高考总复习1集合与函数概念s
最全面高中数学必修一集合与函数的概念复习资料
必修 1 第一章 集合与函数概念〖 1.1 〗集合【1.1.1 】集合的含义与表示( 1)集合的概念集合中的元素具有确定性、互异性和无序性 ( 2)常用数集及其记法.表示正整数集, Z 表示整数集, Q 表示有理数集, R 表示实数集 N N或 N .表示自然数集, ( 3)集合与元素间的关系对象 a 与集合 M 的关系是 a ( 4)集合的表示法M ,或者 a M ,两者必居其一 . ①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合 .③描述法: { x | x 具有的性质 } ,其中 x 为集合的代表元素 . ④图示法:用数轴或韦恩图来表示集合 ( 5)集合的分类①含有有限个元素的集合叫做有限集 ②含有无限个元素的集合叫做无限集 .. . ③不含有任何元素的集合叫做空集( ). 【1.1.2 】集合间的基本关系( 6)子集、真子集、集合相等名称记号意义性质示意图(1)A AAA C ,则 A A ,则 (2)(3) AB A 中的任一BA B A若且C且BA(B)子集元 于 素 B都 属 B A(或 BA)B (4) 若 B 或A ( A 为非(1 )A B B ,且A B空子集) 中至少有真子集B AA B(2) 若且一 元 素 不 属于 A(或 BA )B C ,则 A CA 中的任一元 于 的 素 都 B , B 任 一 属中 元 A集合 相等(1)A (2)B B AA(B)A B素都属于 2n 2n 2n A 有 n(n 1) 个元素,则它有 1 个真子集,它有 ( 7)已知集合 个子集,它有 1 个非空子集,它2n2 非空真子集 有.【1.1.3 】集合的基本运算( 8)交集、并集、补集 名称记号意义性质A 示意图A A A A A A A A A ( 1) ( 2) ( 3) { x | x A, 且A B交集ABBB A ABA A ABx B} ( 1) ( 2) ( 3) { x | x A, 或A B并集BAB Bx B}( 1) A (e A) U ( 2) A (e U A) U{ x | x U , 且xA}e U A补集( 3) 痧( A B) ( A) (?U B) U ( 4) 痧( A B) ( A) (? B)U U U 【补充知识】含绝对值的不等式与一元二次不等式的解法( 1)含绝对值的不等式的解法不等式解集| x | a( a 0) { x | a x a} | x | a(a 0)x | xa 或 x a}把 ax b | x | a 看 成一 个 整 体 , 化 成 , | ax b | c,| ax b | c( c 0)| x | a(a 0) 型不等式来求解( 2)一元二次不等式的解法判别式0 0 02b4ac二次函数2y axbx c(a 0)O的图象2b2a 一元二次方程b 4acx 1,2b 2 a2axbx c 0(a 0)x 1x 2无实根(其中 x 1x 2 )的根2axbx c 0(a 0)b2a{ x | x x 1 或 x x 2}{ x | x} R的解集2axbx c 0(a 0){ x | x 1x x 2}的解集〖1.2 〗函数及其表示【 1.2.1 】函数的概念( 1)函数的概念A 中任何一个数 x ,在集合B 中①设 A 、 B 是两个非空的数集, f ,对于集合 如果按照某种对应法则都有唯一确定的数 f (x) 和它对应,那么这样的对应(包括集合 A , B 以及 A 到 B 的对应法则 f )叫做集合 A 到 B 的一个函数,记作 f : AB .②函数的三要素 : 定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. ( 2)区间的概念及表示法①设 a, b 是两个实数, 且 a b ,满足 a x b 的实数 x 的集合叫做闭区间, 记做 [a, b] ;满足 ax b的实数 x 的集合叫做开区间,(a, b) ;满足 ax b ,或 a x b 的实数 x 的集合叫做半开半闭记做 区 间 , 分 别 记 做 [ a ,b ), (a,b] ; 满 足 x a, x a, x b, x b 的 实 数 x 的 集 合 分别 记 做 [ a, ),( a, ),( , b],( , b) .a 可以大于或等于 注意: 对于集合 { x | a x b} 与区间 (a, b) ,前者b ,而后者必须a b .( 3)求函数的定义域时,一般遵循以下原则:① f ( x) 是整式时,定义域是全体实数.② f ( x) 是分式函数时,定义域是使分母不为零的一切实数.③ f ( x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y tan x 中,(k Z) .x k2⑥零(负)指数幂的底数不能为零.⑦若f ( x) 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.f ( x) 的定义域为[a,b] ,其复合函数 f [g (x)] 的⑧对于求复合函数定义域问题,一般步骤是:若已知定义域应由不等式 a g (x) b 解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y f ( x) 可以化成一个系数含有y 的关于x 的二次方程2a( y) x b( y) x c( y) 0 ,则在0 时,由于x, y 为实数,故必须有a( y)2b ( y) 4a( y) c( y) 0 ,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2 】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则 f ,对于集合 A 中任何一个元素,在集合 B 中都有A ,B 以及 A 到 B 的对应法则 f )叫做集合 A 到 B 唯一的元素和它对应, 那么这样的对应 (包括集合 的映射,记作 f : AB .②给定一个集合 A 到集合 B 的映射, 且 a B .如果元素 a 和元素 b 对应,那么我们把元素 b 叫 A, b 做元素 a 的象,元素a 叫做元素b 的原象.