0,2a Î时,210ax --+=在x a ³时需无解,当(]0,2a Î,且x a ³时,由函数()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在12,a a æöç÷èø上单调递减,在23,a a æöç÷èø上单调递增,令()g x y ==,即2222142a x y a a æö-ç÷-ø=è,故x a ³时,()g x 图象为双曲线()222214y x a a -=右支的x 轴上方部分向右平移2a 所得,由()222214y x a a-=的渐近线方程为22a y x x a =±=±,即()g x 部分的渐近线方程为22a y x æö=-ç÷èø,其斜率为2,又(]0,2a Î,即()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî在2x a ³时的斜率(]0,2a Î,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a +¥上单调递增,故有13a aa a ì<ïïíï>ïî,解得1a <<,故1a <<符合要求;当a<0时,则23,2121,ax x a ax x a ì-£ïï--=íï->ïî,即函数()g x =与函数()23,21,ax x a h x ax x a ì-£ïï=íï->ïî有唯一交点,由20x ax -³,可得0x ³或x a £,当0x ³时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x éùéù---=++--=ëûëû,当2a =-时,即410x -=,即14x =,当()2,0a Î-,102x a =-<+(负值舍去)或102x a=-,当(),2a Î-¥时,102x a =->+或102x a=>-,有两解,舍去,即当[)2,0a Î-时,210ax --+=在0x ³时有唯一解,则当[)2,0a Î-时,210ax --+=在x a £时需无解,当[)2,0a Î-,且x a £时,由函数()23,21,ax x ah x ax x a ì-£ïï=íï->ïî关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在21,a a æöç÷èø上单调递减,在32,a a æöç÷èø上单调递增,同理可得:x a £时,()g x 图象为双曲线()222214y x a a -=左支的x 轴上方部分向左平移2a 所得,()g x 部分渐近线方程为22a y x æö=-+ç÷èø,其斜率为2-,又[)2,0a Î-,即()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî在2x a <时的斜率[)2,0a Î-,令()0g x ==,可得x a =或0x =(舍去),的且函数()g x 在(),a -¥上单调递减,故有13a aa aì>ïïíï<ïî,解得1a <<-,故1a <<-符合要求;综上所述,()(1a Î-U .故答案:()(1-È.【点睛】关键点点睛:本题关键点在于将函数()f x 的零点问题转化为函数()g x =与函数()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî的交点问题,从而可将其分成两个函数研究.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤16. 在ABC V 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.【答案】(1)4 (2(3)5764【解析】【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【小问1详解】设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,为即229254922316t t t t =+-´´´,解得2t =(负舍);则4,6a c ==.【小问2详解】法一:因为B为三角形内角,所以sin B ===,再根据正弦定理得sin sin a b A B =,即4sin A =sin A =法二:由余弦定理得2222225643cos22564bc a A bc +-+-===´´,因为()0,πA Î,则sin A ==小问3详解】法一:因为9cos 016B =>,且()0,πB Î,所以π0,2B æöÎç÷èø,由(2)法一知sin B =,因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===,2231cos 22cos 12148A A æö=-=´-=ç÷èø()1957cos 2cos cos 2sin sin 281664B A B A B A -=+=´+=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148AA æö=-=´-=ç÷èø,因为B 为三角形内角,所以sinB ===所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=´=【17. 已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ^平面ABCD ,AD AB ^,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.【答案】(1)证明见解析(2(3【解析】【分析】(1)取1CB 中点P ,连接NP ,MP ,借助中位线的性质与平行四边形性质定理可得1N//D MP ,结合线面平行判定定理即可得证;(2)建立适当空间直角坐标系,计算两平面的空间向量,再利用空间向量夹角公式计算即可得解;(3)借助空间中点到平面的距离公式计算即可得解.【小问1详解】取1CB 中点P ,连接NP ,MP ,由N 是11B C 的中点,故1//NP CC ,且112NP CC =,由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC ,则有1//D M NP 、1D M NP =,故四边形1D MPN 是平行四边形,故1//D N MP ,又MP Ì平面1CB M ,1D N Ë平面1CB M ,故1//D N 平面1CB M ;【小问2详解】以A 为原点建立如图所示空间直角坐标系,有()0,0,0A 、()2,0,0B 、()12,0,2B 、()0,1,1M 、()1,1,0C 、()11,1,2C ,则有()11,1,2CB =-uuur 、()1,0,1CM =-uuuu r 、()10,0,2BB =uuur,设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z =r 、()222,,n x y z =r,则有111111200m CB x y z m CM x z ì×=-+=ïí×=-+=ïîuuur r uuuu r r ,1222122020n CB x y z n BB z ì×=-+=ïí×==ïîuuur r uuur r ,分别取121x x ==,则有13y =、11z =、21y =,20z =,即()1,3,1m =r 、()1,1,0n =r,则cos ,m =r ,故平面1CB M 与平面11BB CC;【小问3详解】由()10,0,2BB =uuur ,平面1CB M 的法向量为()1,3,1m =r,=即点B 到平面1CB M.18. 已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △.(1)求椭圆方程.(2)过点30,2æö-ç÷èø的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ×£uur uuu r 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)221129x y +=(2)存在()30,32T t t æö-££ç÷èø,使得0TP TQ ×£uur uuu r 恒成立.【解析】【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =-,()()()1122,,,,0,P x y Q x y T t , 联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ×uur uuu r,再根据0TP TQ ×£uur uuu r 可求t 的范围.【小问1详解】因为椭圆的离心率为12e =,故2a c =,b =,其中c 为半焦距,所以()()2,0,0,,0,A c B C æ-ççè,故122ABC S c =´=△故c =a =,3b =,故椭圆方程为:221129x y +=.【小问2详解】若过点30,2æö-ç÷èø的动直线的斜率存在,则可设该直线方程为:32y kx =-,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ì+=ïí=-ïî可得()223412270k x kx +--=,故()222Δ144108343245760k kk=++=+>且1212221227,,3434k x x x x k k +==-++而()()1122,,,TP x y t TQ x y t =-=-uur uuu r,故()()121212123322TP TQ x x y t y t x x kx t kx t æöæö×=+--=+----ç÷ç÷èøèøuur uuu r ()()22121233122kx x k t x x t æöæö=+-++++ç÷ç÷èøèø()22222731231342342k k k t t k k æöæöæö=+´--+´++ç÷ç÷ç÷++èøèøèø()2222222327271812332234k k k t t t k k æö----++++ç÷èø=+()22223321245327234t t k t k æöéù+--++-ç÷ëûèø=+,因为0TP TQ ×£uur uuu r 恒成立,故()223212450332702t t t ì+--£ïíæö+-£ïç÷èøî,解得332t -££.若过点30,2æö-ç÷èø的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -,此时需33t -££,两者结合可得332t -££.综上,存在()30,32T t t æö-££ç÷èø,使得0TP TQ ×£uur uuu r 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.19. 已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.【答案】(1)21n n S =- (2)①证明见详解;②()131419nn S ii n b=-+=å【解析】【分析】(1)设等比数列{}n a 的公比为0q >,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知12,1k k n a b k -==+,()121n k k b -=-,利用作差法分析证明;②根据题意结合等差数列求和公式可得()()1211213143449k k k k i i b k k ---=éù=---ëûå,再结合裂项相消法分析求解.【小问1详解】设等比数列{}n a 的公比为0q >,因为1231,1a S a ==-,即1231a a a +=-,可得211q q +=-,整理得220q q --=,解得2q =或1q =-(舍去),所以122112nn n S -==--.【小问2详解】(i )由(1)可知12n n a -=,且N*,2k k γ,当124kk n a +=³=时,则111221111k k k k k a n n a a -++ì=<-=-í-=-<î,即11k k a n a +<-<可知12,1k k n a b k -==+,()()()1111222121k k k n a k k b b a a k k k k --+=+--×=+-=-,可得()()()()1112112122120kn k n k k k k k k k k b k a b ---=--+=--³--=-׳-,当且仅当2k =时,等号成立,所以1n k n b a b -³×;(ii )由(1)可知:1211nn n S a +=-=-,若1n =,则111,1S b ==;若2n ³,则112k k k a a -+-=,当1221k k i -<£-时,12i i b b k --=,可知{}i b 为等差数列,可得()()()111211112221122431434429k k k k k k k k i i b k kk k k -------=-éù=×+=×=---ëûå,所以()()()232113141115424845431434499nnS n n i i n b n n -=-+éù=+´-´+´-´+×××+---=ëûå,且1n =,符合上式,综上所述:()131419nn S ii n b=-+=å.【点睛】关键点点睛:1.分析可知当1221k k i -<£-时,12i i b b k --=,可知{}i b 为等差数列;2.根据等差数列求和分析可得()()1211213143449k k k k i i b k k ---=éù=---ëûå.20. 设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 的取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.【答案】(1)1y x =- (2){}2(3)证明过程见解析【解析】【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a =,再证明2a =时条件满足;(3)先确定()f x 的单调性,再对12,x x 分类讨论.【小问1详解】的由于()ln f x x x =,故()ln 1f x x =¢+.所以()10f =,()11f ¢=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.【小问2详解】设()1ln h t t t =--,则()111t h t t t¢-=-=,从而当01t <<时()0h t ¢<,当1t >时()0h t ¢>.所以()h t 在(]0,1上递减,在[)1,+¥上递增,这就说明()()1h t h ³,即1ln t t -³,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 12ln f x a x x x a x x a x g æö--=-=-=×ç÷øè.当()0,x ¥Î+的取值范围是()0,¥+,所以命题等价于对任意()0,t ¥Î+,都有()0g t ³.一方面,若对任意()0,t ¥Î+,都有()0g t ³,则对()0,t ¥Î+有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t æö£=--=-+£-+-=+--ç÷èø,取2t =,得01a £-,故10a ³>.再取t =,得2022a a a £+-=-=-,所以2a =.另一方面,若2a =,则对任意()0,t ¥Î+都有()()()212ln 20g t t t h t =--=³,满足条件.综合以上两个方面,知a 的取值范围是{}2.【小问3详解】先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a-+<<+-.证明:前面已经证明不等式1ln t t -³,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a --=+=+<+---,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a bbæö---ç÷--èø=+=+>+=+----,所以ln ln ln 1ln 1b b a aa b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x =¢+,可知当10ex <<时()0f x ¢<,当1e x >时()0f x ¢>.所以()f x 在10,eæùçúèû上递减,在1e ,éö+¥÷êëø上递增.不妨设12x x £,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x ££<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<情况二:当1210ex x <££时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c æùÎçúèû,设()ln ln x x x c c j =--()ln 1x x j =+¢.由于()x j ¢单调递增,且有11110j =+<+=-+=¢,且当2124ln 1x c c ³-æö-ç÷èø,2cx >2ln 1c ³-可知()2ln 1ln 1ln 102c x x c j æö=+>++=-³ç÷èø¢.所以()x j ¢在()0,c 上存在零点0x ,再结合()x j ¢单调递增,即知00x x <<时()0x j ¢<,0x x c <<时()0x j ¢>.故()x j 在(]00,x 上递减,在[]0,x c 上递增.①当0x x c ££时,有()()0x c j j £=;②当00x x <<112221e e f f cæö=-£-=<ç÷èø,故我们可以取1,1q c öÎ÷ø.从而当201cx q <<->()1ln ln ln ln 0x x x c c c c c c q cj ö=-<-<--=-<÷ø.再根据()x j 在(]00,x 上递减,即知对00x x <<都有()0x j <;综合①②可知对任意0x c <£,都有()0x j £,即()ln ln 0x x x c c j =--£.根据10,ec æùÎçúèû和0x c <£的任意性,取2c x =,1x x =,就得到1122ln ln 0x x x x -£.所以()()()()12121122ln ln f x f x f x f x x x x x -=-=-£.情况三:当12101ex x <££<时,根据情况一和情况二讨论,可得()11e f x f æö-££ç÷èø,()21e f f x æö-££ç÷èø而根据()f x 的单调性,知()()()1211e f x f x f x f æö-£-ç÷èø或()()()1221e f x f xf f x æö-£-ç÷èø.故一定有()()12f x f x -£成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合()f x 的单调性进行分类讨论.的。

