大学微积分1方法总结
大一微积分上知识点总结笔记
大一微积分上知识点总结笔记微积分是数学中的一个重要分支,它主要涉及到数的变化量和求取曲线下的面积。
学习微积分需要掌握一系列的概念、定理和方法。
在大一学习微积分时,我们主要学习了导数和积分两个方面的知识。
本文将对大一微积分上的知识点进行总结说明。
一、导数导数是微积分中的重要概念,是用来描述函数在某一点的变化率。
在导数的学习中,我们主要掌握了以下几个知识点:1. 导数的定义:导数可以通过极限的概念来定义,即函数f(x)在某一点x处的导数f'(x)等于函数f(x)在该点的极限。
2. 导数的性质:导数具有一些重要的性质,比如导数存在的条件、导数的四则运算规则等。
3. 常见函数的导数:我们需要熟练地掌握常见函数的导数,如幂函数、指数函数、对数函数、三角函数等。
4. 高阶导数:高阶导数是指导数的导数。
我们需要了解高阶导数的计算方法及其应用。
二、积分积分是微积分中的另一个重要概念,是用来求取曲线下面积的工具。
在积分的学习中,我们主要掌握了以下几个知识点:1. 不定积分:不定积分是指求取函数的原函数。
我们需要熟练地掌握不同类型函数的不定积分计算方法。
2. 定积分:定积分是用来求取曲线下的面积。
我们需要了解定积分的定义及其计算方法,掌握微元法和换元法等积分方法。
3. 定积分的应用:定积分具有广泛的应用,比如求取图形的面积、求取物体的质量和重心等。
4. 反常积分:反常积分是指在无穷区间上的积分。
我们需要了解反常积分的收敛性和计算方法。
三、微分方程微分方程是微积分的一个重要分支,它是描述函数之间关系的方程。
在微分方程的学习中,我们主要掌握了以下几个知识点:1. 一阶常微分方程:一阶常微分方程是指未知函数的导数只出现一次的微分方程。
我们需要了解一阶常微分方程的基本概念、解的存在唯一性以及求解方法。
2. 高阶常微分方程:高阶常微分方程是指未知函数的高阶导数出现在方程中的微分方程。
我们需要掌握高阶常微分方程的求解方法,如特征根法和常数变易法等。
大一微积分知识点总结
大一微积分知识点总结
函数与极限:
函数的定义与性质(奇偶性、周期性、单调性等)函数的四则运算与复合运算极限的概念与性质极限的运算法则无穷小与无穷大的概念极限存在准则(如夹逼准则)导数:
导数的定义(增量比、差商、导数)导数的几何意义(切线斜率)导数的计算法则(常数、幂函数、指数函数、对数函数、三角函数的导数等)高阶导数隐函数与参数方程的导数函数的单调性与导数的关系微分:
微分的定义与性质微分的计算法则微分在近似计算中的应用中值定理与导数的应用:
*罗尔定理(Rolle's Theorem)
拉格朗日中值定理(Lagrange's Mean Value Theorem)柯西中值定理(Cauchy's Mean Value Theorem)泰勒公式(Taylor's Formula)函数图形的描绘(利用导数判断凹凸性、拐点等)最值问题(一阶、二阶导数判断最值)不定积分:
不定积分的定义与性质不定积分的计算法则(幂函数、指数函数、对数函数、三角函数的不定积分等)积分表的使用换元积分法分部积分法定积分:
定积分的定义与性质微积分基本定理(牛顿-莱布尼茨公式)定积分的计算(直接计算、换元积分法、分部积分法)定积分的应用(面积、体积、弧长、旋转体体积等)无穷级数:
数列的概念与性质无穷级数的概念与性质正项级数的审敛法(比较审敛法、比值审敛法、根值审敛法等)交错级数的审敛法(莱布尼茨审敛法)幂级数的概念与性质函数展开成幂级数(泰勒级数、麦克劳林级数)
以上是对大一微积分主要知识点的总结,每个知识点都有许多细节和深入的内容需要学习和掌握。
在学习过程中,要注重理解概念和原理,多做练习,加强实践应用。
大一微积分知识点总结
大一微积分知识点总结微积分是数学的一个分支,主要研究函数、极限、导数和积分等概念与问题。
作为大一学生,学习微积分是非常重要的,因为它是后续数学课程的基础。
下面是对大一微积分的知识点进行的总结,希望对你有所帮助。
一、函数与极限1. 函数:函数是一种描述自变量与因变量之间关系的规则。
常见的函数类型有多项式函数、指数函数、对数函数、三角函数等。
2. 极限:极限是函数在某一点或无穷远处的特定值。
常见的极限类型包括左极限、右极限、无穷极限等。
二、导数与微分1. 导数:导数衡量了函数在某一点附近的变化率。
