《整式的加减》精美教学课件1

合集下载

《整式的加减 》课件

《整式的加减 》课件
根据乘法分配律,将代数式中 的每一项分别乘以另一个代数 式中的每一项,再将结果相加 。
整式的除法运算
转化为乘法运算,再按照乘法 运算法则进行计算。
整式的混合运算实例
整式加法实例
$2x^2y + 3xy^2 + 4xz$
整式乘法实例
$(x + y)^2 times (x - y)^3$
整式减法实例
$5x^3 - 3x^2y + 4y^2 - 2y^3$
整式的分类
单项式
只包含一个项的整式,如: 3x^2y、4a。
多项式
包含多个项的整式,如:x^2 3x + 2、a^3 - 2a^2 + a。
整式的加减运算规则
同类项合并
幂次不变
同类项是指具有相同变量和幂次的项 ,同类项可以合并,如:2x^2 + 3x^2 = 5x^2。
在进行加减运算时,变量的幂次保持 不变,如:x^2 + x = x^2 + x。
整式除法实例
$frac{x^4 - y^4}{x + y}$
04
CATALOGUE
整式的加减在实际问题中的应用
整式的加减在数学问题中的应用
01
02
03
代数方程求解
通过整式的加减运算,可 以求解代数方程,如一元 一次方程、二元一次方程 等。
函数图像变换
整式的加减可以用于函数 图像的平移、伸缩等变换 ,有助于理解函数的性质 和变化规律。
几何图形面积计算
在几何图形中,整式的加 减可以用于计算图形的面 积和周长,如矩形、三角 形等。
整式的加减在实际生活中的应用
购物计算
在购物时,整式的加减可以用于 计算折扣、找零等,方便快捷。

整式的加减(第一课时)课件

整式的加减(第一课时)课件

基础练习题
总结词:巩固基础
详细描述:基础练习题主要针对整式加减法的基本规则和概念,包括同类项的合并、系数和字母的加 减等。这些题目难度较低,适合初学者熟悉基本操作。
进阶练习题
总结词:提升技能
详细描述:进阶练习题在基础练习题的基础上增加难度,涉 及更复杂的整式加减运算,如多项式的加减、去括号等。这 些题目旨在提高学生的运算能力和对整式加减法的理解。
05
06
解:$3a^2 - 2a + a^2 = (3 + 1)a^2 2a = 4a^2 - 2a$
整式的加减运算技巧
技巧一
合并同类项时,系数直接相加减 ,字母和字母的指数不变
例如
$2x + 3x = 5x$,$3a^2 2a^2 = a^2$。
技巧二
去括号时,注意符号的变化
例如
$3(x + y) = 3x + 3y$,$- (x y) = -x + y$。
整式的加减(第一课时 )ppt课件
• 整式的概念 • 整式的加减运算 • 整式的混合运算 • 整式的加减运算练习
目录
01
整式的概念
什么是整式
整式是由常数、变数、常数乘变数、常数除变数以及括号等符号组成的数学表达式 。
整式中,变数的次数可以是零次、一次或多次。
整式中,变数的指数可以是正整数、负整数或零。
步骤三:合并同类项
整式的加减运算步骤
将带有相同字母的项的系数相加或相减。 步骤四:化简
将整式化简到最简形式。
整式的加减运算实例
例1:
01
02
计算:$2x - 3x + 4x$
解:$2x - 3x + 4x = (2 - 3 + 4)x = 3x$

4.2 整式的加减第1课时 合并同类项 课件(共37张PPT)

4.2 整式的加减第1课时 合并同类项  课件(共37张PPT)


1 3

1 3
c2
abc.
当a

1 6
,b
2,c
-3
时,原式

1 6
2
-3
=1.
3 合并同类项的应用
例5 一天,王村的小明奶奶提着一篮子土豆去换苹果,双方 商定的结果是:1千克土豆换0.5千克苹果.当称完带篮子的土 豆重量后,摊主对小明奶奶说:“别称篮子的重量了,称苹 果时也带篮子称,这样既省事又互不吃亏.”你认为摊主的话 有道理吗?请你用所学的有关数学知识加以判定.
周长为30x .当时 x 2cm ,周长为 60 cm.
5.合并同类项: (1)-a-a-2a=__-_4_a____; (2)-xy-5xy+6yx=__0____; (3)0.8ab2-a2b+0.2ab2=_a_b_2_-_a_2b_; (4)3a2b-4ab2-4+5a2b+2ab2+7=_8_a_2b_-_2_a_b_2_+_3_.
=- x2y+xy2
练一练
合并同类项: (1)6x+2x2-3x+x2+1; (2)-3ab+7-2a2-9ab-3.
先分组, 再合并
解:(1)原式=(6x-3x)+(2x2+x2)+1 =3x+3x2+1
(2)原式=(-3ab-9ab)-2a2+(7-3) =-12ab-2a2+4
归纳总结
“合并同类项”的方法: 一找,找出多项式中的同类项,不同类的同类项用不同 的标记标出; 二移,利用加法的交换律,将不同类的同类项集中到不 同的括号内; 三并,将同一括号内的同类项相加即可.
答案:下降1.5a
当堂练习
✓ 当堂反馈 ✓ 即学即用

