基于PLC的液体混料罐控制系统设计毕业设计

合集下载

毕业设计 多种液体混合PLC控制系统设计报告

毕业设计 多种液体混合PLC控制系统设计报告

(一)课程设计的背景随着科学技术的猛速发展,自动控制技术在人类活动的各个领域中应用越来越广泛。

在炼油、化工、制药等行业中,多种液体混合是必不可少的程序,而且也是其生产过程中十分重要的组成部分。

设计的多种液体混合装置利用可编程控制器可以实现在混合过程中进行精确控制,提高了液体混合比例的稳定性、运行稳定、自动化程度高,适合工业生产的需要。

(二)课程设计的目的及意义在工艺加工最初,把多种原料在合适的时间和条件下进行所需要的加工以得到产品一直都是在人监控或操作下进行的,在后来多用继电器系统对顺序或逻辑的操作过程进行自动化操作,但是随着时代的发展,这些方式已经不能满足工业生产的实际需要。

实际生产中需要更精确、更便捷的控制装置。

随着科学技术的日新月异,自动化程度要求越来越高,原来的液体混合装置远远不能满足当前自动化的需要。

可编程控制器液体自动混合系统集成自动控制技术,计量技术,传感器技术与机电一体化装置。

充分吸收了分散式控制系统和集中控制系统的优点。

采用标准化、模块化、系统化设计,配置灵活、组态方便。

PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。

他采用可以编制程序的储存器用来在其内部储存执行逻辑运算、顺序运算、计时、计数和算数运算等操作的指令,并能通过数字式或模拟式的输入和输出控制各种类型的机械或生产过程。

有以下主要特点:1)使用灵活,通用性强2)可靠性高,抗干扰能力强3)接口简单、维护方便4)体积小、功耗少、性价比高5)编程简单容易掌握6)设计施工调试周期短所以根据多种液体自动混合系统的要求与特点,我们采用PLC作为我们的控制系统。

可编程控制器指令丰富,可以接各种输出、输入扩充设备,有丰富的特殊扩展设备,其中的模拟输入设备和通信设备是系统所必需的,能够方便地联网通信。

本系统就是应用可编程序控制器PLC对多种液体自动混合实现控制。

(三)课程设计的内容实现基于S7-200多种液体混合控制系统设计。

基于 PLC 液体混合装置控制的设计毕业设计

基于 PLC 液体混合装置控制的设计毕业设计

摘要本系统使用学校实验室中的三菱PLC的FX系列实现了对液体混合装置的自动控制要求。

同时控制系统利用仿真设备不仅能满足两种液体混合的功能,而且可以扩展其功能满足多种液体混合系统的功能。

提出了一种基于PLC 的多种液体混合控制系统设计思路, 提高了液体混合生产线的自动化程度和生产效率。

文中详细介绍了系统的硬件设计、软件设计。

其中硬件设计包液体混合装置的电路框图、输入/输出的分配表及外部接线;软件设计包括系统控制的梯形图、指令表及工作过程。

在本装置设计中,液面传感器和电阀门以及搅动电机采用相应的钮子开关和发光二极管来模拟,另外还借助外围元件来完成本装置。

整个程序采用结构化的设计方法, 具有调试方便, 维护简单, 移植性好的优点关键词:PLC ;液体混合装置;程序目录中文摘要 (Ⅰ)前言 (1)1、液体混合装置的原理及要求和任务 (2)1.1 原理 (2)1.2任务 (2)1.3要求 (2)2、基于PLC液体混合装置的硬件设计 (3)2.1液体混合装置图 (3)2.2外部接线图与操作面板 (4)2.3输入/输出装置 (5)3、基于PLC液体混合装置的软件设计 (6)3.1系统控制顺序功能图 (7)3.2系统控制梯形图 (8)结束语 (10)参考文献 (11)电气设备及元器件明细表 (12)前言在炼油、化工、制药等行业中, 多种液体混合是必不可少的工序, 组成部分。

以往常采用传统的继电器控制, 使用硬连接电器多, 可靠性差, 自动化程度不高。

当前国内许多地方的此类控制系统主要是采用DCS, 这是由于液位控制系统的仪表信号较多, 采用此系统性价比相对较好, 但随着电子技术的不断发展,PLC在仪表控制方面的功能已经不断强化。

用于回路调节和组态画面的功能不断完善, 而且PLC 的抗干扰的能力也非常强, 对电源的质量要求比较低。

目前已有许多企业采用先进控制器对传统接触控制进行改造, 大大提高了控制系统的可靠性和自控程度, 为企业提供了更可靠的先进控制器对传统接触控制进行改造, 生产保障, 所以PLC在工业控制系统中得到了良好的应用。

plc课程设计液体混合罐控制

plc课程设计液体混合罐控制

1.方案设计1.1 设计内容及要求设计一液体混合罐控制程序。

具体要求如下:(1)初始状态。

在液体混合罐投入运行前,液体控制阀门YV1、YV2为关闭状态,混合液体阀门YV3打开30s,将混合罐放空后关闭。

(2)启动与运行。

按下起动按钮SB1后, 液体混合罐按照工艺要求工作。

液体A阀门YV1打开,液体A流入液体混合罐。

当液位到达SL2时,SL2接通,液体A阀门YV1关闭,同时打开液体B阀门YV2。

当液位到达SL1时, 液体B阀门YV2关闭,启动搅拌电动机运转,将罐内A、B两种液体搅拌均匀。

搅拌电动机60秒钟后停止工作。

随后混合液体阀门YV3打开,排放混合液体。

当液面降到SL3以下时,SL3断开,再经过30秒延时后, 液体混合罐排空,混合液体阀门YV3关闭,开始下一个生产周期。

(3)停机。

按下停止按钮SB2后,只有在液体混合工艺过程全部处理完毕,才允许停车,即停在初始状态。

1.2 总体设计方案(1)本方案控制对象电动机由交流接触器KM1完成启停控制。

液体混合罐包含三个液位测定,具有两种液体加液、搅拌、排出的功能。

液位传感器SL1、SL2、SL3,当被液体淹没时接通,A、B两种液体的流入与混合后流出的液体分别由电磁阀YV1、YV2、YV3控制,M为搅拌电动机。

液体混合罐控制系统示意图如下图所示图1-1 液体混合罐控制系统示意图(2)方案采用基本指令定时器指令和保持指令。

系统以欧姆龙公司的CPMA 系列小型机为对象,程序对应液体混合罐控制的启动、运行、停止等多种状态操作,并设计了控制流程图、梯形图和输入输出状态时序图。

(3)I/O 接口配置及功能表如下:表1-1 欧姆龙CPM 系统型机I/O 接口配置输入(I ) 功能 输入 功能00003 SB1-开车按钮 01001 YV1-液体A 电磁阀 00004 SB2-停车按钮 01002 YV2-液体B 电磁阀 00005 SL1-液体传感器 01003 YV3-混合液体电磁阀 00006 SL2-液体传感器 01004 KM1-搅拌电机接触器00007 SL3-液体传感器(4) 欧姆龙PLC 的I/O 接线图如下图所示图1-2 PLC 的I/O 接线图2. 系统设计2.1 输入输出状态时序图图2-1输入输出状态时序图2.2 控制流程图60s启动 停止 YV1 SL1KM1YV2 YV3 30sSL3 SL2图2-2 控制流程图2.3 梯形图图2-3 梯形图3.程序设计的特点和方案的优缺点梯形图设计原理清晰功能完善,结构简单,但适应于较简单混合罐控制。

