《平面直角坐标系》优质ppt课件1
合集下载
人教版7.1平面直角坐标系 课件 (共20张PPT)
2叫做点P的纵坐标,
3 N2
1 -4 -3 -2 -1 0 -1 1
.Q(2,3) (3,2) p ·
M
2 3 4 5
记作:P(3,2)
X
-2 -3
-4
平面上点的坐标的确定
Y b
平面内任意一点P,过P点分别 向x、y轴作垂线,垂足在x轴、 y轴上对应的数a、b分别叫做 O 点p的横坐标、纵坐标, 则有序数对(a,b)叫做点P的坐标。
y 2
y
2 1 1
y
2 1 1 2 O
-2 -1
O
2
x
-2 -1
O
1
1
2 x
-2 -1
x
-2 -4
-1 -2 1 y ]
-1 -2
[
[
2
]
y 2
[
3
]
-2 -1 O
2 1
-2 -1 1 2 x O
1 1 -1 2
-1
-2
[ 4 ]
-2
5
纵轴
y
如何在平面直 5 角坐标系中表 4 示一个点? 3 纵坐标2
任何一个在 x轴上的点 的纵坐标都为0。
练习
1 .点﹙0,1﹚,﹙2,0﹚,﹙-1,2﹚,﹙-1,0﹚, 3 个,在y轴上的点N﹙a,3﹚在y轴上,则a= _______ 0 3 .若点p﹙-4,b﹚在x轴上,则b= ____
4 .若点N﹙a+5 ,a-2﹚在y轴 –5 上,则a=______
. P(a,b)
a
X
记为P(a,b)
注意:横坐标写在前,纵坐标写在后, 中间用逗号隔开.
发现: (a,b)是一对有序数对,横坐标在前,纵 坐标在后,中间用逗号隔开,不能颠倒。
3 N2
1 -4 -3 -2 -1 0 -1 1
.Q(2,3) (3,2) p ·
M
2 3 4 5
记作:P(3,2)
X
-2 -3
-4
平面上点的坐标的确定
Y b
平面内任意一点P,过P点分别 向x、y轴作垂线,垂足在x轴、 y轴上对应的数a、b分别叫做 O 点p的横坐标、纵坐标, 则有序数对(a,b)叫做点P的坐标。
y 2
y
2 1 1
y
2 1 1 2 O
-2 -1
O
2
x
-2 -1
O
1
1
2 x
-2 -1
x
-2 -4
-1 -2 1 y ]
-1 -2
[
[
2
]
y 2
[
3
]
-2 -1 O
2 1
-2 -1 1 2 x O
1 1 -1 2
-1
-2
[ 4 ]
-2
5
纵轴
y
如何在平面直 5 角坐标系中表 4 示一个点? 3 纵坐标2
任何一个在 x轴上的点 的纵坐标都为0。
练习
1 .点﹙0,1﹚,﹙2,0﹚,﹙-1,2﹚,﹙-1,0﹚, 3 个,在y轴上的点N﹙a,3﹚在y轴上,则a= _______ 0 3 .若点p﹙-4,b﹚在x轴上,则b= ____
4 .若点N﹙a+5 ,a-2﹚在y轴 –5 上,则a=______
. P(a,b)
a
X
记为P(a,b)
注意:横坐标写在前,纵坐标写在后, 中间用逗号隔开.
发现: (a,b)是一对有序数对,横坐标在前,纵 坐标在后,中间用逗号隔开,不能颠倒。
课件《平面直角坐标系》优秀PPT课件 _人教版1
在y轴上的点,横坐标等于0; 过点 Q 分别作 x 轴,y 轴的垂线,将垂足对应的数组合起来形成一对有序实数,即为点 Q 的坐标,可表示为 Q(m,n). 当已知点P的坐标为(a,b),它的位置如何确定? 1、平面内点的位置是用什么来描Байду номын сангаас的? 例 2 写出图中点A,B,C 、D、E、O的坐标. ()
注 意:坐标轴不属于任何象限。
平面直角坐标系有什么主要特征呢?
①两条数轴互相垂 直且原点重合;
②取向右、向上为 正方向;
③两数轴单位长度 一般取相同.
自主先学:
(一)自学内容:课本P121例1前 (二)自学时间:4分钟
(三)自学要求:结合自学提纲认真研读, 对重点内容适当标注,疑问的地方划“?”, 整个过程要求专注、独立、安静。
如何描述音乐喷泉的位置?
4
2、在直角坐标系内,原点的坐标是0. 我们的人生坐标在哪里?