初中数学人教版七年级上册《整式的加减》教学课件

初中数学人教版七年级上册《整式的加减》教学课件
小明买笔记本和圆珠笔共花费(4x+3y)元. 小红和小明一共花费(单位:元) (3x+2y) + (4x+3y) = 3x+2y+4x+3y = 7x+5y.
例 笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记 本,2 支圆珠笔;小明买4本笔记本,3支圆珠笔.买这些笔记本 和圆珠笔,小红和小明一共花费多少钱? 解法2:小红和小明买笔记本共花费(3x+4x)元,
有三个农场在一条公路边,如图中的A,B,C处. A处农场年产小麦50吨,B 处农场年产小麦10吨,C处农场年产小麦60吨. 要在这条公路边修建一个 仓库收购这些小麦. 假设运费从A到C方向是1.5元/(吨·千米),从C到A方向 是1元/(吨·千米) ,那么仓库应该建在何处才能使总运费最低?
解:② 设仓库建在A,B之间(含A点),离B y千米处,则总运费为 1.5×50(50-y)+1×10y+1×60(120+y)=(10 950- 5y)(元). 因为0<y≤50, 所以当y=50,即仓库建在A处时,总运费最低,最低为10 700元. 综上,仓库建在A处时总运费最低.
解:(1) 方框内的9个数字之和是方框正中间的数字的9倍.
如图所示是某月的月历,带阴影的方框内有9个数字. (1) 探究方框内的9个数字之和与方框正中间的数字 有什么关系? (2) 不改变方框的大小,任意移动方框的位置,你能得 到什么结论?并说明理由. (3)当方框正中间的数字为16时,求方框内9个数字的和. 解:(2) 结论:方框内的9个数字之和是方框正中间的数字的9倍. 理由:设方框正中间的数字为x,则其他的8个数字分别为x-8,x-7,x-6,x-1,x+1, x+6,x+7,x+8. 这9个数字的和为x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x, 所以方框内的9个数字之和是方框正中间的数字的9倍.

2024年新人教版初中七年级数学上册 第二章 整式的加减《整式(单项式)》优质课教学课件

2024年新人教版初中七年级数学上册 第二章 整式的加减《整式(单项式)》优质课教学课件
(1)汽车在主桥上行驶t h的路强是多少千米?
(2)如果汽车通过隧道需要a h,从香港口岸行驶到东人工岛的时问是通过海底隧道时间的
1.25.倍,你能用含a的代数式表示海底隧道和香港口岸到东人工岛的长度吗?
任务二、师生互动,合作探究
92a、72a、96×1.25a
2
结合前面遇到过的 , 0.9p,
1 2

3
都只含有一种运
算——乘法运算
上面这些式子有什么特点?
它们都是数与字母的积 或者是字母与字母的积
定义:表示数或字母的积的式子叫做单项式.
注意:单独的一个数或一个字母也是单项式.
过关练习1
1.下列式子中单项式的个数是( C )
2
1
√ 2,-2xy
√ ,√a,-x,


√3a,1xy
(a+1),x,3000.
最新人教版初中七年级数学上册
第二章 整式的加减Fra bibliotek整式(单项式)
课程导入
课程讲授
习题解析
课堂总结
任务一:创设情境,导入新课
港珠澳大桥是集主桥、海底隧道和人工岛为一体的世界上最长的跨海大桥。一辆汽车
从香港口岸行驶到东人工岛的平均速度为 96km/h,在海底隧道和主桥上行驶的平均速度
分别为72 km/h利92 m/h请根据这些数据回答下列问题:
-n.
对于单独一个
非零的数,规定它
的次数是0。
过关练习2
填表:
单项式
2a
2
1.2h
xy
2
t
2
2 vt