2024年高考数学新课标1卷真题试卷附详解

2024年高考数学新课标1卷真题试卷附详解

2024年高考数学新课标1卷真题试卷一、选择题:本共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}355A x x =-<<,{}3,1,0,2,3B -=-,则A B = ()A.{}1,0- B.{}2,3 C.{}3,1,0-- D.{}1,0,2-2.若11zi z =+-,则z =()A.1i --B.1i -+C.1i -D.1i +3.已知向量()()0,1,2,a b x ==,若()4b b a ⊥- ,则x =()A.2-B.1-C.1D.24.已知cos()m αβ+=,tan tan 2αβ=,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.已知圆柱和圆锥的底面半径相等,侧面积相等,则圆锥的体积为()A. B. C. D.6.已知函数22,0,()ln(1),0x x ax a x f x e x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是()A.(],0-∞B.[]1,0-C.[]1,1-D.[)0,+∞7.当[]0,2x π∈时,曲线sin y x =与2sin(3)6y x π=-的交点个数为()A.3B.4C.6D.88.已知函数()f x 的定义域为R,()(1)(2)f x f x f x >-+-,且当3x <时,()f x x =,则下列结论中一定正确的是()A.(10)100f > B.(20)1000f > C.(10)1000f < D.(20)1000f <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值元 2.1x =,样本方差:20.01s =,已知该种植区以往的亩收入X 服从正态分布2(1.8,0.1)N ,假设推动出口后的亩收入Y 服从正态分布2(,)N X s ,则()(若随机变量Z 服从正态分布2(,)N μσ,则(Z )0.8413P μσ<+≈)A.P(X>2)>0.2B.P(X>2)<0.5C.P(Y>2)>0.5D.P(Y>2)<0.810.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,2()()f x f x <C.当12x <<时,4(21)0f x -<-<D.10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C上的点满足横坐标大于2-,到点F(2,0)的距离与到定直线(0)x a a =<的距离之积为4.则()A.2a =-B.点(22,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点00(,)x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12,F F ,过2F 作平行于y 轴的直线交C 于,A B 两点,若113,10F A AB ==,则C 的离心率为_________.13.若曲线x y e x =+在点(0,1)处的切线也是曲线ln(1)y x a =++的切线,则a =_________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于2的概率为__________.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或验算步骤.15.(13分)记ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin C B =,222a b c +-=.(1)求B ;(2)若ABC ∆的面积为3,求c .16.(15分)已知(0,3)A 和3(3,)2P 为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1BC =,AB =.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .18.(17分)已知函数3()ln(1)2xf x ax b x x=++--.(1)若0b =,且'()0f x ≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形:(3)若()2f x >-当且仅当12x <<,求b 的取值范围.设m 为正整数,数列1242,,,m a a a + 是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,,m a a a + 是(,)i j -可分数列(1)写出所有的(,)i j ,16i j ≤<≤,使数列126,,,a a a 是(,)i j -可分数列;(2)当3m ≥时,证明:1242,,,m a a a + 是(2,13)-可分数列;(3)从1,2,,42m + 中一次任取两个数i 和()j i j <,记数列1242,,,m a a a + 是(,)i j -可分数列的概率为m P ,证明:18m P >.2024年高考数学新课标1卷真题试卷详细解析一、选择题.题号12345678答案ACDABBCB1.【答案】A2.【答案】C【解析】:(1)(1)(1)(1)z i z i z i =+-=+-+所以1iz i =+所以11iz i i+==-故选C.3.【答案】D【解析】:()24(2,)(2,4)4(4)(2)0b b a x x x x x ⋅-=⋅-=+-=-= 所以2x =.故选D.4.【答案】A【解析】:由cos()m αβ+=得:cos cos sin sin m αβαβ-=由tan tan 2αβ=得:sin sin 2cos cos αβαβ=所以cos cos ,sin sin 2m mαβαβ=-=-所以cos()cos cos sin sin 23m m m αβαβαβ-=+=--=-.故选A.5.【答案】B【解析】:设底面半径为r ,圆锥母线长为l .所以1222r r l ππ=⨯⨯,得:l =.所以3r ==.所以213V r h π==.故选B.6.【答案】B【解析】:()f x 在R 上单调递增,所以有202(1)(0)(0)a f f --⎧-≥⎪⨯-⎨⎪≤⎩,即202(1)1a a -⎧-≥⎪⨯-⎨⎪-≤⎩,解得:10a -≤≤.故选B.7.【答案】C【解析】:由图像知:共6个交点.故选C.8.【答案】B【解析】:因为当3x <时,()f x x =,(1)1f ∴=,(2)2f =.考虑斐波那契数列,其前20项分别为:1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946.则(20)1000f >.故选B.二、选择题.题号91011答案BCACDABD【答案】BC【解析】:由题意:2(1.8,0.1)X N ,2(2.1,0.1)Y N 2=1.8+20.1=+2μσ⨯ (>2)=(>+2)<(>+)=10.84130.1587P X P X P X μσμσ∴-=.故A 错误.(>2)<(>1.8)=0.5P X P X ∴.故B 正确.2=2.10.1=μσ-- (>2)>(>2.1)0.5P Y P Y ∴=.故C 正确.(>2)=(>)()0.84130.8P Y P Y P Y μσμσ∴-=<+=>.故D 错误.综上:选BC.10.【答案】ACD【解析】:'()3(1)(3)f x x x =-- .()f x ∴在(),1-∞上 ,在()1,3上 ,在()3,+∞上 .故A 正确.当01x <<时,201x x <<<,故B 错误.当12x <<时,1213x <-<,所以(3)(21)(1)f f x f <-<,即4(21)0f x -<-<,故C 正确.当10x -<<时,3(2)()2(1)0f x f x x --=-->,故D 正确.综上:选ACD.11.【答案】ABD【解析】:因为C 过坐标原点O ,所以24a -⨯=,得:2a =-.故A 正确.设曲线上一点任意一点(,)P x y ,则曲线C 的方程为:(4(2)x x +=>-,得:2224((2)2y x x =--+.点满足方程,故B 正确.取132x =,则216412071494196y =-=>,所以11y >,故C 错误.222200044()(2)(22y x x x =--≤++,所以0004422y x x ≤=++,故D 正确.综上:选ABD.三、填空题.12.【答案】32【解析】:1213,10,5F A AB AF ==∴=.1212212,21358c F F a AF AF ∴====-=-=36,4,2c c a e a ∴====.13.【答案】ln 2.【解析】:''(),()1,(0)2,x x f x e x f x e f =+=+∴=∴切线l 的方程为21y x =+.'1()ln(1),()1g x x a g x x =++=+,当12x =-时,'1()22g -=,'11()ln +ln 222g a a -==-所以切线方程为:1(ln 2)2()2y a x --=+,故ln 20a -=,即:ln 2a =.14.【答案】12【解析】不妨设甲的顺序是1,3,5,7,考虑甲得分为0,1的情况(1)甲得0分情况:只有1种,1,3,5,72,4,6,8⎛⎫⎪⎝⎭(2)甲得1分情况①甲出3的时候得分,此时只有1种1,3,5,74,2,6,8⎛⎫⎪⎝⎭②甲出5的时候得分,此时乙对应有两种情况乙出4的时候有1种情况,乙出2的时候有2种情况,所以共有3种.③甲出7的时候得分,此时乙对应有3种情况乙出6的时候有1种情况,乙出4的时候有2种情况,乙出2的时候有4种情况,从而共7种情况.所以甲的总得分小于2的概率为11122-=.所以甲的总得分不小于2的概率为44113712A +++=.四、解答题.15.【答案】(1)3π(2)【解析】:(1)22222cos cos 24a b c ab C C C π+-==⇒=⇒=由sin C B =得:1cos 23B B π==⇒=(2)由(1)得:512A B C ππ=--=,422==316,22a cbc +∴==111sin 322222S ab C c c +∴==⋅⋅⋅=+c ∴=16.【答案】(1)12e =(2)1:2l y x =或332y x =-【解析】:(1)(0,3)A 和3(3,2P 代入椭圆方程得22220919941a b ab ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:22129a b ⎧=⎨=⎩.12c e a ∴===.(2)如图,设点(0,3)A 到l 的距离为d①当l 斜率不存在时,:3l x =3(3,3,32B PB d ∴-==1933922ABP S ∆=⨯⨯=≠,不满足条件.②当l 斜率存在时,设3:(3)2l y k x -=-记11(,)P x y ,22(,)B x y 联立223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得:2222(43)(2412)3636270k x k k x k k +--+--=由韦达定理可得:2122212223124336362743k k x x k k k x x k ⎧-+=⎪⎪+⎨--⎪=⎪+⎩PB ∴=d =192ABP S PB d ∆∴=⋅==解得:12k =或32k =1:2l y x ∴=或332y x =-17.【答案】(1)见解析(2)AD =【解析】:(1)证明:PA ⊥底面ABCD ,AD ⊂平面ABCDPA AD∴⊥,,,AD PB PA PB P PA PB ⊥⋂=⊂ 平面PABAD ∴⊥平面PABAB ⊂ 平面PAB ,AD AB∴⊥在ABC ∆中,222,AB BC AC AB BC+=∴⊥,,,A B C D 四点共面,//AD BC∴BC ⊂ 平面PBC ,AD ⊄平面PBC//AD ∴平面PBC(2)如图,延长CB 至点E ,使得EA AC ⊥.以AE 为x 轴,AC 为y 轴,AP 为z 轴建立坐标系.设ACD θ∠=,则22cos (2cos sin ,2cos ,0)AD D θθθθ=⇒-(0,2,0)C ,(0,0,2)P ,则平面ACP 的法向量是1(1,0,0)n = 2(0,2,2),(2cos sin ,2cos ,2)PC PD θθθ=-=-- 则平面PCD 的法向量是2(tan ,1,1)n θ=-则12cos ,n n <>== 解得:3tan 3θ=所以3cos 2θ=故AD =18.【答案】(1)2-(2)见解析(3)2,3⎡⎫-+∞⎪⎢⎣⎭【解析】:(1)由题意:()f x 的定义域为(0,2).b =时,()ln 2x f x ax x=+-,'2111122()0(22(2)(1)1f x a a x x x x x x x =++≥⇒≥-+=-=------+要使22(1)1a x ≥---+恒成立,必须max 22(2(1)1a x ≥-=---+所以a 的最小值是2-.(2)()f x 的定义域为(0,2).332()(2)ln ln (2)(1)(1)22x x f x f x ax a x b x b x a x x-+-=+++-+-+-=-.故曲线()f x 关于点(1,)a 对称.(3)由(2)知()f x 关于点(1,)a 对称..()2f x >- 当且仅当12x <<.()2f x ∴≤-当且仅当01x <≤.由于()f x 的连续性,(1)2f a ∴==-.3()ln (1)22x f x ax b x x∴=++->--对(1,2)x ∀∈恒成立.(1)2,f =-又2'222112(1)2()23(1)3(1)(1)32(2)(2)x f x b x b x x b x x x x x x ⎡⎤-=+-+-=+-=-+⎢⎥---⎣⎦'(1)0,f =又''2211()6(1)(2)f x b x x x =-++--''(1)0,f =又'''3322()6(2)f x b x x =++-'''(1)46f b=+令'''(1)460f b =+≥,得:23b ≥-此时4'22222(1)()(1)3(1)20(2)(2)(2)x f x x b x x x x x x x ⎡⎤⎡⎤-=-+≥--=≥⎢⎥⎢⎥---⎣⎦⎣⎦故()f x 在(1,2)上单调递增所以对(1,2)x ∀∈,()2f x >-恒成立.综上:b 的取值范围是2,3⎡⎫-+∞⎪⎢⎣⎭.19.【答案】(1)(1,2),(1,6),(5,6)(2)见解析(3)见解析.【解析】:(1)(1,2),(1,6),(5,6)(2)证明:当3m =时,注意到{}{}{}1471036912581114,,,,,,,,,,,a a a a a a a a a a a a 三组的4个数都能构成等差数列,故3m =时,1242,,,m a a a + 是(2,13)-可分数列.当3m >时,前面的3组按照3m =时的分法,即{}{}{}1471036912581114,,,,,,,,,,,a a a a a a a a a a a a ,剩余的部分每4个相邻项分一组,即{}43444546,,,,3,4,,1r r r r a a a a r m ++++=- .综上所述:3m ≥时,1242,,,m a a a + 是(2,13)-可分数列.(3),,,p q r s a a a a 成等差,,,p q r s ⇔成等差.故1242,,,m a a a + 是(,)i j -可分数列1,2,,42m ⇔+ 是(,)i j -可分数列.①情形一:1,2,,42m + 是(41,42),0k r k r m ++≤≤≤可分数列.具体构造:前1,2,,4k 项每4个相邻项分一组(0k =时不存在该组),中间42,,41k r ++ 每4个相邻项分一组(k r =时不存在该组),后面43,,42r m ++ 每4个相邻项分一组(r m =时不存在该组).此种分组显然满足题意.此时共211(1)(1)(2)2m C m m m +++=++种.②情形二:1,2,,42m + 是(42,41),0k r k r m ++≤<≤,且2r k -≥是可分数列.记2q r k =-≥具体构造:前1,2,,4k 项每4个相邻项分一组(0k =时不存在该组),后面4 3.44,,42r r m +++ 每4个相邻项分一组(r m =时不存在该组).中间41,43,44,,41,4,42k k k r r r +++-+ 共4()4r k q -=项.要说明41,43,44,,41,4,42k k k r r r +++-+ 可分为q 组,只需考虑1,3,4,,41,4,42q q q -+ 是可分的.将1,3,4,,41,4,42q q q -+ 分为{}1,1,21,13q q q +++,{}3,3,23,33q q q +++{}4,4,24,34q q q +++{}5,5,25,35q q q +++,{},,2,3,4q q q q {},2,22,32,42q q q q ++++共q 组,且满足条件.此时的(42,41)k r ++的数目等于(,)(,),2k r k k p p =+≥的数目.此时共211(1)2m C m m m +-=-种.故22224211(1)(2)(1)11122(21)(41)8618m m m m m m m m m m P C m m m m ++++-++++≥==>++++.。