〖1.3 〗函数的基本性质【1.3.1 】单调性与最大(小)值( 1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 如果对于属于定义域 某个区间上的任意两个 I 内 ( 1)利用定义( 2)利用已知函数的单调性 ( 3)利用函数图象 (在某个区间图象上升为增) (4)利用复合函数 ( 1)利用定义 ( 2)利用已知函数的单调性 ( 3)利用函数图象 (在某个区间图象下降为减) (4)利用复合函数y y=f(X)f(x 2 )自变量的值 x .2.时,都有 那么就说 x 1、 x 2, 当 x .1.<. f .(.x .1.).<.f .(x ..2.)., f(x)在这f(x )1 oxx x 1 2间上是 增.函.数..如果对于属于定义域 某个区间上的任意两个 函数的 单调性I 内 yy=f(X)自变量的值 x 1、x 2,当 x .1.<.f(x 1)x 时,都有 ) , f(x )>f(x f(x 2). 2 ......... 1 2 . . . 那么就说 f(x) 在这个区 oxx1x2间上是 减.函.数..②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. y f [ g( x)] ,令 u g( x) ,若 y f (u) 为增, u g (x) 为增, 则 y f [ g ( x)] 为增;③对于复合函数 yf (u) ug (x) y f [ g ( x)] y f (u) u g( x) 若 为减, 为减,则 为增;若 为增, 为减,则y f [ g ( x)] 为减;若 yf (u) 为减, u g( x) 为增,则 y f [ g( x)] 为减.a(a x( 2)打“√”函数 f ( x ) 0) 的图象与性质 x y(, a]、[ a, ) 上为增函数,分别在[ a,0) (0, a] 上为减函数.f ( x) 分别在、(3)最大(小)值定义f ( x) 的定义域为I ,如果存在实数M满足:(1)对于任意的x I ,都有①一般地,设函数yx 0I ,使得 f ( x) M Mf ( x) M ;(2)存在 f ( x) 的最大值,记作.那么,我们称是函数f max ( x) M .y f (x) 的定义域为I ,如果存在实数m满足:(1)对于任意的x I ,都有②一般地,设函数x0I f (x0 ) m .那么,我们称f ( x) m ;(2 )存在m 是函数 f (x) 的最小值,记作,使得f max ( x) m .【1.3.2 】奇偶性(4)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法如果对于函数域内任意一个定义(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)f(x)x ,都有.f.( -.x..)=.-.f.(.x)..,那么函数f(x) 叫做奇.函.数..函数的奇偶性如果对于函数域内任意一个定义(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)f(x)x ,都有-.x..)=.f.(.x).., 那么函数.f.(f(x) 叫做偶.函.数..②若函数 f ( x) 为奇函数,且在x 0 处有定义,则 f (0) 0 .③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数)奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.,两个偶函数(或〖补充知识〗函数的图象( 1)作图利用描点法作图: ①确定函数的定义域;③讨论函数的性质(奇偶性、单调性) 利用基本函数图象的变换作图:②化解函数解析式; ④画出函数的图象.;要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本 初等函数的图象. ①平移变换0,左移 h 个单位 0,右移| h|个单位 0,上移k 个单位 0,下移| k |个单位 h h k k y f (x)y f ( x h) y f ( x)y f ( x) k②伸缩变换1,伸1,缩y f (x) y f ( x)A 1,缩 0 yf (x)y Af (x)1,伸A ③对称变换x 轴 y轴f ( x ) f ( x ) y f (x) y f ( x) y y 原点直线 y x1y f (x) yf ( x)yf ( x) yf ( x)去掉 y 轴左边图象 保留 轴右边图象,并作其关于 yf (x)yf (| x|)y 轴对称图象保留 x 轴上方图象将x 轴下方图象翻折上去yf (x)y | f ( x) | ( 2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. ( 3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径, 获得问题结果的重要工具.要重视数形结合解题的思想方法.第一章 集合与函数概念第一讲 集合★热点考点题型探析考点一:集合的定义及其关系 题型 1:集合元素的基本特征A B z| z xy, x A, y B [例 1]( 2008 年江西理)定义集合运算:.设A 1,2 ,B 0,2 ,则集合 A B 的所有元素之和为()A . 0;B . 2;C . 3;D . 6 [解题思路 ]根据 A B 的定义,让x 在 A 中逐一取值,让 y 在 B 中逐一取值, xy 在值就是 A B 的元素0,2,4 [解析 ]:正确解答本题 ,必需清楚集合 A B 中的元素,显然,根据题中定义的集合运算知 A B = ,故应选择 D【名师指引】这类将新定义的运算引入集合的问题因为背景公平,所以成为高考的一个热点,这时要充分 理解所定义的运算即可,但要特别注意集合元素的互异性。
高考数学复习点拨集合与函数概念
