超级电容器结构
超级电容器
电极材料
电极材料是影响超级电容器性能的重要因素。 为了进一步提高超级电容器的容量和循环寿命,最主要的 是开发新的高比容量,高比功率的电极材料。 超级电容器的电极材料可以分为以下几类:炭电极材料, 金属氧化物电极材料,导电聚合物电极材料,复合电极材 料。
碳电极材料
目前已经开发用在双电层电容器上的碳材料有:活性炭 粉末、活性碳纤维、碳纳米管、膨胀性石墨、碳气凝胶、 炭黑和石墨烯等。 炭材料的性质中最为关键的几个影响因素为炭材料的表 面积和粒径分布,炭材料的电学稳定性,炭材料的导电 率。
在沿海岛屿、边远山区,地广人稀的草原牧场等地方, 风能和太阳能可作为解决生产和生活能源的一种可靠 途径。然而,这些能源还不能稳定地供给。将超级电 容器与风力发电装置或太阳能电池组成混合电源,超 级电容器在白天阳光充足或风力强劲的条件下吸收能 量以电能的形式存储起来,在夜晚或风力较弱时放电, 可解决上述问题。
超级电容器还可用作汽车的主电源。
(4)工业领域
超级电容器在工业不间断电源(UPs)、安全预防 设备以及仪器仪表等方面得到广泛应用。
(5)消费电子领域
使用超级电容器做为储能元件的手电筒,充电只 需90秒,循环寿命可达50万次,可使用约135年。电 子玩具常要求瞬时大电流,而电池无法提供,使用超 级电容器作为电源不仅可以解决这个问题,还可以降 低使用成本、减轻质量。一种自动的切管工具用于替 代一种己经有十年历史的旧式手持切管设备。考虑实 际应用,要求能提供瞬间高功率及长寿命,并且要求 快速充电,一次充电能满足100次的切割工作,超级 电容器与电池混联后能使产品满足应用的需求。
超级电容器的研究及应用现状
美国、日本、韩国、俄罗斯、德国等国研究超级 电容器起步较早,技术相对比较成熟。
超级电容器的研究
3、表面官能团
主要通过两种途径: 1)改变表面的润湿性能 2)官能团自身发生可逆的氧化还原反应 从制备高容量、耐高压、稳定性好的电容器角度 出发 , 要求活性炭材料表面的官能团有一个合适 的比例。
4、微晶结构
对超级电容器来说,中孔比例大一些比较好 中孔碳材料的方法主要有三种: 1)催化活化法 2)混合聚合物炭化法 3)模板炭化法
3、发展趋势:
• 提高性能、降低成本是超级电容器发展的主旋律。 • 从超级电容器的发展历史来看,电容器虽然能够 提供高功率,但电容器不能像电池一样提供高的 重量能量比,期望将来超级电容器能够代替电池 作为储能元件,兼具高能量和高功率的性能。 • 超级电容器是绿色环保、能源开发的重要方向之 一,它的研发必将带动整个电子产业及相关行业 的发展,目前国内超级电容器的开发生产刚刚起 步,具有广阔的发展空间。
双电层原理示意图
2. 性能特点
—介于电池和物理电容器之间
性 能 铅酸电池 1-5小时 超级电容器 0.3-若干秒 普通电容器 10-3—10-6秒
充电时间
放电时间
比能Wh/kg 循环寿命 比功率W/kg 充放电效率
0.3-3小时
30- 40 300 < 300 0.7-0.85
0.3-若干秒
1- 20 >10000 >1000 0.85-0.98
2) 赝电容型超级电容器
(1) 金属氧化物材料 • 贵金属氧化物材料 —RuO2:无定型RuO2拥有更高 的电导率,更高的比电容,更高的电化学可逆性。 • 替代RuO2的廉价金属氧化物材料—MnO2和NiO。
(2) 导电聚合物材料 聚苯胺(PANI)、聚吡 (PPy)和聚噻吩(PTh) 他们的一些相关衍生 物。 优点: 价格低廉、对环境友 好、高导电率、高度 可逆以及活性可控。
超级电容的结构和工作原理
超级电容的结构和工作原理超级电容器又称双电层电容器、黄金电容、法拉第电容,是一种新型的储能原件,它兼有物理电容器和电池的特性,能提供比物理电容器更高的能量密度,比电池具有更高的功率密度和更长的循环寿命,并且这种电容器己在工业领域实现产业化和实际应用。
如在考虑到环保需要而设计开发的电动汽车和复合电动汽车的动力系统中,若单独使用电池将无法满足动力系统的要求,然而将高功率密度电化学电容器与高能量密度电池并联组成的混合电源系统既满足了高功率密度的需要,又满足了高能量回收的需要。
高能量密度、高功率密度的电化学电容器正在成为人们研究的热点。
1.(3):对使外部2.由于储能机理的不同,人们将超级电容器分为:(1)基于高比表面积电极材料与溶液问界面双电层原理的双电层电容器;(2)基于电化学欠电位沉积或氧化还原法拉第过程的赝电容器。
