初中学校期末考试七年级数学试卷
初一期末数学试题及答案
初一期末数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 计算下列哪个表达式的结果为正数?A. 3 - 5B. 2 + (-4)C. 7 × (-2)D. 9 ÷ 3答案:D4. 一个长方形的长是8厘米,宽是5厘米,那么它的面积是:A. 40平方厘米B. 20平方厘米C. 30平方厘米D. 50平方厘米5. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C6. 下列哪个选项表示的是正比例关系?A. 速度×时间=路程B. 总价=单价×数量C. 单价=总价÷数量D. 面积=边长×边长答案:B7. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C8. 一个圆的半径是3厘米,那么它的周长是:A. 18.84厘米B. 9.42厘米C. 6.28厘米D. 3.14厘米答案:A9. 计算下列哪个表达式的结果为负数?B. -2 - 3C. 4 × 2D. 5 ÷ 2答案:B10. 一个三角形的三个内角分别是40°、60°和80°,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:A二、填空题(每题3分,共30分)1. 一个数的平方根是3,那么这个数是______。
答案:92. 一个数的立方是-27,那么这个数是______。
答案:-33. 一个数的倒数是2,那么这个数是______。
答案:0.54. 一个数的绝对值是8,那么这个数可能是______。
答案:8或-85. 一个数的平方是16,那么这个数可能是______。
答案:4或-46. 一个数的平方根是-2,那么这个数是______。
2023-2024学年广东省深圳实验学校初中部七年级(下)期末数学试卷及答案解析
2023-2024学年广东省深圳实验学校初中部七年级(下)期末数学试卷一.选择题(共10小题)1.(3分)围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGo进行围棋人机大战.截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是()A.B.C.D.2.(3分)下列各式运算正确的是()A.a2+2a3=3a5B.a2•a3=a6C.(﹣a2)4=﹣a8D.a8÷a2=a63.(3分)如图,已知l∥AB,CD⊥l于点D,若∠C=40°,则∠1的度数是()A.30°B.40°C.50°D.60°4.(3分)一个均匀的小球在如图所示的水平地板上自由滚动,并随机停在某块方砖上,若每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.15.(3分)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF 的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD6.(3分)下列条件中,不能够判断△ABC为直角三角形的是()A.BC=6,AC=10,AB=8B.∠A:∠B:∠C=3:4:5C.BC:AC:AB=3:4:5D.∠A+∠B=∠C7.(3分)已知2a2﹣a﹣3=0,则(2a+3)(2a﹣3)+(2a﹣1)2的值是()A.6B.﹣5C.﹣3D.48.(3分)某人开车从家出发去植物园游玩,设汽车行驶的路程为S(千米),所用时间为t(分),S与t 之间的函数关系如图所示.若他早上8点从家出发,汽车在途中停车加油一次,则下列描述中,不正确的是()A.汽车行驶到一半路程时,停车加油用时10分钟B.汽车一共行驶了60千米的路程,上午9点5分到达植物园C.加油后汽车行驶的速度为60千米/时D.加油后汽车行驶的速度比加油前汽车行驶的速度快9.(3分)如图,在△ABC中,分别以A,B为圆心,以大于的长为半径作弧,两弧相交于F,G两点,作直线FG分别交AB,BC于点M,D;再分别以A,C为圆心,以大于的长为半径作弧,两弧相交于H,I两点,作直线HI分别交AC,BC于点N,E;若,DE=2,,则AC的长为()A.B.C.D.10.(3分)如图,△ABC内角∠ABC和外角∠ACD的平分线交于点E,BE交AC于点F,过点E作EG ∥BD交AB于点G,交AC于点H,连接AE,有以下结论;①BG=EG;②△HEF≌△CBF;③∠AEB+∠ACE=90°;④BG﹣CH=GH;⑤∠AEC+∠ABE=90°其中正确的结论是()A.1个B.2个C.3个D.4个二.填空题(共5小题)11.(3分)计算:已知a m=3,a n=4,则a m+n的值为.12.(3分)“人间四月芳菲尽,山寺桃花始盛开”,是说因为气温随地面的高度上升而降低这一特点,才造成了山上、山下的桃花花期早迟不一这种地理现象.下面是小深对某地某一时距离地面的高度h与温度t测量得到的表格.写出t随h变化的关系式.距离地面高度(km)01234…温度(℃)201482﹣4…13.(3分)如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC =6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是.14.(3分)图①是一张长方形纸条,点E,F分别在AD,BC上,将纸条沿EF折叠成图②,再沿BF折叠成图③.若图③中的∠CFE=84°,则图①中的∠DEF的度数是.15.(3分)已知:如图,△ABC中,E在BC上,D在BA上,过E作EF⊥AB于F,∠B=∠1+∠2,AE =CD,BF=2,则AD的长为.三.解答题(共7小题)16.计算:(1);(2)a•a7﹣(﹣3a4)2+a10÷a2;(3)[x(y2﹣xy)﹣y(x2+xy)]÷2x2;(4)(a+b+c)(a﹣b+c).17.先化简,再求值:,其中a=1,b=﹣2.18.某中学为了了解学生最喜欢的课外活动,以便更好开展课后服务,随机抽取若干名学生进行了问卷调查.调查问卷如下:调查问卷在下列课外活动中,你最喜欢的是()(单选)A.文学B.科技C.艺术D.体育填完后,请将问卷交给教务处.根据统计得到的数据,绘制成下面两幅不完整的统计图.请根据统计图中提供的信息,解答下面的问题:(1)本次调查采用的调查方式为(填写“普查”或“抽样调查”);(2)在这次调查中,抽取的学生一共有人;扇形统计图中n的值为;(3)已知选择“科技”类课外活动的50名学生中有30名男生和20名女生.若从这50名学生中随机抽取1名学生座谈,且每名学生被抽到的可能性相同,则恰好抽到女生的概率是;(4)若该校共有1000名学生参加课外活动,则估计选择“文学”类课外活动的学生有人.19.某中学七年级学生到野外开展数学综合实践活动,在营地看到一个不规则的建筑物,为测量该建筑物两端A,B间的距离,同学们给出了以下建议:(1)甲同学的方案如下:先在平地上取一个可直接到达A,B的点O,连接AO,BO,并分别延长AO 至点C,延长BO至点D,使CO=AO,DO=BO,最后测出CD的长即为A,B间的距离,请你说说该方案可行的理由;(2)由于在EF处有一堵墙阻挡了路线,使得无法按照甲同学的方案直接测量出A,B间的距离,但同学们测得∠EOC=65°,∠C=80°,∠OEF=145°,CF=128m,EF=77m,请求出该建筑物两端A,B之间的距离.20.已知图形ABCDEF的相邻两边垂直,AB=8cm.当动点M以2cm/s的速度沿图①的边框按B→C→D →E→F→A的路径运动时,△ABM的面积S随时间t的变化如图②所示.回答下列问题:(1)a=;b=;(2)EF=cm;(3)当点M运动到DE上时,请用含t的代数式表示出DM的长度,并直接写出S与t的关系式.21.用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个相同的长方形拼成的一个大正方形.(1)用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:;利用上面所得的结论解答:已知a﹣b=5,,求a+b的值.(2)类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,①如图2,观察大正方体分割,可以得到等式:(a+b)3=.②利用上面所得的结论解答:a+b=6,ab=7,求a3+b3的值.22.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.2023-2024学年广东省深圳实验学校初中部七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意.故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【分析】根据同类项,同底数幂乘法,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项不符合题意;B、a2•a3=a2+3=a5,故本选项不符合题意;C、应为(﹣a2)4=(﹣1)4a8=a8,故本选项不符合题意;D、a8÷a2=a8﹣2=a6,故本选项符合题意.故选:D.【点评】本题考查积的乘方的性质,同底数幂乘法,同底数幂的除法以及合并同类项,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的一定不要合并.3.【分析】根据直角三角形的性质求出∠CED,再根据平行线的性质解答即可.【解答】解:在Rt△CDE中,∠CDE=90°,∠DCE=40°,则∠CED=90°﹣40°=50°,∵l∥AB,∴∠1=∠CED=50°,故选:C.【点评】本题考查的是直角三角形的性质、平行线的性质,掌握直角三角形的两锐角互余是解题的关键.4.【分析】根据几何概率的求法:小球停留在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为9个小正方形的面积,其中阴影部分面积为4个小正方形的面积,∴小球停留在阴影部分的概率是,故选:A.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.【分析】根据全等三角形的判定方法,可以判断添加各个选项中的条件是否能够判断△ABC≌△DEF,本题得以解决.【解答】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.【点评】本题考查全等三角形的判定,解答本题的关键是明确全等三角形的判定方法,利用数形结合的思想解答.6.【分析】根据勾股定理的逆定理,三角形内角和定理进行计算,逐一判断即可解答.【解答】解:A、∵BC=6,AC=10,AB=8,∴AB2+BC2=62+82=100,AC2=102=100,∴AB2+BC2=AC2,∴△ABC是直角三角形,故A不符合题意;B、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=180°×=75°,∴△ABC不是直角三角形,故B符合题意;C、∵BC:AC:AB=3:4:5,∴设BC=3k,则AC=4k,AB=5k,∵AC2+BC2=16k2+9k2=25k2=AB2,∴△ABC是直角三角形,故C不符合题意;D、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C==90°,∴△ABC是直角三角形,故D不符合题意;故选:B.【点评】本题考查了勾股定理的逆定理,三角形内角和定理,熟练掌握勾股定理的逆定理,以及三角形内角和定理是解题的关键.7.【分析】分别利用平方差公式和完全平方公式将括号去掉,再合并同类项并利用已知条件即可解答.【解答】解:原式=(2a)2﹣32+(2a)2﹣4a+1=2×(2a)2﹣4a﹣32+1=8a2﹣4a﹣9+1=8a2﹣4a﹣8=4(2a2﹣a)﹣8.∵2a2﹣a﹣3=0,∴2a2﹣a=3,∴4(2a2﹣a)﹣8=4×3﹣8=4.故选:D.【点评】本题主要考查运用平方差公式和完全平方公式进行整式的混合运算能力,比较基础,一定的牢牢掌握.8.【分析】根据函数的图象可知,横坐标表示时间,纵坐标表示距离,由于函数图象不是平滑曲线,故应分段考虑.【解答】解:A、车行驶到一半路程时,加油时间为25至35分钟,共10分钟,故本选项正确,不符合题意;B、汽车一共行驶了60千米的路程,上午9点0(5分)到达植物园,故本选项正确,不符合题意;C、汽车加油后的速度为30÷=60千米/时,故本选项正确,不符合题意;D、汽车加油前的速度为30÷=72千米/时,60<72,加油后汽车行驶的速度比加油前汽车行驶的速度慢;故本选项不正确,符合题意.故选:D.【点评】此题考查了一次函数的应用,函数图象,根据函数图象的变化分段考虑是解题的关键,同时要明确公式:速度=路程÷时间.9.【分析】连接AD、AE,如图,利用基本作图得到MD垂直平分AB,EN垂直平分AC,根据线段垂直平分线的性质得到AD=BD=,AE=CE=,再利用勾股定理的逆定理证明△ADE为直角三角形,∠ADE=90°,然后利用勾股定理计算AC的长.【解答】解:连接AD、AE,如图,由作法得MD垂直平分AB,EN垂直平分AC,∴AD=BD=,AE=CE=,在△ADE中,∵AD=,DE=2,AE=,∴AD2+DE2=AE2,∴△ADE为直角三角形,∠ADE=90°,在Rt△ADE中,∵AD=,CD=2+=,∴AC==.故选:A.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了线段垂直平分线的性质和勾股定理的逆定理.10.【分析】①根据角平分线定义得出∠ABE=∠CBE,根据平行线性质得出∠CBE=∠BEG,从而得出∠ABE=∠BEG,由等腰三角形的判定定理即可得到结论;②根据相似三角形的判定定理得到两个三角形相似,不能得出全等;③由于E是两条角平分线的交点,根据角平分线的性质可得出点E到BA、AC、BC和距离相等,从而得出AE为∠BAC外角平分线这个重要结论,再利用三角形内角和性质与外角性质进行角度的推导即可轻松得出结论.④根据∠AEC=180﹣x﹣z,于是得到∠AEC=180﹣(y+90°),推出y+∠AEC=90°,即可得到结论;⑤由BG=GE,CH=EH,于是得到BG﹣CH=GE﹣EH=GH.即可得到结论.【解答】解:①∵BE平分∠ABC,π∴∠ABE=∠CBE,∴∠CBE=∠GEB,∴∠ABE=∠GEB,∴BG=GE,故①正确.同理CH=HE.②△HEF与△CBF只有两个角是相等的,能得出相似,但不含相等的边,所有不能得出全等的结论,故②错误.③过点E作EN⊥AC于N,ED⊥BC于D,EM⊥BA于M,如图,∵BE平分∠ABC,∴EM=ED,∵CE平分∠ACD,∴EN=ED,∴EN=EM,∴AE平分∠CAM,设∠ACE=∠DCE=x,∠ABE=∠CBE=y,∠MAE=∠CAE=z,如图,则∠BAC=180°﹣2z,∠ACB=180﹣2x,∵∠ABC+∠ACB+∠BAC=180°,∴2y+180°﹣2z+180°﹣2x=180°,∴x+z=y+90°,∵z=y+∠AEB,∴x+y+∠AEB=y+90°,∴x+∠AEB=90°,即∠ACE+∠AEB=90°,故③正确.