导数的几何意义是函数曲线在该点处的切线斜率。
2. 基本导数公式:常数函数导数为0,幂函数导数为幂次减1乘以系数,指数函数导数为函数自身乘以常数系数。
3. 高阶导数:高阶导数是指对函数进行多次求导得到的导数。
二阶导数表示函数在某一点的变化率的变化率。
4. 微分:微分是导数的一个应用,用来计算函数在某一点处的值。
微分的符号表示为dx,代表函数在离该点很近的地方的增量。
三、积分与不定积分1. 积分:积分是导数的逆运算,表示函数在某一区间上的累积量。
积分的几何意义是曲线所围成的面积。
2. 定积分:定积分是对区间上函数的积分,表示区间上的累积量。
定积分的几何意义是函数在该区间上的曲线所围成的面积。
3. 不定积分:不定积分是对未知函数进行积分,表示函数的一个原函数。
符号∫表示不定积分。
四、常用函数的导数与积分1. 幂函数:幂函数的导数可以使用幂函数的基本导数公式计算,而幂函数的积分可以使用幂函数的积分公式计算。
2. 指数函数:指数函数的导数是该函数自身乘以常数ln a,其中a为底数。
指数函数的积分也是指数函数。
3. 对数函数:对数函数的导数是其自变量的导数的倒数。
对数函数的积分可以使用换元法进行计算。
4. 三角函数:三角函数的导数可以使用基本导数公式计算,而三角函数的积分可以使用换元法或特定积分公式进行计算。
五、微分方程与应用1. 微分方程:微分方程是含有未知函数及其导数的方程。
高等数学 一 微积分 考试必过归纳总结 要点重点
高等数学(一)微积分一元函数微分学( 第三章、第四章)一元函数积分学(第五章)第一章函数及其图形第二章极限和连续多元函数微积分(第六章)高数一串讲教材所讲主要内容如下:全书内容可粗分为以下三大部分:第一部分 函数极限与连续(包括级数) 第二部分 导数及其应用(包括多元函数)第三部分 积分计算及其应用 (包括二重积分和方程)第一部分 函数极限与连续一、关于函数概念及特性的常见考试题型: 1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
二、 极限与连续 常见考试题型:1、求函数或数列的极限。
2、考察分段函数在分段点处极限是否存在, 函数是否连续。
3、函数的连续与间断。
4、求函数的渐进线。
5、级数的性质及等比级数。
6、零点定理。
每年必有的考点第三部分导数微分及其应用常见考试题型:1、导数的几何意义;2、讨论分段函数分段点的连续性与可导性。
3、求函数的导数:复合函数求导,隐含数求导,参数方程求导;4、讨论函数的单调性和凹凸性,求曲线的拐点;5、求闭区间上连续函数的最值;6、实际问题求最值。
每年必有的考点第四部分积分计算及应用考试常见题型1、不定积分的概念与计算;2、定积分的计算;3、定积分计算平面图形的面积;4、定积分计算旋转体的体积;5、无穷限反常积分6、二重积分7、微分方程最近几年考题中,积分计算的题目较多,而且也有一定的难度。
第一部分函数极限与连续一、关于函数概念及特性的常见考试题型:1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
例1..函数___________. 2007.7知识点:定义域约定函数的定义域是使函数的解析表达式有意义的一切实数所构成的数集。
解 要使根式函数有意义必须满足23log log 0x ≥,要使23log log 0x ≥成立, 只有3log 1x ≥,即3x ≥.注:我们所求定义域的函数一般都是初等函数,而初等函数:由基本初等函数,经过有限次的+-×÷运算及有限次的复合得到的函数称为初等函数。
大一微积分每章知识点总结
大一微积分每章知识点总结微积分是数学的重要分支之一,用于研究变化率与累积效应。
在大一微积分课程中,我们学习了许多重要的知识点,这些知识点为我们进一步学习高级数学打下了坚实的基础。
本文将对大一微积分每章的知识点进行总结,以帮助读者巩固所学内容。
第一章:函数与极限在这一章中,我们学习了函数的概念与性质,以及极限的定义与运算法则。
函数是一种将一个数集映射到另一个数集的规则,可以用数学公式或图形表示。
极限是函数在某个点无限接近于某个值的情况,是微积分的基础概念之一。
第二章:导数与微分导数是用来描述函数变化率的概念,它表示函数在某一点处的切线斜率。
我们学习了导数的计算方法,包括基本导数公式、加减乘除法则、链式法则等。