《集合与函数概念》总结提高一、运用知识、方法过程中应注意的问题l.正确理解集合的概念必须掌握构成集合的两个必要条件:研究对象是具体的,其属性是确定的.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或Venn图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用Venn图表示,容易被忽视.如在关系式B A 中,易漏掉B=的情况.4.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图是什么,用数形结合法解之.5.若集合中含有参数,须对参数进行分类讨论,讨论时要不重复不漏.6.函数的单调性和奇偶性(1)单调性:①函数单调性的定义;②单调函数的概念;③单调区间;④注意函数的单调区间可以是定义域,也可以是定义域的某个区间。
在写单调性区间时,包括端点可以,不包括端点也可以,但对于某些点无意义时单调区间就不包括这些点.(2)奇偶性:①奇偶性的定义;②奇偶函数的性质:奇函数的图象关于原点对称,偶函数的图象关于y轴对称;③奇偶函数的定义域都关于原点对称.(3)在研究函数的单调性与奇偶性时,有时需要将函数化简,转化为讨论一些熟知的函数的单调性问题.还必须注意函数单调性是与区间紧密相关的概念,一个函数在不同的区间上可以有不同的单调性.7.图象的作法:①据函数表达式,列表、扫描点、连光滑曲线;②利用函数的奇偶性、反函数的图象与对称性描绘函数图象.二、知识、规律、方法总结1.数形结合法、分类讨论法是在解决集合关系问题上的常用方法.2.相同函数的判定方法:①定义域相同;②对应关系相同(两点必须同时具备).3.函数表达式的求法:①定义法;②换元法;③解方程组法等.4.函数的定义域的求法:列使函数有意义的自变量的不等关系,求解即可求得函数的定义域.常涉及到的依据有:①分母不为0;②偶次根式中被开方数不小于O ;③实际问题要考虑实际意义等.5.函数值域的求法:①配方法(二次或四次);②判别式法;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.6.单调性的判定步骤:①设21,x x 是所研究区间内任意两个自变量,且21x x ;②判定)(1x f 与)(2x f 的大小;③作差比较或作商比较.7.函数的奇偶性的判定法:首先考查定义域是否关于原点对称,再看)(x f 与)(x f 之间的关系:①函数)()(x f x f 为偶函数,函数)()(x f x f 为奇函数;②0)()(x f x f 为偶函数,0)()(x f x f 为奇函数;③1)()(x f x f 是偶函数,()()1f x f x 的奇函数,其中()f x 0.。
高中数学必修一集合与函数概念知识点总结及练习题
高中数学必修一集合与函数概念知识点总结1.元素与集合(1)元素与集合的定义:一般地,把统称为元素,把一些元素组成的叫做集合(简称为集).(2)集合中元素的性质:①确定性:即给定的集合,它的元素是.②互异性:即给定集合的元素是.③无序性.(3)集合相等:只要构成两个集合的元素是,就称这两个集合是相等的.(4)元素与集合的关系:a是集合A的元素,记作,a不是集合A的元素,记作2.集合的表示方法除了用自然语言表示集合外,还可以用和表示集合.(1)列举法:把集合中的元素,并用花括号“{}”括起来表示集合的方法.(2)描述法:用集合所含元素的表示集合的方法.3.常用数集及其记法集合自然数集正整数集整数集有理数集实数集记法4.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B中的元素,就说这两个集合有包含关系,则称集合A是集合B的子集5.集合相等与真子集的概念定义符号表示图形表示集合相等如果A⊆B,且B⊆A,就说集合A与B相等真子集如果集合A⊆B,但存在元素x∈B,且x∉A,则称集合A是B的真子集6.空集(1)定义:的集合叫做空集.(2)用符号表示为:(3)规定:空集是任何集合的. 是任何非空集合的7.子集的有关性质(1)任何一个集合是它本身的,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么8.集合的并集与交集的定义并集交集自然语言由所有属于集合A或属于集合B的元素组成的集合由属于集合A且属于集合B的所有元素组成的集合符号语言图形语言9.并集与交集的运算性质并集的运算性质交集的运算性质A∪B B∪A A∩B B∩AA∪A=A∩A=A∪∅=A∩∅=A⊆B⇔A∪B=A⊆B⇔A∩B=A∪B⊇A,A∪B B A∩B⊆B,A∩B A10.全集(1)定义:如果一个集合含有我们所研究问题中涉及的,那么称这个集合为全集.(2)符号表示:通常记作第1 页共4 页。
近年高考数学总复习第一章集合与函数概念1.1.3集合的基本运算(第一课时)教案新人教A版必修1(2
2019高考数学总复习第一章集合与函数概念1.1.3 集合的基本运算(第一课时)教案新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学总复习第一章集合与函数概念1.1.3 集合的基本运算(第一课时)教案新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学总复习第一章集合与函数概念1.1.3 集合的基本运算(第一课时)教案新人教A版必修1的全部内容。
1。
1。
3 集合的基本运算(第一课时)本节课是集合这一章的核心内容,高考常考考点之一,所以一定要掌握并集,补集,交集的概念。
集合的基本运算是在学习集合定义以及集合的性质之后学到的,它对日后学习研究函数的定义域、值域、单调区间等内容起到知识储备作用。
1。
教学重点:交集与并集,全集与补集的概念.2.教学难点:理解交集与并集的概念,以及符号之间的区别与联系。
一、复习回顾:1:什么叫集合是集合的子集?2:关于子集、集合相等和空集,有哪些性质?(1) ;(2)若,且,则;(3) 若则;(4).二、研探新知1、创设情景,引入新课问题1:我们知道,实数有加法运算,两个实数可以相加,例如5+3=8。
类比实数的加法运算,集合是否也可以“相加"呢?【设计意图】引发学生的思考,大胆猜想。
2、探究新知观察集合A,B,C元素间的关系:(1)A={1,3,5} B={2,4,6} C={1,2,3,4,5,6}(2)A={x|x是有理数} B= {x|x是无理数} C= {x|x是实数}你能说出集合C与集合A、B之间的关系吗?【师生互动】教师提问,引导学生讨论找出它们之间的关系【设计意图】这样提问目标比较明确,学生很容易找到重点,理解并集的概念,并总结并集的定义。