④∵∠AEC=180﹣x﹣z,∴∠AEC=180﹣(y+90°),∴y+∠AEC=90°,即∠ABE+∠AEC=90°,故④正确.⑤∵BG=GE,CH=EH,∴BG﹣CH=GE﹣EH=GH.综上,①③④⑤正确,共4个.故选:D.【点评】本题考查了平行线的性质,角平分线的定义,角平分线的性质与判定,等腰三角形的判定,三角形内角和定理、三角形外角性质等多个知识点,难度中等.判断出AE是∠BAC外角平分线是关键,事实上,点E就是△ABC的旁心.二.填空题(共5小题)11.【分析】利用同底数幂的乘法法则进行计算,即可得出答案.【解答】解:∵a m=3,a n=4,∴a m+n=a m•a n=3×4=12,故答案为:12.【点评】本题考查了同底数幂的乘法,掌握同底数幂的乘法法则是解决问题的关键.12.【分析】由表格可知,距离地面高度增加1km,温度降低6℃,据此写出t随h变化的关系式即可.【解答】解:由表格可知,距离地面高度增加1km,温度降低6℃,∴t随h变化的关系式为t=20﹣6h.故答案为:t=20﹣6h.【点评】本题考查函数关系式,找到变量的变化规律是解题的关键.13.【分析】通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.【解答】解:设将AC延长到点D,连接BD,根据题意,得CD=6×2=12,BC=5.∵∠BCD=90°∴BC2+CD2=BD2,即52+122=BD2∴BD=13∴AD+BD=6+13=19∴这个风车的外围周长是19×4=76.故答案为:76.【点评】本题考查勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.14.【分析】图①中先根据平行线的性质,设∠DEF=∠EFB=α,图②中根据图形折叠的性质得出∠AEF 的度数,再由平行线的性质得出∠GFC,图③中根据∠CFE=∠GFC﹣∠EFG即可列方程求得α的值.【解答】解:图①中∵AD∥BC,∴设∠DEF=∠EFB=α,图②中,∠GFC=∠BGD=∠AEG=180°﹣2∠EFG=180°﹣2α,图③中,∠CFE=∠GFC﹣∠EFG=180°﹣2α﹣α=84°.解得α=32°.即∠DEF=32°,故答案为:32°.【点评】本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.15.【分析】在FA上取一点T,使得FT=BF,连接ET,在CB上取一点K,使得CK=ET,连接KD,利用SAS证明△AET≌△DCK,得DK=AT,∠ATE=∠DKC,再利用等腰三角形的性质,即可解决问题.【解答】解:如图,在FA上取一点T,使得FT=BF,连接ET,在CB上取一点K,使得CK=ET,连接KD,∵EB=ET,∴∠B=∠ETB,∵∠ETB=∠1+∠AET,∠B=∠1+∠2,∴∠AET=∠2,∵AE=CD,ET=CK,∴△AET≌△DCK(SAS),∴DK=AT,∠ATE=∠DKC,∴∠ETB=∠DKB,∴∠B=∠DKB,∴DB=DK,∴BD=AT,∴AD=BT,∵BT=2BF=4,∴AD=4,故答案为:4.【点评】本题主要考查了全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键.三.解答题(共7小题)16.【分析】(1)先算绝对值,零指数幂,负整数指数幂,乘方,再算加减即可;(2)先算同底数幂的乘法,积的乘方,整式的除法,再合并同类项即可;(3)先算括号里的单项式乘多项式,再合并同类项,最后进行整式的除法运算即可;(4)利用平方差公式及完全平方公式进行运算较简便.【解答】解:(1)=2+1+9﹣1=11;(2)a•a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8;(3)[x(y2﹣xy)﹣y(x2+xy)]÷2x2=(xy2﹣x2y﹣x2y﹣xy2)÷2x2=﹣2x2y÷2x2=﹣y;(4)(a+b+c)(a﹣b+c)=(a+c)2﹣b2=a2+2ac+c2﹣b2.【点评】本题主要考查整式的混合运算,绝对值,解答的关键是对相应的运算法则的掌握.17.【分析】利用平方差公式,完全平方公式计算括号里,再算括号外,然后把a,b的值代入化简后的式子进行计算,即可解答.【解答】解:=[4a2+4ab+b2﹣(4a2﹣b2)]÷(﹣b)=(4a2+4ab+b2﹣4a2+b2)÷(﹣b)=(4ab+2b2)÷(﹣b)=﹣8a﹣4b,当a=1,b=﹣2时,原式=﹣8×1﹣4×(﹣2)=﹣8+8=0.【点评】本题考查了整式的混合运算﹣化简求值,准确熟练地进行计算是解题的关键.18.【分析】(1)根据抽样调查的定义即可得出答案;(2)由喜欢文学的人数除以其所占百分比可得总人数,用喜欢体育的人数除以总人数可求出n的值;(3)根据概率公式求解即可;(4)用1000乘以选择“文学”类的百分比即可.【解答】解:(1)本次调查采用的调查方式为抽样调查;故答案为:抽样调查;(2)∵70÷35%=200(人),×100%=22%,∴在这次调查中,抽取的学生一共有200人;扇形统计图中n的值为22;故答案为:200,22;(3)恰好抽到女生的概率是=;故答案为:;(4)估计选择“文学”类课外活动的学生有1000×35%=350(人),故答案为:350.【点评】本题主要考查了全面调查与抽样调查,条形统计图,扇形统计图和概率公式,正确利用条形统计图和扇形统计图得出正确信息是解题关键.19.【分析】(1)甲同学作出的是全等三角形,然后根据全等三角形对应边相等测量的,所以是可行的;(2)延长CF,OE交于D,根据平角的定义得到∠DEF=35°,根据三角形的内角和定理得到∠D=180°﹣∠COE﹣∠C=35°,求得DF=EF=77m,于是得到结论.【解答】解:(1)甲同学的方案可行;在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD;故甲同学的方案可行;(2)如图②,延长CF,OE交于D,∵∠OEF=145°,∴∠DEF=35°,∵∠COE=65°,∠C=80°,∴∠D=180°﹣∠COE﹣∠C=35°,∴∠D=∠DEF,∴DF=EF=77m,∴CD=DF+CF=205(m),由(1)知AB=CD=205m,故该建筑物两端A,B之间的距离为205m.【点评】本题考查了全等三角形的应用,三角形的内角和定理,等腰三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.20.【分析】(1)由图2图象求出BC,再利用三角形面积公式计算即可;(2)先求出EF,再用AB﹣EF即可求出CD,再计算出时间t即可;(3)分析出当点M在DE上时点M的路程,再减去BC+CD即可表示出DM,求出AF,设出关系式,代入两点列出方程组计算即可.【解答】解:(1)由图2得,5段函数分别是当点M在BC、CD、DE、EF、FA上时,第一段当0<t≤6时,点M在BC上,∴BC=6×2=12(cm),当点M在点C处时,S=AB•BC=48(cm2),即a=48,第四段当12.5<t≤14时,点M在EF上,∴EF=(14﹣12.5)×2=3(cm),∴CD=AB﹣EF=5(cm),∴t=5÷2=2.5(t),∴b=6+2.5=8.5,故答案为:48,8.5;(2)由(1)求出EF=3(cm),故答案为:3;(3)当点M在DE上时,点M的路程为2t,∵BC+CD=17(cm),∴DM=2t﹣17(cm);当点M在E上时,点M路程为12.5×2=25(cm),∴DE=8cm,∴AF=BC﹣DE=4(cm),∴当点M在EF上时,S=AB•AF=16(cm2),设S=kt+b(8.5<t≤12.5),把(8.5,48)(12.5,16)代入得,,∴,∴S=﹣8t+116(8.5<t≤12.5).【点评】本题考查了动点问题的函数图象,能结合图象得到有用条件,利用动点的运动求出相关线段是本题的解题关键.21.【分析】(1)根据题意,用两种不同方法计算出阴影部分的面积即可解决问题.(2)①用两种不同的方法计算出大正方体的体积即可解决问题.②根据①中发现的结论即可解决问题.【解答】解:(1)由图1可知,小正方形的边长为a﹣b,所以图1中阴影部分的面积可表示为:(a﹣b)2.图1中大正方形的面积为(a+b)2,周围四个小长方形的面积之和为4ab,所以图1中阴影部分的面积可表示为:(a+b)2﹣4ab,由此可得,(a﹣b)2=(a+b)2﹣4ab.因为a﹣b=5,,所以(a+b)2=(a﹣b)2+4ab=25+11=36,所以a+b=6(舍负).故答案为:(a﹣b)2=(a+b)2﹣4ab.(2)①由图2可知,大正方体的体积可表示为:(a+b)3.大正方体的体积还可表示为八个小长方体的体积之和:a3+a2b+a2b+ab2+a2b+ab2+ab2+b3=a3+3a2b+3ab2+b3,所以(a+b)3=a3+3a2b+3ab2+b3.故答案为:a3+3a2b+3ab2+b3.②因为a+b=6,ab=7,所以a3+b3=(a+b)3﹣3a2b﹣3ab2=(a+b)3﹣3ab(a+b)=63﹣3×7×6=90,故a3+b3=90.【点评】本题主要考查了完全平方公式的几何背景及认识立体图形,能用不同的方法求出同一个图形的面积或同一个几何体的体积是解题的关键.22.【分析】(1)由DM=DN,∠MDN=60°,可证得△MDN是等边三角形,又由△ABC是等边三角形,CD=BD,易证得Rt△BDM≌Rt△CDN,然后由直角三角形的性质,即可求得BM、NC、MN之间的数量关系BM+NC=MN,此时;(2)在CN的延长线上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,即可得DM=DM1,易证得∠CDN=∠MDN=60°,则可证得△MDN≌△M1DN,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,即可得DM=DM1,然后证得∠CDN=∠MDN=60°,易证得△MDN≌△M1DN,则可得NC﹣BM=MN.【解答】解:(1)如图1,BM、NC、MN之间的数量关系BM+NC=MN,此时,理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴=;(2)猜想:结论仍然成立,证明:在NC的延长线上截取CM1=BM,连接DM1,∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴=;(3)证明:在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC﹣BM=MN.【点评】此题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用与辅助线的作法。
2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)
20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
数学初一期末考试卷子
数学初一期末考试卷子一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 5D. -22. 如果\( a \)和\( b \)互为相反数,那么\( a + b \)等于:A. 0B. 1C. 2D. -13. 根据有理数的乘法法则,\( (-2) \times (-3) \)的结果是:A. 6B. -6C. 3D. -34. 以下哪个不是同类项?A. \( 3x \)和\( 5x \)B. \( 2y \)和\( -3y \)C. \( 4a^2 \)和\( 5a^2 \)D. \( 2x \)和\( 3y \)5. 解方程\( 2x - 5 = 3x + 1 \),正确的步骤是:A. 将\( 2x \)移到右边B. 将\( 5 \)移到右边C. 将\( 3x \)移到左边D. 将\( 1 \)移到左边6. 下列哪个是不等式的解?A. \( x < 5 \)B. \( x > 5 \)C. \( x \leq 5 \)D. \( x \geq 5 \)7. 圆的周长公式是:A. \( C = 2\pi r \)B. \( C = \pi r \)C. \( C = 2\pi d \)D. \( C = \pi d \)8. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 49. 一个数的立方根是它本身,这个数可以是:A. 1B. -1C. 0D. 以上都是10. 绝对值的几何意义是:A. 点到原点的距离B. 点到x轴的距离C. 点到y轴的距离D. 点到坐标轴的距离二、填空题(每题2分,共20分)11. 如果\( |a| = 5 \),那么\( a \)可以是______。
12. 一个数的相反数是\( -8 \),那么这个数是______。
13. 有理数的加法法则是:同号相加,______,异号相减绝对值。
14. 一个数的倒数是\( \frac{1}{3} \),那么这个数是______。
2023年人教版七年级数学上册期末试卷(及答案)
2023 年人教版七年级数学上册期末试卷(考试时间:90分钟,满分:100分)一、选择题(每题2分,共10题,计20分)1. 若a、b是实数,且a > b,则下列哪个不等式成立?A. a + b > 2aB. a b < 0C. a^2 > b^2D. a/b > 12. 若一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长是多少?A. 16cmB. 18cmC. 20cmD. 22cm3. 若一个长方体的长、宽、高分别为3cm、4cm、5cm,则它的体积是多少?A. 60cm^3B. 80cm^3C. 120cm^3D. 150cm^34. 若一个数列的前三项分别是2、4、6,则这个数列的通项公式是?A. an = 2nB. an = 2n + 1C. an = 2n 1D. an = 2n + 25. 若一个圆的半径为5cm,则它的面积是多少?A. 25πcm^2B. 50πcm^2C. 100πcm^2D. 200πcm^26. 若一个平行四边形的底边长为8cm,高为5cm,则它的面积是多少?A. 40cm^2B. 48cm^2C. 56cm^2D. 64cm^27. 若一个直角三角形的两条直角边长分别为3cm、4cm,则它的斜边长是多少?A. 5cmB. 6cmC. 7cmD. 8cm8. 若一个正方形的边长为6cm,则它的面积是多少?A. 36cm^2B. 48cm^2C. 60cm^2D. 72cm^29. 若一个等差数列的首项为3,公差为2,则它的第5项是多少?A. 9B. 11C. 13D. 1510. 若一个圆的直径为10cm,则它的半径是多少?A. 5cmB. 7cmC. 9cmD. 11cm二、填空题(每题2分,共10题,计20分)1. 若一个数的绝对值为5,则这个数可能是______或______。
2. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是______cm^3。
初一期末数学试卷题及答案
一、选择题(每题5分,共25分)1. 下列各数中,有理数是()A. √2B. πC. -1/3D. 0.1010010001...2. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²3. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x²D. y = x³4. 下列各式中,正确的是()A. 5a + 3b = 5(a + b) + 3B. 5a + 3b = 5(a + b) - 3C. 5a + 3b = 5(a - b) + 3D. 5a + 3b = 5(a - b) - 35. 在直角坐标系中,点A(2,3)关于原点的对称点是()A. (2, -3)B. (-2, -3)C. (-2, 3)D. (2, 3)二、填空题(每题5分,共25分)6. 已知a = -3,b = 4,则a² + b² - 2ab的值为______。
7. 如果一个数的平方是9,那么这个数是______。
8. 下列各式中,正确的是______。
(1)x² - 4 = (x + 2)(x - 2)(2)x² + 4 = (x + 2)(x + 2)(3)x² - 9 = (x - 3)(x + 3)(4)x² + 9 = (x + 3)(x + 3)9. 如果直线y = kx + b经过点(2, 3),那么k和b的值分别是______。
10. 在△ABC中,∠A = 45°,∠B = 60°,那么∠C的度数是______。
四川省乐山市市中区2023-2024学年七年级上学期期末考试数学试卷(含解析)
2023-2024学年四川省乐山市市中区七年级(上)期末数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数,若其意义相反,则分别叫做正数和负数.若某地某日最高气温零上5℃记作:5+℃,则该地某日最低气温为零下3℃,记作()A.3-℃B.3+℃C.8-℃D.8+℃答案:A解析:解:∵气温零上5℃记作5+℃,∴气温是零下3℃记作3-℃.故选:A .2.下列立体图形如图放置,其中同一几何体的左视图与主视图不同的是()A. B.C.D.答案:B解析:的左视图和主视图是均为正方形,故选项A 不符合题意;的左视图和主视图均为三角形,故选项C 不符合题意;的左视图和主视图均为圆形,故选项D 不符合题意;的主视图为长方形,左视图为圆形,即左视图和主视图不同故选:B .3.以下说法中正确的是()A.12ab π的系数为12 B.23ab 与23a b -是同类项C.2232x y 的次数是7 D.322225m m n n +-是四次三项式答案:D解析:解:A 、12ab π的系数为12π,故本选项错误,不符合题意;B 、23ab 与23a b -不是同类项,故本选项错误,不符合题意;C 、2232x y 的次数是5,故本选项错误,不符合题意;D 、322225m m n n +-是四次三项式,故本选项正确,符合题意.故选:D .4.如图,AB CD ∥,若2135∠=︒,则1∠的度数为()A.75°B.60°C.45°D.30°答案:C解析:解:∵AB CD ∥,∴23180∠+∠=︒.∵2135∠=︒,∴13180245∠=∠=︒-∠=︒.故选:C .5.如图,小明的家在A 处,他想尽快赶到学校B 处,共有①②③条线路可走,他选择第②条线路,用几何知识解释其道理正确的是()A.两点确定一条直线B.两点之间,线段最短C.连结两点的线段叫做线段的长度D.垂线段最短答案:B解析:解:他选择第②条路线,用几何知识解释其道理正确的是:两点之间,线段最短.故选:B .6.已知2a b -=,则代数式224b a -+的值是()A.2-B.1-C.0D.1答案:C解析:解:2242()42240b a a b -+=--+=-⨯+=,故选:C .7.点O 、A 、B 、C 在数轴上的位置如图所示,O 为原点,1AC =,OA OB =.若点C 所表示的数为c ,则点B 所表示的数为()A.1c +B.1c -C.1c -D.1c --答案:B解析:解:∵O 为原点,1AC =,点C 所表示的数为c ,∴点A 所表示的数为1c -,又∵OA OB =,且位于原点两侧,∴点B 所表示的数为()11c c --=-,故选:B .8.若3m =,24n =,且m n n m -=-,则m n +的值为()A.1±B.5± C.1或5D.1-或5-答案:D解析:解:∵3m =,24n =,∴3m =±,2n =±,∵m n n m -=-,∴n 大于m ,且m n -为负,∴m 为3-,n 为2±,则1m n +=-,或5m n +=-,故选:D .9.如图,已知直线AB 和CD 相交于点O ,OE OC ⊥,OF 平分AOE ∠,36COF ∠=︒,则BOD ∠的度数为()A.20︒B.18︒C.16︒D.14︒答案:B解析:解:C OE D ⊥ ,90COE ∴∠=︒,36COF ∠=︒ ,54EOF COE COF ∴∠=∠-∠=︒,OF 平分AOE ∠,54AOF EOF ∴∠=∠=︒,18AOC AOF COF ∴∠=∠-∠=︒,18BOD AOC ∴∠=∠=︒.故选:B .10.古希腊数学家把数1,3,6,10,15,21,……叫做三角数,它有一定的规律性,若把第一个三角数记为1a ,第二个三角数记为2a ,……,第n 个三角数记为n a ,计算20242023a a -的值为()A.2021B.2022C.2023D.2024答案:D解析:∵21312a a -=-=,32633a a -=-=,431064a a -=-=,5415105a a -=-=,6521156a a -=-=,……∴1n n a a n --=,∴202420232024a a -=.故选:D二、填空题:本大题共6个小题,每小题3分,共18分.11.若3618α'=︒,则α的补角为______.答案:14342'︒解析:解:∵3618α'=︒,∴α的补角为180361814342''=︒-︒=︒,故答案为:14342'︒.12.用“<”“>”或“=”号填空: 3.14-_____π-.答案:>解析:解:∵ 3.14 3.14-=,ππ-=,3.14π<,∴ 3.14π->-.故答案为:>.13.中国太空站距离地球约400公里,每秒绕地球飞行7.8千米,大约每90分钟绕地球飞行一圈,飞行路程约42000000米,42000000用科学记数法记为_____.答案:74.210⨯解析:解:42000000用科学记数法表示为74.210⨯.故答案为:74.210⨯.14.已知213m x y +与232n x y --(m 、n 是常数)的差是单项式,则()3m n -=_____.答案:8-解析:解:∵213m x y +与232n x y --的差仍为单项式,所以213m x y +与232n x y --是同类项,∴13m +=,22n -=,解得2m =,4n =,∴()()()3332428m n -=-=-=-.故答案为:8-.15.如图所示的是一个正方体的展开图,它的每一个面上都写有一个自然数,并且相对的两个面的两个数字之和相等,那么a +b ﹣2c =____.答案:38解析:解:由题意8425a b c +=+=+21b c ∴-=,17a c -=,()()2a b c a c b c ∴+-=-+-172138=+=.故答案为:38.16.如图是一盏可调节台灯,如图为示意图.固定支撑杆AO ⊥底座MN 于点O ,AB 与BC 是分别可绕点A 和B 旋转的调节杆,台灯灯罩可绕点C 旋转调节光线角度,在调节过程中,最外侧光线CD 、CE 组成的DCE ∠始终保持不变.现调节台灯,使外侧光线∥CD MN ,CE BA ∥,若158BAO ∠=︒,则DCE ∠=_____.答案:68︒##68度解析:解:如图所示,过点A 作AG MN ∥,过点B 作BH CD ∥,∵∥CD MN ,∴AG MN BH CD ∥∥∥,∵OA MN ⊥,∴AG OA ⊥,即90OAG ∠=︒,∵158BAO ∠=︒,∴68B AG O B AO AG -==︒∠∠∠,∴68ABH BAG ==︒∠∠,∵CE AB ∥,BH CD ∥,∴180ABC BCE CBH BCD +=︒=+∠∠∠∠,∴180ABH CBH BCE CBH BCE DCE ++=︒=++∠∠∠∠∠∠,∴68DCE ABH ∠=∠=︒,故答案为:68︒.三、本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17.计算:()20241111 1.2518324⎛⎫⎛⎫+-÷--- ⎪ ⎪⎝⎭⎝⎭.答案:6-解析:解:原式()145241834⎛⎫=+-⨯--⎪⎝⎭()145241834⎛⎫=+-⨯-- ⎪⎝⎭332301=--+-6=-.18.(1)如图,已知A 、B 、C 三点,画射线BA 、线段BC 、直线AC ;(2)已知ABC 的面积为6,3AC =,求点B 到直线AC 的最短距离.答案:(1)见解析;(2)4解析:(1)如图,射线BA 、线段BC 、直线AC 为所求.(2)过点B 作BD AC ⊥于点D ,则线段BD 的长为点B 到直线AC 的最短距离.∵12ABC AC BD S =⋅ ,即1632BD =⨯,∴4BD =,∴点B 到直线AC 的最短距离为4.19.先化简,再求值:()22212322x y xy x y xy xy xy ⎛⎫---++ ⎪⎝⎭,其中21202x y ⎛⎫-++= ⎪⎝⎭.答案:2xy -,12-解析:解:原式2222322x y xy x y xy xy xy=--+-+2xy =-,∵21202x y ⎛⎫-++= ⎪⎝⎭,20x -≥,2102y ⎛⎫+≥ ⎪⎝⎭,∴20x -=,102y +=,∴2x =,12y =-,∴原式211122242⎛⎫=-⨯-=-⨯=- ⎪⎝⎭.20.如图,已知AD BC ⊥于点D ,E 是延长线BA 上一点,且EC BC ⊥于点C ,若3E ∠=∠.求证:AD 平分BAC ∠.请完成下列证明并填空(理由或数学式).证明:∵AD BC ⊥,EC BC ⊥(______),∴AD _____.∴1E ∠=∠(两直线平行,同位角相等),23∠=∠(______).∵3E ∠=∠(已知),∴12∠=∠(_____).∴AD 平分BAC ∠(______).答案:已知,EC ,两直线平行,内错角相等,等量代换,角平分线定义【解析:证明:∵AD BC ⊥,EC BC ⊥(已知),∴AD EC ∥.∴1E ∠=∠(两直线平行,同位角相等),23∠=∠(两直线平行,内错角相等).∵3E ∠=∠(已知),∴12∠=∠(等量代换).∴AD 平分BAC ∠(角平分线定义).21.若用点A 、B 、C 分别表示有理数a 、b 、c ,如图:(1)判断下列各式的符号:a b +0;c a-0;c b-0(2)化简a b c a c b +----答案:(1)<,>,<(2)2b -小问1解析:解:由数轴可得:0b >,0a c <<,a c b >>,∴0a b +<,0c a ->,0c b -<;故答案为:<,>,<;小问2解析:解:a b c a c b+----()()()a b c a c b =-+--+-a b c a c b=---++-2b =-.22.如图,线段28cm AD =,点B 在线段AD 上,C 为BD 的中点,且13AB CD =.(1)图中共有多少条线段;(2)求线段BC 的长.答案:(1)共有6条线段;(2)12cm BC =.小问1解析:解:线段有AB AC AD 、、,BC BD 、,CD ,答:共有6条线段;小问2解析:解:设cm AB x =,则3cm CD x =,∵C 为BD 的中点,∴3BC CD x ==,∴3328x x x ++=,解得4x =,∴()3412cm BC =⨯=.23.从2024年开始,我市中考体育总分将增加到70分.为适应新中考要求,嘉定中学计划在网上购买足球和跳绳共学生体育锻炼.在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有甲乙两家网店均提供包邮服务,并提出了各自的优惠方案.甲网店:买一个足球送一条跳绳,乙网店:足球和跳绳都按定价的90%付款.已知该学校要购买足球80个,跳绳x 条(80x >).(1)若在甲网店购买,需付款______元(用含x 的代数式表示);若在乙网店购买,需付款______元(用含x 的代数式表示).(2)当200x =时,通过计算说明学校在哪家网店购买较为合算.(3)当200x =时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算需付款多少元.答案:(1)()309600x +,()2710800x +(2)到甲网店购买比较合算(3)先到甲网店买80个足球,再到乙网店购买120条跳绳更为合算,需付款15240元小问1解析:解:由甲网店的优惠方案是:买80个足球,x 条跳绳(80x >)的总费用为()()150803*********x x ⨯+-=+(元),由乙网店的优惠方案是:买80个足球,x 条跳绳(80x >)的总费用为:()15090%803090%2710800x x ⨯⨯+⨯=+(元);故答案为:()309600x +,()2710800x +;小问2解析:当200x =时30960030200960015600x +=⨯+=(元),2710800272001080016200x +=⨯+=(元),∵1560016200<,∴到甲网店购买比较合算;小问3解析:先到甲网店买80个足球,获赠80条跳绳,再到乙网店购买20080120-=(条)跳绳所用的总费用为:150803090%120⨯+⨯⨯120003240=+15240=(元),∵152401560016200<<∴先到甲网店买80个足球,再到乙网店购买120条跳绳更为合算,需付款15240元.24.(1)已知,点C 是线段AB 的中点,点D 是线段AB 上任一点(不与点C 重合).①如图1,若点D 在点C 的右侧,求证:()12CD AD BD =-;②如图2,若点D 在点C 的左侧,请直接写出CD 、AD 、BD 之间的数量关系;(2)类比地,如图3,OC 平分AOB ∠,OD 是AOB ∠内任一射线,判断COD ∠、AOD ∠、BOD ∠之间的数量关系,并说明理由.