微分则是导数的应用,用于计算函数在某一点的近似值,并研究函数的局部特征。
第三章:微分中值定理与导数的应用在这一章中,我们学习了微分中值定理和导数的应用。
微分中值定理是描述函数在某个区间内存在某点的斜率等于该区间的平均斜率的定理,包括拉格朗日中值定理和柯西中值定理。
导数的应用包括函数的单调性、极值点、凹凸性等的判断与求解。
第四章:不定积分不定积分是导数的逆运算,用于求解函数的原函数。
我们学习了不定积分的基本性质和常用的积分公式,包括换元法、分部积分法、有理函数的积分等。
通过不定积分,我们可以求解函数的面积、曲线长度等问题。
第五章:定积分与定积分的应用定积分是用来计算曲线下面积的工具,也可以表示变化率与累积效应。
我们学习了定积分的定义和性质,以及计算定积分的方法,如换元法、分部积分法和定积分的几何应用等。
定积分的应用包括计算曲线的弧长、质量、物体的质心等。
第六章:微分方程微分方程是用导数和未知函数构成的方程,研究函数之间的关系。
我们学习了常微分方程的基本概念和解法,包括一阶线性微分方程和可分离变量的方程等。
微分方程是实际问题建模与求解的重要工具,应用广泛于物理、化学、工程等领域。
通过对大一微积分每章的知识点进行总结,我们回顾了函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分与定积分的应用、微分方程等内容,巩固了所学知识,并为之后学习高级数学打下了坚实的基础。
大一微积分总结
大一微积分总结引言微积分作为数学的一门重要分支,是研究函数的变化规律和其相关应用的数学工具。
作为大一学生,学习微积分是我们正式接触数学分析的开始,既有挑战性又具有广泛的应用前景。
在大一的微积分学习中,我们主要学习了导数和积分两个方面的内容。
本文将对我大一微积分学习的总结进行阐述。
导数在微积分中,导数是函数在某一点的变化率的极限,是刻画函数变化的重要工具。
在大一的微积分课程中,我们学习了函数的导数计算方法、导数的基本性质以及导数在几何和物理问题中的应用等方面的内容。
导数的计算方法首先,我们学习了常见函数的导数计算公式,如幂函数、指数函数、对数函数、三角函数和反三角函数等的导数公式。
例如,对于幂函数y=x n,其中n为常数,它的导数为y′=nx n−1。
对于指数函数y=a x,其中a为常数,它的导数为$y'=a^x\\ln a$。
这些计算公式对于我们快速计算导数提供了便利。
其次,我们学习了利用导数的基本性质来计算复杂函数的导数。
这些基本性质包括导数的四则运算、链式法则、乘积法则和商规则等。
通过灵活运用这些性质,我们可以对各种复合函数、乘积函数和商函数求导数,从而简化计算过程。
导数的几何和物理应用导数在几何和物理问题中有着广泛的应用。
在几何中,导数可以帮助我们刻画曲线的切线和曲率,从而对曲线进行几何分析。
在物理中,导数可以表示物理量的变化率,如速度和加速度等。
我们学习了通过导数的计算和分析来解决相关几何和物理问题,例如求解最值问题、优化问题和曲率问题等。
积分积分是导数的逆运算,是确定函数在给定区间内的面积或曲线长度的重要方法。
在大一的微积分课程中,我们学习了定积分和不定积分两个方面的内容。
定积分定积分是积分的一种形式,表示函数在给定区间上的面积。
我们学习了定积分的计算方法,主要包括牛顿-莱布尼茨公式、换元积分法和分部积分法等。
通过这些计算方法,可以求解各种形式的定积分,如多项式函数、三角函数和指数函数等的定积分。
大一微积分知识点总结
大一微积分知识点总结一、引言微积分是高等数学中的一个重要分支,主要研究函数的极限、导数、积分等概念。
对于大学一年级的学生来说,微积分的学习是理解现代科学和工程问题的基础。
本文旨在总结大一微积分课程中的关键知识点。
二、极限与连续性1. 极限的概念:描述函数在某一点附近的行为。
- 极限的定义:如果序列 $\{x_n\}$ 趋向于 $x$,则 $\lim_{n \to \infty} f(x_n) = L$。
- 极限的性质:唯一性、局部有界性、保号性等。
2. 连续函数:在任意点都无间断的函数。
- 连续性的定义:如果 $\lim_{x \to c} f(x) = f(c)$,则称$f(x)$ 在 $c$ 处连续。
- 连续函数的性质:介值定理、闭区间上连续函数的一致连续性。
三、导数1. 导数的定义:函数在某一点的切线斜率。