3
系数
2
-1.2
1
-1
2

《整式》整式的加减PPT课件(第1课时单项式)

《整式》整式的加减PPT课件(第1课时单项式)
车在主桥上行驶t小时的路程是 92t 千米.
探究新知
单项式定义:这些代数式都是数或字母的乘积,像这 样的代数式叫作单项式。 单独的一个数或一个字母也是单项式。
巩固练习
练一练:判断下列代数式是否是单项式?
4b2

π,2+3m
,3xy

a 3

1 t
答:4b2

π,3xy

a 3
是单项式.
探究新知
学生活动二 【一起探究】
2.观察下列代数式 92t,a2,0.9 p ,1 a2h 中出现
3
的数字它们和字母有什么关系?
探究新知
单项式的系数:单项式中的数字因数叫作这个单项式 的系数. 规定:单项式表示数与字母相乘时,通常把数写在前 面,单项式的系数是1或-1时,1通常省略不写.
探究新知
单项式的次数:一个单项式中,所有字母的指数的和 叫作这个单项式的次数。如果一个单项式的次数是n, 那么称这个单项式是n次单项式. 规定:对于一个非零数,规定它的次数为0.
(3)有理数n的相反数是 ﹣n .
巩固练习
(4)《北京2022年冬奥会——冰上运动》是为了纪念北京 2022年冬奥会冰上运动发行的邮票,邮票一套共5枚,价格 为6元,其中一种版式为一张10枚(2套),如图4.1-1所示, 某中学举行冬奥会有奖问答活动,买了m张这种版式的邮票
作为奖品,共花费 12 m 元.
2.单项式 -4πr2 的系数及次数分别为( C )
A. -4,2
B.-4,3
C. 4π ,2
D. 4π ,3
当堂训练
3.如果 1 a2b2n1 是五次单项式,则n的值为( B )
2
A.1

4.6《整式的加减(1)》教学课件

4.6《整式的加减(1)》教学课件

2、两船从同一港口同时出发反向而行,甲船顺水, 乙船逆水,两船在静水中的速度都是50 km/h, 水流速度是a km/h. 〔1〕2 h后两船相距多远? 〔2〕2 h后甲船比乙船多航行多少km?
解:(1) 2(50+a)+2(50-a) =100+2a+100-2a =200(km)
(2) 2(50+a)-2(50-a) =100+2a-100+2a =4a(km)
〕 〔3〕-3
2x2 3x


32
解:〔1〕2a-3b 〔2〕(32x12)32x12 〔3〕 3 ( 2 x 2 3 x ) 3 2 x 2 ( 3 ) ( 3 x ) 6 x 2 9 x
例2、化简并求值:2 a 2 a b 3 2a 2 a ,b 其 a 中 -2 , b3 3
课堂小结
1. 数学思想方法——类比 2. 去括号法那么:
如果括号外的因数是正数,去括号后原括号内各 项的符号与原来的符号一样;
如果括号外的因数是负数,去括号后原括号内各 项的符号与原来的符号相反. 3. 注意:去括号规律要准确理解,去括号应考虑括号 内的每一项的符号,做到要变都变;要不变都不变; 另外,括号内原来有几项,去掉括号后仍有几项.
我们看以下两个简单问题: 〔1〕4+(3-1) 〔2〕4-(3-1)
解〔2〕4-(3-1) =4-2 =2
〔2〕4-(3-1) =4-3+1 =2
4+3(n-1)应如何计算? 4n-(n-1)应如何计算?
解: 4+3(n-1) =4+3n-3 =3n+1
4n-(n-1) =4n-n+1 =3n+1
探究归纳
方法一:第一个正方形用4根火柴棍,每增加一个正方形增加 3根火柴棍,搭n个正方形就需要[4+3(n-1)]根火柴棍.