答案:(1)①见解析;②()12CD BD AD =-,理由见解析;(2)()12COD BOD AOD ∠=∠-∠,理由见解析解析:解:(1)①证明:∵点C 是线段AB 的中点,∴12AC BC AB ==,点D 在点C 的右侧,则12AD AC CD AB CD =+=+,12BD BC CD AB CD =-=-,∴11222AD BD AB CD AB CD CD ⎛⎫⎛⎫-=+--=⎪ ⎪⎝⎭⎝⎭,∴()12CD AD BD =-;②()12CD BD AD =-,理由如下:∵点C 是线段AB 的中点,∴12AC BC AB ==,点D 在点C 的左侧,则12AD AC CD AB CD =-=-,12BD BC CD AB CD =+=+,∴11222BD AD AB CD AB CD CD ⎛⎫⎛⎫-=+--=⎪ ⎪⎝⎭⎝⎭,∴()12CD BD AD =-;(2)()12COD BOD AOD ∠=∠-∠,理由如下:∵OC 平分AOB ∠,∴12AOC BOC AOB ∠=∠=∠,OD 是AOB ∠内任一射线,则12AOD AOC COD AOB COD ∠=∠-∠=∠-∠,12BOD BOC COD AOB COD ∠=∠+∠=∠+∠,∴11222BOD AOD AOB COD AOB COD COD ⎛⎫⎛⎫∠-∠=∠+∠-∠-∠=∠⎪ ⎪⎝⎭⎝⎭,即:()12COD BOD AOD ∠=∠-∠.25.阅读材料:我们知道|x |的几何意义是在数轴上的数x 对应的点与原点的距离;即|0|x x =-,这个结论我们可以推广到数轴上任意两点之间的距离,如图,若数轴上两点A 、B 分别对应有理数a 、b ,则A 、B 两点之间的距离为||AB a b =-.根据阅读材料,回答下列问题:(1)数轴上表示2和3-的两点之间的距离是______;(2)数轴上表示x 和2-的两点A 、B 间的距离是_____,若3AB =,则x_____;(3)求2||6x x --+的最大值,并求出x 的取值范围;(4)互不相等的有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C .若a b c a b c -+-=-,请分析判断在点A 、B 、C 中哪个点居于另外两点之间.答案:(1)5(2):2x +;1或5-(3)61x x --+取得最大值为8,此时x 的取值范围为:2x ≤-;(4)居中的是A 点.小问1解析:解:数轴上表示2和3-的两点之间的距离是()235--=.故答案为:5;小问2解析:解:数轴上表示x 和2-的两点A 和B 之间的距离是()22x x --=+,如果3AB =,那么23x +=或23x +=-,解得1x =或5x =-.故答案为:2x +;1或5-;小问3解析:解:2||6x x --+表示的意义是:数轴上表示数x 的点到6之间的距离,与数x 到2-之间的距离之差,当6x ≥时,62628x x x x --+=---=-,当26x -<<时,626242x x x x x --+=---=-,当2x ≤-时,62628x x x x --+=-++=,故61x x --+取得最大值为8,此时x 的取值范围为:2x ≤-;小问4解析:解:a b -表示a 到b 的距离,c a -表示c 到a 的距离,b c -表示b 到c 的距离,a b c a -+-表示a 到b 的距离加上c 到a 的距离.∴居中的是A 点.26.将一副三角板中的两块直角三角尺的直角顶点C 重合放在一起,其中3060A B ∠=︒∠=︒,,45D E ∠=∠=︒.(1)如图1,1∠与3∠的数量关系是_____,理由是______;(2)如图1,若120BCE ∠=︒,求2∠的度数;(3)如图2,将三角尺ABC 固定不动,改变三角尺DCE 的位置,但始终保持两个三角尺的顶点C 重合,当点D 在直线BC 的上方时,探究以下问题:①当DE AB ∥时,求出BCD ∠的度数;②这两块三角尺还存在一组边互相平行的情况,请直接BCD ∠角度所有可能的值.答案:(1)13∠=∠;同角的余角相等(2)260∠=︒;(3)①165BCD ∠=︒;②BCD ∠的度数可能是30︒、45︒、120︒、135︒.小问1解析:解:∵90ACB DCE ∠=∠=︒,∴122390∠+∠=∠+∠=︒,∴13∠=∠(同角的余角相等),故答案为:13∠=∠;同角的余角相等;小问2解析:解:∵120BCE ∠=︒,90ACB DCE ∠=∠=︒,∴31209030∠=︒-︒=︒,∴290360∠=︒-∠=︒;小问3解析:解:①当DE AB ∥时,如图,过点C 作CF AB ∥,,DE AB CF AB ∥∥,DE CF AB ∴∥∥,45DCF D ∴∠=∠=︒,30ACF A ∠=∠=︒,304575DCA ︒=︒∴∠=+︒,9075165BCD ∴∠=︒+︒=︒;②存在,BCD ∠的度数可能是30︒、45︒、120︒、135︒,当CE AB ∥时,如图所示:∴30ACE A ∠=∠=︒,∴根据解析(1)可知,30BCD ACE ∠=∠=︒;当DE BC ∥时,如图所示:∴45BCD D ∠=∠=︒;当CD AB ∥时,如图所示:∴30DCA A ∠=∠=︒,∴120BCD ACD ACB ∠=∠+∠=︒;当DE AC ∥时,如图所示:∴45DCA D ∠=∠=︒,∴135BCD ACD ACB ∠=∠+∠=︒;综上分析可知,BCD ∠的度数可能是30︒、45︒、120︒、135︒.。
苏科版数学初一上学期期末试题与参考答案(2024-2025学年)
2024-2025学年苏科版数学初一上学期期末复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题目:若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为多少cm?选项:A、24cmB、26cmC、28cmD、30cm2、题目:已知一个长方形的长为6cm,宽为4cm,那么它的面积是多少平方厘米?选项:A、20cm²B、24cm²C、30cm²D、36cm²3、下列各数中,比-2大的数是()。
A、-3B、-1C、0D、-44、如果一个数的相反数是它本身,那么这个数是()。
A、0B、1C、-1D、不存在5、(选择题)小明家养了若干只兔子,如果5周增长率为20%,则 growth_rate 表示兔子的增长率为:A. 20%B. 25%C. 33.3%D. 50%6、(选择题)一个长方形的周长是24cm,且长是宽的两倍,那么这个长方形的面积是:A. 12平方厘米B. 16平方厘米C. 18平方厘米D. 24平方厘米7、若一个正方形边长增加了原来的50%,则面积增加了多少百分比?A. 50%B. 100%C. 125%D. 225%8、下列哪组数能构成直角三角形的三边长?A. 5, 12, 13B. 7, 10, 12C. 8, 15, 17D. 9, 12, 159、在直角坐标系中,点A的坐标是(-3,4),点B的坐标是(2,-1),则线段AB 的中点坐标是()。
A.(-0.5,1.5)B.(-1,2)C.(-0.5,-2)D.(1,2) 10、已知函数f(x) = 2x - 3,若f(a) = 1,则a的值为()。
A. 1B. 2C. 3D. 4二、填空题(本大题有5小题,每小题3分,共15分)1、一个长方形的长是8cm,宽是3cm,那么它的周长是_______cm。
2、一个正方形的边长增加了20%,那么它的面积增加了 _______%。
2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。
初一数学期末试题及答案
初一数学期末试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -5答案:C2. 一个数的相反数是-2,那么这个数是:A. 2B. -2C. 0D. 4答案:A3. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C4. 如果a > b,那么下列哪个不等式一定成立?A. a + 3 > b + 3B. 3a > 3bC. a - b > 0D. 2a < 2b答案:C5. 以下哪个是单项式?B. 5x - 3C. 7x^3D. x^2 - 4x + 4答案:C6. 两个数相乘,如果一个因数是负数,另一个因数是正数,那么它们的积是:A. 正数B. 负数C. 零D. 无法确定答案:B7. 一个三角形的两边长分别是3和4,那么第三边的长度x的范围是:B. 1 < x < 10C. 0 < x < 7D. 0 < x < 10答案:A8. 一个数的平方是9,那么这个数是:A. 3B. -3C. 3或-3D. 9答案:C9. 以下哪个是二元一次方程?A. 2x + 3y = 6B. x^2 + y = 5C. 3x - 2 = 0D. x/y = 2答案:A10. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B二、填空题(每题3分,共30分)11. 一个数的绝对值是7,这个数可能是______。
答案:±712. 一个数的相反数是-4,这个数是______。
答案:413. 如果a = 5,b = -3,那么a - b = ______。
答案:814. 如果一个三角形的两边长分别是5和6,那么第三边的长度x的范围是______。
答案:1 < x < 1115. 一个数的平方是16,这个数是______。
答案:±416. 一个数的立方是-27,这个数是______。
2024学年江苏省苏州市七年级上期末数学试卷
2024-2025学年江苏省苏州市七年级(上)期末数学试卷2024-2025学年江苏省苏州市七年级(上)期末数学试卷一、填空题:本大题共12小题.每小题3分,共36分.把答案干脆填在答题纸相对应的位置上.1.(3分)一个数的相反数是﹣3,则这个数是_________ .2.(3分)(2024•柳州)地球平均每年发生雷电次数约为1 600 000次,这个数用科学记数法表示为_________ .3.(3分)某城市市区人口a万人,市区绿地面积b万m2,则平均每人拥有绿地_________ m2.4.(3分)已知∠α=34°30′,则∠α的余角为_________ °.5.(3分)已知点C在线段AB上,且AC=2BC,若AB=2cm,则BC= _________ cm.6.(3分)(2024•深圳)若单项式2x2y m及x n y3是同类项,则m+n的值是_________ .7.(3分)点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是_________ .8.(3分)当x= _________ 时,代数式4x﹣5的值等于﹣7.9.(3分)已知甲数比乙数的2倍大1,假如设甲数为x,那么乙数可表示为_________ .10.(3分)若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是_________ .11.(3分)(2024•湘潭)某市在端午节打算实行划龙舟大赛,预料15个队共330人参与.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x人,那么可列出一元一次方程为_________ .12.(3分)如图,在线段AB上,画1个点,可得3条线段;画2个不同点,可得6条线段;画3个不同点,可得10条线段;…照此规律,画10个不同点,可得线段_________ 条.二、选择题:本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中.只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相应的位置上.13.(3分)下列式子中,正确的是()A.|﹣5|=﹣5B.﹣|5|=﹣5C.D.14.(3分)实数a,b在数轴上的位置如图所示,则下列式子成立的是()A.a+b>0B.a>﹣b C.a+b<0D.﹣a<b 15.(3分)(2024•长沙)经过随意三点中的两点共可以画出的直线条数是()A.一条或三条B.三条C.两条D.一条16.(3分)如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A.B.C.D.17.(3分)小明和小莉诞生于2024年10月份,他们的诞生日不是同一天,但都是星期三,且小明比小莉诞生早,两人诞生日期之和是22,那么小莉的诞生日是()A.15号B.16号C.17号D.18号18.(3分)(2024•鄂尔多斯)视察表1,找寻规律.表2是从表1中截取的一部分,其中a,b,c的值分别为()表1:1234…2468…36912…481216………………表2:16a20bc30A.20,25,24B.25,20,24C.18,25,24D.20,30,25三、解答题:本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(8分)计算:(1)﹣(﹣23)﹣(+59)+(﹣35)+|﹣5﹣32|;(2)1﹣[(﹣5)2×﹣0.8]÷2×(﹣1+).20.(5分)先化简,再求值:,其中,.21.(8分)解方程:(1);(2)﹣=1.5.22.(6分)如图,C、D两点将线段AB分成2:3:4三部分,E为线段AB的中点,AD=6cm.求:(1)线段AB的长:(2)线段DE的长.23.(6分)已知,.(1)当x取何值时,y1=y2?(2)当x取何值时,y1比2y2大5?24.(5分)假如方程(x+6)=2及方程a(x+3)=a﹣x的解相同,求a的值.25.(7分)如图,∠AOC及∠BOC是邻补角,OD,OE分别是∠AOC,∠BOC的平分线.(1)写出∠AOE的补角;(2)若∠BOC=62°,求∠COD的值;(3)试问射线OD及OE之间有什么特殊的位置关系?为什么?26.(7分)视察下面的点阵图,探究其中的规律.摆第1个“小屋子”须要5个点;数一下,摆第2个“小屋予”须要_________ 个点;数一下,摆第3个“小屋子”须要_________ 个点.(1)摆第9个这样的“小屋子”须要多少个点?(2)写出摆第n个这样的“小屋予”须要的总点数的代数式.(3)摆第几个“小屋子”的时候,须要的总点数共为71个?27.(8分)打算两张同样大小的正方形纸片.(1)取打算好的一张正方形纸片,将它的四周各剪去一个同样大小的正方形(如图),再折合成一个无盖的长方体盒子.做成的长方体盒子的底面的边长为6cm,容积为108cm3,那么原正方形纸片的边长为多少?(2)取打算好的另一张正方形纸片,这张纸片恰好可做成圆柱形食品罐侧面的包装纸(不计接口部分),这个食品罐的体积是多少?(结果保留π)28.(8分)蔬菜种植户经过调查发觉,一种无公害蔬菜加工后出售,单价可提高20%,但重量削减10%.现有未加工的这种蔬菜30千克,加工后可以比不加工多卖12元,这种蔬菜加工前每千克卖多少元?29.(8分)实践及操作:在课堂上,李老师和同学们探究了及三角形面积相关的问题.如图,已知点A、B同在直线a上,点C1、C2在直线a的同一侧.(1)过C1画C1M⊥AB,垂足为M,过C2画C2N⊥AB,垂足为N;(2)用圆规比较C1M、C2N的大小;(3)试问三角形C1AB面积和三角形C2AB面积是否相等?为什么?(4)连接C1C2,问AB及C1C2是否相互平行?(用直尺和三角板画平行线的方法加以校验)(5)在及点C1、C2的同一侧,画三角形C3AB,三角形C4AB,并使三角形C3AB、三角形C4AB面积都及三角形C1AB面积相等;通过以上画图,问点C3、C4同在直线C1C2上吗?(6)当三角形有一个顶点在直线C1C2上运动时,它和点A、B一起构成的三角形面积是否有改变?2024-2025学年江苏省苏州市七年级(上)期末数学试卷参考答案及试题解析一、填空题:本大题共12小题.