高考数学试卷及答案详解

高考数学试卷及答案详解

一、选择题(每小题5分,共50分)1. 下列函数中,在定义域内是奇函数的是()A. f(x) = x^2 - 1B. f(x) = |x|C. f(x) = x^3D. f(x) = 2x答案:C解析:奇函数满足f(-x) = -f(x)。

对于选项C,f(-x) = (-x)^3 = -x^3 = -f(x),符合奇函数的定义。

2. 已知等差数列{an}的前n项和为Sn,若S5 = 15,S9 = 27,则该数列的公差d是()A. 1B. 2C. 3D. 4答案:B解析:等差数列的前n项和公式为Sn = n/2 (a1 + an)。

对于S5 = 15,有5/2 (a1 + a5) = 15,同理S9 = 9/2 (a1 + a9) = 27。

由a5 = a1 + 4d,a9 = a1 + 8d,代入得:5/2 (a1 + a1 + 4d) = 15,9/2 (a1 + a1 + 8d) = 27解得d = 2。

3. 若复数z满足|z - 1| = |z + 1|,则复数z的实部是()A. 0B. 1C. -1D. 不确定答案:A解析:复数z在复平面上的几何意义是z对应的点到点(1, 0)和(-1, 0)的距离相等,即z位于这两点连线的垂直平分线上。

因此,z的实部为0。

4. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则log_a b < 0C. 若a > b,则a + c > b + cD. 若a > b,则ac > bc答案:C解析:选项A、B、D均存在反例,只有选项C是正确的,因为对于任意的实数c,加上相同的数不会改变不等式的方向。

5. 函数y = 2^x + 1在定义域内的单调性是()A. 单调递增B. 单调递减C. 不单调D. 不确定答案:A解析:指数函数y = 2^x是单调递增的,因此其加上常数1后,函数y = 2^x + 1仍然保持单调递增。