整式的加减ppt课件

整式的加减ppt课件
例3
添加标题
某商店原有5袋大 米,每袋大米为x 千克.
添加标题
上午卖出3袋,下 午又购进同样包装 的大米4袋.
添加标题
进货后这个商店有 大米多少千克?
添加标题
例3(2)某商店原有5袋大米, 每袋大米为x千克.
添加标题
上午卖出3袋,下午又购进同 样包装的大米4袋.
添加标题
进货后这个商店有大米多少千 克?
这个式子的结果 是多少?
你是怎样得到的?
类比探究,学习 新知
(1)运用有理数的运算律计算.
100×2+252×2= ;
100×(-2)+252×(-2)=
.
2.类比探究, 学习新知
(1)运用有理数的运算律计算
100×2+252×2 =(100+252)×2=352×2=704; 100×(-2)+252×(-2) =(100+252)×(-2)=352×(-2)=-704.
多项式3x3-2x-5的常数项是____,一次项是 ____, 三次项的系数是_____.二次项的系数是 _____.每项的系数分别是____,每项的次 数分别是____,多项式的次数是___
用多项式__表示奇 数,三个连续奇数 可表示成____ ____
一.用单项式n表示整数,三个连续整数可表示 成________
(4)按同一个字母的降幂(或升幂排列).
例1 合并下列各式的同类项:
(1)xy 2 315.学xy 2以致用,应用新 (2) 3 x 2y 2 x 2y 3 x 知y2 2 x y2
(3)4 a 2 3 b 2 2 a b 4 a 2 4 b 2
练习1 判断下列说法是否正确,正确的

《整式的加减法》课件

《整式的加减法》课件
除法运算的技巧
在整式除法中,需要注意符号和 系数的处理,以及利用公因式进 行化简。
整式的加减乘除混合运算
混合运算法则
整式的加减乘除混合运算遵循先 乘除后加减的顺序,即先进行乘 法和除法运算,再进行加法和减
法运算。
混合运算的顺序
在整式的加减乘除混合运算中,需 要注意运算的顺序,按照先乘除后 加减的顺序进行计算。
《整式的加减法》 ppt课件
REPORTING
• 整式的基本概念 • 整式的加减运算 • 整式的混合运算 • 整式加减法的应用 • 练习与巩固
目录
PART 01
整式的基本概念
REPORTING
什么是整式
整式是由常数、变数 、常数乘积组成的代 数式。
整式不包含分式和根 式。
整式中,变数的次数 都是非负整数。
证明代数恒等式
整式加减法可以用于证明一些代数恒等式,例如平方差公式、完全 平方公式等。
在日常生活中的应用
购物计算
01
在购物时,整式加减法可以用于计算找零、打折、优惠等活动
中的金额计算。
日常预算
02
整式加减法可以用于日常生活中的预算计算,例如计算每月的
水电煤气费、电话费、交通费等。
数据分析
03
整式加减法可以用于数据分析中的数据处理和整理,例如统计
数据、计算平均数、中位数、众数等。
PART 05
练习与巩固
REPORTING
基础练习题
总结词
帮助学生掌握整式加减法的基本概念 和运算规则。
详细描述
设计一系列简单的整式加减法题目, 包括单项式与单项式相加减、多项式 与多项式相加减等基础题型,供学生 练习。
提高练习题

《整式的加减》ppt课件

《整式的加减》ppt课件

思考:(1)合并前后系数之间有b何变化?
(2)合并同类项时字母和字母指数有何变化?
合并同类项法则 合并同类项时,把同类项的系数相加,字母
和字母的指数不变。
探索新
例1 合并同类项

-
7a+3a2+2a-
解:原式xy=2+(3-x1y+23)
a2+3
xy2
=2xy2
探索新
例1 合并同类项

7a+3a2+2a-
=(6-3)x+(2+1)x2+1 =3x+3x2+1
希望这道题给你带来好运! 写出-3a3b的一个同类项:__3_a_3___ b
能力提升
求代数式-3x2y+5x-0.5x2y+3.5x2y-2的值,其中x= , y=7。想想你会怎么做? 解:原式=(-3x2y-0.5x2y+3.5x2y)+5x-2
请同学们再写一写这样的多项式。
探思索考新总
知结
同类项的定义
同类项的定义:所含 字母相同,并且 相同字母的指数也相同 的项叫做同类项。
我们规定,所有的常数都是同类项.
4 -7 5
下列各组中的两项是同类项?为什么?
(1)
(2)3abc与3ab (3) (4)0.6与2 (5)5cb与-5bc (6)
=(3-5)a+(2-1)b
=(-4-9)ab+(2-1)b
=-2a+b
=-2a+b
注意:不是同类项的不能合并。
挑战闯关,及时反馈
2
1
3
1
2
3
希望这道题给你带来好运! 当k=__2_时,-3x2y3k与x2y6是同类项。

整式的加减(第一课时)课件-课件

整式的加减(第一课时)课件-课件
学习整式的乘法运算规则。 掌握整式的乘法与加减法混合运算的步骤和技巧。
通过练习题巩固所学知识,提高解题能力。
THANKS
感谢观看
(4a^2b - 3ab + b) - (b - a + 3ab)
进阶练习题
01
02
03
04
(5m^2n - 4mn + n) + (3n m^2n)
进阶练习题3:根据整式的加 减法则,合并下列整式的同类