课件1集合与函数概念复习.ppt
就称f:A→B为集合A到集合B的一个函数,
记作y= f (x),x∈A.
其中,x叫做自变量, x的取值范围A叫做 , 与x的值对应的y值 叫做函数值, 函数值y的 集合叫做 .
知识梳理
(2)函数的三要素: , , 。
(3)区间的概念。
(4)函数的表示法: , , 。
(5)两个函数相同必须是它们的 和 分 别完全相同
(3)无序性:集合与它的元素的组成方式无关的。
知识梳理
2、集合的表示方法
(1)列举法:把集合中的元素 出来,写在 内表示集合的方法。列举法表示集合的特点 是清晰、直观。常适用于集合中元素较少时。
(2)描述法:把集合中的元素的 描述出 来,写在 内表示集合的方法。一般形式 是{x|p},其中竖线前面的x叫做此集合的 元素,p指出元素x所具有的公共属性。描述 法便于从整体把握一个集合,常适用于集合 中元素的公共属性较为明显时。
(6)映射的定义:设A、B是两个非空集合,
如果按照某个对应关系f ,对于A中的
,
在集合B中都有 的元素 f (x) 与之对应,
那么就称f:A→B为集合A到集合B的一个映
射。
知识梳理
6、函数的单调性 (1)对于定义域I内某个区间D上的任意两个
自变量的值x1,x2当x1<x2时,如果都有f(x1) < f(x2),那么就说f(x)在区间D上是 函 数,这个区间D就叫做这个函数的 区 间;如果都有f(x1) > f(x2),那么就说f(x)在 区间D上是 函数,这个区间D就叫做这 个函数的 区间;
知识梳理
(2)交集的定义:一般地,由属于集合A 属于
集合B的元素所组成的集合,叫做A、B的交集。
记作
。即A∩B={x|x∈A且x∈B}。
高中数学必修一集合知识点总结大全
高中数学 必修1知识点集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算B{x A A = ∅=∅ B A ⊆A B B ⊆B{x A A = A ∅= B A ⊇ B B ⊇交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ=== 等幂律:.,A A A A A A == 求补律:A ∩ A ∪=U反演律:(A ∩B)=(A)∪(B) (A ∪B)=(A)∩(B)。
集合与函数概念知识点总结
第一章集合及函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是同等的,没有先后依次,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列依次是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法及描述法和自然语言法。
留意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作aÏA列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集留意:有两种可能(1)A是B的一部分,;(2)A及B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A及B,假如集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。
高中数学必修一集合与函数的概念知识点+练习题含答案解析(非常详细)
第一部分集合与函数的概念知识点整理第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/ B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高一数学必修1知识点总结集合与函数
高中数学必修1知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 B{x A A = ∅=∅ B A ⊆ B B ⊆并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集AC U{|,}x x U x A ∈∉且)()()()()()(B C A C B A C B C A C B A C UA C A A C A U U U U U U U U ===∅=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法yxo 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图像与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.1.下列四组对象,能构成集合的是 ( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数 2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 . 4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人, 两种实验都做错得有4人,则这两种实验都做对的有 人。
高三一轮复习集合函数知识点