2024甘肃省高考数学(新高考Ⅱ卷)试卷及解析

2024甘肃省高考数学(新高考Ⅱ卷)试卷及解析

2024年普通高等学校招生考试新高考II 卷数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干 净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,满分40分.每小题给出的备选答案中,只有一个是符合题意的. 1. 已知1z i =−−,则z = ( C )A .0B .1CD .2解:因为1z i =−−,所以z =C .2.已知命题p :x R ∈∀,1x +>1;命题q :30,x x x =∃>, 则 ( B ) A .p 和q 都是真命题 B .p ﹁和q 都是真命题 C .p 和q ﹁都是真命题 D .p ﹁和q ﹁都是真命题.解:因为1x =−,1x +1<,所以p 为假,p ﹁真,又因为1x =时,3x x =,所以q 真,故选B . 3.已知向量,a b 满足: 1,22a a b =+=,且(2)b a b −⊥,则b = ( B )A .12B C D .1 解:因为22a b +=,所以22444a a b b +⋅+=,又因为1a =,所以2443a b b ⋅+=,又因为(2)b a b −⊥, 所以(2)0b a b −⋅=,所以220b a b −⋅=,所以263b =,所以22b =,故选B 4.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位: kg) 并部分 整理如下表所示.根据表中数据,下列结论正确的是 ( C ) A .100块稻田亩产量的中位数小于1050 kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200 kg 到300 kg 之间D .100块稻田亩产量的平均值介于900 kg 到1000 kg 之间解:根据频数表得亩产在[1050,1100)的频数为100612182410=30−++++(),所以列出频率表如下:所以中位数在分组[1050,1100)内,所以A 错;又因为亩产量低于1100kg 的稻田的频率为0.66,所以B 错;又极差最大为1200-900=300,最小为1150-950=200,故C 正确,亩产平均值为1(692512975181025301075241125101175)100⨯+⨯+⨯+⨯+⨯+⨯=1067,所以D 错,故选C . 5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点 M 的轨迹方程为 ( A )A .221(0)164x y y +=> B .221(0)168x y y +=> C .221(0)164y x y +=> D .221(0)168y x y +=> 解:设线段PP '的中点为(,)x y ,则(,2)x y 在曲线C 上,所以22416x y +=,所以221(0)164x y y +=>,选A 6.设函数2()(1)1f x a x =+−, ()cos 2g x x ax =+ (a 为常数),当(1,1)x ∈−时,曲线()y f x =和()y g x =恰有 一个交点,则a = ( D ) A .1− B .12C .1D .2解:因为当(1,1)x ∈−时,曲线()y f x =和()y g x =恰有一个交点,所以(1,1)x ∈−时,()()f x g x =有一解,即2(1)1cos 2a x x ax +−=+,所以21cos ax a x +−=,因为21cos y ax a y x =+−=与都是偶函数,当0x = 时,11a −=,所以2a =时恰有一个交点,故选D . 7.已知正三棱台ABC A B C '''−的体积为523,6,2AB A B ''==, 则AA '与平面ABC 所成角的正切值为( B ) A .12B .1C .2D .3解:因为26S 下22S 上,所以13V h =(,所以523=,所以h =,设上下底面正三角形的高分别为12,h h,则1223h =,2263h = 设AA '与平面ABC 所成角为θ,则21tan 12233h h h θ===−,故选B8.设函数()()ln()f x x a x b =++,若()0f x ≥, 则22a b +的最小值为 ( C ) A .18 B .14 C .12D .1 解:因为函数y x a =+与ln()y x b =+都是单调递增函数,且两个函数的零点分别为a −和1b −,又因为()0f x ≥,所以22a b +取最小值时,1x a b =−=−,即1b a =+,所以2221112()222a b a +=++≥,故选C .二、选择题:本题共3小题,每小题6分,满分18分.每小题给出的备选答案中,有多个选项是符合题意的.全部选对得6分,部分选对得3分,选错或不选得0分.9.对于函数()sin 2f x x =和()sin(2)4g x x π=−,下列正确的有 ( ,B C )A . ()f x 与g()x 有相同零点B . ()f x 与g()x 有相同最大值C . ()f x 与g()x 有相同的最小正周期D . ()f x 与g()x 的图像有相同对称轴 解:因为把函数()g x 的图象向左平移8π个单位就得到()f x 的图象,所以两个函数的零点不同,对称轴不同,故,A D 错,又因为多选,所以选,B C .10.抛物线C :24y x =的准线为l ,P 为C 上动点,过P 作A ⊙:22(4)1x y +−=的一条切线,Q 为切点.过P 作l 的垂线,垂足为B ,则 ( ABD )A .l 与A ⊙相切B .当P A B 、、三点共线时,PQ =C .当2PB =时,PA AB ⊥D .满足PA PB =的点A 有且仅有2个解:因为A ⊙的圆心为(0,4),半径1r =,又因为l 的方程为1x =−,所以l 与A ⊙相切,所以选项A 正确;设(,)P x y ,则当P A B 、、三点共线时时,4y =,所以4x =,所以4PA =,所以PQ ==, 所以选项B 正确;当2PB =时,PAB △是等边三角形,所以选项C 错;设(,)P x y ,则(1,)B y −, 因为PA PB =,所以222(4)(1)x y x +−=+,又因为24y x =,所以222(4)2y y −=+,所以216300y y −+=, 即方程有两个不同的实数解,所以选项D 正确,故选ABD .11.设函数32()231f x x ax =−+,则 ( AD ) A .当1a >时,()f x 有三个零点. B .当0a <时,0x =是()f x 的极大值点 C .存在,a b ,使得x b =为曲线()f x 的对称轴 D .存在a ,使得点(1,(1))f 为曲线()y f x =的对称中心解:因为2()666()f x x ax x x a '=−=−,因为1a >,所以()f x 在(,0)−∞和(,)a +∞上递增,在(0,)a 上递减,又因为(0)10f =>,(1)3(1)0f a =−<,所以()f x 有三个零点,所以选项A 正确;因为()6()f x x x a '=−,所以0a <时,()f x 在(,)a −∞和(0,)+∞上递增,在(,0)a 上递减,所以0x =是()f x 的极小值点,所以选项B 错;因为三次函数3y x =是奇函数,没有对称轴,所以平移与伸缩变换后仍没有对称轴,所以选项C 错; 因为是多选,所以正确选项为AD .另,三次函数的对称中心点为二阶导函数的零点,因为()126f x x a '=−,所以()1260f x x a '=−=时, 12x a =,所以112a =时,2a =,所以存在2a =,使得点(1,(1))f 为曲线()y f x =的对称中心. 三、填空题:本题共3小题,每小题5分,满分15分.12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = . 解:因为347a a +=,2535a a +=,所以22525a a a ++=,又因为3427a a a a +=+,所以21a =−,又因为23423a d a a +=+,所以3d =,14a =−,所以1023a =,所以1095S =.13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+= .解:根据题意tan tan tan()1tan tan αβαβαβ++==−−,又因为α为第一象限角,β为第三象限角,所以22222n m n m πππαβπππ+++++<<,即αβ+第三或第四象限的角,由于tan()0αβ+=−,所以αβ+是第四象限的角,所以sin()αβ+=.14.在下图的44⨯方格表中有4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法;在符合上述要求的选法中,选中方格中的四个数之和的最大值是 .解:行列式法,第一步,先从第一行的4个数中任选一个,不同选法有14C 种,第二步,去掉第一步选的数所在的行和列,再从余下的三行三列数中第一行中任选一个数,不同选法有13C 种,第三步,把第二步中选取的数所在的行和列去掉,从余下的2行2列的第一行中任先一个数,不同选法有12C 种,第四步,去掉第三步选的数所在的行与列后余下一个数,不同选法有11C 种,所以共有1111432124C C C C =种选法.因为每列数的十位数都相同,所以把个位数都看成0,则任意的不同行与列的 四个数的和都为100,所以所有个位数所组成如下的图,不同行列的4个数之 和最大值为5+3+3+1=12,故选中方格中的四个数之和的最大值是112. (即4134231215433321112a a a a +++=+++=).四、解答题:本题共5小题,满分87分.解答应写出必要的文字说明、计算过程、证明过程. 15. (本题满分13分)记ABC △的内角A B C 、、的对边分别为a b c 、、,已知sin 2A A =. (1)求A ;(2)若2a =sin sin 2C c B =,求ABC △的周长.解:(1)因为sin 2A A =,所以1sin 12A A =,所以sin()13A π+=,所以32A ππ+=,所以30A =;(2)由(1)知30A =,因为2a =,所以4sin aA=,sin sin 2C c B =sin c C =,又因为sin sin sin c a bC A B==4sin b B ==,所以cos B =,所以45B =,105c =所以4sin b B ==,4sin1054sin(6045)6c ==+=+,所以2a b c ++= 16. (本题满分 15分)已知函数3()x f x e ax a =−−.(1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程.(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.解:(1)因为1a =,所以()1x f x e x =−−,所以()1x f x e '=−,所以(1)2f e =−,(1)1f e '=−, 所以2(1)(1)y e e x −+=−−,所以(1)1y e x =−−,即曲线()y f x =在点(1,(1))f 处的切线方程是(1)1y e x =−−;(2)因为3()x f x e ax a =−−,所以()x f x e a '=−是单调递增函数,又因为()f x 有极小值,所以 ()0f x '=有解,所以ln (0)x a a =>,所以()f x 的极小值为3(ln )ln f a a a a a =−−,所以3ln 0a a a a −−<,所以21ln 0a a −−<,令2()1ln g a a a =−−,则1()20g a a a'=−−<,所以 函数2()1ln g a a a =−−在(0,)+∞上单调递减,又因为(1)0g =,所以1a >,即a 的取值范围是(1,)+∞.17. (本题满分15分)如图,平面四边形ABCD 中, 8AB =,3CD =,53AD =,90ADC ∠=,30BAD ∠=,点E F 、满足25AE AD =,12AF AB =,将AEF △沿EF 对折至PEF △,使得43PC =.(1)证明: EF PD ⊥(2)求面PCD 与面PBF 所成的二面角的正弦值. 解:(1)因为1725EF AF AE AB AD =−=−,又因为 1212()2525EF AD AB AD AD AB AD AD AD ⋅=−⋅=⋅−⋅12853cos3053533030025=⨯⨯−⨯⨯=−=,所以EF AD ⊥,即,EF ED EF PE ⊥⊥, 所以EF PED ⊥平面,又因为PD PED ⊂平面,所以EF PD ⊥;(2)因为90ADC ∠=,所以CD AD ⊥,又由(1)知EF AD ⊥,所以CD EF ∥,又因为EF PED ⊥平面, 所以CD PED ⊥平面,所以CD PD ⊥,又因为43PC =,3CD =,所以39PD =,又因为23PE =, 33ED =,所以222PE DE PD +=,所以PE ED ⊥,所以PE BCDEF ⊥平面,如图,分别以,,EF ED EP 为,,x y z 轴的正方向建立空间直角坐标系,所以(0,0,23)P ,(3,33,0)C (0,33,0)D ,(2,0,0)F ,(4,23,0)B ,所以(0,33,23),(3,0,0)PD CD =−=−,(2,0,23)PF =−,(4,23,23)PB =−,设平面PCD 的法量为(,,)n x y z =,则3200y z x −=⎧⎨=⎩,令3z =,则2y =,0x =,所以(0,2,3)n =,同理求得平面PBF 的法向量为(3,1,1)m =−, 所以165cos ,65135m n <>==⨯,设面PCD 与面PBF 所成的二面角为θ,则865sin 65θ=.18. (本题满分17分)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成绩为0分;若至少投中1次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率. (2)假设0p q <<.(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛? (ii )为使得甲、乙所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛? 解:(1)记A ={甲参加第一阶段比赛至少投中一次},B ={乙参加第二阶段比赛至少投中一次}, C ={甲、乙所在队的比赛成绩不少于5分},则3398()1(1)10.6125P A p =−−=−=, 337()1(1)10.58P B q =−−=−=,所以987686()()()0.68612581000P C P A P B ==⨯==, 所以甲、乙所在队的比赛成绩不少于5分的概率是0.686;(2)(i )记D ={第二阶段比赛成绩为15分},E ={甲、乙所在队的比赛成绩为15分},当甲参加第一阶段比赛时,3()1(1)P A p =−−,3()P D q =,所以33()[1(1)]P E q p =−−甲,同理,当乙参加第一阶段比赛时,33()[1(1)]P E p q =−−乙,因为0p q <<,所以3333323323()()[1(1)][1(1)][33][33]P E P E p q q p p q q q q p p p −=−−−−−=−+−−+乙甲222222222222[33][33]3[]pq p p q p q qp q pq p q pq p p q q pq =−+−−+=−−+3[()()(]3()()0pq p q p q pq p q pq p q p q pq =−+−−=−+−<,所以()()P E P E 乙甲<,所以为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由甲参加第一阶段比赛;(ii )不妨设让甲参加第一阶段的的比赛,则甲进入第二阶段比赛的概率为31p −1-(),设乙进第二阶 段比赛时投中的次数为X ,得分为Y ,则5Y X =,因为(3,)X B q ~,所以()3(1)E X q q =−,()5()15(1)E Y E X q q ==−,所以甲、乙所在队的比赛成绩的数学期望为:3215(1)[1(1]15(1)(33)q q p pq q p p −−−=−−+),同理让乙参加第一阶段的的比赛时,甲、乙所在队的比赛成绩的数学期望为:3215(1)[1(1]15(1)(33)p p q pq q q q −−−=−−+),因为01p q <<<,所以22(33)(33)()(3)0p p q q p q p q −+−−+=−+−>,所以应该让甲参加第一阶段的比赛.19. (本题满分 17分)已知双曲线C :22()x y m m −=>0,点1(5,4)P 在C 上,k 为常数,01k <<,按照如下方式依次构造点n P (2,3,n =⋅⋅⋅);过点1n P −作斜率为k 的直线与C 的左支交于点1n Q −,令n P 为1n Q −关于y 轴的对称点,记nP 的坐标为(,)n n x y . (1) 若12k =,求22,x y ; (2)证明:数列{}n n x y −是公比为11kk+−的等比数列. (3)设n S 为12n n n P P P ++△的面积,证明:对于任意正整数n ,1n n S S +=.解:(1)因为点1(5,4)P 在C 上,所以25169m =−=,所以双曲线C :229x y −=,又因为过点1P ,斜率为k 的直线方程为4(5)y k x −=−,因为12k =,所以230x y −+=,解方程组229230x y x y ⎧−=⎨−+=⎩化简后得240y y −=,所以4y =或0y =,所以0y =时,3x =−,4y =时,5x =,又因为1Q 在左支上,所以1(3,0)Q −,所以1Q 关于y 轴的对称点为2(3,0)P ,所以223,0x y ==. (2)根据题意知1(,)n n n Q x y −−,所以11n n n ny yk x x −−−=+所以111111n n n nn n n nx x y y k k x x y y −−−−++−+=−+−+ 又因为11,,(2)n n n P P Q n −−≥都在曲线C 上,所以2222119n n n n x y x y −−−=−=,所以1111()()()()9n n n n n n n n x y x y x y x y −−−−−+=−+= 所以111199,n n n n n n n n x y x y x y x y −−−−+=+=−−,所以 111111111111()()9919()()91n n n n n n n n n n n n n n n n n n n n n n n nx y x y x y x y x y x y kx y x y k x y x y x y x y −−−−−−−−−−−−−−+−+−−−+===−−+−−−+−−所以数列{}n n x y −是公比为11kk+−的等比数列. (3)因为11112121221111()()()()221nn n n n n n n n n n n n n n x y S x y x x y y x x y y x y ++++++++++==−−−−−又因为112112(0,1)n n n n n n n n y y y y k x x x x ++++++−−==∈++,所以11212111212111()()()()()()()()22n n n n n n n n n n n n n n n n n S x x k x x x x k x x k x x x x x x x x ++++++++++++=−+−−+=−+−−+ 2221211211221211)2n n n n n n n n n n n n n n n n n k x x x x x x x x x x x x x x k x x x ++++++++++++=+−−−−++=−又由(2)知111111()()()11n n n n k k x y x y k k−−++−=−=−−,且2222119n n n n x y x y −−−=−= 所以1919()1n n n n n k x y x y k −−+==−+,两式相加得111129()()11n n n k k x k k−−−+=++−,所以 11111[9()()]211n n n k k x k k −−−+=++−,1111[9()()]211n n n k k x k k+−+=++−,112111[9()()]211n n n k k x k k +++−+=++− 所以2111122111111111[9()()][9()()][9()()]41111411n n n n n n n n n n k k k k k k S k x x x k k k k k k k−−++++−+−+−+=−=++−++−+−+− 221119()9()18411k k k k k+−=+−−+,所以n S 与无关,只有k 有关,说明n S 是与n 无关的定值, 所以对任意的正整数n ,1n n S S +=.。

2023年新课标全国Ⅰ卷数学真题(解析版)

2023年新课标全国Ⅰ卷数学真题(解析版)