- 导数的几何意义:曲线在点 $(a, f(a))$ 处的切线斜率。
- 导数的计算:利用极限定义,$f'(a) = \lim_{h \to 0}\frac{f(a+h) - f(a)}{h}$。
2. 常用导数公式:- 幂函数:$(x^n)' = nx^{n-1}$。
- 指数函数:$(e^x)' = e^x$。
- 对数函数:$(\ln x)' = \frac{1}{x}$。
3. 高阶导数:导数的导数。
- 高阶导数的计算:对导数再次求导。
4. 隐函数与参数方程的导数:- 隐函数求导:利用隐函数的导数公式。
- 参数方程求导:利用链式法则。
四、微分1. 微分的概念:函数的局部线性近似。
- 微分的定义:$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$。
2. 微分的应用:- 线性近似:用于近似计算函数值。
- 相关变化率问题:如速度、加速度等。
五、积分1. 不定积分:求函数原函数的过程。
- 基本积分表:记忆一些基本的积分公式。
大一数学微积分知识点总结
大一数学微积分知识点总结微积分是数学的重要分支,是应用广泛的数学工具之一。
作为大一学生,学习微积分是必不可少的一部分。
在这篇文章中,我将对大一数学微积分的一些重要知识点进行总结。
一、数列与极限1. 数列的概念:数列是按照一定规律排列的一系列数的集合。
2. 数列的收敛性:数列可以分为收敛数列和发散数列。
3. 极限的定义与性质:数列中的极限是指随着项数无限增加,数列中的数逐渐趋于某个确定的值。
4. 重要极限:常见的数列极限有等差数列的极限、等比数列的极限等。
二、函数与导数1. 函数的概念:函数是一种特殊的关系,它将一个变量的取值映射到另一个变量的取值。
2. 导数的定义与性质:导数描述了函数在某一点上的变化率,是微积分的核心概念之一。
3. 常见函数的导数:常见函数的导数包括常数函数的导数、幂函数的导数、三角函数的导数等。
4. 高阶导数与导数运算法则:高阶导数是指函数的导数再求导数的结果,导数运算法则包括和差法则、乘法法则、链式法则等。
三、微分学的应用1. 泰勒展开与近似计算:泰勒展开是将一个函数在某一点附近用多项式逼近的方法,可以用来进行近似计算。
2. 极值与最值:通过求函数的导数,可以确定函数的临界点,从而找到函数的极值与最值。
3. 曲线的凹凸性与拐点:通过求函数的二阶导数,可以判断函数在某一区间内的凹凸性以及存在的拐点。
四、定积分与不定积分1. 定积分的概念与性质:定积分是用来计算曲线下面的面积或求函数的积分值。
2. 不定积分的概念与性质:不定积分是定积分的逆运算,是求函数原函数的过程。
3. 常见函数的积分公式:常见函数的积分公式有基本积分公式、换元积分法、分部积分法等。
4. 定积分的应用:定积分在求曲线下面的面积、求平均值、计算物体的质量与重心等方面有广泛应用。
五、微分方程1. 微分方程的概念与分类:微分方程是描述函数与其导数之间关系的方程,可以分为常微分方程和偏微分方程。
2. 一阶常微分方程的解法:一阶常微分方程可以通过分离变量、齐次方程、线性方程等方法求解。
大学数学微积分基本公式
大学数学微积分基本公式微积分是数学的一门基础学科,是研究变化率和积分的学科。
微积分理论的基础是一些基本公式,这些公式在微积分的各个领域中都有重要的应用。
本文将介绍一些大学数学微积分中常用的基本公式。
1. 导数公式导数是函数变化率的度量,表示函数在某一点上的斜率。
以下是几个常用的导数公式:1.1 常数函数的导数:对于常数c,其导数为0,即d(cx)/dx = 0。
1.2 幂函数的导数:对于函数f(x) = x^n,其中n是实数,其导数为d(x^n)/dx = nx^(n-1)。
1.3 指数函数的导数:对于函数f(x) = e^x,其中e是自然对数的底数,其导数为d(e^x)/dx = e^x。
1.4 对数函数的导数:对于函数f(x) = ln(x),其中ln表示自然对数,其导数为d(ln(x))/dx = 1/x。
1.5 三角函数的导数:对于函数f(x) = sin(x),其导数为d(sin(x))/dx= cos(x)。
类似地,d(cos(x))/dx = -sin(x),d(tan(x))/dx = sec^2(x)等。
2. 积分公式积分是导数的逆运算,表示函数的累积变化量。