3
y
C(0,5)
在x轴上的点,纵坐标等于0;
2
()
B(-4,0) A(3,0) 1 早在1637年以前,法国数学家、解析几何的创始人笛卡尔受到了经纬度的启发,地理上的经纬度是以赤道和本初子午线为标准的,这
两条线从局部上可以看成是平面内互相垂直的两条直线,所以笛卡尔的方法就是在平面内画两条原点重合,互相垂直且具有相同单位
-2
-3
横坐标等于0;-4 D(0,-4)
-5
当堂反馈2
一、判断:
1、对于坐标平面内的任一点,都有唯 一的一对有 序实数与它对应.( √ ) 2、在直角坐标系内,原点的坐标是0.( × )
3、点A(a ,-b )在第二象限,则点B(-a,b)在 第四象限. ( √ )
4、若点P的坐标为(a,b),且a·b=0,则点P一定 在坐标原点. ( × )
注 意:坐标轴不属于任何象限。
平面直角坐标系有什么主要特征呢?
①两条数轴互相垂 直且原点重合;
②取向右、向上为 正方向;
③两数轴单位长度 一般取相同.
自主先学:
(一)自学内容:课本P121例1前 (二)自学时间:4分钟
(三)自学要求:结合自学提纲认真研读, 对重点内容适当标注,疑问的地方划“?”, 整个过程要求专注、独立、安静。
如何描述音乐喷泉的位置?
4
2、在直角坐标系内,原点的坐标是0. 我们的人生坐标在哪里?
3
y
C(0,5)
在x轴上的点,纵坐标等于0;
2
()
B(-4,0) A(3,0) 1 早在1637年以前,法国数学家、解析几何的创始人笛卡尔受到了经纬度的启发,地理上的经纬度是以赤道和本初子午线为标准的,这
两条线从局部上可以看成是平面内互相垂直的两条直线,所以笛卡尔的方法就是在平面内画两条原点重合,互相垂直且具有相同单位
-2
-3
横坐标等于0;-4 D(0,-4)
-5
当堂反馈2
一、判断:
1、对于坐标平面内的任一点,都有唯 一的一对有 序实数与它对应.( √ ) 2、在直角坐标系内,原点的坐标是0.( × )
3、点A(a ,-b )在第二象限,则点B(-a,b)在 第四象限. ( √ )
4、若点P的坐标为(a,b),且a·b=0,则点P一定 在坐标原点. ( × )
平面直角坐标系ppt优秀课件
益。──高尔基 • ● 生活就像海洋,只有意志坚强的人,才能到达彼岸。──马克思 • ● 浪费别人的时间是谋财害命,浪费自己的时间是慢性自杀。──列
宁
• ● 哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅 • ● 完成工作的方法,是爱惜每一分钟。──达尔文 • ● 没有伟大的愿望,就没有伟大的天才。──巴尔扎克 • ● 读一切好的书,就是和许多高尚的人说话。──笛卡尔 • ● 成功=艰苦的劳动+正确的方法+少谈空话。 ──爱因斯坦
y
4
(4)单位长度一般
3 2
取相同的
1
-3 -2 -1-1 O1 2 3
x
-2
-3 -4
选择:下面四个图形中,是平面直角坐标系的是( D )
Y
Y
2
1
-3 -2 -1 O1 2 3
X
X
3 2 1 O -1 -2 -3 -1
-2
(A)
(B)
3Y 2 1
-3 -2 -1-1 O1 2 3 X
-2 -3
3Y 2 1
则a=_4__,b=_5___。
6.在平面直角坐标系内,已知点P ( a , b ), 且a b < 0 , 则点P的位置在__第__二__或__四__象__限。
7.如果同一直角坐标系下两个点的横坐标相同,
那么过这两点的直线( B )
(A)平行于x轴 (B)平行于y轴 (C)经过原点 (D)以上都不对
· 纵轴 y 5
B(0,5)
4
3 2
·A(5,2)
1
-4 -3 (-2,-3)D
-3
-4
·C(2,-3)
例3.在下面直角坐标系中描出下列各组点,
并将各组的点用线段依次连接起来.