毕业设计(论文)开题报告论文题目: 基于PLC的液体混料控制系统甄选

毕业设计(论文)开题报告论文题目:    基于PLC的液体混料控制系统甄选

毕业设计(论文)开题报告论文题目:基于PLC的液体混料控制
系统(优选.)
辽宁石油化工大学
信息与控制工程学院
毕业设计(论文)开题报告
论文题目:基于PLC的液体混料控制系统
学生姓名:张哲
专业班级:电气0804 学号: 0803040421
指导教师:杜明娟
2012 年 3 月10 日
填写说明:
1.题目的背景和意义
对题目的出处,背景和意义进行说明论述,不少于300字。

2.题目研究现状概述
通过调研和查阅文献,对题目所涉及的技术、理论和研究成果进行说明论述,不少于1000字。

3.题目要完成的主要内容和预期目标
对题目要完成的主要内容进行说明,并说明达到的预期目标,
不少于300字
4.进度计划
从设计开始的教学周起,依据任务书的进度安排进行细化并以周为单位给出主要工作和完成的任务。

5.参考文献
对2引用的资料、论文或著作按照引用顺序列出参考文献(格式同论文《参考文献》)。

不少于10篇(其中近3年的文献占1/3以上),
注:相应栏不够时自动加页。

排版要求:正文,宋体,小四,行距固定值20磅
要求学生在毕业设计(论文)开始后的第2周末完成《开题报告》,并交到指导教师评阅(交电子稿和双面打印稿)。

注:要求在毕业设计(论文)开始后第2周内,双面打印后交指导教师。

感谢您使用本店文档您的满意是我们的永恒的追求!(本句可删)
------------------------------------------------------------------------------------------------------------。

液体混合装置控制系统plc课程设计

液体混合装置控制系统plc课程设计

液体混合装置控制系统plc课程设计液体混合装置控制系统PLC课程设计引言:液体混合装置是工业生产中常见的设备,通过控制系统的设计,可以实现液体的精确配比和混合。

本文将介绍液体混合装置控制系统PLC课程设计的相关内容。

液体混合装置控制系统的设计旨在实现液体的准确配比和混合,提高生产效率和产品质量。

一、设计目标液体混合装置控制系统的设计目标是实现液体的精确配比和混合,确保产品的质量稳定和生产效率的提高。

具体包括以下几个方面:1. 实现液体的精确配比,保证混合比例准确无误;2. 控制液体流量和压力,确保液体供应的稳定;3. 控制液体温度,适应不同的生产需求;4. 监测液体混合过程中的参数,实时调整控制策略,确保混合效果。

二、系统架构液体混合装置控制系统采用PLC作为控制核心,通过传感器和执行器与液体混合装置进行信息交互。

系统架构主要包括以下几个模块:1. 传感器模块:用于采集液体流量、压力和温度等信息,将采集到的数据传输给PLC;2. PLC控制模块:接收传感器模块传输的数据并进行处理,根据设定的控制策略生成控制信号;3. 执行器模块:根据PLC生成的控制信号,控制液体的供给和混合过程;4. 人机界面模块:提供对液体混合装置控制系统的监控和操作界面,方便操作员进行参数设定和实时监测。

三、系统设计1. 传感器选择:根据不同的控制需求选择合适的传感器,如流量传感器、压力传感器和温度传感器等,确保采集到的数据准确可靠。

2. PLC编程:根据设计目标和控制策略,编写PLC程序,实现液体的精确配比和混合控制。

程序应包括液体流量、压力和温度的控制算法,以及实时监测和报警机制。

3. 执行器控制:根据PLC生成的控制信号,控制液体的供给和混合过程。

可采用电磁阀、变频器等执行器设备,确保液体供给的准确性和稳定性。

4. 人机界面设计:设计人机界面,提供参数设定、实时监测和报警信息等功能。

界面应简洁明了,操作方便,能够满足操作员的需求。

用PLC构成液体混合控制系统

用PLC构成液体混合控制系统
另外,第一次做课程设计,电路设计不是非常完美,准备的不是很充分,遇到问题难免手忙脚乱,不过在遇到困难后经过大家一起努力还是解决了。总之,调试的结果还是比较顺利的
这次设计,提高了我的动手和动脑能力,更让我们体会到了理论与实践相结合的重要性,使我的得到了一次用专业知识、专业技能分析和解决问题全面系统的锻炼。使我在PLC的基本原理以及编程设计思路技巧的掌握方面都能向前迈了一大步。另外,就是先前对组态软件不是很了解,这次有了很深的了解,在功能上已经很强大,我想要是有机会的话,还会继续深入继续了解这款软件。记住一样东西,在学习上,每时每刻都有值得要学的东西。
实验步骤:
(1)把实验左箱上的PLC O/0、O/1、O/2、O/3分别用实验导线与右箱装配流水线模拟控制实验上的A、B、C、D接通,PLC输入I/0、I/1、I/2 、I/3、I/4与SB1﹑SB2﹑SB3﹑SB4﹑SB5接通。
(2)把PLC主控制器旁边24V的输入接到此模拟实验的输入COM上,旁边的+5V端,主控制器输出端所用的输出COM口互相并联后再接到5V的地端。
四、实验设计:
1 I/O分配
输入
输出
起动按钮:I0.0
Y1:Q0.1
停止按钮:I0.4
Y2:Q0.2
L1按钮:I0.1
Y3:Q0.3
L2按钮:I0.2
M:Q0.4
L3按钮:I0.3
2 实物拍照
3 梯形图
五、结果及讨论:
通过这次PLC课程设计,让我们更加深刻理解了课本的知识,并使我们熟悉和掌握了PLC基本指令的使用,掌握了PLC的I/O分配、程序调试等。编写程序首先必须把I/O分配表写好。弄清楚哪些信号作为输入,哪些信号作为输出,该用什么样的继电器,还有什么情况下要用定时器/计数器。通过调试找出问题的所在,相应的修改程序。在编程过程中难免会有不足之处,因此通过调试再修改程序可以更好的实现相应的功能。