每小题3分,共36分.把答案干脆填在答题纸相对应的位置上.1.(3分)一个数的相反数是﹣3,则这个数是 3 .考点:相反数.专题:计算题.分析:找出﹣3的相反数即可.解答:解:一个数的相反数是﹣3,则这个数是3.故答案为:3点评:此题考查了相反数,娴熟驾驭相反数的定义是解本题的关键.2.(3分)(2024•柳州)地球平均每年发生雷电次数约为1 600 000次,这个数用科学记数法表示为 1.6×106.考点:科学记数法—表示较大的数.专应用题.题:分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值及小数点移动的位数相同.当数肯定值大于10时,n是正数;当原数的肯定值小于1时,n 是负数.解答:解:1 600 000=1.6×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某城市市区人口a万人,市区绿地面积b万m2,则平均每人拥有绿地m2.考点:列代数式.分析:依据:人均面积=,列式求解.解答:解:依题意,得:平均每人拥有绿地m2.点评:本题考查了平均数的求法.4.(3分)已知∠α=34°30′,则∠α的余角为55.5 °.考点:余角和补角;度分秒的换算.分析:依据余角:假如两个角的和等于90°(直角),就说这两个角互为余角可得∠α的余角=90°﹣34°30′.解解:∠α的余角:90°﹣34°30′=55°30′=55.5°.答:故答案为:55.5.点评:此题主要考查了余角,关键是驾驭余角定义.5.(3分)已知点C在线段AB上,且AC=2BC,若AB=2cm,则BC= cm.考点:比较线段的长短.分析:由已知点C在线段AB上,AC=2BC,AB=2cm ,故可以知道C点是线段AB的一个三等分点,且靠近B点,所以有BC=.解答:解:依据题意,AC=2BC,所以C点为线段AB的一个三等分点,且靠近B点.又AB=2cm,所以BC=cm.点评:主要考查了学生对线段的和、差、倍、分转化之间娴熟应用.6.(3分)(2024•深圳)若单项式2x2y m及x n y3是同类项,则m+n的值是 5 .考点:同类项.专题:计算题.分析:本题考查同类项的定义,由同类项的定义可先求得m和n的值,从而求出它们的和.解答:解:由同类项的定义可知n=2,m=3,则m+n=5.故答案为:5.点评:同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.7.(3分)点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是﹣3 .考点:数轴.专题:常规题型.分析:此题可借助数轴用数形结合的方法求解.解答:解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.故答案为:﹣3点评:此题综合考查了数轴、肯定值的有关内容,用几何方法借助数轴来求解,特别直观,体现了数形结合的优点.8.(3分)当x= ﹣时,代数式4x﹣5的值等于﹣7.考点:解一元一次方程.分析:首先依据题意列出方程,然后依据方程的解法:移项,合并同类项,把x的系数化为1即可解的答案.解答:解:4x﹣5=﹣7,移项得:4x=﹣7+5,合并同类项得:4x=﹣2,把x的系数化为1得:x=﹣﹣.故答案为:﹣.点评:此题主要考查了一元一次方程的解法,解题过程中要留意移项时要变号,许多同学遗忘变号而导致错误.9.(3分)已知甲数比乙数的2倍大1,假如设甲数为x ,那么乙数可表示为.考点:列代数式.分析:甲数=2×乙数+1,把相关数值代入整理,即可求得乙数.解答:解:∵甲数为x,∴x=2×乙数+1,∴乙数可表示为:.点评:找到甲乙两数之间的等量关系是解决本题的关键.10.(3分)若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是同角的余角相等.考点:余角和补角.分析:依据“同角的余角相等”,即可解出此题.解答:解:∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3(同角的余角相等).故答案为:同角的余角相等.点本题考查了余角的学问,解答本题的关键是驾驭同角的余角相等的性质.评:11.(3分)(2024•湘潭)某市在端午节打算实行划龙舟大赛,预料15个队共330人参与.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x人,那么可列出一元一次方程为15(x+2)=330 .考点:由实际问题抽象出一元一次方程.专题:压轴题.分析:首先理解题意找出题中存在的等量关系:15个队×每队的人数=总人数,依据此等量关系列方程即可.解答:解:设每条船上划桨的有x人,则每条船上有x+2人,依据等量关系列方程得:15(x+2)=330.点评:列方程解应用题的关键在于审题找出等量关系.12.(3分)如图,在线段AB上,画1个点,可得3条线段;画2个不同点,可得6条线段;画3个不同点,可得10条线段;…照此规律,画10个不同点,可得线段66 条.考点:规律型:图形的改变类.专题:规律型.分析:本题可依次解出画n=1,2,3,…个点时得出线段的条数.再依据规律依此类推,画10个不同点,可得线段66条.解答:解:∵画1个点,可得3条线段,2+1=3;画2个点,可得6条线段,3+2+1=6;画3个点,可得10条线段,4+3+2+1=10;…;画n个点,则可得(1+2+3+…+n+n+1)=条线段.所以画10个点,可得=66条线段;点评:本题是一道找规律的题目,这类题型在中考中常常出现.对于找规律的题目首先应找出哪些部分发生了改变,是依据什么规律改变的.二、选择题:本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中.只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相应的位置上.13.(3分)下列式子中,正确的是()A.|﹣5|=﹣5B.﹣|5|=﹣5C.D.考点:肯定值.专题:计算题.分析:依据肯定值的定义分别推断即可.解答:解:A、|﹣5|=5,所以A选项错误;B、﹣|﹣5|=﹣5,所以B选项正确;C、|﹣0.5|=0.5=,所以C选项错误;D、﹣|﹣|=﹣,所以D选项错误.故选B.点评:本题考查了肯定值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.14.(3分)实数a,b在数轴上的位置如图所示,则下列式子成立的是()A.a+b>0B.a>﹣b C.a+b<0D.﹣a<b考点:实数及数轴.专题:计算题.分析:视察数轴得到a<0,b>0,|a|>b,则有a+b<0;a<﹣b;﹣a>b.解答:解:依据题意得,a<0,b>0,|a|>b,∴a+b<0;a<﹣b;﹣a>b,∴A、B、D选项都错误,C选项正确.故选C.点评:本题考查了实数及数轴的关系:实数及数轴上的点是一一对应的关系;原点左边的点对应负实数,右边的点对应正实数;离原点越远,其点对应的实数的肯定值越大.15.(3分)(2024•长沙)经过随意三点中的两点共可以画出的直线条数是()A.一条或B.三C.两D.一三条条条条考点:直线、射线、线段.专题:分类探讨.分析:分两种状况:①三点在同始终线上时,只能作出一条直线;②三点不在同始终线上时,每两点可作一条,共3条.解答:解:①当三点在同始终线上时,只能作出一条直线;②三点不在同始终线上时,每两点可作一条,共3条;故选A.点评:两点可确定一条直线,留意分类探讨.16.(3分)如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A.B.C.D.考点:由三视图推断几何体;简洁组合体的三视图.分析:依据俯视图可得从正面看可看到每列正方体的最多个数分别为4,3,2,再表示为平面图形即可.解答:解:依据俯视图中的每个数字是该位置小立方块的个数,得出主视图有3列,从左到右的列数分别是4,3,2.故选C.点评:此题考查了三视图推断几何体,用到的学问点是俯视图、主视图,关键是依据三种视图之间的关系以及视图和实物之间的关系,画出平面图形.17.(3分)小明和小莉诞生于2024年10月份,他们的诞生日不是同一天,但都是星期三,且小明比小莉诞生早,两人诞生日期之和是22,那么小莉的诞生日是()A.15号B.16号C.17号D.18号考点:一元一次方程的应用.分析:若设小莉的诞生日期是2024年10月x日,依据他们的诞生日不是同一天,但都是星期三,可知小明的诞生日是x﹣7或x﹣14或x﹣21或x﹣28.再依据两人诞生日期之和是22,列方程计算,运用解除法即可得到正确答案.解答:解:设小莉的诞生日期是2024年10月x日.依据题意得:x+x﹣7=22,解得x=14.5,不是整数,应舍去;x+x﹣14=22,x=18;x+x﹣21=22,解得x,=21.5,不合题意,应舍去;x+x﹣28=22,解得x=25,x﹣28=﹣3,不合题意,应舍去.答:小莉的诞生日期是2024年10月18日.故选D.点评:本题考查了一元一次方程的应用,留意了解生活常识:诞生日不是同一天,但都是星期三,则他们相隔的天数应是7的倍数.18.(3分)(2024•鄂尔多斯)视察表1,找寻规律.表2是从表1中截取的一部分,其中a,b,c的值分别为()表1:1234…2468…36912…481216………………表2:16a20bc30A.20,25,24B.25,20,24C.18,25,24D.20,30,25考点:规律型:图形的改变类.专题:压轴题;规律型.分析:依据表1中数据规律可知:横排中1,2,3,4…对应的竖排中数据都是第1个数的倍数,由上往下依次是1倍,2倍,3倍…解答:解:表2中c是4的6倍即24,a是5的4倍即20,b是5的5倍即25.故选:A.点评:主要考查了学生通过特例分析从而归纳总结出一般结论的实力,通过分析找到规律是解答此类问题的关键.三、解答题:本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(8分)计算:(1)﹣(﹣23)﹣(+59)+(﹣35)+|﹣5﹣32|;(2)1﹣[(﹣5)2×﹣0.8]÷2×(﹣1+).考点:有理数的混合运算.分析:依据有理数混合运算的依次,先乘方后乘除最终算加减,有肯定值和括号的先算肯定值和括号里面的.解答:解:(1)原式=23﹣59﹣35+37=﹣34;(2)原式=﹣()××()=﹣=.点评:本题考查的是有理数的运算实力.留意:要正确驾驭运算依次,在混合运算中要特殊留意运算依次:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的依次.20.(5分)先化简,再求值:,其中,.考点:整式的加减—化简求值.分析:本题考查整式的混合运算,先把整式绽开,再合并同类项,化为最简形式,再把x,y的值代入,即可求得结果.解答:解:{2x2y﹣[3xy2﹣(4xy2﹣2x2y)]}==当x=﹣,y=时,原式==.点评:在做整式的混合运算时,要驾驭公式法,单项式及多项式相乘以及合并同类项等学问点.21.(8分)解方程:(1);(2)﹣=1.5.考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最终化系数为1,从而得到方程的解.(2)方程含有分数系数,先进行通分,然后移项,合并同类项,系数化1,求出x的值.解答:解:(1)去括号得:2﹣3x=﹣x﹣2x=﹣2,﹣2x=﹣,x=.(2)原方程变形为:6x﹣3﹣2(2﹣5x)=9,16x=16,x=1.点评:本题易在去分母、去括号和移项中出现错误,应细心的进行运算.22.(6分)如图,C、D两点将线段AB分成2:3:4三部分,E为线段AB的中点,AD=6cm.求:(1)线段AB的长:(2)线段DE的长.考点:比较线段的长短.专题:计算题.分析:(1)依据比值可设AC=2x,CD=3x,BD=4x.依据AD=6,列方程求解;(2)依据E为线段AB的中点,求得AE的长,则DE=AD﹣AE.解答:解:(1)设AC=2x,CD=3x,BD=4x.则有2x+3x=6,x=1.2.则AB=2x+3x+4x=9x=10.8(cm).(2)∵E为线段AB的中点,∴AE=AB=5.4.∴DE=AD﹣AE=6﹣5.4=0.6(cm).点评:此题能够用一个未知数表示出图中的三条线段,利用方程求解,理解线段的中点的概念.23.(6分)已知,.(1)当x取何值时,y1=y2?(2)当x取何值时,y1比2y2大5?考点:一次函数的性质.专题:计算题.分析:(1)(2)将y1及y2的等式关系转化为y1及y2所对应的x的表达式的关系,从而解出x的值.解答:解:(1)由于y1=y2即:解得:即:当时,y1=y2.(2)由y1﹣2y2=5得:解得:即:当时,y1比2y2大5.点评:y1及y2分别为关于x的不同的函数,由题设定义的两函数值的关系写出对应的x 的关系式是解题的关键所在.24.(5分)假如方程(x+6)=2及方程a(x+3)=a ﹣x的解相同,求a的值.考点:同解方程.专题:计算题.分析:分别解出两方程的解,两解相等,就得到关于a的方程,从而可以求出a的值.解答:解:解方程(x+6)=2,得x=﹣2,解方程a(x+3)=a ﹣x,得x=﹣,由题意得:﹣=﹣2,解得:a=.点评:本题解决的关键是能够求解关于x的方程.正确理解方程的解的含义.本题还可以把方程(x+6)=2的解x=﹣2代入方程a(x+3)=a ﹣x,通过解方程,求出a的值.25.(7分)如图,∠AOC及∠BOC是邻补角,OD,OE分别是∠AOC,∠BOC的平分线.(1)写出∠AOE的补角;(2)若∠BOC=62°,求∠COD的值;(3)试问射线OD及OE之间有什么特殊的位置关系?为什么?考点:垂线;角平分线的定义;余角和补角;对顶角、邻补角.专题:探究型.分析:(1)依据补角的定义,即求及∠AOE的和是180°的角.由图易知∠AOE的补角有∠BOE,再由角平分线的定义,可知∠COE=∠BOE,从而得出∠AOE的补角是∠BOE及∠COE;(2)首先依据邻补角的定义可知∠AOC=180°﹣∠BOC,得出∠AOC的度数,然后依据角平分线的定义得出∠COD=∠AOC;(3)依据角平分线及互为邻补角的定义,可求出∠DOE=90°,从而得出OD及OE之间的位置关系.解答:解:(1)∠AOE的补角是∠BOE及∠COE;(2)∵∠AOC=180°﹣∠BOC=180°﹣62°=118°,又∵OD是∠AOC的平分线,∴∠COD=∠AOC=×118°=59°;(3)射线OD及OE相互垂直.理由如下:∵OD是∠AOC 的平分线,∴∠COD=∠AOC,∵OE是∠BOC 的平分线,∴∠COE=∠BOC.∵∠AOC+∠BOC=180°,∠AOC+∠BOC=90°,∴∠COD+∠COE=90°,∴∠DOE=90°.∴OD⊥OE.点评:此题综合考查角平分线,邻补角,补角,垂直的定义及角度的简洁计算.26.(7分)视察下面的点阵图,探究其中的规律.摆第1个“小屋子”须要5个点;数一下,摆第2个“小屋予”须要11 个点;数一下,摆第3个“小屋子”须要17 个点.