宁
• ● 哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅 • ● 完成工作的方法,是爱惜每一分钟。──达尔文 • ● 没有伟大的愿望,就没有伟大的天才。──巴尔扎克 • ● 读一切好的书,就是和许多高尚的人说话。──笛卡尔 • ● 成功=艰苦的劳动+正确的方法+少谈空话。 ──爱因斯坦
y
4
(4)单位长度一般
3 2
取相同的
1
-3 -2 -1-1 O1 2 3
x
-2
-3 -4
选择:下面四个图形中,是平面直角坐标系的是( D )
Y
Y
2
1
-3 -2 -1 O1 2 3
X
X
3 2 1 O -1 -2 -3 -1
-2
(A)
(B)
3Y 2 1
-3 -2 -1-1 O1 2 3 X
-2 -3
3Y 2 1
则a=_4__,b=_5___。
6.在平面直角坐标系内,已知点P ( a , b ), 且a b < 0 , 则点P的位置在__第__二__或__四__象__限。
7.如果同一直角坐标系下两个点的横坐标相同,
那么过这两点的直线( B )
(A)平行于x轴 (B)平行于y轴 (C)经过原点 (D)以上都不对
· 纵轴 y 5
B(0,5)
4
3 2
·A(5,2)
1
-4 -3 (-2,-3)D
-3
-4
·C(2,-3)
例3.在下面直角坐标系中描出下列各组点,
并将各组的点用线段依次连接起来.
17.平面直角坐标系PPT课件(华师大版)
P(-2,3)就叫做点P在平面直角坐标系中的坐标, 简称点P的坐标.
2. 点的坐标:在平面直角坐标系中,任意一点都可以用 一对有序实数来表示,对于平面直角坐标系中的任意一 点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴 上对应的数a,b分别称为点A的横坐标和纵坐标,可记 作A(a,b).坐标平面中每一个点都可以用有序实数对 表示,所以平面直角坐标系中的点和有序实数对是一一 对应的关系.
D(2.5,-2), E(0,-4)所在的象限吗?你的方法又是什么?
活动2.视察坐标系,填写坐标轴上的点的坐标的特征:
点的位置
横坐标的 纵坐标的
符号
符号
y
5
在x轴的正半
轴上
+
在x轴的负半 轴上
-
在y轴的正半 轴上
0
在y轴的负半 轴上
0
0
B4 3
2
0
C
1
A
-4
-3
-2
-1
O -1
1
2 3 4x
+
-2
A (2,3)
你能说出点
A与点A'坐 标的关系吗?
O
x
在平面直角坐标系中画出下列各点关于y轴的对称点.
y
(x , y)
关于 y轴 对称
( -x, y )
B(-4,2) O
C '(-3,-4)
B '(4,2)
x
C (3,-4)
知识归纳
关于y轴对称的点的坐标的特点是:
横坐标互为相反数,纵坐标相等. (简称:纵轴纵相等)
(2)对称点的坐标特征: ①关于x轴对称的两点,横坐标相同,纵坐标互为相反数, 如P(x,y)关于x轴对称的点的坐标为P1(x,-y); ②关于y轴对称的两点,纵坐标相同,横坐标互为相反数, 如P(x,y)关于y轴对称的点的坐标为P2(-x,y);
2. 点的坐标:在平面直角坐标系中,任意一点都可以用 一对有序实数来表示,对于平面直角坐标系中的任意一 点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴 上对应的数a,b分别称为点A的横坐标和纵坐标,可记 作A(a,b).坐标平面中每一个点都可以用有序实数对 表示,所以平面直角坐标系中的点和有序实数对是一一 对应的关系.
D(2.5,-2), E(0,-4)所在的象限吗?你的方法又是什么?
活动2.视察坐标系,填写坐标轴上的点的坐标的特征:
点的位置
横坐标的 纵坐标的
符号
符号
y
5
在x轴的正半
轴上
+
在x轴的负半 轴上
-
在y轴的正半 轴上
0
在y轴的负半 轴上
0
0
B4 3
2
0
C
1
A
-4
-3
-2
-1
O -1
1
2 3 4x
+
-2
A (2,3)
你能说出点
A与点A'坐 标的关系吗?
O
x
在平面直角坐标系中画出下列各点关于y轴的对称点.
y
(x , y)
关于 y轴 对称
( -x, y )
B(-4,2) O
C '(-3,-4)
B '(4,2)
x
C (3,-4)
知识归纳
关于y轴对称的点的坐标的特点是:
横坐标互为相反数,纵坐标相等. (简称:纵轴纵相等)
(2)对称点的坐标特征: ①关于x轴对称的两点,横坐标相同,纵坐标互为相反数, 如P(x,y)关于x轴对称的点的坐标为P1(x,-y); ②关于y轴对称的两点,纵坐标相同,横坐标互为相反数, 如P(x,y)关于y轴对称的点的坐标为P2(-x,y);
人教版《平面直角坐标系》ppt1
(1)点在圆外 (2)点在圆上 (3)点在圆内
③②解公一 式都元右一边有次是方两唯程项。的一平方的差,一即相点同项M的平(方与即相反坐项的标平方为之差(。 x,y)的点)和它对应.也就是
5、正方体的平面展开图:11种
面7、:实包说数围大着,小体的的坐比是较面标,分平为平面面和内曲面的。 点与有序实数对是一一对应的.