基于PLC的液体混料罐控制系统设计毕业设计

基于PLC的液体混料罐控制系统设计毕业设计

目录摘要 (1)关键字 (1)一、概述 (2)1.1液体混合系统的发展前景 (2)1.2液体混合系统的应用价值 (3)二、混料罐控制系统方案设计 (4)2.1 方案设计原则 (4)2.2 系统的总体设计要求 (4)2.3 总体结构设计方案 (5)2.4 控制对象分析 (5)三、混料罐控制系统的硬件设计 (6)3.1 选择PLC............................................. . (6)3.2 选择接触器 (7)3.3 选择搅拌电机 (8)3.4 小型三极断路器的选择 (9)3.5 液位传感器的选择 (10)3.6 选择电磁阀 (11)3.7 选择热继电器 (12)3.8 PLC I/O点分配 (12)3.9 主电路的设计 (13)四、混料罐控制系统的程序设计 (15)4.1 分析控制要求 (15)4.2 梯形图执行原理分析 (16)五、总结 (22)参考文献 (23)基于PLC的液体混料罐控制系统设计摘要随着科技的发展,PLC的开发与应用把各国的工业推向自动化、智能化。

强大的抗干扰能力使它在工业方面取代了微型计算机,方便的软件编程使他代替了继电器的繁杂连线,灵活、方便,效率高。

本设计主要是对两种液体混合搅拌机PLC控制系统的设计,在设计中针对控制对象:三只传感器监视容器高、中、低液位,设三电磁阀控制液体A、B输入与混合液体C输出,设搅拌电机M。

工艺流程是:启动后放入液体A至中液位后,关A,放液体B 至高液位,关B,启动搅拌电机M,当搅拌电机正反转3次后停止搅拌,开阀放出混合液体C,当到达低液位后延时2S放空后关阀,又重复上述过程,要求工作过程中按下停止按纽后搅拌器不立即停止工作,完成当前工作循环后再停止搅拌器。

关键字:液体混料装置自动控制PLC 电动机传感器一、概述1.1液体混合系统的发展前景为了提高产品质量,缩短生产周期,适应产品迅速更新换代的要求,产品生产正想缩短生产周期、降低成本、提高生产质量等方向发展。

毕业设计之PLC控制液体自动混合装置2

毕业设计之PLC控制液体自动混合装置2

摘要在众多生产领域中,经常需要对贮槽,贮罐,水池等容器中的液位进行监控,以往采用传统的继电器接触器控制,使用的硬件连接多,可靠性差,自动化程度不高,目前已有许多的企业采用先进控制器对传统的控制器进行改造,大大提高了控制系统的可靠性和自动化程度,为企业提供了更可靠的生产保障。

本文介绍了基于FX2N型号的可编程控制器(PLC),组态软件的液面控制系统的设计方案,采用PID算法实现液面的自动控制。

利用组态软件设计人机画面,通过串行口和可编程控制器通信实现控制系统的实时监控,现场数据的采集和处理,其结构简单,监控系统不仅自动化程度高,还具有在线修改功能,灵活性强。

关键词:PLC 液面控制触摸屏变频AbstractIn many areas of production, often need to tank of the storage tanks, tank containers, liquid level of monitoring, the traditional relay-contactor, using the hardware connection, poor reliability, automation degree is not high, many enterprises to adopt advanced controller to improve the traditional, greatly improving the reliability and degree of automation control system, provides a more reliable guarantee for the production of enterprises.This paper introduces a programmable controller based on FX2N model (PLC), design of liquid level control system configuration software, using PID algorithm to realize automatic control of liquid level. Using configuration software to design man-machine interface, through the serial port and can realize real-time monitoring control system for communication programming controller, field data collection and processing, the structure is simple, the monitoring system is not only a high degree of automation, but also changes with the online function, flexibility.Key words: PLC level control touch screen frequency converter目录摘要 (1)Abstract (2)目录 (3)第一章绪论 (5)1.1本课题设计背景 (5)1.2本课题设计内容 (6)1.3本课题设计的目的和意义 (6)第二章系统控制方案的确定 (8)2.1 采用PLC控制液体自动混合的优点 (8)2.2 系统设计的基本步骤 (8)2.3 系统控制方案 (9)第三章系统硬件设计 (11)3.1可编程控制器(PLC)的选型 (11)3.1.1 PLC机型的选择与特点 (11)3.1.2 模拟量输入输出模块(FX0N-3A) (13)3.2 水泵选型 (14)3.3 变频器选型 (15)3.4 触摸屏 (16)3.4.1 触摸屏的工作原理 (16)3.4.2 触摸屏的主要类型 (16)3.5 液位传感器 (17)3.5.1 液位传感器简介 (17)3.5.2 液位传感器的工作原理 (17)3.6 流量计 (18)3.6.1 电磁流量计简介 (18)3.6.2 电磁流量计的工作原理 (18)3.7 硬件接线图 (18)第四章 PID控制器的设计 (21)4.1 PID控制算法及特点 (21)第五章系统软件设计 (23)5.1 程序设计编程基本原则与注意问题 (23)5.1.1 程序设计(梯形图)编程基本原则 (23)5.1.2 程序设计注意问题 (23)5.2 程序设计 (23)5.3 变频器参数设定 (24)5.5元器件列表 (25)第六章PLC如何控制液面 (27)6.1 自动控制液面 (27)总结 (29)致谢 (31)参考文献 (32)附录一程序流程图 (33)附录二程序 (34)附录三系统结构图 (35)附录四PLC外部接线图 (35)附录五主电路图 (35)第一章绪论1.1本课题设计背景20世纪20年代起,人们把各种继电器、定时器、接触器及其触点按一定的逻辑关系连接起来组成控制系统,控制各种生产机械,这就是大家所熟悉的传统继电接触器控制系统.由于它结构简单、容易掌握、价格便宜,在一定范围内能满足控制要求,因而使用面甚广,在工业控制领域中一直占主导地位.但是继电接触器控制系统有明显的缺点:设备体积大,可靠性差,动作速度慢,功能少,难与实现较复杂的控制,特别是由于它是靠硬连线逻辑构成的系统,接线复杂,当生产工艺或对象改变时,原有的接线和控制盘就要更换,所以通用性和灵活性较差.20世纪60年代末期,美国的汽车制造业竞争激烈,各生产厂家的汽车型号不断更新,它必然要求生产线的控制系统亦随之改变,以及对整个开展系统重新配置.为抛弃传统的继电接触器控制系统的束缚,适应白热化的市场竞争要求,1968年美国通用汽车公司公开向社会招标,对汽车流水线控制系统提出具体要求,归纳起来是:(1)编程方便,可现场修改程序(2)维修方便,采用插件式结构(3)可靠性高于继电器控制装置(4)体积小于继电器控制盘(5)数据可直接送入管理计算机(6)成本可与继电器控制盘竞争(7)输入可以是交流150V以上(8)输出为交流115V,容量要求在2A以上,可直接驱动接触器,电磁阀等(9)扩展时原系统改变最小(10)用户存储器至少能扩张到4KB(适应当时汽车装配过程的需要)十项指标的核心要求是采用软布线(编程)方式代替继电控制的硬接线方式,实现大规模生产线的流程控制。