第一章:集合与函数概念§1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集,21n-个真子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法:(1)定义法:设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.步骤:取值—作差—变形—定号—判断格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 知识链接:函数与导数1、函数)(x f y =在点0x 处的导数的几何意义:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 2、几种常见函数的导数①'C0=;②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=;⑤a a a xx ln )('=; ⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 3、导数的运算法则 (1)'()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v -=≠. 4、复合函数求导法则复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x的导数等于y 对u 的导数与u 对x 的导数的乘积. 解题步骤:分层—层层求导—作积还原. 5、函数的极值(1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值; 极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值. (2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值(1)求()y f x =在(,)a b 内的极值(极大或者极小值)(2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。
集合
注意:自然 数集包括0
N 非负整数集(即自然数集) 记作_______;
N*或N+ 正整数集记作______________;
Z 整数集记作_______;
Q 有理数集记作______;
R 实数集记作________;
六、集合的常用表示方法:
“地球上的四大洋”组成的集合可以表示 为: {太平洋,大西洋,印度洋,北冰洋}.
(2)在集合的书写形式上,要注意规范性. 如关于x的方程x-a=0的解集应写成{a},而不是a. (3)在没有指定集合的表示方法时,能明确表示集合 的要明确表示出来. 如所有小于20的既是奇数又 是素数的数组成的集合表示为{3,5,7,11,13,17,19} 更为明确; 又如非负奇数组成的集合表示为 {x|x=2n+1,n∈N}更为恰当,这一点需要注意.
答案:C
高考总复习.理科.数学
变式探究
3.已知集合P={1, y, x}, Q={x2, xy, x},若P=Q,求x, y的值.
x 2 1 x 2 y 解析:由P=Q,得 xy y ①或 xy 1 x 1 x -1 ;由②得: x 1 由①得: 或 y 1 y R y 0
高考总复习.理科.数学
变式探究
1.(2009年江西模拟)若集合M={0,1,2},N={(x,y)|x2y+1≥0且x-2y-1≤0,x,y ∈M},则N中元素的个数为 ( ) B.6 C.4 D.2 A.9
解析:集ቤተ መጻሕፍቲ ባይዱN中的元素是坐标平面上的点(x,y),该点的横纵坐 标x,y满足的条件是: x,y ∈M, x-2y+1≥0且x-2y-1≤0.理解 集合N之后,逐一列举即可求得答案: 当x=0时,y=0;当x=1时,y=0,1;当x=2时,y=1. 故集合N中的元素有如下4个:(0,0),(1,0),(1,1),(2,1),选C. 答案:C
数学必修一集合与函数概念知识点梳理
高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法0)〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x2,当x.1.< .x.2.时,都有f(x...1.)<f(x.....2.).,那么就说f(x)在这个区间上是增函数....(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.< .x.2.时,都有f(x...1.)>f(x.....2.).,那么就说f(x)在这个区间上是减函数....(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x=,令()u g x=,若()y f u=为增,()u g x=为增,则[()]y f g x=为增;若()y f u=为减,()u g x=为减,则[()]y f g x=为增;若()y f u=为增,()u g x=为减,则[()]y f g x=为减;若()y f u=为减,()u g x=为增,则[()]y f g x=为减.(2)打“√”函数()(0)af x x ax=+>的图象与性质()f x分别在(,]a-∞-、[,)a+∞上为增函数,分别在[,0)a-、(0,]a上为减函数.(3)最大(小)值定义①一般地,设函数()y f x=的定义域为I,如果存在实数M满足:(1)对于任意的x I∈,都有()f x M≤;(2)存在x I∈,使得()f x M=.那么,我们称M是函数()f x的最大值,记作max()f x M=.②一般地,设函数()y f x=的定义域为I,如果存在实数m满足:(1)对于任意的x I∈,都有()f x m≥;(2)存在x I∈,使得()f x m=.那么,我们称m是函数()f x的最小值,记作max()f x m=.x1x2y=f(X)xyf(x )1f(x )2oy=f(X)yxo x x2f(x )f(x )211yxo【1.3.2】奇偶性(4)函数的奇偶性函数的 性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
高中数学必修一集合与函数概念知识点梳理