赝电容与双电层电容的形成机理不同,但并不相互排斥。
大比表面积准电容电极的充放电过程会形成双电层电容,双电层电容电极(如多孔炭)的充放电过程往往伴随有赝电容氧化还原过程发生,实际的电化学电容通常是两者共存的宏观体现,要确认的只是何者占主要的问题。
实践过程中,人们为了达到提高电容器的性能,降低成本的目的,经常将赝电容电极材料和双电层电容电极材料混合使用,制成所谓的混合电化学电容器。
混合电化学电容器可分为两类,一类是电容器的一个电极采用赝电容电极材料,另一个电极采用双电层电容电极材料,制成不对称电容器,这样可以拓宽电容器的使用电压范围,提高能量密度;另一类是赝电容电极材料和双电层电容电极材料混合组成复合电极,制备对称电容器。
(1)双电层电容器一对浸在电解质溶液中的固体电极在外加电场的作用下,在电极表面与电解质接触的界面电荷会重新分布、排列。
作为补偿,带正电的正电极吸引电解液中的负离子,负极吸引电解液中的正离子,从而在电极表面形成紧密的双电层,由此产尘的电容称为双电层电容。
双电层是由相距为原子尺寸的微小距离的两个相反电荷层构成,这两个相对的电荷层就像平板电容器的两个平板一样。
超级电容器的结构及其特点
超级电容器结构及特点超级电容器( supercapacitor,ultracapacitor),又名电化学电容器(Electrochemical Capaci-tors)、黄金电容、法拉电容,超级电容器通过极化电解质来储能。
它是一种电化学元件,但在其储能的过程并不发生化学反应,其储能过程是可逆的,可以反复充放电数十万次。
超级电容器是20世纪七八十年代发展起来的一种新型的储能装置。
它是一种介于传统电容器与蓄电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原原理储存电能,因而不同于传统的化学电源。
超级电容器其容量可达法拉级甚至数千法拉,它兼有常规电容器功率密度大,比普通蓄电池能量密度高的优点,并且具有充放电时间短,循环性能好,使用寿命长,使用温度范围宽,对环境无污染等特点。
因此,从某种意义上讲,超级电容器有着传统电容器和蓄电池的双重功能,弥补了两个传统技术间的空白,因此具有很大的发展潜力。
超级电容器的准确名称是化学或双电屡电容器(具体名称取决于制造商),简称EDLC。
超级电容器的表现与传统电容器(包括多层陶瓷电容器、钽电容器、电解电容器等)相似,但能量密度更高。
这是由具有极大的电荷存储表面积的多孔炭电极与专门的电解质提供的极薄的板分离层相结合而形成的。
超级电容器属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其他种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。
超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近,如图3-6所示。
超级电容器的能量储存在双电层和电极内部,当用直流电源为超级电容器单体充电时,电解质中的正、负离子取向聚集到固体电极表面,形成电极/溶液双电层,用以贮存电荷。
超级电容器工作原理
超级电容器工作原理超级电容器,也被称为超级电容或者超级电容器电池,是一种能够储存和释放大量电能的装置。
它的工作原理基于电荷的分离和电场的形成。
1. 电容器的基本原理电容器由两个导体板(通常是金属)和介质(通常是电介质)组成。
当电容器连接到电源时,正电荷会会萃在一个导体板上,负电荷则会萃在另一个导体板上。
这种分离的电荷会在两个导体板之间形成一个电场。
2. 超级电容器的结构超级电容器的结构与普通电容器相似,但它的电极和电介质材料有所不同。
超级电容器的电极通常由活性炭或者金属氧化物制成,这些材料具有高比表面积和良好的导电性能。
电介质通常是有机溶液或者聚合物。
3. 双电层电容效应超级电容器的工作原理主要依赖于双电层电容效应。
当超级电容器连接到电源时,电荷会在电极表面形成一个双电层。
这个双电层由电解质和电极表面之间的离子层组成。
由于活性炭等材料具有高比表面积,双电层的电容量非常大。
4. 能量存储和释放超级电容器能够存储大量的电能,因为它的电容量比传统电容器大得多。
当超级电容器连接到电源时,电荷会在电极表面积累,储存电能。
当需要释放电能时,超级电容器会通过连接到负载的导线释放电荷。