以下是几个常用的积分公式:2.1 幂函数的积分:对于函数f(x) = x^n,其中n不等于-1,其积分为∫(x^n)dx = (1/(n+1))x^(n+1) + C,其中C是常数。
2.2 指数函数的积分:对于函数f(x) = e^x,其积分为∫(e^x)dx = e^x+ C。
2.3 对数函数的积分:对于函数f(x) = 1/x,其积分为∫(1/x)dx = ln|x|+ C。
2.4 三角函数的积分:对于函数f(x) = sin(x),其积分为∫sin(x)dx = -cos(x) + C。
类似地,∫cos(x)dx = sin(x) + C,∫sec^2(x)dx = tan(x) + C等。
3. 极限公式极限是微积分中一个重要概念,用于描述函数在某点趋近于某个值的行为。
苏德矿新编微积分1方法总结
苏德矿新编微积分1方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第一章 函数、极限、连续注 “★”表示方法常用重要.一、求函数极限的方法★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等.★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。
三、无穷小量阶的比较的方法利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开四、函数的连续与间断点的讨论的方法如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。
如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。
五、求数列极限的方法★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理;4. )()(lim )()(lim ∞=⇒∞=∞→+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞=1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量仍是无穷小量;9.等价量替换等.【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算,2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理3.对数列极限的未定式不能用洛比达法则。
一元微积分大一知识点总结
一元微积分大一知识点总结微积分是数学的一个重要分支,包括微分学和积分学两个部分。
在大一学习微积分的过程中,我们需要掌握一些基本的概念、理论和技巧。
本文将对一元微积分大一知识点进行总结,希望能够帮助大家复习和巩固所学内容。
一、函数与极限函数是微积分的基础,我们需要了解函数的定义、性质以及常见函数的图像和性质。
另外,理解极限的概念也是非常重要的。
1. 函数:函数的定义:函数是一种映射关系,将自变量的值映射为因变量的值。
常见函数:常数函数、幂函数、指数函数、对数函数、三角函数等。
函数的图像:函数图像可以通过画出关键点、研究增减性和凹凸性等方法得到。
极限的定义:函数在某一点无论从左侧还是右侧逼近时的极限都相等,则称该函数在该点有极限。
极限的性质:极限存在的充分必要条件是左极限和右极限存在且相等。
二、导数与微分导数是微积分中的重要概念,它描述了函数在某一点的变化率。
微分是导数的一个应用,主要用于求解函数的近似值和极值问题。
1. 导数:导数的定义:函数在一点的导数表示了函数在该点的切线斜率。
导数的计算方法:可以利用极限的性质来求解导数,也可以利用求导法则进行计算。
导数的性质:导数运算是线性的,满足求和、差、常数倍、乘积、商等法则。
微分的定义:微分表示了函数的变化量与自变量的变化量之间的关系。
微分的应用:微分可以用来求函数的近似值,也可以用来研究函数的极值问题。
三、积分与定积分积分是导数的逆运算,它可以用来求反函数、定积分以及解决曲线下面积的问题。
1. 不定积分:不定积分的定义:不定积分可以看作是导数的逆运算,表示了函数的原函数。
不定积分的计算方法:可以利用基本积分公式和换元积分法进行计算。