基于PLC控制的物料搅拌系统设计(液体)

基于PLC控制的物料搅拌系统设计(液体)

高等教育自学考试毕业论文学生姓名:XXX考籍号:专业年级:工业自动化XXX级题目:基于PLC控制的物料搅拌系统设计指导教师:XXXXX评阅教师:2011 年10 月目录第一章引言 (1)第二章总体方案设计 (2)2.1总体方案设计原则 (2)2.2总体方案设计要求 (3)2.3控制方式系统要求设计 (3)2.4系统方案的设计思想 (4)第三章硬件设计 (5)3.1 硬件选择 (5)3.1.1 PLC机型选择 (5)3.1.2 PLC容量选择 (6)3.1.3 I/O模块选择 (6)3.1.4电源模块选择 (7)3.1.5设备型号选择 (8)3.2 PLCI/O点分配 (8)3.2.1 I/O分配表 (8)3.2.2 I/O接线图 (9)3.3 混合控制系统示意图 (9)第四章软件设计 (10)4.1程序设计流程图 (10)4.2程序设计梯形图 (11)4.3程序设计 (13)第五章人机界面设计 (15)5.1 设计思想 (15)5.2 画面组态 (15)第六章系统调试 (16)6.1 系统模拟调试 (16)6.2 系统联机调试 (17)第七章系统常见故障分析及维护 (18)7.1 系统故障分析及处理 (18)7.1.1 PLC主机系统故障分析及处理 (18)7.1.2 PLC的I/O端口系统故障分析及处理 (18)7.1.3 现场控制设备故障分析及处理 (18)7.2 系统干扰性的分析和维护 (19)结论 (20)致谢 (21)参考文献 (22)第一章引言鉴于搅拌设备的广泛应用,随着近年来工业技术的发展,流体混合技术在上世纪60到80年代期间得到了迅猛发展,其重点主要是对于常规搅拌桨在低粘和高粘非牛顿均相体系、固液悬浮和气液分散等非均相体系中的搅拌功耗、混合时间等宏观量进行实验研究。

长期以来,虽有大量设计经验关联式可用于分析和预测混合体系,但将搅拌反应器从实验室规模直接放大到工业规模,仍是十分危险的,至今仍需要通过逐级放大来达到搅拌设备所要求的传质、传热和混合。

基于PLC的液体混合控制系统设计

基于PLC的液体混合控制系统设计

基于PLC的液体混合控制系统的设计摘要可编程序控制器(PLC)是一种新型的通用的自动控制装置,它将传统的继电器控制技术、计算机技术和通讯技术融为一体,是功能加强、编程简单、使用方便以及体积小、重量轻、功耗低等一系列优点。

PLC的应用领域已经拓宽到了各个领域,PLC的发展历程在工业生产过程中,大量的开关量顺序控制,它按照逻辑条件进行顺序动作,并按照逻辑关系进行连锁保护动作的控制,及大量离散量的数据采集。

在传统上,这些功能是通过气动或电气控制系统来实现的。

PLC 最基本最广泛的用于开关量的逻辑控制,它取代传统的继电器电路,实现逻辑控制,顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。

如注塑机,印刷机,订书机,组合智能窗帘,磨床,包装等。

目前,PLC在国内外已广泛应用于钢铁,石油,化工,电力,建材,机械制造,汽车,轻纺,交通运输,环保及文化娱乐等各个行业,使用广泛。

本文以三种液体的混合灌装控制为例,将三种液体按一定比例混合,在电动机搅拌后要达到控制要求才能将混合的液体输出容器,并形成循环状态。

液体混合系统的控制设计考虑到其动作的连续性以及各个被控设备动作之间的相互关联性,针对不同的工作状态,进行相应的动作控制输出,从而实现液体混合系统从第一种液体加入到混合完成输出的这样一个周期控制工作的程序实现。

设计以液体混合控制系统为中心,从控制系统的硬件系统组成、软件选用到系统的设计过程(包括设计方案、设计流程、设计要求、梯形图设计、外部连接通信等),旨在对其中的设计及制作过程做简单的介绍和说明。

关键词PLC 控制液体混合说明The design of liquid mixing control system based on PLCABSTRACTWith development of all kind of science technology and global economy, Pneumatic manipulator is a automated devices that can mimic the human hand and arm movements to do something,aslo can according to a fixed procedure to moving objects or control tools. It can replace the heavy labor in order to achieve the production mechanization and automation, and can work in dangerous working environments to protect the personal safety.Therefore widely used in machine building, metallurgy, electronics, light industry and atomic energy sectors..The inverted pendulum is a typical high order system, with multi variable, non-linear, strong-coupling, fleet and absolutely instable. It is representative as an ideal model to prove new control theory and techniques. During the control proces s, pendulum can effectively reflect many key problems such as equanimity, robust, follow-up and track, therefore.This paper studies a control method of double invert ed pendulum . First of all, the mathematical model of the double inverted pendulum is established.Themake a control design to double inverted pendulum on the mathematical m odel, and determine the system performance index weightmatrix , by using genetic algorithm in order to attain the system state feedback control matrix. Finally, the si mulation of the system is made by . After several test matrix value the results are n ot satisfactory response, then we optimize matrix by using Genetic Algorithm. Sim ulation results show: The system response can meet the design requirements effecti vely after Genetic Algorithm optimization. Small twisted paper broken machine for meat. the system state feedback control matrix.Keywords PLC cylinder pneumatic Fout degrees of freedom目录第一章绪论 (1)1.1 课题的研究背景和历史意义 (3)1.2 选题的目的和意义 (4)第二章液体混合控制系统PLC控制系统的设计 (5)2.1 PLC简介 (6)2.1.1 PLC的定义 (8)2.1.2 PLC的用途 (9)2.2 PLC的组成 (11)2.2.1中央处理单元 (13)2.2.2存储器 (14)2.2.3输入输出单元 (16)2.2.4通讯接口 (17)2.2.5智能接口模块 (18)2.2.6编程装置 (19)2.2.7电源 (19)第三章控制系统设计 (20)3.1 硬件设计 (20)3.2 混合装置的基本组成 (20)3.3 液体混合装置电气原理图的绘制 (21)3.4 PLCI/O点分配及外部硬件接线图 (22)3.5液体混合系统运行流程图 (22)结论 (23)致谢 (24)参考文献 (25)第一章绪论1.1 课题的研究背景和历史意义机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。