10 20
-10
-20
-30 -40
-50
若将中山路与人民路 看成两条互相垂直的 数轴,十字路口为它 们的公共原点,这样 就形成了一个平面直 角坐标系.
法国数学家笛卡尔(Descartes,
根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案.
5从、实角物1:中5抽9象6出一来的1各6种5图0形),包,括立最体图早形和引平面入图形坐。 标系,
点的位置
横坐标的 符号
在x轴的正 半轴上
+
在x轴的负
半轴上
-
在y轴的正 半轴上
0
在y轴的负 半轴上
0
纵坐标的 符号
0
0
+ -
y
5
B4 3 2
C
1
A
-4
-3
-2
-1
O -1
1 2 3 4x
-2
-3 -4 E
交流:不看平面直角坐标系,你能迅速说出A(4,0),B(0,3),
C(-4,0),E(0,-4),O(0,0)所在的位置吗?你的方法又是什么?
数(x,y)(即点M的坐标)和它对应; 坐标以及利用数形结合的思想.
即点P(x,y)关于x轴的对称点为P’(x,-y)
9.圆的内接四边形定理:圆的内接四边形的对角互补.
平面直角坐标系(1)浙教版省公开课获奖课件市赛课比赛一等奖课件
人民医院
这是本市玉海广场附近某些 建筑物.假如把“玉海广场” 旳位置作为起始点,记为 (0,0),分别记向东为 正,向北为正.
玉海楼 玉海广场 科技大楼 1.“人民医院”旳位置在“玉海
湖滨公园
广场“东多少格,北多少格?
瑞安大厦
用有序数对表达“人民医院”
旳位置.
东塔
2.“东塔”旳位置在“玉海广场”西多少格,南多少
用有序数对表达“东塔”旳位置.
“玉海楼”,“湖滨公园”,“瑞安大厦”,“科技
yy
在平面内画两条相互垂直,
第二象限 44
33
(-,+)
1212
第一象限 (+,+)
而且有公共原点O旳数轴, 其中一条叫X轴(或横轴) 一般画成水平,另一条叫
--44 --33 --22 ----111100 1111 22 33 44 55 xx
玉海楼 玉海广场 湖滨公园
科技大楼
放学后经(0,0),(-2,0), 到(-2,-3),到家已经11点了
瑞安大厦
请画出小华旳路线,并回答:
东塔
1)从哪里出发?
2)上学途中经过几种风景点?
3)放学又经过几种风景点?
4)再哪学习?家住哪里?
本节课你旳收获是什么?
1.作业本6.1 2.课后作业题 3.同步6.1
M(x,y) 设M1M2在各自数轴上 所表达旳数分别为x,y ,
X
M1
则X叫作点M旳横坐标, y叫作点M旳纵坐标, 有序数对(x,y) 叫作点M旳坐标.
例1
(1)写出平面直角坐标系中点M,N,L,O,
P旳坐标.
你能说出点M,N,L, O,P所属旳象限吗?
4
N3
平面直角坐标系课件
y (2,3)
(-3,0)
(0,0)
(3,0)
x
(3,-3)
2、春天到了,初一某班组织同学到人民公园春游.张明、 王丽二位同学和其他同学走散了.同学们已经到了中心广
场,而他们仍在牡丹园赏花,他们对着景区示意图在电 话中向老师告知了他们的位置.
张明:“我这里的坐标是(300,300)”
王丽:“我这里的坐标是(200,30y0)”. y
图3-5
解 如图3-5,先在x 轴上找到表示5的点,再在y 轴 上找出表示4 的点,过这两个点分别作x 轴,y
轴的垂线,垂线的交点就是点A. 类似地,其他
各点的位置如图所示.点A 在第一象限,点B 在 第二象限,点C在第三象限,点D在第四象限.
图3-5
写出平面直角坐标系中的A、B、C、E、F、G、H、O、T
2叫做点A的纵坐B(标2,3) A点在平面内的坐标为(3, 2) 记作:A(3,2)
·
·A(3,2)
方法:先横后纵
-4 -3 -2 -1 0 -1
1 2 3 4 5 x 横轴
平面直角坐标系上-2的点和有序实数对一一对应
-3
D
-4
E
(-3,-3)
(5,-4)
笛卡尔,法国数学家、 科学家和哲学家.早在 1637年以前,他受到了 经纬度的启示.(地理上 的经纬度是以赤道和本 初子午线为标准的,这 两条线从局部上看可以 看成平面内互相垂直的 两条线.)发明了平面直 角坐标系,又称笛卡尔 坐标系.
我们把北偏西60°,南偏东60°这样的角称为方位角.