5. 充放电过程超级电容器的充放电过程比较快速,这是因为电荷可以在电极表面直接存储和释放。
充电时,电流会流入电容器,电荷会在电极表面积累。
放电时,电流会从电容器流出,电荷会从电极表面释放。
6. 应用领域超级电容器具有快速充放电、长寿命、高效能量存储等特点,因此在许多领域得到广泛应用。
它们可以用于电动车辆的启动和制动能量回收系统、电力系统的峰值负荷平衡、可再生能源的储能系统等。
此外,超级电容器还可以用于电子设备的备份电源和无线通信设备的蓄电池。
总结:超级电容器利用双电层电容效应,能够储存和释放大量电能。
它的工作原理基于电荷的分离和电场的形成。
超级电容器的结构与普通电容器类似,但电极和电介质材料不同。
超级电容器具有快速充放电、长寿命和高效能量存储等特点,被广泛应用于电动车辆、电力系统和可再生能源等领域。
超级电容器结构
知识创造未来
超级电容器结构
超级电容器的结构主要分为两种:电双层电容器和赋存电容器。
1. 电双层电容器(Electric Double-Layer Capacitor,EDLC):电双层电容器的结构由两个电极(正极和负极)和电解质组成。
电极
通常采用活性炭材料,具有高比表面积和孔隙结构,以增加电极与
电解质接触的面积。
电解质既可以是有机物质,也可以是无机盐溶液。
当电压施加在电极上时,电解质中的正、负离子会在电极表面
形成电双层,形成电荷分离,从而存储电能。
2. 赋存电容器(Pseudocapacitor):赋存电容器的结构类似于传
统的电化学储能器件,如铅酸蓄电池等。
它包括两个电极和电解质,但电极材料不同于电双层电容器,而是采用具有赋存效应的材料,
如金属氧化物和导电聚合物。
这些材料具有较高的可逆氧化还原反应,并能够通过红ox反应来存储电能。
以上是超级电容器的两种常见结构,每种结构都有其特定的优势和
应用领域。
电双层电容器具有高功率密度、长寿命和低内阻的特点,适用于短时高功率输出和储能装置中的能量平衡;赋存电容器具有
较高的能量密度和较长的充放电周期,适用于需要较长工作时间和
较高能源密度的应用。
1。
超级电容器的分类与优缺点分析
超级电容器的分类与优缺点分析1.1 超级电容器的原理"双电层原理"是超级电容器的核心,这是由该装置的双电层结构决定的。
超级电容器是利用双电层原理的电容器。
当外加电压作用于普通电容器的两个极板时,装置存储电荷的原理是一样的,即正电极与正电荷对应、负电极与负电荷对应。
图1 超级电容的结构原理1.2 超级电容器的应用目前,超级电容器凭借强大的储存容量及存储性能,在许多大中小型设备中得到了普遍运用,且涉及到的行业较为广泛。
具体运用在:真空开关、仪器仪表、数码相机等微小电流供电的后备电源;太阳能产品以及小型充电产品的充电电池。
由于超级电容器的功能优势显着,在使用时可适当添加辅助元件以优化电容器结构,从而进一步增强了超级电容器的结构性能。
2 超级电容器的主要功能与普通电容器相比,超级电容器在结构上进行了改进调整,且在原理上得到了优化。
但在使用期间超级电容器与常规电容器的功能相近。
新型电容装置的功能集中表现在:旁路、去耦、储能等方面,这些对于电路运行或存储电荷都有着明显的调控作用。
具体功能如下:(1)旁路。
超级电容器中的旁路电容可以定期储存电能,但其它元器件在运行中需要能量时,则能及时释放出电荷维持使用。
旁路电容器的最大功能表现于稳压器电荷输出的均衡,避免了电荷传输混乱而引起电路故障,装置充电、放电的灵活性较强,如图2.图2 旁路电容原理(2)去耦。
去耦主要是针对电路内产生的"耦合"现象而言,耦合是由于电路中电流、电阻失去均衡而引起的一种"噪声",不利于电路内部载荷的均衡布置。
超级电容器使用之后,能有效地消除耦合现象,让电路中的各项指标参数维持在标准状态。
(3)储能。
无论是普通的电容器或者超级电容器,储存电荷或电能都是极为关键的性能。
超级电容器的电荷储存容量更大,能满足更多电子元件的使用需求。
超级电容器把存储的能量利用变换器引线传送至电源的输出端之后,经过优化处理能进一步强化电容的存储性能。
超级电容器PPT课件
(2) 每个周期的平均成本低;
(3) 良好的可逆性;
优
(4) 充电和放电率非常高;
点
(5) 非常低的内部电阻和随之而来的高周期效率(95%以上)和极 低的放热;
(6) 高输出功率;
(7) 比功率高;
(8) 使用无腐蚀性的电解质和低毒性的材料,提高了安全性;