2023年普通高等学校招生全国统一考试数学(新高考全国Ⅰ卷)试卷类型:A一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=()A.{}2,1,0,1-- B.{}0,1,2 C.{}2- D.2【答案】C【解析】因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-.故选:C .2.已知1i22iz -=+,则z z -=()A.i -B.iC.0D.1【答案】A【解析】根据复数除法运算求出z ,再由共轭复数的概念得到z ,从而解出.因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.故选:A .3.已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A.1λμ+=B.1λμ+=-C.1λμ=D.1λμ=-【答案】D【解析】根据向量的坐标运算求出a b λ+ ,a b μ+,再根据向量垂直的坐标表示即可求出.因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+ 可得,()()0a b a b λμ+⋅+=,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .4.设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是()A.(],2-∞-B.[)2,0-C.(]0,2 D.[)2,+∞【答案】D【解析】利用指数型复合函数单调性,判断列式计算作答.函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞.故选:D5.设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ()A.233B.C.D.【答案】A【解析】根据给定的椭圆方程,结合离心率的意义列式计算作答.由21e =,得22213e e =,因此2241134a a --=⨯,而1a >,所以3a =,故选:A 6.过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.4C.4D.4【答案】B【解析】因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径r =,过点()0,2P -作圆C 的切线,切点为,A B ,因为PC ==,则PA ==,可得106sin ,cos44APC APC ∠==∠=,则sin sin 22sin cos 2444APB APC APC APC ∠=∠=∠∠=⨯⨯=,22221cos cos 2cos sin 0444APB APC APC APC ⎛⎫⎛⎫∠=∠=∠-∠=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即APB ∠为钝角,所以()sin sin πsin 4APB APB =-∠=∠=α;故选:B.7.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C【解析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,甲:{}n a 为等差数列,设其首项为1a ,公差为d ,则1111(1)1,222212n n n n S S S n n n d d dS na d a n a n n n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件;反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C 正确.故选:C8.已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A.79 B.19C.19-D.79-【答案】B【解析】根据给定条件,利用和角、差角的正弦公式求出sin()αβ+,再利用二倍角的余弦公式计算作答.因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=,所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=.故选:B【点睛】方法点睛:三角函数求值的类型及方法(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角总有一定关系.解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则()A.2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数B.2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数C.2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差D.2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差【答案】BD【解析】根据题意结合平均数、中位数、标准差以及极差的概念逐项分析判断.对于选项A :设2345,,,x x x x 的平均数为m ,126,,,x x x ⋅⋅⋅的平均数为n ,则()()165234123456234526412x x x x x x x x x x x x x x x x n m +-+++++++++++-=-=,因为没有确定()1652342,x x x x x x ++++的大小关系,所以无法判断,m n 的大小,例如:1,2,3,4,5,6,可得 3.5m n ==;例如1,1,1,1,1,7,可得1,2m n ==;例如1,2,2,2,2,2,可得112,6m n ==;故A 错误;对于选项B :不妨设123456x x x x x x ≤≤≤≤≤,可知2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数均为342x x +,故B 正确;对于选项C :因为1x 是最小值,6x 是最大值,则2345,,,x x x x 的波动性不大于126,,,x x x ⋅⋅⋅的波动性,即2345,,,x x x x 的标准差不大于126,,,x x x ⋅⋅⋅的标准差,例如:2,4,6,8,10,12,则平均数()12468101276n =+++++=,标准差11053s =,4,6,8,10,则平均数()14681074m =+++=,标准差2s ==显然53>,即12s s >;故C 错误;对于选项D :不妨设123456x x x x x x ≤≤≤≤≤,则6152x x x x -≥-,当且仅当1256,x x x x ==时,等号成立,故D 正确;故选:BD.10.噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级20lgp pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB燃油汽车106090混合动力汽车105060电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则().A.12p p ≥B.2310p p >C.30100p p =D.12100p p ≤【答案】ACD【解析】根据题意可知[][]12360,90,50,60,40p p p L L L ∈∈=,结合对数运算逐项分析判断.由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈=,对于选项A :可得1212100220lg 20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯,因为12p p L L ≥,则121220lg 0p p p L L p =-⨯≥,即12lg 0p p ≥,所以121pp ≥且12,0p p >,可得12p p ≥,故A 正确;对于选项B :可得2332200320lg20lg 20lg p p p p p L L p p p =-⨯=⨯-⨯,因为2324010p p p L L L -=-≥,则2320lg10p p ⨯≥,即231lg 2p p ≥,所以23pp ≥23,0p p >,可得23p ≥,当且仅当250p L =时,等号成立,故B 错误;对于选项C :因为33020lg 40p p L p =⨯=,即30lg 2p p =,可得30100pp =,即30100p p =,故C 正确;对于选项D :由选项A 可知:121220lgp p p L L p =-⨯,且12905040p p L L ≤-=-,则1220lg40p p ⨯≤,即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确;故选:ACD.11.已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A.()00f =B.()10f =C.()f x 是偶函数 D.0x =为()f x 的极小值点【答案】ABC【解析】因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误.故选:ABC .12.下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m 的球体B.所有棱长均为1.4m 的四面体C.底面直径为0.01m ,高为1.8m 的圆柱体D.底面直径为1.2m ,高为0.01m 的圆柱体【答案】ABD【解析】根据题意结合正方体的性质逐项分析判断.对于选项A :因为0.99m 1m <,即球体的直径小于正方体的棱长,所以能够被整体放入正方体内,故A 正确;对于选项B 1.4>,所以能够被整体放入正方体内,故B 正确;对于选项C 1.8<,所以不能够被整体放入正方体内,故C 正确;对于选项D :因为正方体的体对角线长为 1.2>,设正方体1111ABCD A B C D -的中心为O ,以1AC 为轴对称放置圆柱,设圆柱的底面圆心1O 到正方体的表面的最近的距离为m h ,如图,结合对称性可知:111111133,0.6222OC C A C O OC OO ===-=-,则1111C O h AA C A =,即30.6213h -=,解得10.60.340.0123h =->>,所以能够被整体放入正方体内,故D 正确;故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).【答案】64【解析】分类讨论选修2门或3门课,对选修3门,再讨论具体选修课的分配,结合组合数运算求解.(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种;②若体育类选修课2门,则不同的选课方案共有2144C C 24=种;综上所述:不同的选课方案共有16242464++=种.故答案为:64.14.在正四棱台1111ABCD A B C D -中,1112,1,2AB A B AA ===,则该棱台的体积为________.【答案】766【解析】结合图像,依次求得111,,AO AO A M ,从而利用棱台的体积公式即可得解.如图,过1A 作1A M AC ⊥,垂足为M ,易知1A M 为四棱台1111ABCD A B C D -的高,因为1112,1,2AB A B AA ===则11111111112,22222222AO AC B AO AC ======,故()111222AM AC AC =-=,则221116222A M A A AM =-=-=,所以所求体积为1676(4141)326V =⨯++⨯⨯=.故答案为:766.15.已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.【答案】[2,3)【解析】令()0f x =,得cos 1x ω=有3个根,从而结合余弦函数的图像性质即可得解.因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[2,3).16.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=-,则C 的离心率为________.【答案】355【解析】依题意,设22AF m =,则2113,22BF m BF AF a m ===+,在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m =-(舍去),所以124,2AF a AF a ==,213BF BF a ==,则5AB a =,故11244cos 55AF a F AF ABa ∠===,所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =,故355c e a ==.故答案为:355.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【答案】(1)31010;(2)6.【解析】(1)3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,310sin10A ∴==.(2)由(1)知,10cos 10A ==,由sin sin()B A C =+23101025sin cos cos sin (210105A C A C =+=+=,由正弦定理,sin sin c bC B=,可得255522b ⨯==,11sin 22AB h AB AC A ∴⋅=⋅⋅,310sin 610h b A ∴=⋅==.18.如图,在正四棱柱1111ABCD A B C D -中,12,4AB AA ==.点2222,,,A B C D 分别在棱111,,AA BB CC ,1DD 上,22221,2,3AA BB DD CC ====.(1)证明:2222B C A D ∥;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P .【答案】(1)证明见解析;(2)1.【解析】(1)以C 为坐标原点,1,,CD CB CC 所在直线为,,x y z 轴建立空间直角坐标系,如图,则2222(0,0,0),(0,0,3),(0,2,2),(2,0,2),(2,2,1)C C B D A ,2222(0,2,1),(0,2,1)B C A D ∴=-=- ,2222B C A D ∴ ∥,又2222B C A D ,不在同一条直线上,2222B C A D ∴∥.【小问2详解】设(0,2,)(04)P λλ≤≤,则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C λ=--=---,设平面22PA C 的法向量(,,)n x y z = ,则22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩,令2z =,得3,1y x λλ=-=-,(1,3,2)n λλ∴=--,设平面222A C D 的法向量(,,)m a b c = ,则2222222020m A C a b c m D C a c ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,令1a =,得1,2==b c ,(1,1,2)m ∴=,3cos ,cos1502n m n m n m ⋅∴==︒= ,化简可得,2430λλ-+=,解得1λ=或3λ=,(0,2,1)P ∴或(0,2,3)P ,21B P ∴=.19.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.【答案】(1)答案详见解析;(2)证明详见解析【解析】(1)因为()()e xf x a a x =+-,定义域为R ,所以()e 1xf x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.(2)由(1)得,()()()ln min 2ln ln ln e 1af a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a在2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min2212ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.20.设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .【答案】(1)3n a n =;(2)5150d =.【解析】(1)21333a a a =+ ,132d a d ∴=+,解得1a d =,32133()6d d S a a =+==∴,又31232612923T b b b d d d d =++=++=,339621S T d d∴+=+=,即22730d d -+=,解得3d =或12d =(舍去),1(1)3n a a n d n ∴=+-⋅=.(2){}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+,2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d =,1d > ,0n a ∴>,又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=,505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去)当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解;当1a d =时,501495051a a d d =+==,解得5150d =.综上,5150d =.21.甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .【答案】(1)0.6;(2)1121653i -⎛⎫⨯+ ⎪⎝⎭;(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解析】(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.(2)设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+,构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭,又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=+ ⎪ ⎪⎝⎭⎝⎭.(3)因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nnnn n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- ,故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于【答案】(1)214y x =+;(2)见解析.【解析】(1)设(,)P x y ,则y =,两边同平方化简得214y x =+,故21:4W y x =+.(2)设矩形的三个顶点222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在W 上,且a b c <<,易知矩形四条边所在直线的斜率均存在,且不为0,则1,AB BC k k a b b c =⋅-+<+,令2240114AB k b a b a b am ⎛⎫+-+ ⎪⎝=+⎭==<-,同理令0BC k b c n =+=>,且1mn =-,则1m n=-,设矩形周长为C ,由对称性不妨设||||m n ≥,1BC AB k k c a n m n n-=-=-=+,则11||||(((2C AB BC b a c b c a n n ⎛=+=-+-≥-=+ ⎝.0n >,易知10n n ⎛+> ⎝则令()222111()1,0,()22f x x x x f x x x x x x '⎛⎫⎛⎫⎛⎫=++>=+- ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()0f x '=,解得22x =,当20,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,此时()f x 单调递减,当2,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭,()0f x '>,此时()f x 单调递增,则min 227()24f x f ⎛⎫== ⎪ ⎪⎝⎭,故13322C ≥=,即C ≥.当C =时,,2n m ==,且((b a b a -=-m n =时等号成立,矛盾,故C >得证.。

2024年全国统一高考数学试卷(新高考Ⅰ)正式版含答案解析

2024年全国统一高考数学试卷(新高考Ⅰ)正式版含答案解析

绝密★启用前2024年全国统一高考数学试卷(新高考Ⅰ)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x|−5<x 3<5},B ={−3,−1,0,2,3},则A ∩B =( ) A. {−1,0} B. {2,3} C. {−3,−1,0} D. {−1,0,2}2.若z z−1=1+i ,则z =( )A. −1−iB. −1+iC. 1−iD. 1+i3.已知向量a ⃗=(0,1),b ⃗⃗=(2,x),若b ⃗⃗⊥(b ⃗⃗−4a ⃗⃗),则x =( ) A. −2B. −1C. 1D. 24.已知cos(α+β)=m ,tanαtanβ=2,则cos(α−β)=( ) A. −3mB. −m3C. m3D. 3m5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为√ 3,则圆锥的体积为( ) A. 2√ 3πB. 3√ 3πC. 6√ 3πD. 9√ 3π6.已知函数为f(x)={−x 2−2ax −a,x <0,e x +ln(x +1),x ≥0在R 上单调递增,则a 取值的范围是( )A. (−∞,0]B. [−1,0]C. [−1,1]D. [0,+∞)7.当x ∈[0,2π]时,曲线y =sinx 与y =2sin(3x −π6)的交点个数为( ) A. 3B. 4C. 6D. 88.已知函数为f(x)的定义域为R ,f(x)>f(x −1)+f(x −2),且当x <3时,f(x)=x ,则下列结论中一定正确的是( ) A. f(10)>100B. f(20)>1000C. f(10)<1000D. f(20)<10000二、多选题:本题共3小题,共18分。