高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集, N *或N +表示正整数集, Z 表示整数集, Q 表示有理数集, R表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈, 或者a M ∉, 两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来, 写在大括号内表示集合. ③描述法:{x |x 具有的性质}, 其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系名称记号意义性质 示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆, 则A C ⊆ (4)若B A ⊆且B A ⊆, 则A B =或真子集A ≠⊂B(或B ≠⊃A ) B A ⊆, 且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集) (2)若A B ≠⊂且B C ≠⊂, 则A C ≠⊂集合 相等A B =A 中的任一元素都属于B , B 中的任一元素都属于A(1)A ⊆B(2)B ⊆A(7)已知集合A 有(1)n n ≥个元素, 则它有2n个子集, 它有21n-个真子集, 它有21n-个非空子集, 它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集名称 记号意义性质示意图A(B)BABAA(B)交集 A BI{|,x x A ∈且}x B ∈ (1)A A A =I (2)A ∅=∅I (3)A B A ⊆I A B B ⊆I并集 A B U{|,x x A ∈或}x B ∈(1)A A A =U (2)A A ∅=U (3)A B A ⊇U A B B ⊇U补集 U A ð {|,}x x U x A ∈∉且1()U A A =∅I ð 2()U A A U =U ð不等式解集||(0)x a a <> {|}x a x a -<<||(0)x a a >> |x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体, 化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅BA BAO()()()U U U A B A B =I U 痧?()()()U U U A B A B =U I 痧?〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集, 如果按照某种对应法则f , 对于集合A 中任何一个数x , 在集合B 中都有唯一确定的数()f x 和它对应, 那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数, 记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同, 且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数, 且a b <, 满足a x b ≤≤的实数x 的集合叫做闭区间, 记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间, 记做(,)a b ;满足a x b ≤<, 或a xb <≤的实数x 的集合叫做半开半闭区间, 分别记做[,)a b , (,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b , 前者a 可以大于或等于b , 而后者必须a b <.(3)求函数的定义域时, 一般遵循以下原则:①()f x 是整式时, 定义域是全体实数.②()f x 是分式函数时, 定义域是使分母不为零的一切实数.③()f x 是偶次根式时, 定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零, 当对数或指数函数的底数中含变量时, 底数须大于零且不等于1.⑤tan y x =中, ()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时, 则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题, 一般步骤是:若已知()f x 的定义域为[,]a b , 其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数, 求其定义域, 根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数, 其定义域除使函数有意义外, 还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上, 如果在函数的值域中存在一个最小(大)数, 这个数就是函数的最小(大)值.因此求函数的最值与值域, 其实质是相同的, 只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数, 我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和, 然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=, 则在()0a y ≠时, 由于,x y 为实数, 故必须有2()4()()0b y a y c y ∆=-⋅≥, 从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的, 三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法, 常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合, 如果按照某种对应法则f , 对于集合A 中任何一个元素, 在集合B 中都有唯一的元素和它对应, 那么这样的对应(包括集合A , B 以及A 到B 的对应法则f )叫做集合A 到B 的映射, 记作:f A B →.②给定一个集合A 到集合B 的映射, 且,a A b B ∈∈.如果元素a 和元素b 对应, 那么我们把元素b 叫做元素a 的象, 元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1< x 2时, 都有f(x 1)<f(x 2), 那么就说f(x)在这个区间上是增函数.(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2, 当x 1< x 2时, 都有f(x 1)>f(x 2), 那么就说f(x)在这个区间上是减函数.