(9) 简单的充电方法,不必进行过充检测,因为没有过充的可能。
1. MnO2材料 溶胶凝胶法制得的MnO2水 合物在KOH溶液中的比容 量为689F/g
2. NiO材料
溶胶凝胶法制得的多孔 NiO比容量为265F/g
3. 多孔V2O5水合物比容 量为350F/g)(在KCl溶 液中)
4. Co3O4干凝胶
1. 研究情况 聚苯胺、聚对苯、聚吡咯、 聚并苯、聚噻吩、聚乙炔、 聚亚安酯等
4.石墨烯
石墨烯/赝电容材料复合电极
RuO 2纳米粒子/石墨烯
4
4-1 超级电容器的电极材料
法拉第赝电容对金属化合物的要求
要求
高比表面—高比容量 低电阻率—高比功率 化学稳定性—长寿命 高纯度—减少自放电
价格低—便于推广使用
4
4-1 超级电容器的电极材料
三种主要的赝电容器电极材料
贵金属
廉价金属
导电聚合物
4
2
超级电容器的特点
超
级
电容量大
电
容
器 可任意并联
的 增加电容量
八
大
特
工作温度范围宽
点
充放电寿命长
等效串联电阻 相对常规电容大
免维护,环保
大电流放电
快速充电
6
3
分类
3
超级电容器的分类
超级电容器原理介绍及实验分析
五、结果与分析1、实验过程总结与知识点查阅○1超级电容器的结构:[1]超级电容器主要由三部分组成:电极、电解液和隔膜,其中电极由集流体和电极材料组成。
本实验中,集流体为泡沫镍,集流体起到降低电极内阻的作用,活性物质为三维石墨烯-Co3O4复合材料。
○2超级电容器的分类及原理分为双电层电容器和赝电容器双电层电容器:充电时,电解液中的带电粒子被吸附在电极表面,形成双电层结构,从而将能量储存起来。
在双电层电容器工作的过程中,电解液中的粒子只发生电迁移、扩散、传质,完全是物理过程,不会和电极发生氧化还原反应。
在充电时,接正极的电极集流体和活性物质带正电,活性物质吸附电解液中的负离子从而形成双电层结构。
同样的,接负极的活性物质带负电,吸引电解液中的阳离子形成双电层结构。
整个超级电容器相当于两个电容器串联。
循环性能好,比电容较低。
赝电容器:由于电解液中粒子与电极材料发生高度可逆的氧化还原反应,形成不稳定的产物,将能量储存起来。
在充电时,活性物质与电解液中的粒子在电极表面或者电极表面及内部发生高度可逆的化学吸附;在放电时则进行解吸附的过程。
循环性能差,比电容高。
○3超级电容器的电极材料[2]:(1)炭材料:活性炭、碳纳米管、石墨烯等。
主要用于双电层电容器,比容量较低,而且能量密度与功率密度也较低。
( 2 )过渡金属氧化物和导电聚合物,主要用于赝电容器,比容量与能量密度较高,导电性能和循环稳定性相对活性炭较差。
(3)改进材料:制备碳材料与金属氧化物或导电聚合物的复合材料,同时拥有比电容高和循环性能好的优点,如本实验中的三维石墨烯-Co3O4复合材料。
○4循环伏安法测试及其原理循环伏安法是指在工作电极和参比电极之间施加三角波扫描电压,记录工作电极上响应电流与施加电位之间的关系曲线,即循环伏安图。
从伏安图的波形、氧化还原电流的数值及其比值、峰电位等可以判断电极反应机理。
而在本实验中运用循环伏安法,在得到CV 曲线后首先可以从曲线的对称性分析得到样品的循环性能,之后可以通过曲线围成的面积计算样品的电容大小。
超级电容的结构和工作原理
超级电容的结构和工作原理超级电容器又称双电层电容器、黄金电容、法拉第电容,是一种新型的储能原件,它兼有物理电容器和电池的特性,能提供比物理电容器更高的能量密度,比电池具有更高的功率密度和更长的循环寿命,并且这种电容器己在工业领域实现产业化和实际应用。
如在考虑到环保需要而设计开发的电动汽车和复合电动汽车的动力系统中,若单独使用电池将无法满足动力系统的要求,然而将高功率密度电化学电容器与高能量密度电池并联组成的混合电源系统既满足了高功率密度的需要,又满足了高能量回收的需要。
高能量密度、高功率密度的电化学电容器正在成为人们研究的热点。
1.超级电容器的结构超级电容器结构上的具体细节依赖于对超级电容器的应用和使用。
由于制造商或特定的应用需求,这些材料可能略有不同。
所有超级电容器的共性是,他们都包含一个正极,一个负极,及这两个电极之间的隔膜,电解液填补由这两个电极和隔膜分离出来的两个的孔隙。
超级电容器的结构如图1所示.是由高比表面积的多孔电极材料、集流体、多孔性电池隔膜及电解液组成。
电极材料与集流体之间要紧密相连,以减小接触电阻;隔膜应满足具有尽可能高的离子电导和尽可能低的电子电导的条件,一般为纤维结构的电子绝缘材料,如聚丙烯膜。