全国统一高考数学试卷(新课标ⅰ)(含解析版)

全国统一高考数学试卷(新课标ⅰ)(含解析版)

全国统一高考数学试卷(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E 于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N 内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB 垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.全国统一高考数学试卷(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,﹣a m=1,所以公差d=a m+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l 为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=及+1b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,又由题意,b n﹣c n+1=,∴=a1﹣b n,+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N 内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f(x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB 垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt △DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.。

精品解析:2023年全国新高考I卷数学试题(解析版)

精品解析:2023年全国新高考I卷数学试题(解析版)

绝密☆启用前 试卷类型:A2023年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己地姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角"条形码粘贴处".2.作答选择题时,选出每小题解析后,用2B 铅笔把答题卡上对应题目选项地解析信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他解析,解析不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,解析必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来地解析,然后再写上新地解析;不准使用铅笔和涂改液.不按以上要求作答地解析无效.4.考生必须保持答题卡地整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.若集合{4},{31}M x N x x =<=≥∣,则M N = ( )A. {}02x x ≤< B. 123xx ⎧⎫≤<⎨⎬⎩⎭C. {}316x x ≤< D. 1163xx ⎧⎫≤<⎨⎬⎩⎭【解析】D 【解析】【分析】求出集合,M N 后可求M N ⋂.详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D2. 若i(1)1z -=,则z z +=( )A. 2- B. 1- C. 1D. 2【解析】D 【解析】【分析】利用复数地除法可求z ,从而可求z z +.【详解】由题设有21i1i i i z -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D【3. 在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB=( )A. 32m n -B. 23m n-+C. 32m n+D. 23m n+【解析】B 【解析】【分析】根据几何条件以及平面向量地线性运算即可解出.【详解】因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=-23m n =-+.故选:B .4. 南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面地面积为21400km .;水位为海拔1575m .时,相应水面地面积为21800km .,将该水库在这两个水位间地形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,增加地水量约为2.65≈)( )A. 931.010m ⨯ B. 931.210m ⨯ C. 931.410m ⨯ D. 931.610m ⨯【解析】C 【解析】【分析】根据题意只要求出棱台地高,即可利用棱台地体积公式求出.【详解】依题意可知棱台地高为157.5148.59MN =-=(m),所以增加地水量即为棱台地体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =++=⨯⨯⨯+⨯'(()679933320109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .5. 从2至8地7个整数中随机取2个不同地数,则这2个数互质地概率为( )A.16B.13C.12D.23【解析】D 【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8地7个整数中随机取2个不同地数,共有27C 21=种不同地取法,若两数不互质,不同地取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种,故所求概率2172213P -==.故选:D.6. 记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭地最小正周期为T .若23T ππ<<,且()y f x =地图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A. 1 B.32C.52D. 3【解析】A 【解析】【分析】由三角函数地图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数地最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<,又因为函数图象关于点3,22π⎛⎫⎪⎝⎭对称,所以3,24k k Z ππωπ+=∈,且2b =,所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭.故选:A7. 设0.110.1e ,ln 0.99a b c ===-,则( )A. a b c << B. c b a<< C. c a b<< D. a c b<<【解析】C 【解析】【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 大小.【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增,所以1((0)09f f <=,所以101ln099-<,故110ln ln 0.999>=-,即b c >,所以1((0)010f f -<=,所以91ln+01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--,令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<-时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增,又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)xg x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c >故选:C.8. 已知正四棱锥地侧棱长为l ,其各顶点都在同一球面上.若该球地体积为36π,且3l ≤≤,则该正四棱锥体积地取值范围是( )A. 8118,4⎡⎤⎢⎥⎣⎦B. 2781,44⎡⎤⎢⎥⎣⎦C. 2764,43⎡⎤⎢⎥⎣⎦D. [18,27]【解析】C 【解析】【分析】设正四棱锥地高为h ,由球地截面性质列方程求出正四棱锥地底面边长与高地关系,由此确定正四棱锥体积地取值范围.【详解】∵ 球地体积为36π,所以球地半径3R =,的设正四棱锥地底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥地体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤,0V '>,当l <≤,0V '<,所以当l =时,正四棱锥地体积V 取最大值,最大值为643,又3l =时,274V =,l =时,814V =,所以正四棱锥地体积V 地最小值为274,所以该正四棱锥体积地取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出地选项中,有多项符合题目要求.全部选对地得5分,部分选对地得2分,有选错地得0分.9. 已知正方体1111ABCD A B C D -,则( )A. 直线1BC 与1DA 所成地角为90︒ B. 直线1BC 与1CA 所成地角为90︒C. 直线1BC 与平面11BB D D 所成地角为45︒ D. 直线1BC 与平面ABCD 所成地角为45︒【解析】ABD 【解析】【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接1B C 、1BC ,因为11//DA B C ,所以直线1BC 与1B C 所成地角即为直线1BC 与1DA 所成地角,因为四边形11BB C C 为正方形,则1B C ⊥1BC ,故直线1BC 与1DA 所成地角为90︒,A 正确;连接1AC ,因为11A B ⊥平面11BB C C ,1BC ⊂平面11BB C C ,则111A B BC ⊥,因为1B C ⊥1BC ,1111A B B C B = ,所以1BC ⊥平面11A B C ,又1AC ⊂平面11A B C ,所以11BC CA ⊥,故B 正确;连接11A C ,设1111A C B D O = ,连接BO ,因为1BB ⊥平面1111D C B A ,1C O ⊂平面1111D C B A ,则11C O B B ⊥,因为111C O B D ⊥,1111B D B B B ⋂=,所以1C O ⊥平面11BB D D ,所以1C BO ∠为直线1BC 与平面11BB D D 所成地角,设正方体棱长为1,则1C O =,1BC =,1111sin 2C O C BO BC ∠==,所以,直线1BC 与平面11BB D D 所成地角为30 ,故C 错误;因为1C C ⊥平面ABCD ,所以1C BC ∠为直线1BC 与平面ABCD 所成地角,易得145C BC ∠=,故D 正确.故选:ABD10. 已知函数3()1f x x x =-+,则( )A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =地对称中心D. 直线2y x =是曲线()y f x =地切线【解析】AC 【解析】【分析】利用极值点地定义可判断A ,结合()f x 地单调性、极值可判断B ,利用平移可判断C ;利用导数地几何意义判断D.【详解】由题,()231f x x '=-,令()0f x '>得x >x <,令()0f x '<得x <<所以()f x在(上单调递减,在(,-∞,)+∞上单调递增,所以x =是极值点,故A 正确;因(10f =>,10f =>,()250f -=-<,所以,函数()f x在,⎛-∞ ⎝上有一个零点,当x ≥时,()0f x f ≥>,即函数()f x在⎫∞⎪⎪⎭+上无零点,综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数地定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 地对称中心,将()h x 地图象向上移动一个单位得到()f x 地图象,所以点(0,1)是曲线()y f x =地对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误.故选:AC11. 已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -地直线交C 于P ,Q 两点,则( )A. C 地准线为1y =-B. 直线AB 与C 相切C. 2|OP OQ OA ⋅> D. 2||||||BP BQ BA ⋅>【解析】BCD 【解析】.【分析】求出抛物线方程可判断A ,联立AB 与抛物线地方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D.【详解】将点A 地代入抛物线方程得12p =,所以抛物线方程为2x y =,故准线方程为14y =-,A 错误;1(1)210AB k --==-,所以直线AB 地方程为21y x =-,联立221y x x y=-⎧⎨=⎩,可得2210x x -+=,解得1x =,故B 正确;设过B 地直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点,所以,直线l 地斜率存在,设其方程为1y kx =-,1122(,),(,)P x y Q x y ,联立21y kx x y=-⎧⎨=⎩,得210x kx -+=,所以21212Δ401k x x k x x ⎧=->⎪+=⎨⎪=⎩,所以2k >或2k <-,21212()1y y x x ==,又||OP ==,||OQ ==,所以2||||||2||OP OQ k OA ⋅===>=,故C 正确;因为1||||BP x =,2||||BQ x =,所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD12. 已知函数()f x 及其导函数()'f x 地定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A. (0)0f = B. 102g ⎛⎫-= ⎪⎝⎭C. (1)(4)f f -=D. (1)(2)g g -=【解析】BC 【解析】【分析】转化题设条件为函数地对称性,结合原函数与导函数图象地关系,根据函数地性质逐项判断即可得解.【详解】因为322f x ⎛⎫-⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 地图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=-⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 地函数值,故A 错误.故选:BC.【点睛】关键点点睛:解决本题地关键是转化题干条件为抽象函数地性质,准确把握原函数与导函数图象间地关系,准确把握函数地性质(必要时结合图象)即可得解.三、填空题:本题共4小题,每小题5分,共20分.13. 81()y x y x ⎛⎫-+ ⎪⎝⎭地展开式中26x y 地系数为________________(用数字作答).【解析】-28【解析】【分析】()81y x y x ⎛⎫-+ ⎪⎝⎭可化为()()88y x y x y x +-+,结合二项式展开式地通项公式求解.【详解】因为()()()8881=y y x y x y x y x x⎛⎫-++-+ ⎪⎝⎭,所以()81y x y x ⎛⎫-+ ⎪⎝⎭地展开式中含26x y 地项为6265352688C 28y x y C x y x y x-=-,()81y x y x ⎛⎫-+ ⎪⎝⎭地展开式中26x y 地系数为-28故解析为:-2814. 写出与圆221x y +=和22(3)(4)16x y -+-=都相切地一条直线地方程________________.【解析】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=地圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=地圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l地距离1d ==,解得54t =,所以l 地方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,14⎧=⎪⎪,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故解析为:3544y x =-+或7252424y x =-或1x =-.15. 若曲线()e x y x a =+有两条过坐标原点地切线,则a 地取值范围是________________.【解析】()(),40,∞∞--⋃+【解析】【分析】设出切点横坐标0x ,利用导数地几何意义求得切线方程,根据切线经过原点得到关于0x 地方程,根据此方程应有两个不同地实数根,求得a 地取值范围.【详解】∵()e xy x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e x k x a =++,切线方程为:()()()00000e 1e x x y x a x a x x -+=++-,∵切线过原点,∴()()()00000e1e x x x a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a =+> ,解得4a <-或0a >,∴a 地取值范围是()(),40,∞∞--⋃+,故解析为:()(),40,∞∞--⋃+16. 已知椭圆2222:1(0)x y C a b a b+=>>,C 地上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 地直线与C 交于D ,E 两点,||6DE =,则ADE 地周长是________________.【解析】13【解析】【分析】利用离心率得到椭圆地方程为222222213412043x y x y c c c+=+-=,即,根据离心率得到直线2AF地斜率,进而利用直线地垂直关系得到直线DE 地斜率,写出直线DE 地方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,利用弦长公式求得138c =,得1324a c ==,根据对称性将ADE 地周长转化为2F DE △地周长,利用椭圆地定义得到周长为413a =.【详解】∵椭圆地离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆地方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如下图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 地直线与C 交于D ,E 两点,DE 为线段2AF 地垂直平分线,∴直线DE, 直线DE 地方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c =+⨯⨯=⨯⨯ ,∴22264613c CD y =-==⨯⨯⨯=,∴ 138c =, 得1324a c ==, ∵DE 为线段2AF 地垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE 地周长等于2F DE △地周长,利用椭圆地定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故解析为:13.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 记n S 为数列{}n a 地前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13地等差数列.(1)求{}n a 地通项公式;(2)证明:121112naa a +++< .【解析】(1)()12n n n a +=(2)见解析【解析】【分析】(1)利用等差数列地通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项地关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 地通项公式()12n n n a +=;(2)由(1)地结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得.【小问1详解】∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13地等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+,即111n n a n a n -+=-,∴31211221n nn n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立,∴{}n a 地通项公式()12n n n a +=;【小问2详解】()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭ ∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 18. 记ABC 地内角A ,B ,C 地对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A B A B =++.(1)若23C π=,求B ;(2)求222a b c+地最小值.【解析】(1)π6; (2)5.【解析】【分析】(1)根据二倍角公式以及两角差地余弦公式可将cos sin 21sin 1cos2A B A B =++化成()cos sin A B B +=,再结合π02B <<,即可求出;(2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B+-,然后利用基本不等式即可解出.【小问1详解】因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A B C =-=+=-=,而π02B <<,所以π6B =;【小问2详解】由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<,而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-.所以222222222sin sin cos 21cos sin cos a b A B B B c C B+++-==()2222222cos 11cos 24cos 555cos cos B BB BB -+-==+-≥-=-.当且仅当2cos B =,所以222a b c +地最小值为5.19. 如图,直三棱柱111ABC A B C -地体积为4,1A BC 地面积为.(1)求A 到平面1A BC 地距离;(2)设D 为1AC 地中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --地正弦值.【解析】(1(2【解析】【分析】(1)由等体积法运算即可得解;(2)由面面垂直地性质及判定可得BC ⊥平面11ABB A ,建立空间直角坐标系,利用空间向量法即可得解.【小问1详解】在直三棱柱111ABC A B C -中,设点A 到平面1A BC 地距离为h ,则111111111143333A A BC A A ABC A ABC A B BC C C B V S h V S A A V ---=⋅===⋅== ,解得h =,所以点A 到平面1A BC 地距离为;【小问2详解】取1A B 地中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC 平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =所以12AA AB ==,1A B =所以2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 地中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC == ,设平面ABD 地一个法向量(),,m x y z = ,则020m BD x y z m BA y ⎧⋅=++=⎪⎨⋅==⎪⎩ ,可取()1,0,1m =- ,设平面BDC 地一个法向量(),,n a b c = ,则020m BD a b c m BC a ⎧⋅=++=⎪⎨⋅==⎪⎩ ,可取()0,1,1n =-r ,则1cos ,2m n m n m n⋅===⋅ ,所以二面角A BD C --=20. 一医疗团队为研究某地地一种地方性疾病与当地居民地卫生习惯(卫生习惯分为良好和不够良好两类)地关系,在已患该疾病地病例中随机调查了100例(称为病例组),同时在未患该疾病地人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%地把握认为患该疾病群体与未患该疾病群体地卫生习惯有差异?(2)从该地地人群中任选一人,A 表示事件"选到地人卫生习惯不够良好",B 表示事件"选到地人患有该疾病".(|)(|)P B A P B A 与(|)(|)P B A P B A 地比值是卫生习惯不够良好对患该疾病风险程度地一项度量指标,记该指标为R .(ⅰ)证明:(|)(|)(|)(|)P A B P A B R P A B P A B =⋅;(ⅱ)利用该调查数据,给出(|),(|)P A B P A B 地估计值,并利用(ⅰ)地结果给出R 地估计值.附22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k ≥0.0500.0100.001k 3.841 6.63510.828【解析】(1)解析见解析(2)(i )证明见解析;(ii)6R =;【解析】【分析】(1)由所给数据结合公式求出2K 地值,将其与临界值比较大小,由此确定是否有99%地把握认为患该疾病群体与未黄该疾病群体地卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i )结合已知数据求R .【小问1详解】由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d -⨯-⨯==++++⨯⨯⨯,又2( 6.635)=0.01P K ≥,24 6.635>,所以有99%地把握认为患该疾病群体与未患该疾病群体地卫生习惯有差异.【小问2详解】(i)因为(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P A R P B A P B A P A P AB P A P AB =⋅⋅⋅⋅,所以()()()()()()()()P AB P B P AB P B R P B P AB P B P AB =⋅⋅⋅所以(|)(|)(|)(|)P A B P A B R P A B P A B =⋅,(ii)由已知40(|)100P A B =,10(|)100P A B =,又60(|)100P A B =,90(|100P A B =,所以(|)(|)=6(|)(|)P A B P A B R P A B P A B =⋅21. 已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 地斜率之和为0.(1)求l 地斜率;(2)若tan PAQ ∠=,求PAQ △地面积.【解析】(1)1-;(2.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 地斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 地斜率;(2)根据直线,AP AQ 地斜率之和为0可知直线,AP AQ 地倾斜角互补,再根据tan PAQ ∠=出直线,AP AQ 地斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 地坐标,即可得到直线PQ 地方程以及PQ 地长,由点到直线地距离公式求出点A 到直线PQ 地距离,即可得出PAQ △地面积.【小问1详解】因为点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 地斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.【小问2详解】不妨设直线,PA PB 地倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=即tan 2α=-,2tan 0αα-=,解得tan α=,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以P x =,P y=,同理可得,Q x =Q y=所以5:03PQ x y +-=,163PQ =,点A 到直线PQ地距离d ,故PAQ △地面积为11623⨯=.22. 已知函数()x f x e ax =-和()ln g x ax x =-有相同最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同地交点,并且从左到右地三个交点地横坐标成等差数列.【解析】(1)1a =(2)见解析【解析】的【分析】(1)根据导数可得函数地单调性,从而可得相应地最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时, e x x b -=地解地个数、ln x x b -=地解地个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 地大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同地交点可得b 地取值,再根据两类方程地根地关系可证明三根成等差数列.【小问1详解】()e x f x ax =-地定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-地定义域为()0,+∞,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫ ⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同地最小值,故11ln ln a a a a -=-,整理得到1ln 1a a a-=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,+∞上地减函数,而()10g =,故()0g a =地唯一解为1a =,故1ln 1a a a-=+地解为1a =.综上,1a =.【小问2详解】由(1)可得e ()x x f x =-和()ln g x x x =-地最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=地解地个数、ln x x b -=地解地个数.设()e x S x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0-∞上为减函数,在()0,+∞上为增函数,所以()()min 010S x S b ==-<,而()e0b S b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20b u b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同地零点,即e x x b -=地解地个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x ¢<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()e e 0b b T --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同地零点即ln x x b -=地解地个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同地交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2x h x x'=+-,设()e 1x s x x =--,0x >,则()e 10x s x '=->,故()s x 在()0,+∞上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,+∞上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,+∞上有且只有一个零点0x ,0311e x <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同交点,故()()001b f x g x ==>,此时e x x b -=有两个不同地零点1010,(0)x x x x <<,此时ln x x b -=有两个不同地零点0404,(01)x x x x <<<,故11e x x b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44e x b x -=即()44e 0x b x b b ----=,故4x b -为方程e x x b -=地解,同理0x b -也为方程e x x b -=地解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=地解,同理0x b +也为方程ln x x b -=地解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数地最值问题,往往需要利用导数讨论函数地单调性,此时注意对参数地分类讨论,而不同方程地根地性质,注意利用方程地特征找到两类根之间地关系.的。