例4 如图3-10,12 时我渔政船在H 岛正南方向, 距H岛30海里的A 处,渔政船以每小时40 海 里的速度向东航行, 13 时到达B处,并测 得H 岛的方向是北偏西53°6′. 那么此时渔 政船相对于H岛的位置怎样描述呢?
(-3,0)
(0,0)
(3,0)
x
(3,-3)
2、春天到了,初一某班组织同学到人民公园春游.张明、 王丽二位同学和其他同学走散了.同学们已经到了中心广
场,而他们仍在牡丹园赏花,他们对着景区示意图在电 话中向老师告知了他们的位置.
张明:“我这里的坐标是(300,300)”
王丽:“我这里的坐标是(200,30y0)”. y
图3-5
解 如图3-5,先在x 轴上找到表示5的点,再在y 轴 上找出表示4 的点,过这两个点分别作x 轴,y
轴的垂线,垂线的交点就是点A. 类似地,其他
各点的位置如图所示.点A 在第一象限,点B 在 第二象限,点C在第三象限,点D在第四象限.
图3-5
写出平面直角坐标系中的A、B、C、E、F、G、H、O、T
2叫做点A的纵坐B(标2,3) A点在平面内的坐标为(3, 2) 记作:A(3,2)
·
·A(3,2)
方法:先横后纵
-4 -3 -2 -1 0 -1
1 2 3 4 5 x 横轴
平面直角坐标系上-2的点和有序实数对一一对应
-3
D
-4
E
(-3,-3)
(5,-4)
笛卡尔,法国数学家、 科学家和哲学家.早在 1637年以前,他受到了 经纬度的启示.(地理上 的经纬度是以赤道和本 初子午线为标准的,这 两条线从局部上看可以 看成平面内互相垂直的 两条线.)发明了平面直 角坐标系,又称笛卡尔 坐标系.
我们把北偏西60°,南偏东60°这样的角称为方位角.
例4 如图3-10,12 时我渔政船在H 岛正南方向, 距H岛30海里的A 处,渔政船以每小时40 海 里的速度向东航行, 13 时到达B处,并测 得H 岛的方向是北偏西53°6′. 那么此时渔 政船相对于H岛的位置怎样描述呢?
3.平面直角坐标系PPT课件(北师大版)
两条数轴分别置于水平位置与铅直 位置,水平的数轴称为x轴或横轴,取向 右为正方向;竖直的数轴称为y轴或纵轴, 取向上为正方向,它们统称为坐标轴.公 共原点O称为直角坐标系的原点.
在平面内,两条互相_垂___直___且有__公__共___原___点_____的_数___轴__组 成平面直角坐标系。通常,取向右与向上的方向分
问题2:由此你能得出什么结论?:点 与实数对(坐标)之间有何关系?
在直角坐标系下,对于平面上的任意一 点,都有唯一的一对有序实数对(即点的 坐标)与它对应;反过来,对于任意一对 有序实数对,都有平面上唯一的一点和它 对应.
问题1:请同学们回顾一下学习过程, 谈谈你有哪些收获?
问题2:哪位同学还有要补充的吗?
为( ).
A、(2,3)
B、(2,-3)
C、(-2,3)
D、(-2,-3)
4.若点(a+5,a)在x轴上,则a的值为 ,该
点的坐标为 .
5. 写出下面棋盘中所有棋子的坐标.有 兴趣的同学,可以写出“马”的下一步坐 标可能是什么?
y
O
x
必做题: 课本62页 习题3.2 第2、3题 .
课外探究题:平面直角坐标系的产生是 法国数学家笛卡尔的伟大发现,上网查阅 笛卡尔的相关知识.
导学问题提纲
(1)什么是平面直角坐标系?简称什么? 两条数轴怎么放置,如何称呼,方向如何确定? 它们的交点叫什么?
(2)直角坐标系内的点的位置怎样表示? (3)坐标轴将平面分为几个部分,分别叫 做什么?坐标轴上的点属于哪个部分?
平面上有公共原点且互相垂直的两条
数轴构成平面直角坐标系,简称为直角坐 标系.
确定图2中点A、B、C的坐标
(-4,1)
(4,2)
在平面内,两条互相_垂___直___且有__公__共___原___点_____的_数___轴__组 成平面直角坐标系。通常,取向右与向上的方向分
问题2:由此你能得出什么结论?:点 与实数对(坐标)之间有何关系?
在直角坐标系下,对于平面上的任意一 点,都有唯一的一对有序实数对(即点的 坐标)与它对应;反过来,对于任意一对 有序实数对,都有平面上唯一的一点和它 对应.
问题1:请同学们回顾一下学习过程, 谈谈你有哪些收获?