电解液的类型根据电极材料的性质进行选择。
图1 超级电容器的基本结构上图中各部分为:(1):聚四氟乙烯载体;(2)(4):活性物质压在泡沫镍集电极上;(3):聚丙烯电池隔膜。
超级电容器的部件从产品到产品可以有所不同。
这是由超级电容器包装的几何结构决定的。
对于棱形或正方形封装产品部件的摆放,内部结构是基于对内部部件的设置,即内部集电极是从每个电极的堆叠中挤出。
这些集电极焊盘将被焊接到终端,从而扩展电容器外的电流路径。
对于圆形或圆柱形封装的产品,电极切割成卷轴方式配置。
最后将电极箔焊接到终端,使外部的电容电流路径扩展。
图1.2超级电容器电极2.超级电容器的工作原理由于储能机理的不同,人们将超级电容器分为:(1)基于高比表面积电极材料与溶液问界面双电层原理的双电层电容器;(2)基于电化学欠电位沉积或氧化还原法拉第过程的赝电容器。
卷绕式超级电容
卷绕式超级电容
卷绕式超级电容是一种采用卷绕结构制造的超级电容器。
它由两
个带电极的导体箔卷绕在一起,中间隔着电介质层。
采用卷绕结构可
以增加电极与电介质的接触面积,提高能量储存能力。
卷绕式超级电
容器具有高能量密度、高功率密度、长寿命、低内阻等特点。
卷绕式超级电容器广泛应用于电动车、电子设备、储能系统等领域。
在电动车中,它可以作为辅助能量储存装置,提供瞬时大电流输出,减轻锂电池负荷,延长电池寿命。
在储能系统中,卷绕式超级电
容器可以快速储存和释放能量,平衡电网功率波动,提高电网稳定性。
相比传统电容器,卷绕式超级电容器具有更高的能量储存密度和
功率密度。
然而,它的能量密度仍然远低于锂离子电池。
因此,目前
的研究工作主要集中在提高卷绕式超级电容器的能量密度和循环寿命,以满足更高的能源储存需求。
超级电容电池的结构和工作原理
超级电容电池的结构和工作原理超级电容的容量比通常的电容器大得多。
由于其容量很大,对外表现和电池相同,因此也称作“电容电池”或说“黄金电池”。
超级电容器电池也属于双电层电容器,它是目前世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量.传统物理电容中储存的电能来源于电荷在两块极板上的分离,两块极板之间为真空(相对介电常数为1)或一层介电物质(相对介电常数为ε)所隔离,电容值为:C = ε·A / 3.6 πd ·10-6 (μF) 其中A为极板面积,d为介质厚度。
所储存的能量为: E = C (ΔV)2/2,其中C为电容值,ΔV为极板间的电压降.可见,若想获得较大的电容量,储存更多的能量,必须增大面积A或减少介质厚度d,但这个伸缩空间有限,导致它的储电量和储能量较小。
超级电容采用活性炭材料制作成多孔电极,同时在相对的碳多孔电极之间充填电解质溶液,当在两端施加电压时,相对的多孔电极上分别聚集正负电子,而电解质溶液中的正负离子将由于电场作用分别聚集到与正负极板相对的界面上,从而形成两个集电层,相当于两个电容器串联,由于活性碳材料具有≥1200m2/g的超高比表面积(即获得了极大的电极面积A),而且电解液与多孔电极间的界面距离不到1nm(即获得了极小的介质厚度d),根据前面的计算公式可以看出,这种双电层电容器比传统的物理电容的容值要大很多,比容量可以提高100倍以上, 从而使单位重量的电容量可达100F/g,并且电容的内阻还能保持在很低的水平,碳材料还具有成本低,技术成熟等优点。
从而使利用电容器进行大电量的储能成为可能,且在实际使用时,可以通过串联或者并联以提高输出电压或电流。
超级电容电池的特点:(1)充电速度快,只要充电几十秒到几分钟就可达到其额定容量的95%以上;而现在使用面积最大的铅酸电池充电通常需要几个小时。
超级电容器简介_图文
双电层原理示意图
充电时,外电源使电容器正负极分别带正电和负电,而电解液中的正负离子分别移动到电 极表面附近,形成双电层,整个双电层电容器实际上是两个单双电层电容器的串联装置。
双电层电容器充电状态电位分布曲线 Profile of the potential across electrochemical double
1、多孔电容炭材料
性能要求
1、高比表面 > 1000m2/g
理论比电容 > 250 F/g
ห้องสมุดไป่ตู้
各指
2、高中孔孔容 12~40Å 400l/g,
标间
大于40Å的孔容 50l/g,
相互
3、高电导率