(1)摆第9个这样的“小屋子”须要多少个点?(2)写出摆第n个这样的“小屋予”须要的总点数的代数式.(3)摆第几个“小屋子”的时候,须要的总点数共为71个?考点:规律型:图形的改变类.专题:探究型.分析:本题中可依据图形分别得出n=1,2,3时的小屋子须要的点数,然后找出规律得出9个、第n个时小屋子须要的点数,依据总点数71个列出方程求出摆第几个“小屋子”.解解:依题意得:摆第1个“小屋子”须要6×1﹣1=5个点;答:摆第2个“小屋子”须要6×2﹣1=11个点;摆第3个“小屋子”须要6×3﹣1=17个点.(1)当n=9时,须要的点数为6×9﹣1个;(2)当n=n时,须要的点数为6n﹣1个;(3)依据题意有6n﹣1=71,解得n=12,故摆第12个“小屋子”的时候,须要的总点数共为71个.点评:本题是一道找规律的题目,这类题型在中考中常常出现.对于找规律的题目首先应找出哪些部分发生了改变,是依据什么规律改变的.27.(8分)打算两张同样大小的正方形纸片.(1)取打算好的一张正方形纸片,将它的四周各剪去一个同样大小的正方形(如图),再折合成一个无盖的长方体盒子.做成的长方体盒子的底面的边长为6cm,容积为108cm3,那么原正方形纸片的边长为多少?(2)取打算好的另一张正方形纸片,这张纸片恰好可做成圆柱形食品罐侧面的包装纸(不计接口部分),这个食品罐的体积是多少?(结果保留π)考点:一元一次方程的应用.专题:几何图形问题.分析:(1)长方体盒子容积=底面积×高,盒子的高为小正方形的边长,盒子的底面为纸片边长减去四个角的小正方形的边长的2倍求得.(2)圆柱体积=底面圆的面积×高,利用:底面圆的周长=正方形边长求得底面圆的半径,再利用求得的半径求出底面圆的面积,从而求得圆柱体积.解解:(1)设原正方形纸片的边长为x cm.答:由底面积×高=体积得:解得:x=12.即:原正方形纸片的边长为12cm.(2)由(1)可知一张正方形纸片的边长为12cm.∴即:食品罐的体积约为cm3.点评:正确审题,依据题目给出的条件,找出合适的等量关系,列出方程.留意:长方体体积=底面积×高,底面边长=纸片边长﹣2×小正方形边长.28.(8分)蔬菜种植户经过调查发觉,一种无公害蔬菜加工后出售,单价可提高20%,但重量削减10%.现有未加工的这种蔬菜30千克,加工后可以比不加工多卖12元,这种蔬菜加工前每千克卖多少元?考点:一元一次方程的应用.专题:销售问题.分析:加工后的单价为原来单价×(1+20%);重量为30×(1﹣10%);关系式为:加工后的总价﹣不加工的总价=12,把相关数值代入即可求解.解答:解:设加工前每千克卖x元,由题意得:(1+20%)x×(1﹣10%)×30﹣30x=12,解得x=5.答:蔬菜加工前每千克卖5元.点评:找到加工和不加工的等量关系是解决本题的关键;难点是得到加工后的单价和重量.29.(8分)实践及操作:在课堂上,李老师和同学们探究了及三角形面积相关的问题.如图,已知点A、B同在直线a上,点C1、C2在直线a的同一侧.(1)过C1画C1M⊥AB,垂足为M,过C2画C2N⊥AB,垂足为N;(2)用圆规比较C1M、C2N的大小;(3)试问三角形C1AB面积和三角形C2AB面积是否相等?为什么?(4)连接C1C2,问AB及C1C2是否相互平行?(用直尺和三角板画平行线的方法加以校验)(5)在及点C1、C2的同一侧,画三角形C3AB,三角形C4AB,并使三角形C3AB、三角形C4AB面积都及三角形C1AB面积相等;通过以上画图,问点C3、C4同在直线C1C2上吗?(6)当三角形有一个顶点在直线C1C2上运动时,它和点A、B一起构成的三角形面积是否有改变?考点:平行线的判定;三角形的面积.专题:作图题;综合题.分析:(1)据题意画出图即可.(2)利用圆规比较C1M、C2N的大小即可.(3)依据题(2)结论及同底可得到两三角形面积相等.(4)用直尺和三角板画平行线的方法可推断AB及C1C2平行.(5)据题意画出图形,可知点C3、C4在直线C1C2上.(6)三角形有一个顶点在直线C1C2上运动时,它和点A、B一起构成的三角形面积始终相等.解答:解:(1)C1M和C2N即为所求.(2)C1M=C2N;(3)△C1AB和△C2AB的面积相等;∵C1M=C2N,且AB为两三角形同底,∴依据三角形面积计算公式,△C1AB和△C2AB的面积相等.(4)AB及C1C2平行.(5)如图△C3AB和△C4AB即为所求三角形,点C3、C4在直线C1C2上.(6)当三角形有一个顶点在直线C1C2上时,它和点A、B组成的三角形面积没有改变.点评:本题主要考查了三角形的面积、高线及平行线的性质,属于中档难度的好题,同时也考查了学生对题意的阅读理解实力.参及本试卷答题和审题的老师有:sks;HLing;zhjh;zhangCF;sd2024;zjy011;HJJ;将来;Linaliu;lanchong;caicl;ln_86;心若在;jpz;gsls;zzz;zhehe;lantin;如来佛;蓝月梦;119107;weibo;wdxwzk;HCH;110397(排名不分先后)菁优网2024年1月13日。
人教版2024-2025学年度第一学期七年级期末数学试卷
人教版2024-2025学年度第一学期七年级期末数学试卷(本试卷三个大题,25个小题。
满分150分,考试时间 120分钟。
)一、选择题(本题共12个小题,每小题3分,共36分;每个小题A、B、C、D四选项,只有一项符合题意。
)1. 若|m−3|+(n+2)²=0,则m+2n的值为( )A. - 1B. 1C. - 4D. 42. 多项式2x⁵+4xy³−5x²−1的次数和常数项分别是( )A. 5, - 1B. 5, 1C. 10, - 1D. 11, - 13. 若|m|=9. |n|=2, 且m+n<0, 则m+n的值为( )A. 7或-7B. - 7或-11C. 11D. 74. 在12x+1,−3xy2,12x⋅−8, m中,单项式的个数是( )A. 1B. 2C. 3D. 45. 如图,数轴上点A、B、C分别表示数a、b、c,则下列结论不成立的是( ).A. abc<0B. a-c<0C. a+b>0D. |a|<|b|6. 定义一种新运算:则3⊗(-1)⊗5的结果是 ( )A. 15B. - 1C. 1D. 127.如图所示为由4个大小相同的正方体组成的几何体,则从正面看到的平面图形是( )8. a,b是有理数,它们在数轴上的对应点的位置如图. 把a,-a,b,-b按照从小到大的顺序排列,正确的是()A. - a<-b<a<bB. - b<-a<a<bC. b<-a<a<-bD. - b<a<-a<b9. 下列7个数: 54, 1.010010001, - 43, 0, - 2π, 3.3, - 3.141441444… (每两个1之间一次多一个4), 其中有理数有( )个.A. 5B. 4C. 3D. 610. 观察下列算式: 31 =3 ,32=9,33=27,34=81、35=243,36=729,37=2187,32=6561⋯,通过观察,用你所发现的规律确定32025的个位数字是( ) A. 3 B. 9 C. 7D. 111. 甲、乙、丙三家超市为标价相同的同一种商品接促销活动, 甲超市一次性降价40%, 乙超市连续两次降价20%。
2023—2024学年人教新版七年级上学期数学期末考试试卷(附答卷)
最新人教新版七年级上学期数学期末考试试卷(含答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、据教育部统计,2023年高校毕业生约1086万人,用科学记数法表示1086万为()A.1086×104 B.1.086×107 C.1.086×108 D.0.1086×1082、某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃3、下列哪个图形是正方体的展开图()A.B.C.D.4、如图,下列说法错误的是()A.OA的方向是北偏西60°B.OB的方向是西南方向C.OC的方向是南偏东60°D.OD的方向是北偏东30°5、下列变形中,正确的是()A.若a=b,则a+1=b﹣1B.若a﹣b+1=0,则a=b+1C.若a=b,则D.若,则a=b6、若(m﹣1)x|2m﹣3|=6是一元一次方程,则m等于()A.1B.2C.1或2D.任何数7、钟表在1点30分时,它的时针和分针所成的角度是()A.135°B.125°C.145°D.115°8、《孙子算经》是我国古代重要的数学著作,书中记载这样一个问题;今有三人共车,二车空;二人共车,九人步,问人几何?这个问题的意思是:今有若干人乘车,每三人乘一车,恰好剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,则乘车人数为()A.15B.35C.39D.419、有一长条型链子,其外型由边长为1公分的正六边形排列而成.如图表示此链之任一段花纹,其中每个黑色六边形与6个白色六边形相邻.若链子上有35个黑色六边形,则此链子共有几个白色六边形()A.140B.142C.210D.21210、若不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,则a+b=()A.B.C.D.二、填空题(每小题3分,满分18分)11、比较大小:.12、数轴上,到原点距离为5的点表示的数是.13、已知单项式2a2b n+1与3a2m b m是同类项,则m+n=.14、一个正方体展开图如图所示,若相对面上标记的两个数均互为相反数,则xy的值为.15、如果关于x的方程2x+1=3和方程的解相同,那么k的值为.16、当x=1时,ax2+bx﹣1的值为6,当x=﹣1时,这个多项式ax3+bx﹣1的值是.最新人教新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1);(2).18、解下列方程:(1)4x﹣3=2﹣5x;(2).19、如图,某小纸盒的展开图如下,根据图中的数据解答如下问题.(1)请用含a和x的式子表示这个小纸盒的展开图的面积;(2)当a=6厘米时,面积为72平方厘米,求x的值;20、有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:c﹣b0,a+b0,c﹣a0;(2)化简:|c﹣b|+3|a+b|﹣|c﹣a|.21、如图,点C,E是线段AB上两点,点D为线段AB的中点,AB=6,CD=1.(1)求BC的长;(2)若AE:EC=1:3,求EC的长.22、如图,已知∠AOB=90°,∠BOC=60°.(1)求∠AOC的补角的度数;(2)若OE平分∠AOB,OF平分∠BOC,求∠EOF的度数.23、已知A=2x2+xy+3y,B=x2﹣xy.(1)若(x+2)2+|y﹣3|=0,求A﹣2B的值.(2)若A﹣2B的值与y的值无关,求x的值.24、在学习一元一次方程后,我们给一个定义:若x0是关于x的一元一次方程ax+b=0(a≠0)的解,y0是关于y的方程的所有解的其中一个解,且x0,y0满足x0+y0=99,则称关于y的方程为关于x的一元一次方程的“久久方程”.例如:一元一次方程3x﹣2x﹣98=0的解是x0=98,方程|y|+1=2的所有解是y =1或y=﹣1,当y0=1,x0+y0=99,所以|y|+1=2为一元一次方程3x﹣2x﹣98=0的“久久方程”.(1)已知关于y的方程:①2y﹣2=4,②|y|=2,其中哪个方程是一元一次方程3(x﹣1)=2x+98的“久久方程”?请直接写出正确的序号.(2)若关于y的方程|2y﹣2|+2=4是关于x的一元一次方程x﹣的“久久方程”,请求出a的值.(3)若关于y的方程a|y﹣49|+a+b=是关于x的一元一次方程ax+50b =55a的“久久方程”,求出的值.25、如图,两条直线AB,CD相交于点O,且∠AOC=∠BOD=90°,射线OM从OB开始绕O点逆时针方向旋转,速度为每秒15°,射线ON同时从OD 开始绕O点顺时针方向旋转,速度为每秒12°,运动时间为t秒(0<t<12,本题出现的角均不大于平角).(1)当t=2时,∠AOM的度数为度,∠NOM的度数为度.(2)t为何值时,∠AOM=∠AON.(3)当射线OM在∠BOC的内部时,探究是不是一个定值?若是,请求出这个定值.。
2024年最新人教版七年级数学(上册)期末考卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/25. 下列哪个数是负数?A. 3B. 0C. 2D. 1/26. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零7. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.58. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/29. 下列哪个数是负数?A. 3B. 0C. 2D. 1/210. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零二、填空题(每题3分,共30分)1. 5的绝对值是______。
2. 2的绝对值是______。
3. 3/4的绝对值是______。
4. 0的绝对值是______。
5. 1/2的绝对值是______。
6. 1/2的绝对值是______。
7. 3的绝对值是______。
8. 3的绝对值是______。
9. 2/3的绝对值是______。
10. 0.25的绝对值是______。
三、解答题(每题10分,共50分)1. 计算:| 5 | | 3 | + | 2 | | 1 |2. 计算:| 4 | + | 6 | | 2 | + | 3 |3. 计算:| 7 | | 5 | + | 3 | | 2 |4. 计算:| 8 | + | 7 | | 4 | + | 3 |5. 计算:| 9 | | 6 | + | 5 | | 4 |四、应用题(每题10分,共30分)1. 小明有5个苹果,小红有3个苹果,小刚有2个苹果。
小明比小红多几个苹果?小红比小刚多几个苹果?2. 一辆汽车从A地开往B地,速度是每小时60公里。
初一数学期末考试卷
初一数学期末考试卷一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于4,那么这个数是:A. 2B. -2C. 2或-2D. 43. 一个圆的半径是5厘米,那么它的直径是:A. 10厘米B. 15厘米C. 20厘米D. 25厘米4. 以下哪个表达式是正确的?A. \( 3x + 5 = 8x - 10 \)B. \( 2x - 3 = 3x + 2 \)C. \( 4x + 7 = 7x + 4 \)D. \( 5x - 3 = 2x + 5 \)5. 一个班级有30个学生,其中女生占总人数的40%,那么这个班级有多少名女生?A. 10B. 12C. 15D. 206. 如果一个角的度数是90°,那么这个角是:A. 锐角B. 直角C. 钝角D. 平角7. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 08. 下列哪个分数是最接近1的?A. \( \frac{1}{2} \)B. \( \frac{3}{4} \)C. \( \frac{4}{5} \)D. \( \frac{5}{6} \)9. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,那么它的体积是:A. 60立方厘米B. 120立方厘米C. 180立方厘米D. 240立方厘米10. 一个数的平方根是4,那么这个数是:A. 16B. 8C. 4D. 2二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。