5x^3y + 8x^3y - x^3y
6mn + m^2n + 7mn m^2n
综合练习题
基础练习题
8x^2y + 5x^2y
3ab + 4ab - 7ab
进阶练习题
01
进阶练习题1:计算下列整式的结 果
02
(a^3 - a^2b + ab^2) + (a^2b - ab^2) - a^3
进阶练习题
(2xy^2 - xy) - (xy - y^2) 进阶练习题2:化简下列整式,并指出其中的同类项
综合练习题1:计算下列整式的结果
01
[(a + b)^3 - (a - b)^3] + [2ab(a + b) 2ab(a - b)]
03
02
[(x + y)^2 - (x - y)^2] + [2xy - (x^2 y^2)]
04
综合练习题2:化简下列整式,并指出其 中的同类项
[(5m^2n + n) + (3n - m^2n)] + [(4mn^2 + n) - m^2n]
02
整式的加减运算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《整式的加减》精美实用课件1(PPT 优秀课 件)
第二章 整式的加减
2.2 整式的加减
第2课时 去括号
1 课堂讲解 2 课时流程
去括号法则 利用去括号法则化简
逐点 导讲练
课堂 小结
作业 提升
某人带了a元钱去商店购物, 先后花了b元和c元,他 剩下的钱可以怎样表示?有几种表示方法?
知识点 1 去括号法则
知1-导
问题:请同学们观察下面的两个式子,你们知道该怎样化简吗? 100t+120(t-0.5) ① 100t-120(t-0.5) ②
《整式的加减》精美实用课件1(PPT 优秀课 件)
《整式的加减》精美实用课件1(PPT 优秀课 件)
3 下列去括号正确的是( D ) A.4a-(3b+c)=4a+3b-c B.4a-(3b+c)=4a-3b+c C.4a-(3b+c)=4a+3b+c D.4a-(3b+c)=4a-3b-c
知1-练
(2) 2 h后甲船比乙船多航行(单位:km) 2(50+a)-2(50-a) = 100+2a -100+2a = 4a.
《整式的加减》精美实用课件1(PPT 优秀课 件)
《整式的加减》精美实用课件1(PPT 优秀课 件)
知2-讲
例4 先化简,再求值. (1)-(4k3-k2+5)+(5k2-k3-4),其中k=-2; (2) m n - 2 3 m - 2 3 - 1 2 m - 1 2 m n + 1 , 其 中 m = 2 3 , n = 4 3 .
《整式的加减》精美实用课件1(PPT 优秀课 件)
总结
整式的化简主要只有两步: 一步是去括号; 另一步是合并同类项.
知2-讲
《整式的加减》精美实用课件1(PPT 优秀课 件)
《整式的加减》精美实用课件1(PPT 优秀课 件)
知2-练
1 (中考·济宁)化简-16(x-0.5)的结果是( D )
A.-16x-0.5
《整式的加减》精美实用课件1(PPT 优秀课 件)
《整式的加减》精美实用课件1(PPT 优秀课 件)
知2-讲
例3 两船从同一港口同时出发反向而行,甲船顺水, 乙船逆水,两船在静水中的速度都是50 km/h, 水流速度是a km/h. (1)2 h后两船相距多远? (2)2 h后甲船比乙船多航行多少千米?
如果括号外的因数是负数,去括号后原括号 内各项的符号与原来的符号相反.
知1-讲
去括号法则: 1. 如果括号外的因数是正数,去括号后原括号内
各项的符号与原来的符号相同; 2. 如果括号外的因数是负数,去括号后原括号内
各项的符号与原来的符号相反. 120(t-0.5)= 120t -60 ③ -120(t-0.5)=-120t +60 ④
导引:解本题首先要将所求式子去括号并合并同类项, 然后再代入求值.
《整式的加减》精美实用课件1(PPT 优秀课 件)
《整式的加减》精美实用课件1(PPT 优秀课 件)
知2-讲
解: (1) -(4k3-k2+5)+(5k2-k3-4) =-4k3+k2-5+5k2-k3-4=-5k3+6k2-9. 当k=-2时,原式=-5×(-2)3+6×(-2)2-9 =40+24-9=55.
知1-讲
a +(-b+c)= a -b +c 括号前面是“+”号,把括号和它前面的 “+”号去掉,括号里各项的符号都不改变.