基于PLC的多种液体混合控制系统的设计专科毕业设计

基于PLC的多种液体混合控制系统的设计专科毕业设计

专科毕业设计(论文)设计题目基于PLC的多种液体混合控制系统的设计系部:电气工程系专业:船舶电气工程技术班级:船舶电气111301摘要目前,非常多的全自动操作系统出现在工业生产中,多种液体混合控制系统更是得到了快速地发展。

在最初的处理加工过程中,多种液体的原材料要在人为监控下流入混合装置,并且要满足最初设定好的时间和条件。

在自动化控制系统发展的历史过程中,继电器控制系统的弊端层出不穷,并且维修起来复杂,困难重重,所以逐步被现代化工业生产而淘汰。

多种液体混合控制装置需要设计得更可靠、更简单才能满足当下生产需求。

本文中,我要讲述的是由我设计的多种液体混合控制系统,它是基于可编程序控制器(PLC)而设计完成的。

因此,需要运用到液位传感器对液面高度进行监控。

电磁阀的应用使多种液体在流入混合控制装置的过程中起到了控制作用,搅拌电机的使用可以让多种液体达到充分的混合,混合液体经过加热器加热达到设定温度后,就会从混合装置中流出,况且此控制系统为循环控制系统。

多种液体在混合加工时,若按下了停止键,只有当整个过程加工完成后才能停止操作,这样便减少了原材料的浪费,使资源得到了完整的使用。

关键词: PLC 液体混合自动控制目录1绪论 (1)2多种液体混合装置概述 (2)2.1多种液体混合装置的组成 (2),.2.1.1液位传感器的选择 (2)2.1.2温度传感器的选择 (3)2.1.3电磁阀的选择 (4)2.1.4搅拌电机的选择 (4)2.2多种液体混合装置工作的基本原理 (4)2.2.1多种液体混合装置的液位控制 (5)2.2.2多种液体混合装置的温度控制 (5)3基于PLC的多种液体混合的控制系统 (5)3.1PLC的概述 (5)3.2 PLC的工作原理 (6)3.3基于PLC控制系统的控制要求与设计要求 (7)3.3.1控制要求 (7)3.3.2设计要求 (8)3.4液体混合控制系统的PLC选型 (8)4程序设计及调试 (9)4.1I/O分配 (9)4.2设计外围接线图 (10)4.3绘制顺序功能图 (11)4.4设计梯形图程序 (13)5.系统常见故障与维护 (16)5.1系统故障的概念 (16)5.2系统故障分析及处理 (16)5.2.1PLC主机系统 (16)5.2.2PLC的I/O端口 (17)5.2.3现场控制设备 (17)5.3系统抗干扰性的分析和维护 (17)结论 ........................................................ 错误!未定义书签。

大专毕业论文--基于PLC平台的液态混合装置设计

大专毕业论文--基于PLC平台的液态混合装置设计

【摘要】工业生产中需要良好的人机界面对现场的设备进行检测与控制,传统的方法是采用控制面板上的文字来表示操作按钮的功能,数字表或者模拟表来显示现场设备的数据,存在可读性差的问题。

目前,在现代化的企业中,可编程控制器与组态软件结合提供了设计良好人机接口的方法。

设备得到更好的监控本课题主要设计多种液体混合装置组态设计的组态控制系统,通过PLC和组态软件技术的应用,实现控制液体的流量、混合比例、以及对混合装置工作过程的监控。

旨在培养我们解决实际工程问题的能力,实践动手能力及现场分析问题和解决问题的能力;设计使用的可编程控制器(PLC),功能强大,系统配置灵活,根据控制要求灵活方便地进行系统配置,组成不同I/O点数和不同功能的控制系统。

关键词:可编程控制器、可读性、现场数据ABSTRACTIndustrial production in the man—machine interface needs a good on-site equipment for testing and control,the traditional approach is the text on the control panel to indicate the function button operation, the digital or analog form table to display equipment at the data,there can be Reading bad problem。

At present, the modernization of enterprises, the programmable controller and configuration software provides a well—designed combination of man-machine interface methods. Better monitoring equipment 。

多种液体自动混合装置的PLC控制毕业设计论文

多种液体自动混合装置的PLC控制毕业设计论文

题目:多种液体自动混合装置的PLC控制摘要随着经济的发展和社会的进步,各种工业自动化的不断升级,对于工人的素质要求也逐渐提高。

其中在生产的第一线有着各种各样的自动加工系统,其中多种原材料混合在加工,是其中最为常见的一种。

在工艺加工最初,把多种原料再合适的时间和条件下进行需要的加工以得到产品一直都是在人监控或操作下进行的,在后来多用继电器系统对顺序或逻辑的操作过程进行自动化操作,但是现在随着时代的发展,这些方式已经不能满足工业生产的实际需要。

实际生产中需要更精确、更便捷的控制装置。

我设计的题目是“多种液体自动混合装置的PLC控制”,此次设计主要内容包括:工作过程分析,I/O分配,梯形图,指令表,接线图,电气原理图及情况说明, 经过多次修改和调试,最终实现题目要求。

本文通过对“多种液体自动混合装置的PLC控制”的分析,解决了按下启动按钮SB1,液体A阀门打开,液体A流入容器,当液面到达SQ3时,SQ3接通,关闭液体A 阀门,打开液体B阀门;当液面到达SQ2时,关闭液体B阀门,打开液体C阀门;当液面到达SQ1时关闭阀门C,搅匀电动机开始搅匀;搅匀电动机工作1min后停止搅动,混合液体阀门打开,开始放出混合液体等控制问题,实现了控制装置根据液位不同时状态自动转换的的任务。