2023年全国统一高考数学试卷(文科)(乙卷)(解析版)

2023年全国统一高考数学试卷(文科)(乙卷)(解析版)

2023年全国统一高考数学试卷(文科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)|2+i2+2i3|=( )A.1B.2C.D.5【答案】C【解答】解:由于|2+i2+2i3|=|1﹣2i|=.故选:C.2.(5分)设全集U={0,1,2,4,6,8},集合M={0,4,6},N={0,1,6},则M∪∁U N =( )A.{0,2,4,6,8}B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【答案】A【解答】解:由于∁U N={2,4,8},所以M∪∁U N={0,2,4,6,8}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a cos B﹣b cos A=c,且C=,则∠B=( )A.B.C.D.【答案】C【解答】解:由a cos B﹣b cos A=c得sin A cos B﹣sin B cos A=sin C,得sin(A﹣B)=sin C=sin(A+B),即sin A cos B﹣sin B cos A=sin A cos B+sin B cos A,即2sin B cos A=0,得sin B cos A=0,在△ABC中,sin B≠0,∴cos A=0,即A=,则B=π﹣A﹣C==.故选:C.5.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.6.(5分)正方形ABCD的边长是2,E是AB的中点,则•=( )A.B.3C.2D.5【答案】B【解答】解:正方形ABCD的边长是2,E是AB的中点,所以=﹣1,,,=2×2=4,则•=()•()=+++=﹣1+0+0+4=3.故选:B.7.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.8.(5分)函数f(x)=x3+ax+2存在3个零点,则a的取值范围是( )A.(﹣∞,﹣2)B.(﹣∞,﹣3)C.(﹣4,﹣1)D.(﹣3,0)【答案】B【解答】解:f′(x)=3x2+a,若函数f(x)=x3+ax+2存在3个零点,则f′(x)=3x2+a=0,有两个不同的根,且极大值大于0极小值小于0,即判别式Δ=0﹣12a>0,得a<0,由f′(x)>0得x>或x<﹣,此时f(x)单调递增,由f′(x)<0得﹣<x<,此时f(x)单调递减,即当x=﹣时,函数f(x)取得极大值,当x=时,f(x)取得极小值,则f(﹣)>0,f()<0,即﹣(﹣+a)+2>0,且(﹣+a)+2<0,即﹣×+2>0,①,且×+2<0,②,则①恒成立,由×+2<0,2<﹣×,平方得4<﹣×,即a3<﹣27,则a<﹣3,综上a<﹣3,即实数a的取值范围是(﹣∞,﹣3).故选:B.9.(5分)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.B.C.D.【答案】A【解答】解:某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,甲、乙两位参赛同学构成的基本事件总数n=6×6=36,其中甲、乙两位参赛同学抽到不同主题包含的基本事件个数m==30,则甲、乙两位参赛同学抽到不同主题概率为P===.故选:A.10.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.11.(5分)已知实数x,y满足x2+y2﹣4x﹣2y﹣4=0,则x﹣y的最大值是( )A.1+B.4C.1+3D.7【答案】C【解答】解:根据题意,x2+y2﹣4x﹣2y﹣4=0,即(x﹣2)2+(y﹣1)2=9,其几何意义是以(2,1)为圆心,半径为3的圆,设z=x﹣y,变形可得x﹣y﹣z=0,其几何意义为直线x﹣y﹣z=0,直线y=x﹣z与圆(x﹣2)2+(y﹣1)2=9有公共点,则有≤3,解可得1﹣3≤z≤1+3,故x﹣y的最大值为1+3.故选:C.12.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高等学校招生全国统一考试 (江苏卷)数学Ⅰ 注意事项绝密★启用前考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页, 均为非选择题(第1题~第20题, 共20题).本卷满分为160分.考试时间为120分钟.考试结束后, 请将本试卷和答题卡一并交回.2.答题前, 请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答, 在其它位置作答一律无效.5.如需作图, 须用2B 铅笔绘、写清楚, 线条、符号等须加黑、加粗.一、填空题:本大题共14小题, 每小题5分, 共70分.请把答案直接填写在答题卡相应位置.......上.. 1.函数42sin(3π-=x y 的最小正周期为 ▲ .解析:2==2T ππ 2.设2)2(i z -=(i 为虚数单位), 则复数z 的模为 ▲ . 解析:34,Z i Z =-=3.双曲线191622=-y x 的两条渐近线的方程为 ▲ . 解析:3y=4x ±4.集合{}1,0,1-共有 ▲ 个子集. 解析:328=(个)5.右图是一个算法的流程图, 则输出的n 的值是 ▲解析:经过了两次循环, n 值变为36.抽样统计甲, 乙两位射击运动员的5次训练成绩(单位:环), 结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ . 解析:易知均值都是90, 乙方差较小,()()()()()()()22222221118990909091908890929025ni i s x xn ==-=-+-+-+-+-=∑7.现有某类病毒记作n m Y X , 其中正整数)9,7(,≤≤n m n m 可以任意选取, 则n m ,都取到奇数的概率为 ▲ . 解析:m 可以取的值有:1,2,3,4,5,6,7共7个 n 可以取的值有:1,2,3,4,5,6,7,8,9共9个所以总共有7963⨯=种可能 符合题意的m 可以取1,3,5,7共4个 符合题意的n 可以取1,3,5,7,9共5个 所以总共有4520⨯=种可能符合题意 所以符合题意的概率为20638.如图, 在三棱柱ABC C B A -111中, F E D ,,分别是1,,AA AC AB 的中点, 设三棱锥ADE F -的体积为1V , 三棱柱ABC C B A -111的体积为2V , 则=21:V V ▲ .解析:112211111334224ADE ABC V S h S h V ==⨯⨯=所以121:24V V =9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点),(y x P 是区域D 内的任意一点, 则y x 2+的取值范围是 ▲ .解析:易知切线方程为:21y x =-所以与两坐标轴围成的三角形区域三个点为()()()0,00.5,00,1A B C - 易知过C 点时有最小值2-, 过B 点时有最大值0.510.设E D ,分别是ABC ∆的边BC AB ,上的点, AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21,λλ为实数), 则21λλ+的值为 ▲ .解析:易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+u u u r u u u r u u u r u u u r u u u r u u ur u u u r 所以1212λλ+=11.已知)(x f 是定义在R 上的奇函数.当0>x 时, x x x f 4)(2-=, 则不等式x x f >)(的解集用区间表示为 ▲ . 解析:因为)(x f 是定义在R 上的奇函数, 所以易知0x ≤时, 2()4f x x x =-- 解不等式得到x x f >)(的解集用区间表示为()()5,05,-+∞U12.在平面直角坐标系xOy 中, 椭圆C 的标准方程为)0,0(12222>>=+b a by a x , 右焦点为F ,右准线为l , 短轴的一个端点为B , 设原点到直线BF 的距离为1d , F 到l 的距离为2d .若126d d =, 则椭圆的离心率为 ▲ .解析:由题意知2212,bc a b d d c a c c==-=所以有2b c = 两边平方得到2246a b c =, 即42246a a c c -= 两边同除以4a 得到2416e e -=, 解得213e =,即e =13.平面直角坐标系xOy 中, 设定点),(a a A , P 是函数)0(1>=x xy 图像上一动点,若点A P ,之间最短距离为22, 则满足条件的实数a 的所有值为 ▲ . 解析: 由题意设()0001,,0P x x x ⎛⎫> ⎪⎝⎭则有()222222200000200000111112++2=+-2+22PA x a a x a x a x a x a x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 令()001t 2x t x +=≥ 则()222=(t)=t 2222PA f at a t -+-≥ 对称轴t a = 1.2a ≤时,22min 2(2)2422428PA f a a a a ==-+∴-+=1a =- , 3a =(舍去)2.2a >时,22min 2()228PA f a a a ==-∴-=a = , a =综上1a =-或a =14.在正项等比数列{}n a 中, 215=a , 376=+a a .则满足n n a a a a a a a a ......321321>++++的最大正整数n 的值为 ▲ . 解析:2252552667123123115521155223 (1),.222222011522360022n n n n n n n n n n a a a a a a a a a a q a q q a a n nq n q n q a -------=+=+-+=∴++++>∴->∴->>-∴-><<=>∴==Q QQ n N +∈112,n n N +∴≤≤∈又12n =时符合题意, 所以n 的最大值为12二、解答题:本大题共6小题, 共计90分。