12. 如果\( 2x + 3 = 11 \),那么\( x \)的值是______。
13. 一个直角三角形的两个锐角的度数之和是______。
14. 一个数的倒数是\( \frac{1}{4} \),这个数是______。
15. 如果一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,那么它的表面积是______平方厘米。
人教版七年级上册数学期末考试试卷含答案
人教版七年级上册数学期末考试试题一、单选题1.﹣8的相反数是()A .8B .18C .18-D .-82.下列方程为一元一次方程的是()A .538+=B .24x y +=C .30y -=D .22x x =+3.下列几何体中,面的个数最少的是()A .B .C .D .4.整式23xy -的系数是()A .-3B .3C .3x -D .3x5.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a+b 的值是()A .负数B .0C .正数D .无法判断6.将数据3800000用科学记数法表示为()A .63.810⨯B .53.810⨯C .60.3810⨯D .53810⨯7.若5620'A ∠=︒,则A ∠补角的大小是()A .3440'︒B .3340'︒C .12440'︒D .12340'︒8.下列各图中表示射线MN ,线段PQ 的是()A .B .C .D .9.下列是根据等式的性质进行变形,正确的是()A .若a b =,则66a b +=-B .若ax ay =,则x y =C .若11a b -=+,则a b =D .若55a b =--,则a b =10.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°二、填空题11.11月24日,某市的最低温度是8-℃,最高温度比最低温度高16℃,则该市的最高温度是__℃.12.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是_____.13.一件校服,按标价的8折出售,售价是x 元,这件校服的标价是____元.14.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为_____.15.若213n x y -与3m x y 是同类项,则m n +=_____.16.如图,甲从点A 出发向北偏东62︒方向走到点B ,乙从点A 出发向南偏西18︒方向走到点C ,则BAC ∠的度数是______.17.观察下列图形,用黑、白两种颜色的五边形地砖按如图所示的规律拼成若干个蝴蝶图案,则第n 个图案中白色地砖有___块.18.若有理数a ,b ,c 在数轴上的位置如图所示,则化简:2a c a b c b +++--=______.三、解答题19.计算:21(4)29()53-÷+⨯---.20.解方程:3x+2(x ﹣2)=6.21.先化简,再求值:7xy+2(3xy ﹣2x 2y )﹣13xy ,其中x =﹣1,y =2.22.把下列各数在数轴上表示出来,并将它们按从大到小的顺序排列.1.5--,3-,0,122+,()22-,12-.23.用简便方法计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭(2)31.530.750.534⎛⎫-⨯-⨯- ⎪⎝⎭24.甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?25.如图,点C 为线段AB 上一点,点D 为BC 的中点,且12AB =,4AC CD =.(1)求AC 的长;(2)若点E 在直线AB 上,且3AE =,求DE 的长.26.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:备用体育用品足球篮球排球单价(元)806040(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m 个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m 的值.27.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m ).(1)求阴影部分的面积(用含x 的整式表示并保留π);(2)当9x =,π取3时,求阴影部分的面积.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=_______(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=_______(直接写出结果).参考答案1.A【分析】根据相反数的概念:只有符号不同的两个数互为相反数可得答案.【详解】解:-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.C【分析】根据一元一次方程的定义进行判断即可.+=不含未知数,所以不是一元一次方程;【详解】538+=含有两个未知数,所以不是一元一次方程;x y24y-=含有一个未知数,且未知数的最高次数为1,所以是一元一次方程;3022x x=+含有一个未知数,且未知数的项的次数为2,所以不是一元一次方程.故选:C.【点睛】本题考查了一元一次方程的定义,即只含有一个未知数,且未知数的项的次数为1的整式方程,叫做一元一次方程.3.C【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【详解】三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥.故选C .【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.4.A【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.5.C【分析】根据数轴判断出a ,b 的取值范围,从而进一步解答问题.【详解】解:根据数轴可得,-1<a<0,1<b<2,且|a|<|b|∴ 0a b +>故选:C【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a 、b 的大小是解题关键.6.A【分析】根据科学记数法进行改写即可.【详解】63800000 3.810=⨯故选:A .【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 与n 的值是解题的关键.7.D【分析】根据补角的定义解答即可.【详解】解:∵∠A =56°20′,∴∠A 的补角=180°−∠A =180°−56°20′=123°40′.故选:D .【点睛】本题主要考查了补角的定义以及角的度分秒换算,正确理解补角的定义是解题的关键.8.B【分析】直线没有端点,射线只有一个端点,线段有两个端点.【详解】解:根据射线MN 有一个端点,线段PQ 有两个端点得到选项B 符合题意,选项A 、C 、D 均不符合题意,故选:B .【点睛】本题考查射线、线段的定义,是基础考点,掌握相关知识是解题关键.9.D【分析】根据等式的性质依次判断即可.【详解】解:A.若a b =,则66a b +=+,原选项错误,不符合题意;B.若ax ay =,当a≠0时x =y ,原选项错误,不符合题意;C.若11a b -=+,则2a b =+,原选项错误,不符合题意;D.若55a b =--,则a b =,原选项正确,符合题意.故选:D .【点睛】本题主要考查了等式的性质,熟记等式的性质是解题的关键.10.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.11.8【分析】根据题意列出算式,再根据有理数的加法法则计算即可.【详解】解:8168-+=℃所以该市的最高温度是8℃.故答案为:8【点睛】本题主要考查了有理数的运算,掌握有理数的加法法则是解题关键.12.两点之间,线段最短【分析】根据题意可知,A B 两点之间,线段AB 和折线ACB 比较,线段最短【详解】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.13.54x 或者1.25x【分析】根据售价=标价⨯折扣,即可得到答案.【详解】x =标价0.8⨯∴标价=50.84x x =故答案为:54x .【点睛】本题考查了列代数式,掌握售价、标价和折扣之间的关系式解题的关键.14.2【分析】把x=1代入方程2x-a=0,再求出关于a 的方程的解即可.【详解】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.15.0【详解】解:∵213n xy -与3m x y 是同类项,∴2,13m n =-=,解得:2,2m n ==-,∴()220+=+-=m n .故答案为:0【点睛】本题主要考查了同类项的定义,熟练掌握所含字母相同,并且相同字母的次数相同的两个单项式称为单项式是解题的关键.16.136︒##136度【分析】先求得AB 与正东方向的夹角度数,再利用角的和差解题.【详解】解:AB 与正东方向的夹角为90°-62°=28°则BAC ∠=28°+90°+18°=136°故答案为:136︒【点睛】本题考查方向角,正确理解方向角的定义是解题关键.17.()31m +【分析】观察发现:第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1.【详解】解:根据图示得:每个图形都比其前一个图形多3个白色地砖,第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1块.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律是解题的关键.18.a【详解】试题解析:根据数轴上点的位置得:c <b <0<a ,且|c|>|a|∴c-b <0,2a+b >0,a+c<0则原式=-(a+c)+(2a+b)+(c-b)=-a-c+2a+b+c-b=a.故答案为a.19.0【分析】先算乘方和绝对值,然后再按有理数的四则混合运算法则计算即可.【详解】解:原式162(3)5=÷+--835=--0=.20.x =2【分析】去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去括号,可得:3x+2x ﹣4=6,移项,可得:3x+2x =6+4,合并同类项,可得:5x =10,系数化为1,可得:x =2.【点睛】此题主要考查解一元一次方程,解题的关键是熟知方程的解法.21.-4x 2y ,-8【分析】直接去括号合并同类项,再把已知数据代入得出答案.【详解】解:原式=7xy+6xy-4x 2y-13xy=-4x 2y ,当x=-1,y=2时,原式=-4×(-1)2×2=-4×1×2=-8.22.数轴见详解,-3< 1.5--<12-<0<122+<()22-.【分析】先将绝对值及乘方的数化简,再根据有理数与数轴上点的对应关系表示各数.【详解】 1.5--=-1.5,()22-=4,将各数表示在数轴上:∴-3< 1.5--<12-<0<122+<()22-.【点睛】此题考查绝对值的化简,有理数的乘方运算,利用数轴上的点表示有理数的方法,有理数的大小比较.23.(1)1(2)0.75-【分析】(1)根据有理数加法的运算律求解即可;(2)先把分数化为小数,然后根据有理数乘法的结合律求解即可.(1)解:原式110.573(2.75)24⎡⎤⎡⎤⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()76=+-1=.(2)解:原式 1.530.750.53(0.75)=-⨯-⨯-1.530.750.530.75=-⨯+⨯0.75(1.530.53)=⨯-+0.75(1)=⨯-0.75=-.【点睛】本题主要考查了有理数的计算,熟知有理数的加法和乘法运算律是解题的关键.24.乙每天加工这种零件96个.【分析】直接利用甲加工的零件+乙加工的零件=1120,进而得出等式求出答案.【详解】解:设乙每天加工这种零件x 个,根据题意可得:80×3+5(80+x )=1120,解得:x=96,答:乙每天加工这种零件96个.【点睛】本题主要考查了一元一次方程的应用,正确表示出甲乙加工的零件数是解题关键.25.(1)8;(2)7或13.【分析】(1)根据中点的定义可得22BC CD BD ==,由4AC CD =,12AB =求得CD 进而求得AC ;(2)分情况讨论,①当点E 在线段AB 上时,②当点在线段BA 的延长线上,分别根据线段的和差关系,求得ED .【详解】解:(1)∵点D 为BC 的中点,22BC CD BD∴==,4AB AC BC AC CD =+= ,4212CD CD ∴+=,2CD ∴=4428AC CD ∴==⨯=;(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=12AB = ,∴E 点不在AB 的延长线上,所以DE 的长为7或13.【点睛】本题考查了线段的和差关系,线段中点的定义,数形结合是解题的关键.26.(1)购买足球4个,购买排球8个;(2)8【分析】(1)设购买足球x 个,排球y 个,然后根据题意列出方程求解即可;(2)根据题意求出购买足球和篮球的数量,然后列方程求解即可.【详解】解:(1)设购买足球x 个,排球y 个,根据题意得:128040640x y x y +=⎧⎨+=⎩,解得:48x y =⎧⎨=⎩.答:购买足球4个,购买排球8个.(2)依题意得:购买了m 个排球,则购买足球和排球的数量均为122m -个,所以有:12124080606404022m m m --+⨯+⨯=-解得:8m =.答:m 的值为8.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次方程的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)()29620m 2x π--(2)241m 2【分析】(1)根据阴影部分与其它部分面积之间的关系列出代数式即可;(2)代入计算即可.(1)由图形中各个部分面积之间的关系,得221242(22)(42)22S x π+⎛⎫=+--+-⋅ ⎪⎝⎭阴影部分1462492x π=+--⨯()29620m 2x π=--.(2)当9x =,π取3时,()2 27415420m 22S =--=阴影部分.【点睛】本题考查了列代数式、代数式求值、圆的面积公式等知识,正确地列出代数式是正确解答的前提.28.(1)∠MON =45°,原因见解析;(2)35°;(3)12α【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC ﹣∠NOC =45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.故答案为:12α.。