问题2:哪位同学还有要补充的吗?
为( ).
A、(2,3)
B、(2,-3)
C、(-2,3)
D、(-2,-3)
4.若点(a+5,a)在x轴上,则a的值为 ,该
点的坐标为 .
5. 写出下面棋盘中所有棋子的坐标.有 兴趣的同学,可以写出“马”的下一步坐 标可能是什么?
y
O
x
必做题: 课本62页 习题3.2 第2、3题 .
课外探究题:平面直角坐标系的产生是 法国数学家笛卡尔的伟大发现,上网查阅 笛卡尔的相关知识.
导学问题提纲
(1)什么是平面直角坐标系?简称什么? 两条数轴怎么放置,如何称呼,方向如何确定? 它们的交点叫什么?
(2)直角坐标系内的点的位置怎样表示? (3)坐标轴将平面分为几个部分,分别叫 做什么?坐标轴上的点属于哪个部分?
平面上有公共原点且互相垂直的两条
数轴构成平面直角坐标系,简称为直角坐 标系.
确定图2中点A、B、C的坐标
(-4,1)
(4,2)
《平面直角坐标系》PPT优质课件
3Y 2 1
-3 -2 -1-1O1 2 3 X
-2 -3
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
概念2
平面直角坐标系的象限
y 4
第二象限
3
2
1
第一象限
–4 –3 –2 –1 O 1 2 3 4 x –1
–2
第三象限
–3
第四象限
–4
坐标平面被两条坐标轴分成四个部分,每个部分称为 象限 ,
(2)能在给定的平面直角坐标系中根据点的坐标描出点的位 置,由点的位置写出点的坐标。
(3)运用平面内的点的坐标特征解决问题时要注意数形结合, 不宜死记硬背.
知识回顾 问题探究 课堂小结 随堂检测 作业布置
课本第68页练习题1、2题。
向右为正方向;竖直的数轴称为纵轴或
1
y轴,一般取向上为正方向;两坐标轴 –4 –3 –2 –1 O 1 2 3 4 x
–1
的交点为平面直角坐标系的原点。
–2
–3
–4
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
如何正确画出平面直角坐标系?
y
1.选原点
4
2.作两轴
思考:已知点的坐标确定点的位置
y
5
A(3,4)
4
已知平面直角坐标系内一点的坐标,分别 3 以点的横坐标、纵坐标在数轴上表示点的垂足 2
,作x轴、y轴的垂线,两垂线的交点即为要找
1
的点。
-2 -1 0 -1
-2
· A(3,4)
1 2 3 4x
知识回顾 问题探究 课堂小结 随堂检测
-3 -2 -1-1O1 2 3 X
-2 -3
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
概念2
平面直角坐标系的象限
y 4
第二象限
3
2
1
第一象限
–4 –3 –2 –1 O 1 2 3 4 x –1
–2
第三象限
–3
第四象限
–4
坐标平面被两条坐标轴分成四个部分,每个部分称为 象限 ,
(2)能在给定的平面直角坐标系中根据点的坐标描出点的位 置,由点的位置写出点的坐标。
(3)运用平面内的点的坐标特征解决问题时要注意数形结合, 不宜死记硬背.
知识回顾 问题探究 课堂小结 随堂检测 作业布置
课本第68页练习题1、2题。
向右为正方向;竖直的数轴称为纵轴或
1
y轴,一般取向上为正方向;两坐标轴 –4 –3 –2 –1 O 1 2 3 4 x
–1
的交点为平面直角坐标系的原点。
–2
–3
–4
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
如何正确画出平面直角坐标系?
y
1.选原点
4
2.作两轴
思考:已知点的坐标确定点的位置
y
5
A(3,4)
4
已知平面直角坐标系内一点的坐标,分别 3 以点的横坐标、纵坐标在数轴上表示点的垂足 2
,作x轴、y轴的垂线,两垂线的交点即为要找
1
的点。
-2 -1 0 -1
-2
· A(3,4)
1 2 3 4x
知识回顾 问题探究 课堂小结 随堂检测
《平面直角坐标系》PPT课件
·
m(4,6)
第Ⅰ象限
第பைடு நூலகம்象限
第Ⅲ象限
第Ⅱ象限
注 意:坐标轴上的点不属于任何象限.
·
A
A点在x 轴上的坐标为4
A点在y 轴上的坐标为2
A点在平面直角坐标系中的坐标为(4, 2)记作:A(4,2)
B(-4,1)
例1、写出如图所示的六边形ABCDEF各个顶点的坐标
解:A(-2,0) B(0,-3) C(3,-3) D(4,0) E(3,3) F(0,3)
1
-1
小结
1、能够正确画出直角坐标系.