同时本文还论述了在进行程序设计时遇到的问题和不足,最终我们通过自己的努力解决了这些问题。

关键词:自动控制 PLC 多种液体自动混合目录一、课题背景 (1)1、课题背景 (1)2、研究目的和意义 (2)3、本文的主要工作 (3)二、已知情况、控制要求、设计要求 (4)1、已知情况 (4)2、控制要求 (4)3、设计要求 (5)三、总体设计思路 (6)四、程序设计及调试 (7)1、PLC的选型及I/0分配图 (7)2、梯形图、指令表及编程元件明细表 (8)五、电气设计 (11)1、PLC外部接线原理图 (11)2、多种液体自动混合装置电气元件明细表 (11)六、安装、接线、及系统联合测试 (12)七、后期工作 (12)1、操作过程简要说明 (12)2、常见故障及排除方案 (12)3、编写并提交(课程)设计说明书 (13)八、尚存在的问题及方案建议 (14)九、课程设计总结 (15)十、致谢 (16)十一、参考文献 (16)多种液体自动混合装置的PLC控制一、课题背景1、课题背景随着科学技术的猛速发展,自动控制技术在人类活动的各个领域中的应用越来越广泛,它的水平已成为衡量一个国家生产和科学技术先进与否的一项重要标志。

多种液体自动混合装置的PLC控制毕业设计论文

多种液体自动混合装置的PLC控制毕业设计论文

多种液体自动混合装置的PLC控制毕业设计论文一、《多种液体自动混合装置的PLC控制毕业设计论文》本论文主要研究和探讨多种液体自动混合装置的PLC控制系统设计。

随着工业自动化的不断发展,液体的精确混合成为了许多工业生产过程中的关键环节。

多种液体自动混合装置作为一个高效、精确的液体混合解决方案,已经在多个领域得到广泛应用。

本文将从系统设计、PLC控制系统构建、程序设计等方面,对多种液体自动混合装置的PLC控制系统进行详细的阐述和探讨。

在现代工业生产过程中,液体的精确混合是一项至关重要的技术。

这不仅关乎产品质量,还涉及到生产效率和成本控制。

开发一种高效、精确的液体自动混合装置具有重要的实际意义。

PLC(可编程逻辑控制器)作为一种先进的工业控制装置,具有高度的灵活性和可靠性,被广泛应用于各种工业控制系统中。

本文将研究如何将PLC控制系统应用于多种液体自动混合装置中,以提高混合精度和效率。

多种液体自动混合装置主要由液体供应系统、混合系统、控制系统等部分组成。

液体供应系统负责提供需要混合的各种液体;混合系统则负责将各种液体进行混合;而控制系统则是整个装置的核心,负责控制液体的供应和混合过程。

在本设计中,我们将采用PLC作为控制系统的核心。

PLC控制系统主要由PLC控制器、触摸屏、传感器、执行器等部分组成。

PLC控制器是系统的核心,负责接收传感器信号,并根据预设的程序输出控制信号;触摸屏则用于显示混合过程的各种参数和状态,以及进行人工操作;传感器用于检测混合液体的各种参数,如液位、温度、浓度等;执行器则负责执行PLC控制器的控制命令,控制液体的供应和混合过程。

PLC控制系统的程序是系统的灵魂,它决定了系统的运行方式和性能。

在程序设计阶段,我们需要根据混合液体的要求和工艺过程,设计合适的控制算法和逻辑。

还需要考虑系统的安全性和稳定性。

在本设计中,我们将采用模块化程序设计方法,将系统划分为多个模块,每个模块负责一部分功能,这样不仅可以提高程序的清晰度,还可以方便后期的维护和修改。

基于plc的液体混合搅拌的控制系统设计

基于plc的液体混合搅拌的控制系统设计

目录第1章引言 (1)1.1课题来源及研究意义 (2)1.2选题的目的和意义 (3)1.3国内液体搅拌设备行业市场分析 (4)第2章基于PLC控制技术的液体搅拌机的总体构造 (4)2.1P LC简介 (4)2.1.1 PLC的定义 (4)2.1.2PLC的用途 (4)2.2P LC的组成 (5)2.2.1中央处理单元(CPU) (5)2.2.2存储器 (5)2.2.3输入/输出单元 (6)2.2.4通信接口 (8)2.2.5智能接口模块... (8)2.2.6编程装置 (9)2.2.7电源 (10)第3章控制系统设计 (11)3.1 硬件设计 (12)3.2混合装置的基本组成 (13)3.3 液体混合装置电气原理图的绘制 (13)3.4 PLCI/0点分配及外部硬件接线图 (15)3.5 液体混合系统运行流程图 (16)第4章结论 (18)第5章致谢..............................................................................1 8第6章参考文献 (18)基于plc的液体混合搅拌的控制系统设计摘要:可编程逻辑控制器是一种新型的通用自动控制装置。