(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数减去一个减函数为增函数, 减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =, 令()u g x =, 若()y f u =为增, ()u g x =为增, 则[()]y f g x =为增;若()y f u =为减, ()u g x =为减, 则[()]y f g x =为增;若()y f u =为增, ()u g x =为减, 则[()]y f g x =为减;若()y f u =为减, ()u g x =为增, 则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数, 分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地, 设函数()y f x =的定义域为I , 如果存在实数M 满足:(1)对于任意的x I ∈, 都有()f x M ≤;(2)存在0x I ∈, 使得0()f x M =.那么, 我们称M 是函数()f x 的最大值, 记作max ()f x M =.②一般地, 设函数()y f x =的定义域为I , 如果存在实数m 满足:(1)对于任意的x I ∈, 都有()f x m ≥;(2)存在0x I ∈, 使得0()f x m =.那么, 我们称m 是函数()f x 的最小值, 记作max ()f x m =.x 1x 2y=f(X)xy f(x )1f(x )2oy=f(X)yx ox x 2f(x )f(x )211yxo【1.3.2】奇偶性(4)函数的奇偶性函数的 性 质定义图象 判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x , 都有f(-x)=-f(x),那么函数f(x)叫做奇函数.(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x , 都有f(-x)=f(x),那么函数f(x)叫做偶函数.(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数, 且在0x =处有定义, 则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同, 偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内, 两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数), 两个偶函数(或奇函数)的积(或商)是偶函数, 一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(3)用图函数图象形象地显示了函数的性质, 为研究数量关系问题提供了“形”的直观性, 它是探求解题途径, 获得问题结果的重要工具.要重视数形结合解题的思想方法.(2)识图对于给定函数的图象, 要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性, 注意图象与函数解析式中参数的关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 集合与函数概念
知识网络
第一讲 集合
★知识梳理
一:集合的含义及其关系
1.集合中的元素具有的三个性质:确定性、无序性和互异性;
2.集合的3种表示方法:列举法、描述法、韦恩图;
3.集合中元素与集合的关系:
文字语言 符号语言
属于 ∈
不属于
∉
4.常见集合的符号表示
数集 自然数集
正整数集
整数集
有理数集
实数集 复数集
符号
*N 或+N
Z
N Q R C 集合 集 合 表 示 法 集 合 的 运 算
集 合 的 关 系 列 举 法 描 述 法 图 示 法
包 含 相 等 子集与真子集
交 集 并 集 补 集
函数
函数 及其表示 函数基本性质
单调性与最值 函数的概念
函数 的 奇偶性
函数的表示法
映射 映射的概念
集合与函数概念
,()
三:集合的基本运算
①两个集合的交集:= ; ②两个集合的并集: =;
③设全集是U,集合,则
方法:常用数轴或韦恩图进行集合的交、并、补三种运算.
★重、难点突破
重点:集合元素的特征、集合的三种表示方法、集合的交、并、补三种运算。
难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化,准确进行集合
的交、并、补三种运算。
重难点: 1.集合的概念
掌握集合的概念的关键是把握集合元素的三大特性,要特别注意集合中元素的互异性, 在解题过程中最易被忽视,因此要对结果进行检验; 2.集合的表示法
(1)列举法要注意元素的三个特性;
(2)描述法要紧紧抓住代表元素以及它所具有的性质,如、、
A
B A ⊆φφB φ≠B A B {}x x A x B ∈∈且A
B {}x x A x B ∈∈或A U ⊆U
C A ={}
x x U x A ∈∉且{|B x x ={|B x x ={})(x f y x ={}
)(x f y y =
等的差别,如果对集合中代表元素认识不清,将导致求解错误:
例如 :已知集合( ) A. ;B. ;C. ;D.
(3)Venn 图是直观展示集合的很好方法,在解决集合间元素的有关问题和集合的运
算时常用Venn 图。
3.集合间的关系的几个重要结论 (1)空集是任何集合的子集,即 (2)任何集合都是它本身的子集,即
(3)子集、真子集都有传递性,即若,,则 4.集合的运算性质
(1)交集:①; ②; ③;
④, ⑤;
(2)并集:①; ②; ③;
④, ⑤;
(3)交、并、补集的关系
①;
②;
★热点考点题型探析
考点一:集合的定义及其关系 题型1:集合元素的基本特征
[例1](2008年江西理)定义集合运算:.设
,则集合的所有元素之和为( )
A .0;
B .2;
C .3;
D .6
题型2:集合间的基本关系
[例2].数集与之的关系是( ) A .;B .; C .;D .