请在答题卡指定区域内作答, 解答时应写出文字说明、证明过程或演算步骤。

15.(本小题满分14分)已知()cos sin a αα=r ,, ()cos sin b ββ=r,, 0βαπ<<<.(1)若a b -=r r 求证:a b ⊥r r ;(2) 设()01c ,=r , 若a b c +=r r r, 求α, β的值.解:(1)()()cos ,sin ,cos ,sin ,0a b ααβββαπ==<<<r ra b -=r r Q 22a b ∴-=r r 2222a b ab ∴+-=r r r r1122a b +-⋅=r r, 0a b ⋅=r r ,a b ∴⊥r r(2)()()()0,1,cos cos ,sin sin 0,1cos cos 0sin sin 1c a b cαβαβαβαβ=+=∴++=∴+=∴+=r r r r Q ①②22+①②得:()2+2cos 1αβ-=, 得 ()1cos 2αβ-=-0023βαπαβππαβ<<<∴<-<∴-=Q又cos cos 05,66αβαβπππαβ+=∴+=∴==16. (本小题满分14分)如图, 在三棱锥S ABC -中, 平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =. 过A 作AF SB ⊥, 垂足为F , 点E ,G 分别是侧棱SA ,SC 的中点.求证:(1) 平面EFG //平面ABC ; (2) BC SA ⊥.解:(1),E G Q 分别是侧棱,SA SC 的中点 EG AC ∴∥AC Q 在平面ABC 中, EG 在平面外 EG ∴∥平面ABC ,AS AB AF SB =Q ⊥ F ∴为SB 中点 EF AB ∴∥Q AB 在平面ABC 中, EF 在平面外 EF ∴∥平面ABC Q EF 与EG 相交于E ,EF EG 在平面EFG 中 ∴ 平面EFG //平面ABC(2) Q 平面SAB ⊥平面SBC SB 为交线Q AF 在SAB 中, AF SB ⊥ AF ∴⊥平面SBC AF BC ∴⊥ BC AB Q ⊥ AF 与AB 相交于A ,AF AB 在平面SAB 中 BC ∴⊥平面SAB BC SA ∴⊥17. (本小题满分14分)如图, 在平面直角坐标系xOy 中, 点()03A ,, 直线24l y x =-:.设圆的半径为1, 圆心在l 上.(1) 若圆心C 也在直线1y x =-上, 过点A 作圆C 的切线, 求切线的方程; (2) 若圆C 上存在点M , 使2MA MO =, 求圆心C 的横坐标a 的取值范围.解:(1)241y x y x =-=-①②①与②联立得到圆心坐标()3,2C ∴圆方程为()()22321x y -+-= 切线斜率不存在时, 不合题意 ∴设切线方程为3y kx =+1=解得0k =或34k =-∴切线方程为3y =或334y x =-+(2)设(),24C a a -则圆方程为()()22241x a y a -+-+= 设00(,)M x y由题意()()2200241x a y a -+-+= 2MA MO =Q()22220000344x y x y ∴+-=+即()220014x y ++=Q M 存在∴圆()()22241x a y a -+-+=与圆()2214x y ++=有交点即两圆相交或相切 ()()2222121d ∴-≤≤+即()()221024(1)9a a ≤-+---≤ 1205a ∴≤≤18. (本小题满分16分)如图, 游客从某旅游景区的景点处下山至C 处有两种路径. 一种是从沿A 直线步行到C , 另一种是先从A 沿索道乘缆车到B , 然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山, 甲沿AC 匀速步行, 速度为50m/min. 在甲出发2min 后, 乙从A 乘缆车到B , 在B 处停留1min 后, 再从B 匀速步行到C . 假设缆车匀速直线运动的速度为130m/min , 山路AC 长为1260m , 经测量, 12cos 13A =, 3cos 5C =. (1) 求索道AB 的长;(2) 问乙出发多少分钟后, 乙在缆车上与甲的距离最短? (3) 为使两位游客在C 处相互等待的时间不超过3分钟, 乙步行的速度应控制在什么范围内? 解:(1)123cos ,cos 1350,0,054sin ,sin 135A C A B C A C πππ==<<<<<<∴==Q Q+=A B C π+Q()5312463sin =sin +=sin cos +cos sin =+=13513565B AC A C A C ∴⋅⋅ ==sin sin sin AC AB BCB C A∴sin 465==1260=1040m sin 563C AB AC B ∴⋅⋅⋅(2) sin ==500sin ABC AC B⋅ 设乙出发()t 8t ≤分钟后, 甲到了D 处, 乙到了E 处 则有=50t+100AD 130AE t =根据余弦定理2222cos DE AE AD AE AD A =+-⋅⋅ 即2274001400010000DE t t =-+ ∴当14000352740037t ==⋅时, 2DE 有最小值37DE =(3)设甲所用时间为t 甲, 乙所用时间为t 乙, 乙步行速度为V 乙 由题意1260126==min 505t 甲 1040500500t =2++1+=11+min 130V V 乙乙乙12650031135V ⎛⎫∴-≤-+≤ ⎪⎝⎭乙 解不等式得12506254314V ≤≤乙20. (本小题满分16分)设函数()ln f x x ax =-, ()x g x e ax =-, 其中a 为实数.(1) 若()f x 在()1,+∞上是单调减函数, 且()g x 在()1,+∞上有最小值, 求a 的范围;(2) 若()g x 在()1,-+∞上是单调增函数, 试求()f x 的零点个数, 并证明你的结论. 解:(1)'1()f x x a -=-'()x g x e a =-由题意:'()0f x ≤对()1,x ∈+∞恒成立 即1a x -≥对()1,x ∈+∞恒成立 1a ∴≥Q ()g x 在()1,+∞上有最小值0a ≤时, '()0g x >恒成立, ()g x 在()1,+∞无最值 0a >时, 由题意ln 1a >a e >综上:a 的范围是:a e >(2)Q ()g x 在()1,-+∞上是单调增函数∴'()0g x ≥对()1,x ∈-+∞恒成立 即xa e ≤对()1,x ∈-+∞恒成立 1a e -∴≤令()0f x =, 则ln x a x= 则有()f x 的零点个数即为y a =与ln x y x =图像交点的个数 令()ln ()0x h x x x=> 则'21ln ()x h x x -= 易知()h x 在()0,e 上单调递增, 在(),e +∞上单调递减在x e =时取到最大值1()0h e e => 当0x →时, ln ()x h x x=→-∞当x →+∞时, ln ()0x h x x=→ ∴()h x 图像如下所以由图可知:0a ≤时, ()f x 有1个零点10a e <<时, ()f x 有2个零点 1a e=时, ()f x 有1个零点 综上所述:0a ≤或1a e=时, ()f x 有1个零点 10a e<<时, ()f x 有2个零点19. (本小题满分16分)设{}n a 是首项为a , 公差为d 的等差数列()0d ≠, n S 是其前n 项和. 记2n n nS b n c =+, N n *∈, 其中c 为实数.(1) 若0c =, 且1b , 2b , 4b 成等比数列, 证明:()2N nk k S n S k,n *=∈;(2) 若{}n b 是等差数列, 证明:0c =.解:(1)()()10n a a n d d =+-≠22n n n S na d -=+0c =时, n n S b n= 112244122342S b a S d b a S d b a ====+==+ 124,,b b b Q 成等比2142b b b ∴=222222222322202n nk k nk kd d a a a d add d a S n aS n k an S n k aS n S ⎛⎫⎛⎫∴⋅+=+ ⎪ ⎪⎝⎭⎝⎭∴=≠∴=∴===∴=Q(2)由已知23222222n n nS n a n d n d b n c n c+-==++ n b Q 是等差数列∴设n b kn b =+(k,b 为常数)∴有()()32222220k d n b d a n ckn bc -++-++=对任意n N +∈恒成立 202202020k d b d a ck bc -=⎧⎪+-=⎪∴⎨=⎪⎪=⎩0d ≠Q0k c ∴≠∴=此时222dka d b=-=命题得证。

相关文档
最新文档