2. 定积分:定积分的定义:定积分表示了函数在一个区间上的累积效应,可以用来求解曲线下面积等问题。
定积分的计算方法:可以利用定积分的性质和积分区间的划分来计算定积分。
四、微分方程微分方程是一种包含导数的方程,它在各个学科中都有广泛的应用,尤其在物理和工程领域中扮演着重要角色。
大学微积分l知识点总结一
大学微积分l 知识点总结第一部分大学阶段准备知识 1、不等式:ab 2ba ≥+2121n n 2211......a a b a ...b a b a n n b b b a +++++≤+++()时取等号为常数,当且仅当,n ...3,2,1i b a i i ==λλ2、函数周期性和对称性的常用结论1、若fx+a=±fx+b,则fx 具有周期性;若fa+x=±fb-x,则fx 具有对称性; 口诀:“内同表示周期性,内反表示对称性”2、周期性1若fx+a=fb+x,则T=|b-a| 2若fx+a=-fb+x,则T=2|b-a| 3若fx+a=±1/fx,则T=2a 4若fx+a=1-fx/1+fx,则T=2a 5若fx+a=1+fx/1-fx,则T=4al n sin =∂正弦 l m cos =∂余弦 m ntan =∂正切n m cot =∂余切 m l sec =∂正割 n lcsc =∂余割∂=∂cot 1tan ∂=∂csc 1sin ∂=∂sec 1cos商的关系:∂∂=∂=∂∂csc sec tan cos sin ∂∂=∂=∂∂sec csc cot sin cos平方关系:()()sina cosa 1cosa-1sina 2a cot sina cosa -1cosa 1sina 2a tan cosa 1212a cos cosa -1212a sin 22+==⎪⎭⎫⎝⎛=+=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛•⎪⎭⎫ ⎝⎛+•=⎪⎭⎫⎝⎛•⎪⎭⎫ ⎝⎛+•=⎪⎭⎫⎝⎛•⎪⎭⎫ ⎝⎛+•=a -3tan a 3tan tana a 3tan a -3cos a 3cos cosa 4a 3cos a -3sin a 3sin sina 4a 3sin ππππππ 万能公式:()ββtan tan 1-tan •∂+=∂和差化积公式:()()⎦⎤⎢⎣⎡⎦⎤⎢⎣⎡+=+21-cos 21sin 2sin sin ϕθϕθϕθ()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=21-sin 21cos 2sin -sin ϕθϕθϕθ ()()⎥⎦⎤⎢⎣⎡⎦⎤⎢⎣⎡+=+21-cos 21cos 2cos cos ϕθϕθϕθ ()()()⎥⎦⎤⎢⎣⎡⎦⎤⎢⎣⎡+=21-sin 21sin 2-cos -cos ϕθϕθϕθ原式得证,由题,22b a x x cos x sin 1x x +=∴===⎪⎭ ⎝+⎪⎭ ⎝M M 4、数学归纳法数学上证明与自然数N 有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立;例如:前n个奇数的总和是n2,那么前n个偶数的总和是:n2+n最简单和最常见的数学归纳法证明方法是证明当n属于所有正整数时一个表达式成立,这种方法由下面两步组成:①递推的基础:证明当n=1时表达式成立②递推的依据:证明如果当n=m时成立,那么当n=m+1时同样成立1第一数学归纳法5、初等函数的含义概念:初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算以及有限次数函数复合所产生,并且能用一个解析式表示的函数;有理运算:加、减、乘、除、有理数次乘方、有理数次开方基本初等函数:对数函数、指数函数、幂函数、三角函数、反三角函数6、二项式定理:即二项展开式,即a+b n 的展开式()nn n k k -n k n 1-n 1n n 0n n b ...b a ...b a a C b a C C C ++•++•+=+称为二次项系数其中kn C表示项,用项,它是第叫做二次项展开式的通1k k k -n kn 1k b a ++•T Cn n y∞→8、其他一些知识点10不是正数,不是负数;是自然数;0是偶数,偶数分为:正偶数、负偶数和0 (2)正偶数称为“双数” (3)正常数:常数中的正数(4)质数:又称“素数”;一个大于1的自然数,如果除了1和它自身以外,不能被其他自然数整除的数,否则称为“合数”;最小的质素数是2;1既不是素数,也不是合数;(5)exp :高等数学中,以自然对数e 为底的指数函数 (6)在数学符号中,sup 表示上界;inf 表示下界 (7)≡:表示恒等于(8)0的阶乘是1.