初一数学期末考试试卷
初一数学期末考试试卷一、选择题(本题共10小题,每小题3分,共30分)1. 以下哪个数是正数?A. -5B. 0C. 3D. -12. 计算下列算式的结果:A. 2 + 3 = 5B. 4 × 5 = 20C. 8 ÷ 2 = 4D. 6 - 2 = 33. 以下哪个图形是正方形?A. 四边形,对角线相等B. 四边形,对边平行且相等C. 四边形,四边相等且四个角都是直角D. 三角形,三个角都是直角4. 如果一个数的平方等于16,那么这个数是:A. 4B. -4C. 4或-4D. 以上都不是5. 以下哪个选项是不等式?A. 3x + 2 = 11B. 5y - 7 < 12C. 2z = 10D. 9w + 3 > 156. 计算下列算式的值:A. (3x - 2) + (4x + 5) = 7x + 3B. (2y + 3) - (y - 4) = y + 7C. (5z - 1) × 2 = 10z - 2D. (6a + 7) ÷ 2 = 3a + 3.57. 以下哪个选项是正确的因式分解?A. x^2 - 4 = (x - 2)(x + 2)B. x^2 + 4x + 4 = (x + 2)^2C. x^2 - 9 = (x - 3)(x + 3)D. x^2 - 6x + 9 = (x - 3)^28. 以下哪个选项是正确的比例关系?A. 3:4 = 6:8B. 2:3 = 4:6C. 5:7 = 10:14D. 1:2 = 3:69. 以下哪个选项是正确的几何体的体积公式?A. 长方体体积 = 长× 宽× 高B. 圆柱体积 = 底面积× 高C. 圆锥体积= 1/3 × 底面积× 高D. 所有以上选项10. 以下哪个选项是正确的统计图?A. 条形图用于显示时间序列数据B. 折线图用于显示部分与整体的关系C. 饼图用于显示数据的分布情况D. 散点图用于显示两个变量之间的关系二、填空题(本题共5小题,每小题4分,共20分)11. 一个数的绝对值是5,那么这个数可以是______或______。
2023-2024学年全国初一上数学人教版期末考试试卷(含答案解析)
20232024学年全国初一上数学人教版期末考试试卷一、选择题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4= 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2二、填空题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4 = 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2三、解答题(每题10分,共30分)1. 解方程:2x + 3 = 72. 解不等式:3x 2 < 53. 求解:2^3 × 2^4 ÷ 2^2四、应用题(每题10分,共20分)1. 小明有10元钱,他买了一支铅笔和一本笔记本,铅笔的价格是2元,笔记本的价格是5元。
2023-2024学年全国初中七年级上数学人教版期末试卷(含答案解析)
20232024学年全国初中七年级上数学人教版期末试卷一、选择题(每题3分,共30分)1. 下列数中,最小的数是()A. 0B. 2C. 3D. 1/22. 下列四个数中,最大的数是()A. 1B. 0C. 1/2D. 3/43. 若a > b,则下列不等式中正确的是()A. a + 3 > b + 3B. a 3 > b 3C. a/3 > b/3D. 3a > 3b4. 下列等式中,正确的是()A. 2x + 3 = 5x 7B. 3x 4 = 2x + 4C. 4x + 5 = 6x 1D. 5x 6 = 7x + 25. 下列函数中,y随x的增大而增大的是()A. y = 2x + 1B. y = 3x 2C. y = x + 3D. y = 4 2x6. 下列图形中,是轴对称图形的是()A. 矩形B. 梯形C. 圆D. 正方形7. 下列关于角的说法,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度8. 下列关于三角形的说法,正确的是()边 C. 三角形的任意两边之差小于第三边 D. 三角形的任意两边之和等于第三边9. 下列关于平行线的说法,正确的是()A. 平行线在同一平面内,永不相交B. 平行线可以在同一平面内相交C. 平行线不在同一平面内,也可以相交D. 平行线不在同一平面内,一定不相交10. 下列关于四边形的说法,正确的是()A. 四边形的内角和是360度B. 四边形的任意两边之和大于第三边C. 四边形的任意两边之差小于第三边D. 四边形的任意两边之和等于第三边二、填空题(每题3分,共30分)1. 若a = 2,b = 3,则a + b = _______。
2. 若a = 5,b = 7,则a b = _______。
3. 若a = 4,b = 3,则a b = _______。
4. 若a = 6,b = 2,则a / b = _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008-2009学年度第二学期宜春市级初中学校期末考试七年级数学试卷总分:100分 考试时间:100分钟一、精心选一选(本大题共10小题,每小题3分,共30分)1.如图1,小明用手盖住的点的坐标可能为 ( )A .(2,3)B .(2,-3)C .(-2,3)D .(-2,-3) 2.下列调查方式中适合的是( )A .要了解一批节能灯的使用寿命,采用普查方式B .调查你所在班级同学的身高,采用抽样调查方式C .环保部门调查秀江某段水域的水质情况,采用抽样调查方式D .调查全市中学生每天的就寝时间,采用普查方式3.如图2中的三角形被木板遮住了一部分,被遮住的两个角不可能是( ) A .一个锐角 一个钝角; B .两个锐角;C .一个锐角 一个直角;D .一个直角 一个钝角图1图2 图3图44.在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( ) A.35+=x y B .3--=x y C .35-=x y D .35--=x y5.如图3,在四边形ABCD 中,点E 在BC 上,AB ∥DE ,∠B =80°,∠C =58°,则∠EDC 的度数为( ) A .42B .60C .78D .806.不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )7.如果a<b<0,下列不等式中错误..的是( ) A. ab >0 B. a+b<0 C.ba<1 D. a-b<0 8.如图4,点E 在BC 的延长线上,下列条件中不.能.判断BC ∥AD 的是( ) A .∠3=∠4 B .∠D+∠BCD=180° C .∠1=∠2 D .∠D =∠59.现有边长相等的正三角形、正方形、正六边形、正八边形的地砖,如果选择其中的两种铺满地面,那么选择的两种地砖形状不可能的是( )A .正三角形与正方形B .正三角形与正六边形C .正方形与正六边形D .正方形与正八边形10.若方程组⎩⎨⎧=+=+17156653y x y x 的解也是方程3x+ky=10的解,则k的值是( )A.k=6 B.k=10 C.k=101D.k=9 二、看谁填得又对又准(本大题共6小题,每小题3分,共18分)11.写一个二元一次方程,使它的一个解为⎩⎨⎧-==21y x ,这样的二元一次方程可以是 ;12.两根木棒长分别为5cm 和7cm ,若要选择第三根木棒将其钉成三角形,•则第三根木棒x 的取值范围是 ;13.如图5,在平面直角坐标系中,线段A1B 1是由线段AB 平移得到的,已知A、B两点的坐标分别为A(-2,3),B (-3,1),若A 1的坐标为(3,4),则B 1的坐标为 ;图5 图6 图714、有一个英文单词的字母顺序对应如图6中的有序数对分别为(6,2),(1,1),(6,3),(1,2),(5,3),请你把这个英文单词写出来或者..翻译成中文为 __; 15.在如图7所示的四边形中,若去掉一个50的角得到一个五边形,则12+=∠∠ 度; 16.下列命题中:①如果b a <,那么22bc ac <;②如果b a <,那么22b a <;③若x-612是自然数,则满足条件的正整数x 有4个;④关于x 的不等式a x a ->-1)1(的解集是1-<x ,则1<a ;正确的命题有 (填序号)。
三、仔细算一算(本大题共2小题,每小题6分,共12分)17.解方程组⎩⎨⎧=-=-22534y x y x 18.当x 取哪些非负整数时,325x -的值大于213x +与1的差.A .B .C .D .四、(本大题共3小题,每小题8分,共24分)19.如图,AD为△ABC的中线,BE为△ABD的中线。
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为40,BD=5,则点E到BC边的距离为多少?20.典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了名居民的年龄,扇形统计图中a=,b=;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.21.现有一批设备需由宜春运往相距210千米的南昌,甲、乙两车分别以80千米/时和60千米/时的速度同时出发,甲车在距南昌90千米的A外发现有部分设备在某外丢失(设为B),立即以原速返回到B处取设备,为了还能比乙车提前到达南昌,开始加速以100千米/时的速度向南昌前进,设AB的距离为a千米。
(1)写出甲车将设备从宜春到南昌所经过的路程(用含a的代数式表示);(2)若甲车还能比乙车提前到达南昌,求a的取值范围。
(不考虑其他因素)五、数学探究与思考(本大题共2小题,每小题8分,共16分)22.(1)在图(1)中以P为顶点画∠P,使∠P的两边分别和∠1的两边垂直。
量一量∠P和∠1的度数,猜一猜它们之间的数量关系是。
图(1)图(2)图(3)(2)同样在图(2)和图(3)中以P为顶点作∠P,使∠P的两边分别和∠1的两边垂直,根据你画的图形,写出图(2)和图(3)中∠P和∠1之间数量关系,选择图(2)或图(3)中的一种..,标上合适的字母,说明理由。
(3)由上述三种情形可以得到一个结论:如果一个角和两边分别和另一个角的两边垂直,那么这两个角_______________________。
23.学校新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。
安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。
(1)平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%。
安全检查规定,在紧急情况下全大楼的学生应在5分钟通过这4道门安全撤离。
假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由。
0~14 15~4041~59 60岁以上年龄2008-2009学年度第二学期宜春市级初中学校期末考试七年级数学试卷评分标准一、精心选一选(本大题共10小题,每小题3分,共30分)1.C2.C3.D4.C5.A6.A7.C8.C9.C 10.D二、看谁填得又对又准(本大题共6小题,每小题3分,共18分)11.答案不唯一,如3=-y x 等 12.2cm<x<12cm 13.(2,2) 14.MATHS(或数学) 15.230° 16.③④(错填或多填不得分,少填一个得1分)三、仔细算一算(本大题共2小题,每小题6分,共12分)17. 解:②×2得:4x-2y=4 ③③-①得:y=-1 …………………………(3分)把y=-1代入②中,得:2x-(-1)=2 2x=1 21=x …………………………(5分) ⎪⎩⎪⎨⎧-==∴121y x …………………………(6分) 18.解:由题可知:1312523-+>-x x …………………………(1分) 15)12(5)23(3-+>-x x …………………………(2分)1551069-+>-x x 610109+->-x x4->-x4<x …………………………(5分)因为x 为非负整数,所以x =3,2,1,0. …………………………(6分) (没写0扣1分) 四、(本大题共3小题,每小题8分,共24分) 19. 解:(1)∵∠ABE=15°,∠BAD=40°∴∠BED =∠ABE+∠BAD =55°………………………(2分) (2)如右图所示,过E 作EH ⊥BC ,垂足为H ,则线段EH 即为所求。
………………………(4分) (3)∵AD 是△ABC 的中线∴S △ABD =21S △ABC 又∵BE 是△ABD 的中线∴S △BDE =21S △ABD =41S △ABC =41×40=10 …………………………(6分) ∴21·BD ·EH =10,即21×5×EH =10, ∴EH =4 …………………………(8分)20. 解:(1)500,20%,12%(3分)(2)22%×500=110(人),图略(2分)(3)约为11900人(3分) 21. 解:(1)210+2a (3分)(2)60210100908090210<+++-a a ,解得9440<a …………………………(6分) 又因为a>0,所以94400<<a (千米) …………………………(8分)五、数学探究与思考(本大题共2小题,每小题8分,共16分) 22. 解:(1)∠P+∠1=180° (2))(2) ∠P =∠1,理由略 …………………………(6分) (3)相等或互补 …………………………(8分) (注:第(1)、(2)两小题情形较多,只要求学生能各画对一种图形....,写对对应图形的一种结论....即可得分,但第(3)小题须填相等或互补) 23.解:(1)设平均每分钟一道正门和一道侧门分别可以通过x 名和y 名学生, ……………(1分) 由题可得:⎩⎨⎧=+⨯=+⨯800)(4560)2(2y x y x ……………(2分)解得:⎩⎨⎧==80120y x ……………(4分)所以,平均每分钟一道正门和一道侧门分别可以通过120名和80名学生 ……………(5分) (2)符合安全规定,理由如下: ……………(6分) (120+80)×(1-20%)=160(人/分)5分钟可通过的人数为:160×2×5=1600(人) ……………(7分) 学校最多容纳人数为:4×8×45=1440(人) 1600>1440所以这栋大楼建造的这4道门符合安全规定。
……………(8分)。