矛盾
4、高的堆积比重
5、高纯度 灰份 < 0.1%
6、高性价比
7、良好的电解液浸润性
已研制的电容炭材料
碳气凝胶——电子导电性好
电容器产品性能:功率 4000 W/kg,能量 1 Wh/kg 优点:中孔发达、电导率高 不足:比表面积低、制备工序复杂 发展趋向:非超临界干燥、活化提高比电容
玻态炭 电导率高,机械性能好; 结构致密,慢升温制作难,价贵。
玻态炭
只能表层活化
活性玻态炭
纳米孔玻态炭
多孔碳层 厚15~20 um 多孔碳层的电导率高, 多孔碳层比功率18kW/L
230
170
制备条件
常规方法、简单方便 超临界干燥周 期长、费用高
碳纳米管
特点 1、导电性好,比功率高 2、比表面小,比容量低 3、成本高
作为添加剂使用
2、准电容储能材料
对金属化合物的性能要求:
1、高比表面 ——多孔,高比能量 2、低电阻率 ——高比功率 3、化学稳定性—— 长寿命 4、高纯度—— 减少自放电 5、价格低—— 便于推广应用
超级电容器结构
超级电容器结构
超级电容器的结构通常包括两个电极、一个电解质和一个隔离层。
电极是超级电容器中存储电能的部分,一般由纳米级的碳材料(如活性碳或碳纳米管等)制成。
这种材料具有很大的比表面积,有助于增加电容器的电容量。
电解质是超级电容器中的介质,通常是含有离子的溶液或凝胶态物质。
电解质的选择主要取决于超级电容器的工作电压和应用环境等因素。
隔离层是用来隔离电极和电解质的,以防止短路。
常用的隔离层材料包括纸张、塑料薄膜或陶瓷等。
在超级电容器的结构中,电极和电解质之间通过隔离层进
行分隔,但它们之间仍然有一些物理和化学上的相互作用,这有助于电荷在电极和电解质之间的传输。
这种结构使得
超级电容器能够具备高电容量和快充放电速度的特点。
超级电容器(资料汇总)
超级电容1.1 概述 (2)1.1.1 超级电容器的原理与结构及分类....... .. (2)1.1.2 超级电容器的特性.............. .. (4)1.1.3 超级电容器应用领域.... . (6)1.2 超级电容器市场状况 (7)1.2.1 概况 (8)1.2.2 竞争情况.. (11)1.2.3 下游市场...... . (12)1.3 超级电容器技术现状研究 (16)1.3.1 正极材料..... .. (17)1.3.2 负极材料 (18)1.3.3 有机电解液... (18)1.4 主要企业... (18)1.5 主要科研机构与科学家 (20)超级电容器作为一种新型的储能器件以其大容量、高功率密度、强充放电能力、长循环寿命、使用温度范围宽、无污染等许多显著优势在很多领域有着极为广阔的应用前景。
本文从详实的数据入手将超级电容器行业市场与技术现状综合起来,进行了全面深入的研究并对其发展作出了科学的预测。
同时,本文还基于当前国内的实情对产业技术中存在的漏洞提出了较好的解决方案,对技术的改进及产业的优化给出了合理的建议,并预见性的提出将锂离子电池技术与超级电容器技术结合起来研究推广的新思路。
本文不仅对国内从事电池能源业的中小型企业进军超级电容器领域,改进超级电容器生产技术,把握超级电容器市场动向有着较强的指导作用,对国家规范和优化超级电容器行业市场也有借鉴意义。
1.1 概述超级电容器又称电化学电容器,超大容量电容器,超电容器等。
迄今为止,没有规范的命名。
依据其储能机理不同,超级电容器又可分为以炭材料为主要电极材料的双电层电容器和以金属氧化物或导电聚合物为主要电极材料的准电容电容器。
1.1.1 超级电容器的原理(1)双电层电容工作原理双电层理论在19世纪末由Helmhotz等提出,后经Gouy,Chapman,Stern以及其他研究者逐步完善,已经形成较完善的理论。
其原理如图所示,将固体电极浸在电解液中,当施加低于溶液的分解电压的外加电场作用下,在电极与电解液接触的界面,由于库仑力、分子间力或者原子间力的作用,电荷会重新分布、排列。
超级电容器汇总
比电容高达1335
Fg-1, 并具有良好
的电容保持特性
石墨烯上生长聚吡咯 电化学沉积聚吡咯, 比电容高达1510
Fg-1, 面积比电容
为151 mF cm−2
4
4-1 超级电容器的电极材料
4.石墨烯
a) b)
石墨烯/赝电容材料复合电极 层次化 聚苯胺纳米线/石墨烯
30
4
4-1 超级电容器的电极材料
25
4
4-1 超级电容器的电极材料
4.石墨烯
什么是石墨烯超级电容器?