它结合了传统的继电保护技术、计算机技术和通信技术。

它具有功能增强、编程简单、使用方便、体积小、重量轻、功耗低等一系列优点。

PLC 的应用已扩展到各个领域。

PLC 在工业生产过程中的发展, 大量的开关序列控制, 它根据逻辑条件进行顺序动作, 并根据逻辑关系进行链保护动作控制, 并具有大量的离散数据采集。

传统上, 这些功能是通过气动或电气控制系统实现的。

开关量最基本、应用最广泛的逻辑控制是 PLC, 它取代了传统的继电器电路, 实现了逻辑控制和顺序控制。

它不仅可用于单台设备控制, 还可用于多级组控制和自动管道。

如注塑机、印刷机、订书机、组合智能窗帘、磨床、包装等。

目前, PLC 已广泛应用于国内外钢铁、石油、化工、电力、建材、机械制造、汽车、纺织、交通、环保、文化娱乐等行业。

基于plc的液体混合系统的控制毕业设计

基于plc的液体混合系统的控制毕业设计

基于plc的液体混合系统的控制毕业设计一、研究背景随着工业自动化的不断发展,PLC(可编程逻辑控制器)作为一种重要的控制器件,被广泛应用于各个领域。

其中,在液体混合系统中,PLC 也扮演着重要的角色。

液体混合系统是指将两种或多种不同的液体按照一定比例混合,以达到特定的化学反应或工艺要求。

因此,在液体混合系统中,PLC可以通过对各个部件进行精准控制,实现液体流量、温度等参数的精确调节和监控。

二、研究目标本毕业设计旨在基于PLC实现液体混合系统的控制,并能够实时监测和记录各项参数变化。

具体目标如下:1. 设计并构建一个完整的液体混合系统。

2. 选用适当的传感器和执行器,并设计相应的电路。

3. 编写PLC程序,实现对液体流量、温度等参数进行精确调节和监测。

4. 实时记录各项参数变化,并能够生成相应报表。

三、研究内容1. 液体混合系统硬件设计(1)液体混合系统的结构设计液体混合系统的结构设计需要考虑到液体的流动性和混合效果。

一般来说,液体混合系统包括进料系统、混合系统和出料系统三个部分。

其中,进料系统包括进料管道、泵、阀门等部件;混合系统包括搅拌器、加热器等部件;出料系统包括出料管道、阀门等部件。

(2)传感器和执行器的选用在液体混合系统中,需要选用适当的传感器和执行器来实现对各项参数进行监测和调节。

例如,可以选用流量传感器、温度传感器等来监测液体流量和温度;可以选用电磁阀、气动阀等执行器来控制进料管道和出料管道的开关。

(3)电路设计根据所选用的传感器和执行器,需要设计相应的电路。

例如,可以采用模拟量输入模块来接收流量传感器输出的模拟信号;可以采用数字量输出模块来控制电磁阀或气动阀。

2. PLC程序设计根据硬件设计完成后,需要编写PLC程序实现对液体混合系统进行控制。

PLC程序需要实现以下功能:(1)监测液体流量和温度,并实时调节。

(2)实现进料管道和出料管道的开关控制。

(3)实现搅拌器的开关控制。

(4)实时记录各项参数变化,并能够生成相应报表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (1)关键字 (1)一、概述 (2)1.1液体混合系统的发展前景 (2)1.2液体混合系统的应用价值 (3)二、混料罐控制系统方案设计 (4)2.1 方案设计原则 (4)2.2 系统的总体设计要求 (4)2.3 总体结构设计方案 (5)2.4 控制对象分析 (5)三、混料罐控制系统的硬件设计 (6)3.1 选择PLC............................................. . (6)3.2 选择接触器 (7)3.3 选择搅拌电机 (8)3.4 小型三极断路器的选择 (9)3.5 液位传感器的选择 (10)3.6 选择电磁阀 (11)3.7 选择热继电器 (12)3.8 PLC I/O点分配 (12)3.9 主电路的设计 (13)四、混料罐控制系统的程序设计 (15)4.1 分析控制要求 (15)4.2 梯形图执行原理分析 (16)五、总结 (22)参考文献 (23)基于PLC的液体混料罐控制系统设计摘要随着科技的发展,PLC的开发与应用把各国的工业推向自动化、智能化。

强大的抗干扰能力使它在工业方面取代了微型计算机,方便的软件编程使他代替了继电器的繁杂连线,灵活、方便,效率高。

本设计主要是对两种液体混合搅拌机PLC控制系统的设计,在设计中针对控制对象:三只传感器监视容器高、中、低液位,设三电磁阀控制液体A、B输入与混合液体C输出,设搅拌电机M。

工艺流程是:启动后放入液体A至中液位后,关A,放液体B 至高液位,关B,启动搅拌电机M,当搅拌电机正反转3次后停止搅拌,开阀放出混合液体C,当到达低液位后延时2S放空后关阀,又重复上述过程,要求工作过程中按下停止按纽后搅拌器不立即停止工作,完成当前工作循环后再停止搅拌器。

关键字:液体混料装置自动控制PLC 电动机传感器一、概述1.1液体混合系统的发展前景为了提高产品质量,缩短生产周期,适应产品迅速更新换代的要求,产品生产正想缩短生产周期、降低成本、提高生产质量等方向发展。

在炼油、化工、制药等行业中,多种液体混合是必不可少的工序,而且也是其生产过程中十分重要的组成部分。

但由于这些行业中多为易燃易爆、有毒有腐蚀性的介质,以至现场工作环境十分恶劣,不适合人工现场操作。

另外,生产要求该系统要具有混合精确、控制可靠等特点,这也是人工操作和半自动化控制所难以实现的。

所以为了帮助相关行业,特别是其中的中小型企业实现多种液体混合的自动控制,从而达到液体混合的目的,液体混合自动配料势必就是摆在我们眼前的一大课题,借助实验室设备熟悉工业生产中PLC的应用,了解不同公司的可编程控制器的型号和原理,熟悉其编程方式,而多种液体混合装置的控制更常见于工业生产中,适合大中型饮料生产厂家,尤其见于化学化工业中,便于学以致用。

计算机的出现给大规模工业自动化带来了曙光。

1968年,美国最大的汽车制造厂商通用汽车(GM)公司提出了公开招标方案,设想将功能完备、灵活、通用的计算机技术与继电器便于使用的特点相结合,吧计算机的编程方法和程序输入方式加以简化,用面向过程、面向问题“自然语言”编程,生产一种新型的工业通用继电器,使人们不必花费大量的精力进行计算机编程,也能想几点起那样方便地使用。

这个方案首先得到了美国数字设备(DEC)公司的积极响应,并中标。

该公司于1969年研制出了第一台符合招标要求的工业控制器,命名为可编程逻辑控制器(PROGRAMMABLE LOGIC CONTROLLER),简称PLC(有的称为PC),并在GM公司的汽车自动装配线上实验获得了成功。

PLC一经出现,由于它的自动化程度高、可靠性好、设计周期短、使用和维护简便等独特优点,备受国内外工程技术人员和工商业界厂商的极大关注,生产PLC的厂商云起。

随着大规模集成电路和微处理器在PLC中的应用,是PLC的功能不断得到增强,产品得到飞速发展。

采用基于PLC的控制系统来取代原来由单片机、继电器等构成的控制系统,采用模块化结构,具有良好的可移植性和可维护性,对提高企业生产和管理自动水平有很大的帮助,同时又提高了生产线的效率、使用寿命和质量,减少了企业产品质量的波动,因此具有广阔的市场前景。

用PLC进行开关量控制的实例很多,在冶金、机械、纺织、轻工、化工、铁路等行业几乎都需要它,如灯光照明、机床电控、食品加工、印刷机械、电梯、自动化仓库、液体混合自动配料系统、生产流水线等方面的逻辑控制,都广泛应用PLC来取代传统的继电气控制。

本次设计是将PLC用于两种液体混合灌装设置的控制,对学习与实用是很好的结合。

本设计的主要研究范围及要求达到的技术参数有:1. 液体灌装机能够实现对混料罐安全、高效的加料、混料、出料的控制;2. 满足混料罐的各项技术要求;3. 具体内容包括两种液体混料控制方案的设计、软硬件电路的设计、常见故障分析等等。