2、能在直角坐标系中,根据坐标找出点, 由点求出坐标.
3、掌握x轴,y轴上点的坐标的特点:
x轴上的点的纵坐标为0,表示为(x,0)
y轴上的点的横坐标为0,表示为(0,y)
4.当两点的横坐标相同,纵坐标互为相反数时,这两点关于X轴对称;当两点的纵坐标相同,横坐标互为相反数时,这两点关于Y轴对称;当两点的横坐标、纵坐标互为相反数时,这两点关于原点对称;
数轴上的点与实数间的关系是什么?
一一对应关系
数轴上的点A表示表示数1.反过来,数1就是点A的位置.我们说点1是点A在数轴上的坐标.
同理可知,点B在数轴上的坐标是-3;点C在数轴上的坐标是2.5;点D在数轴上坐标是0.
数轴上的点与实数之间存在着一一对应的关系.
你知道吗
自学释疑:1、什么是数轴?什么是平面直角坐标系?2、两条坐标轴如何称呼,方向如何确定?3、坐标轴分平面为四个部分,分别叫做什么?4、什么是点的坐标?平面内点的坐标有几部分组成?4、各个象限内的点的坐标有何特点?坐标轴上的点的坐标有何特点?5、坐标轴上的点属于什么象限?
在直线上规定了原点、正方向、单位长度就构成了数轴.
平面直角坐标系PPT优秀课件1
如: (2,5)→(3,5)→(3,4) →(4,4)→(5,4)→(5,3) →(5,2)
四、练习与小结
如图,写出表示下列各点的有序数对:
A ( 3 , 3 );B(5,2);C( 7 , 3 );D (10 , 3 ); I ( 4 , 8 ).
E (10 , 5 ); F ( 7 , 7 ); G ( 5 , 7 ); H ( 3 , 6 );
讨论:①图表 表示什么意思? ②路径中每一 对有序数对表达的 含义是什么?
6大道 5大道 4大道 3大道 2大道 1大道 A
B
6街
Байду номын сангаас
1街
2街
3街
4街
5街
三、例题应用
例 如图,点A表示3街与5大道的十字路口,点B表 示5街与3大道的十字路口,如果用(3,5)→(4,5) →(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么 你能用同样的方法写出由A到B的其他几条路径吗?
6大道 5大道 4大道 3大道 2大道 1大道 A
B
6街
1街
2街
3街
4街
5街
三、例题应用
例 如图,点A表示3街与5大道的十字路口,点B表 示5街与3大道的十字路口,如果用(3,5)→(4,5) →(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么 你能用同样的方法写出由A到B的其他几条路径吗?
四、练习与小结
小结:谈谈你本节课的收获.
五、布置作业
预习下一节内容.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
四、练习与小结
如图,写出表示下列各点的有序数对:
A ( 3 , 3 );B(5,2);C( 7 , 3 );D (10 , 3 ); I ( 4 , 8 ).
E (10 , 5 ); F ( 7 , 7 ); G ( 5 , 7 ); H ( 3 , 6 );
讨论:①图表 表示什么意思? ②路径中每一 对有序数对表达的 含义是什么?
6大道 5大道 4大道 3大道 2大道 1大道 A
B
6街
Байду номын сангаас
1街
2街
3街
4街
5街
三、例题应用
例 如图,点A表示3街与5大道的十字路口,点B表 示5街与3大道的十字路口,如果用(3,5)→(4,5) →(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么 你能用同样的方法写出由A到B的其他几条路径吗?
6大道 5大道 4大道 3大道 2大道 1大道 A
B
6街
1街
2街
3街
4街
5街
三、例题应用
例 如图,点A表示3街与5大道的十字路口,点B表 示5街与3大道的十字路口,如果用(3,5)→(4,5) →(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么 你能用同样的方法写出由A到B的其他几条路径吗?
四、练习与小结
小结:谈谈你本节课的收获.
五、布置作业
预习下一节内容.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习回顾:
你还记得如何确定直线上点的位置?
利用“数轴”来确定点的位置 数轴上的点 一一对应 实数
思考:类似于数轴确定直线上点的位置,能不能 找到一种办法来确定平面内点的位置呢?