石墨烯超级电容器为基于石墨烯材 料的超级电容器的统称。由于石墨烯独 特的二维结构和出色的固有的物理特性, 诸如异常高的导电性和大比表面积,石 墨烯基材料在超级电容器中的应用具有 极大的潜力。石墨烯基材料与传统的电 极材料相比,在能量储存和释放的过程 中,显示了一些新颖的特征和机制。
特 性
4
4-2 超级电容器的电解液
有机系超级电容器的优缺点 优点
具有较高的分解电压 较高的能量密度 较高的电化学稳定性 耐高压 产品使用寿命长 工作温度范围宽 有机电解液应该尽量避免水的存在, 水的存在会导致电容器性能的下降, 自放电加剧
缺点
电容器的过充会导致有毒的挥发性 物质产生,同时也会使电容器的储 电能力显著下降甚至消失
4
2
特点
2
超 级 电 容 器 的 八 大 特 点
超级电容器的特点
充放电寿命长 电容量大 等效串联电阻 相对常规电容大
可任意并联 增加电容量
免维护,环保
工作温度范围宽 快速充电
大电流放电
6
3
分类
3
超级电容器的分类
超级电容器
双电层电容器 法拉第赝电容器
超级电容器结构
超级电容器结构超级电容器是一种具有高能量密度和高功率密度的新型储能装置,逐渐在各个领域得到应用。
超级电容器的结构设计是关键的一环,合理的结构设计可以提高其性能和寿命。
本文将介绍超级电容器的常见结构及其特点,并探讨一些新型结构的发展趋势。
一、传统1.1 电极材料超级电容器的电极材料通常使用活性炭或导电聚合物。
活性炭具有较高的比表面积和孔隙率,能够容纳更多的电荷,并提高电容器的能量密度。
导电聚合物则能够提供更高的导电性能和更大的电容值。
1.2 电解液传统超级电容器的电解液通常使用有机溶液,如丙酮腈和硫酸。
这些电解液具有较高的电导率,能够提供电解质,使电荷在电极之间传递更加顺畅。
1.3 隔膜隔膜是分隔电极的关键组件,通常使用聚合物薄膜。
隔膜具有良好的离子传输性能,并可以防止电极间的短路。
优质的隔膜应具有较低的内电阻和较高的机械强度。
二、新型2.1 纳米孔阵列电极纳米孔阵列电极是一种相对较新的超级电容器结构设计。
通过在电极材料中制造大量纳米孔,可以极大地增加电极的比表面积,从而提高电容器的能量密度。
此外,纳米孔阵列电极还具有更短的离子传输路径,实现更高的功率密度。
2.2 柔性超级电容器柔性超级电容器是一种可以弯曲和变形的新型结构,具有更广泛的应用前景。
其电极材料和隔膜通常采用柔性聚合物材料,能够适应各种形状的需求。
柔性超级电容器可以被集成到柔性电子产品中,如智能手表和可穿戴设备。
2.3 三维电极结构传统超级电容器的电极是二维的片状结构,限制了电容器的能量密度和功率密度。
而三维电极结构通过在电极上形成微米级的孔隙结构,增加了电极的有效表面积,提高了能量和功率密度。
同时,三维电极结构也能够提供更好的离子传输路径,减少电荷传输的阻抗。
三、未来发展趋势随着电动汽车和可再生能源等领域的快速发展,对超级电容器性能的要求也越来越高。
未来的超级电容器结构将更加注重能量密度和功率密度的平衡,同时提高循环寿命和稳定性。
此外,新型材料的研究和细致的结构设计也是发展的重点。
超级电容器
活性炭 碳气凝胶 碳纳米管 石墨烯
金属氧化物
混合型超级电容器
静电和电化学作用共同储能
导电聚合物
对称型电极
非对称型电极
可充电电池型
复合电极材料 赝电容+双电层电极
8
3
3-1 双电层电容器
双电层电容原理
其储能过程是物理过程,没有化学反应且 过程完全可逆,这与蓄电池电化学储能不同