a-(-b+c)= a -( -+b +-c ) 括号前面是“-”号,把括号和它前面的 “-”号去掉,括号里各项的符号都要改变.
例1 下列去括号正确的是( B ) A.-(a+b-c)=-a+b-c B.-2(a+b-3c)=-2a-2b+6c C.-(-a-b-c)=-a+b+c D.-(a-b-c)=-a+b-c
探究:我们知道,化简带有括号的整式,首先应先去括号. 上面两式去括号部分变形分别为: 100t +120(t-0.5)= 100t +120t-60 ③ 100t -120(t-0.5)= 100t -120t+60 ④ 比较③、④两式,你能发现去括号时符号变化的规律吗?
归纳
知1-导
如果括号外的因数是正数,去括号后原括号 内各项的符号与原来的符号相同;
知1-讲
《整式的加减》精美实用课件1(PPT 优秀课 件)
1 去括号:a+(b-c)=___a_+__b_-__c___; a-(b-c)=___a_-__b_+__c___.
知1-练
2 去括号:4(a+b)-3(2a-3b) =( _4_a_+__4_b__ )-( __6_a_-__9_b_ )=__-__2_a_+__1_3_b__.
《整式的加减》精美实用课件1(PPT 优秀课 件)
《整式的加减》精美实用课件1(PPT 优秀课 件)
知识点 2 利用去括号法则化简
知2-讲
例2 化简下列各式: (1) 8a+2b+(5a-b) ; (2) (5a-3b)-3(a2 -2b).
解: (1) 8a+2b+(5a-b) =8a+2b+5a-b
1 3
(x+2y)+
2 3
y的
值是___-__2___.
4 如果长方形的周长为4m,一边的长为m-n,则与 其相邻的一边的长为___m_+__n__.
《整式的加减》精美实用课件1(PPT 优秀课 件)
《整式的加减》精美实用课件1(PPT 优秀课 件)
去括号应注意的事项: (1)括号前面有数字因数时,应利用乘法分配律,先将该
《整式的加减》精美实用课件1(PPT 优秀课 件)
《整式的加减》精美实用课件1(PPT 优秀课 件)
知2-讲
解:顺水航速=船速+水速=(50+a) km/h, 逆水航速=船速-水速=(50-a) km/h.
(1) 2 h后两船相距(单位:km) 2(50+a)+2(50-a) = 100+2a+100-2a = 200.
2 m n - 2 3m - 2 3 - 1 2m - 1 2m n + 1
m n - 2 m - 2 - 1 m + 1 m n - 1 3 m n - 7 m - 5 -5=-61.
34
2 3 4 6 3 3 36
《整式的加减》精美实用课件1(PPT 优秀课 件)
=13a+b;
(2) (5a-3b)-3(a2 -2b) =5a-3b-(3a2 -6b) =5a-3b- 3a2 +6b =-3a2 + 5a +3b.
《整式的加减》精美实用课件1(PPT 优秀课 件)
《整式的加减》精美实用课件1(PPT 优秀课 件)
总结
知2-讲
先判定是哪种类型的去括号,去括号后,要不要变号, 括号内的每一项原来是什么符号.去括号时,要同时去掉 括号前的符号. 为了防止错误,题(2)中-3(a2-2b),先把3乘 到括号内,然后再去括号.
B.-16x+0.5
C.16x-8
D.-16x+8
2
(中考·台北)化简
1 4
(-4x+8)-3(4-5x)的结果为(
D)
A.-16x-10
B.-16x-4
C.56x-40
D.14x-10
《整式的加减》精美实用课件1(PPT 优秀课 件)
《整式的加减》精美实用课件1(PPT 优秀课 件)
知2-练
3
当x=6,y=-1时,多项式-
数与括号内的各项分别相乘,再去掉括号,以避免发 生符号错误. (2)在去掉括号时,括号内的各项或者都要改变符号,或 者都不改变符号,而不能只改变某些项的符号.
《整式的加减》精美实用课件1(PPT 优秀课 件)
《整式的加减》精美实用课件1(PPT 优秀课 件)
(3)要注意括号前面的符号,如括号前面是“-”号,去 括号时常忘记改变括号内每一项的符号,出现错误, 或括号前有数字因数,去括号时没把数字因数与括号 内的每一项相乘,出现漏乘的现象,只有严格运用去 括号法则,才能避免出错.
相关文档
最新文档