1.2液体混合系统的应用价值液体的混合操作是一些工厂关键的或不可捎带一个环节。

对液体混合装置的要求是设备对液体的混合质量,生产效率和自动化程度高,适应范围广,抗恶劣环境等。

采用PLC对液体混合装置进行控制满足现在经济的需要,因此多种液体混合的PLC控制广泛的应用。

基于PLC的液体混料罐控制系统具有混合精确高、效率高、控制可靠等特点,它避免了人工在恶劣的工作现场操作,降低了危险系数,同时提高了企业生产和管理的自动化水平,减少了人员的使用,减轻了员工的劳动强度,提高了人员的使用效率,在某些工作环境恶劣的行业中应用十分广泛,具有良好的经济和社会效益。

二、混料罐控制系统方案设计2.1 方案设计原则整个设计过程是按思想工艺流程设计,为设备安装、运行和保护检修服务,设计的编写按照国家关于电气自动化工程设计中的电气设备常用基本图形符号(GB4728)及其他相关标准和规范编写。

设计原则主要包括:工作条件;工程对电气控制线路提供的具体资科,系统在保证安全、可靠、稳定、快速的前提下,尽量做到经济、合理、合用,减小设备成本。

在方案的选择、元器件的选型时更多的考虑新技术、新产品。

控制由人工控制到自动控制,由模拟控制到徽机控制,使功能的实现由一到多而且更加趋于充善。

对于本课题来说,液体混合系统部分是一个较大规模工业控制系统的改适升级,新控制装置需要报据企业设备和工艺现况来构成并需尽可能的利用旧系统中的元器件。

从企业的改造要求可以看出在新控制系统中既需要处理模拟量也需要处理大量的开关量。

系统的可靠性要高。

要实现整个液体混合控制系统的设计,需要从怎样实现各电磁阀的开关以及电动机启动的控制这个角度去考虑,现在就这个问越的如何实现以及选择怎样的方法来确定系统方案。

2.2 系统的总体设计要求在该混合液体装置中,需要完成两种液体的进料、混合、卸料的功能,控制要求如下:当按下启动按钮SB1时,执行自动混料操作,液阀1打开,A液体流入容器,液位上升。

当液位上升到一定时,进液阀1关闭,A液体停止流入,同时打开进液阀2,B液体开始流入容器。

当液位上升到一定处,进液阀2关闭,B液体停止流入,同时搅拌电动机开始工作。

搅拌完成后液体A、B阀门关闭,混合液体卸料阀门开,使液面下降至液面传感器L处,当液面传感器L检测到信号时计时2秒,用来将混合液体装置中的液体放空,然后将混合液体卸料阀门关闭,自动进入下一个循环。

按下停止按钮SB2,等待本次混合液体操作处理完成后,系统停止运行。

1. 本设计主要实现对混料罐的加料、混料、出料的控制。

2. 本设计使用液位H、液位I和液位L共 3个传感器控制液体A、液体B的进入和混合液体C排出的3个电磁阀门及搅拌机的启停。

2.3 总体结构设计方案H、I、L分别为高、中、低液位传感器,液位淹没时接通,液体A、B电磁阀与混合液C电磁阀由YV1、YV2、YV3控制,M为搅匀电动机。

图2-1 搅拌控制系统示意图2.4 系统控制要求控制要求:如图1-1所示,SL1(H)、SL2(I)、SL3(L)为3个液位传感器,液体淹没时接通。

进液阀Q01、Q02分别控制A液体和B液体进液,出液阀控制混合液体出液。

1. 起动操作按下起动按钮SB1,液体混合装置开始按以下顺序工作:(1)进液阀Q0.1打开,A液体流入容器,液位上升。

(2)当液位上升到SQ2(I)处时,进液阀Q0.1关闭,A液体停止流入,同时打开进液阀Q0.2,B液体开始流入容器。

(3)当液位上升到SL1(H)处,进液阀Q0.2关闭,B液体停止流入,同时搅拌电动机开始工作。

(4)混合液体搅拌,先正转2秒,停1秒,再反转2秒,停1秒。

(5)当搅拌电机正反转3次后停止搅拌,放液阀Q0.3打开,开始放液,液位开始下降。

(6)当液位下降到SL3(L)处时,开始计时且装置继续放液,将容器放空,计时满2秒后关闭放液阀Q0.3,自动开始下一个循环。

2. 停止操作工作中,若按下停止按钮SB2,装置不会立即停止,而是完成当前工作循环后再停止。

三、混料罐控制系统的硬件设计3.1 选择PLC传统的控制方法是采用维电器一接触器控制。

这种控制系统较复杂,并且大量的硬件接线使系统可靠性降低,也简洁地降低了设备的工作效率,采用可编程控制器较好地解决了这一问题,可编程控制器是一种将计算机技术、自动控制技术和通信技术结合在一起的新型工业自动控制设备,不仅能实现对开关量信号的逻辑控制,还能实现与上位计算机等智能设备之问的通信。

因此,将可编程控制器应用于多种液体混合灌装机,完全能满足控制要求。

且具有操作简单,运行可靠、工艺参数修改方便、自动化程度高等优点。

在本控制系统中,所需的开关量输入为5点,开关量输出为4点,考虑到系统的可扩展性和维修的方便性。

最终选用西门子S7-200 CPU224PLC控制整个系统。

PLC的一般结构主要有6个部分组成,包括CPU(中央处理器)、存储器、输入/输出接口电路、电源、外设接口、I/O扩展接口。

1.中央处理单元(CPU)CPU一样,PLC中的CPU也是整个系统的核心部件,主要有运算器、控制器、寄存器及实现它们之间联系的地址总线、数据总线和控制总线构成,此外还有外围芯片、总线接口及有关电路。

CPU在很大程度上决定了PLC的整体性能,如整个系统的控制规模、工作速度和内存容量等2.存储器存储器存放系统软件的存储器称为系统程序存储器。

存放应用软件的存储器称为用户程序存储器。

PLC常用的存储器类型有RAM、EPROM、EEPROM等。

图3-1 PLC机构图3.I/O模块输入模块和输出模块通常称为I/O模块或I/O单元。

PLC的对外功能主要是通过各种I/O接口模块与外界联系而实现的。

输入模块和输出模块是PLC与现场I/O装置或设备之间的连接部件。

起着PLC与外部设备之间传递信息的作用。

通常I/O模块上还有状态显示和I/O接线端子排,以便于连接和监视。

相关文档
最新文档