{})(),(x f y y x =221,1,9432x y x y M x
N y ⎧⎫⎧⎫
=+==+=⋂⎨⎬⎨⎬⎩⎭⎩⎭
则M N=Φ{})2,0(),0,3([]3,3-{}3,2A ⊆φA A ⊆B A ⊆C B ⊆C A ⊆A B B A =A A A = φφ= A A B A ⊆ B B A ⊆ B A A B A ⊆⇔= A B B A =A A A = A A =φ A B A ⊇ B B A ⊇ A B A B A ⊆⇔= φ=A C A U U A C A U = )()()(B C A C B A C U U U =)()()(B C A C B A C U U U ={}|,,A B z z xy x A y B *==∈∈{}{}1,2,0,2A B ==A B *{}Z n n X ∈+=,)12(π{}Z k k Y ∈±=,)14(πX Y Y X Y X =Y X ≠
[新题导练]
1.第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( )
A . B. C. D.
2.(2006•山东改编)定义集合运算: ,设集合
,,则集合的所有元素之和为
3.(2007·湖北改编)设和是两个集合,定义集合,如果
,,那么等于
4.研究集合,,之间的关系
考点二:集合的基本运算
[例3] 设集合, (1) 若,求实数的值;
(2)若,求实数的取值范围若,
[新题导练]
6.若集合,,则是( )
A. ;
B. ;
C.;
D. 有限集
7.已知集合,,那么集合为( )A.;B.;C.;D.
B A ⊆
C B ⊆C B A = A C B = {
}
B y x xy y x B ∈∈+==⊗A,,z A 2
2{}1,0A ={}3,2=B B ⊗A P Q =-Q P {}Q x P x x ∉∈且,|{}1log 3<=x x P {}1<=x x Q Q P -{
}42
-==x y x A {
}42
-==x y y B {
}
4),(2
-==x y y x C {
}0232
=+-=x x x A {
}
0)5()1(22
2=-+++=a x a x x B {}2=B A a A B A = a {}2=B A {
}R x y y S x
∈==,3{
}
R x x y y T ∈-==,12
T S S T φ{}2),(=+=y x y x M {}
4),(=-=y x y x N N M 1,3-==y x )1,3(-{}1,3-{})1,3(-
8.集合,,且,求实数的值.
备选例题1:已知,,则中的元素个数是( )
A. ;
B. ;
C.;
D.无穷多个
备选例题2:已知集合和集合各有12个元素,含有4个元素,试求同时满足下面两个条件的集合的个数:
(Ⅰ),且中含有3个元素; (Ⅱ)(表示空集)
★抢分频道
基础巩固训练:
1. (09年吴川市川西中学09届第四次月考)设全集
, 则右图中阴
影部分表示的集合为 ( )
A .;
B .;
C .;
D .
2. (韶关09届高三摸底考)已知 则=
A .;
B .;
C .;
D .
3. (苏州09届高三调研考)集合的所有子集个数为
{|10}A x ax =-={}
2
|320B x x x =-+=A B B =a {}1+==x y y M {
}
1),(2
2=+=y x y x N N M 012A B B A C C B A C φ≠A C φ{}{}R,(3)0,1U A x x x B x x ==+<=<-{}0x x >{}30x x -<<{}31x x -<<-{}
1x x <-{}{}
2(1)0,log 0A x x x B x x =->=<A B (0,1)(0,2))0,(-∞)(,0)
(0,-∞+∞{1,0,1}-U
B
A
4.(09年无锡市高三第一次月考)集合中的代表元素设为,集合中的代表元素设为
,若且,则与的关系是
5.(2008年天津)设集合,则的取值范围是( )
A .;
B .
C .或;
D .或
综合提高训练:
6., 则下列关系中立的是( ) A .; B .;C .;D .
7.设,,,记 ,,则=( )
A. ;
B.;
C. ;
D.
8.(09届惠州第一次调研考)设A 、B 是非空集合,定义
,已知A=,B=,
则A ×B 等于( ) A .;B .;C .;D .
A x
B y B x ∈∃A y ∈∀A B {}
{}
R T S a x a x T x x S =+<<=>-= ,8|,32|a 13-<<-a 13-≤≤-a 3-≤a 1-≥a 3-<a 1->a {}01<<-=m m P {
}
恒成立对于任意实数
x mx mx R m Q 0442
<-+∈=P Q Q P Q P =φ=Q P )(12)(N n n n f ∈+={
}5,4,3,2,1=P {}7,6,5,4,3=Q {}P n f N n P ∈∈=)(ˆ{}
Q n f N n Q ∈∈=*)(ˆ)ˆˆ()ˆˆ(P C Q Q C P N N {}3,0{
}2,1{}5,4,3{}7,6,2,1{}A B x x A B x A B ⨯=∈⋃∉⋂
且{|x y ={|2,0}x y y x =>[)0,+∞[][)0,12,+∞[)[)0,12,+∞[]
0,1(2,)+∞。