由于正负离子在固体电极和电解液之间的表面上分别吸附, 造成两固体电极之间的电势差,从而实现能量的存储。
材料
Cellulose 纤维素
5
制作
工艺
5
超级电容器的制作工艺
磨料
行星球磨机
压制电芯
热平压机
软包超级电容器制作工艺流程图
14
3
3-3 混合型超级电容器
锂离子电容器
结 构 图
15
3
3-3 混合型超级电容器
充电
电解液 中的Li+嵌入 到石墨层间 形成嵌锂石 墨,同时, 电解液中的 阴离子则吸 附在活性炭 正极表面形 成双电层。
锂离子电容器机理
放电
Li+从负极 材料中脱出回到 电解液中,正极 活性炭与电解液 界面间产生的双 电层解离,阴离 子从正极表面释 放,同时电子从 负极通过外电路 到达正极。
4
4-2 超级电容器的电解液
电 解 液
性能要求
4
4-2 超级电容器的电解液
按照电解液的类型可以分为水系电解液和有机系电解液
水系电解液
中性电解液(NaSO4等) 酸性电解液(H2SO4等)
碱性电解液(KOH等)。
有机/离子电解液 四氟硼酸四乙基铵(Et4NBF4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超级电容器结构
超级电容器是一种高容量、高功率密度和高循环寿命的
储能设备,被广泛应用于电子设备、汽车、航空航天和可再生能源等领域。
它通过在电极之间存储电荷来实现能量储存和释放。
超级电容器的结构包括电介质、电极和电解质三个主要
部分。
首先是电介质。
电介质是超级电容器的重要组成部分,
它起到电荷分离和阻挡电流的作用。
目前常用的电介质材料有活性炭、活性纳米炭素纤维、电解液和铝酸盐等。
活性炭是最常见的电介质材料,它具有较高的比表面积和孔隙结构,能够提供大量的表面反应区域,从而增加电极与电解质之间的接触面积,提高电容器的电容量。
活性纳米炭素纤维是一种新型的电介质材料,它具有良好的导电性和高比表面积,在超级电容器中表现出优异的性能。
其次是电极。
电极是超级电容器的另一个重要组成部分,它是储存和释放电荷的场所。
电极材料通常是具有良好导电性和化学稳定性的材料,如金属、碳纳米管、活性炭和导电高分子材料等。
金属电极是超级电容器中最常用的电极材料之一,它具有良好的导电性和机械稳定性,但容量较低。
碳纳米管是一种新型的电极材料,具有优良的电导率和机械强度,能够提供更大的表面积和更好的电荷储存能力。
活性炭电极是应用最广泛的电极材料之一,它具有可调节的孔隙结构和高比表面积,能够实现大容量的电荷储存。
最后是电解质。
电解质是超级电容器的另一个关键组成
部分,它承担着电荷传递和离子传输的任务。
电解质通常是一种能够导电的溶液或固体物质,如硫酸、硫酸铝、盐酸等。
它的选择要考虑到导电性能、电化学稳定性和低内阻等因素。
超级电容器的结构可以分为两种类型:电化学电容器和
电双层超级电容器。
电化学电容器的结构包括正极、负极和电解质三个组成部分,其中正极和负极由电极材料构成,电解质则填充在电极之间。
电双层超级电容器的结构是以电解质为界面分离正负电荷,形成两个电容层,正负极采用相同的电极材料。
在实际应用中,为了增加超级电容器的电容量和性能,
常采用串联和并联的方式组成电容器电池组,通过增加单个电容器的个数和对电池进行调整,以满足不同领域的储能需求。
总之,超级电容器的结构由电介质、电极和电解质三个
主要组成部分构成,它具有高容量、高能量密度和高循环寿命等优点,是一种理想的储能设备。
随着科技的不断进步和创新,超级电容器有望在未来取得更大的突破和应用。