阅读课本P65-67,完成导学案“学习过程”
• 平面内画两条互相垂直、原点重合的数轴,组成 平面直角坐标系.水平的数轴称为 x轴或横轴,习 惯上取向右为正方向;竖直的数轴为 y轴或纵轴 ,取向上为正方向;两个坐标轴的交点为平面直 角坐标系的原点。
7.1.2平面直角坐标系
学习目标:
1、理解平面直角坐标系的有关概念。 2、认识并能画出平面直角坐标系。
3、能在给定直角坐标系中,由点的位置确定点 的坐标,由点的坐标确定点的位置,理解象限与 点的关系。
学习重点:根据点的坐标在直角坐标系中描出点 的位置,由点的位置写出坐标。
学习难点:探索特殊的点与坐标之间的关系。
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
平面直角坐标系 第二象限
y y轴或纵轴
6
5
4 第一象限
3
2
1 原点
x轴或横轴
-6 -5 -4 -3 -2 -1-o1
-2
第三象限 -3
-4
1 23 4 5 6 X
第四象限
注 意:坐标轴上的--65点不属于任何象限。 ①两条数轴 ②互相垂直 ③公共原点
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
当堂检测:
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
1. 点( x, y )到 x 轴的距离是 y
2. 点( x, y )到 y 轴的距离是 x
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
课堂归纳:
这节课主要学习了平面直角坐标系的有关概念和 一个最基本的问题,坐标平面内的点与有序数对 是一一对应的。
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
结论
纵坐标相同的点的连线平行于x轴 横坐标相同的点的连线平行于y轴 坐标轴的点至少有一个是0
横轴上的点纵坐标为0, 纵坐标上的点横坐标为0.
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
B( 3,-2 )?
y
2 1
-3 -2
-1 O -1
-2
-3
12
3x
由坐标找点的方法:先找到表示横坐标与纵坐标的点,然后过
这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点。
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
两条坐标轴将平面分成 了几个部分?
《平面直角坐标系》优质实用课件1标系
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
各象限内的点的坐标有何特征?
y
(-,+)(C-2,3)45 3
(+,+)
B (5,3)
F(-7,2)
2
A(3,2)
1
-9 -8 -7 -6 -5 -4 -3 -2 -1-1 o 1 2 3 4 5 6 7 8 9 x
点的坐标表示 y
5
4
B(-4,1) 3
2
B·
1
-4 -3 -2 -1 0 -1 -2 -3
-4
A的横坐标为4 A的纵坐标为2 有序数对(4, 2)就叫做A的坐标 记作:A(4,2)
· A
X轴上的坐标
写在前面
12345x
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
(0,-3) (3,-3)
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
平行于横轴的直线上的点的纵坐标相同; 平行于纵轴的直线上的点的横坐标相同; 横轴上的点纵坐标为0;纵轴上的点横坐标为0。
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
1. 会根据坐标找点,会由坐标系内的点写坐标 2.掌握x轴,y轴上点的坐标的特点:
x轴上的点的纵坐标为0,表示为(x,0) y轴上的点的横坐标为0,表示为(0,y) 第一象限:(+, +); 第二象限:(—, +) 第三象限:(—,—);第四象限:(+, —)
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
(-,-)
-2 -3
(+,-)
G(-5,-4) -4
E(5,-4)
D(-7,-5)
-5
H (3,-5)
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
直角坐标系中点的坐标的特点( 在课本P69页第2题)
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
点到坐标轴的距离:
1.若点A的坐标是(- 3, 5),则它到x轴的距离 是 5 ,到y轴的距离是 3 .
2.若点B在x轴上方,y轴右侧,并且到 x 轴、y 轴 距离分别是2,4个单位长度,则点B的坐标是(4,.2) 3.点P到x轴、y轴的距离分别是2,1,则点P的坐 标可能为 (1,2)、(1,-2)、(-1,2)、(-1,-2) .
(1). 若AB∥ x 轴, 则A( x1, n ), B( x2, n )
(2). 若AB∥ y轴, 则A( m, y1 ), B( m, y2 )
已知点A(10,5),B(50,5),则直线AB的位置特点是(A )
A.与x轴平行
B.与y轴平行
C.与x轴相交,但不垂直
D.与y轴相交,但不垂直
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
—
+
—
—
+
—
+
0
—
0
0
+
0
—
0
0
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )
F
(0,3)
E
(3,3)
坐点线标B写段与轴出C点上E图C点 的的的坐纵中位标坐多置有标边有什
A
D
么有什特什形么点么特?特点?
BC
(-2,0)
(4,0)点 BC,AF的各B线位C个段D置E
有什顶么点特的
点?坐标。
请你在本子上画一平面直角坐标系。并说 一说:平面直角坐标系具有哪些特征呢?
y 4 3 2 1
-3 -2 -1-1 O 1 2 3 -2 -3 -4
两条数轴:(一般性特征)
(1)互相垂直 (2)原点重合 x (3)通常取向上、向右为正方向 (4)单位长度一般取相同的
《平面直角坐标系》优质实用课件1( PPT优 秀课件 )