阶乘是一个递推定义,递推公式为:n=nn-1因为1的阶乘为其中,e n 11n→⎪⎭⎫⎝⎛+,e 为初等函数,又称“幂指函数”,e 即根据此公式得到,e ≈2.7181n 1-1n2→⎪⎭⎫⎝⎛ ()()61n 21n n n ...21222++=+++()233321n n n ...21⎥⎦⎤⎢⎣⎡+=+++()1-a a-a s a ...a a s 1n n 2+=+++=()()()()()1-n 2-n 1-n n n b ...b a a b -a b -a +++=x sinx 0x →→时, x tanx → 2x 21cosx -1→列举一些趋向于0的函数:()0lnn 10n a 1a 0c -n b0b 0a 0q 1q b nan →→→→④,>③,>,>②,<①柯西极限存在准则:3斯托尔茨定理设数列n y 单调增加到无穷大,则11lim lim--∞→∞→--=n n n n n n n n y y x x y x ()[]()a x g f x g f x f x x x x =⎥⎦⎤⎢⎣⎡=→→00lim lim )().4(是连续函数:如:nn n S S n S --++++=-2232 (2523211)32n 解题思路: 函数的连续性和间断点问题 1如何讨论并确定函数的连续性①若该函数是初等函数,则该函数在其定义域区间均连续②若是一元函数,则可对其求导,其导数在某点上有意义则函数在该点必然连续的x f x )()0=00)''()'(''''''00x )('''x x )()''()'(''''''0.0x )(εδδεεδεδε≥----∈∃∀x f x f x x x x x f x x x f x f x f x x x x x x f ,但是<,尽管、存在,总>,无论对多么小的>上,存在定义在集合不一致连续:设函数小。
微积分1知识点总结
微积分1知识点总结微积分1是大学数学中的一门重要课程,它主要包括导数和不定积分两大部分。
微积分1是数学系、物理系、工程系等专业的重要基础课程,对学生的数学思维能力、逻辑思维能力和解决实际问题的能力都有较高的要求。
微积分1知识点较多,本文将对微积分1的相关知识点进行总结,以帮助学生更好地理解和掌握微积分1的知识。
一、函数与极限1.1 函数的概念函数是一个变量与变量之间的一种对应关系。
通常用 f(x) 或 y 来表示函数,x 是自变量,y 是因变量。
函数在微积分中有着非常重要的作用,它可以用来描述数学模型中的关系、描述实际问题中的情况等。
1.2 函数的极限极限是微积分中的一个重要概念,它描述的是当自变量趋向于某一点时,函数值的趋势。
极限的概念为后续的导数和积分提供了重要的理论基础。
1.3 极限的性质极限有一些重要的性质,比如极限的唯一性、函数极限存在的条件、函数极限的运算性质等。
掌握这些性质对于理解和计算函数的极限具有重要的意义。
1.4 极限的计算计算极限是微积分中的一个重要技能。
常见的计算技巧包括利用基本极限、利用夹逼定理、利用洛必达法则等。
二、导数2.1 导数的定义导数是函数的变化率,描述了函数在某一点的变化趋势。
导数的定义是函数在某一点的切线的斜率。
2.2 导数的计算导数的计算是微积分1中的重要内容。
常见的计算技巧包括使用导数的定义、使用导数的性质、使用求导法则等。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、导数的运算法则、导数的几何意义等。
2.4 高阶导数导数的概念可以进一步推广到高阶导数,高阶导数描述了函数的变化趋势更加细致的情况。
三、不定积分3.1 不定积分的概念不定积分是导数的逆运算,描述了函数的积分情况。
不定积分的概念是微积分1中的一个重要内容。
3.2 不定积分的计算计算不定积分是微积分1中的一个关键技能。
对于一些特定的函数,可以通过不定积分的性质、不定积分的基本积分公式等来进行计算。
高等数学微积分总结
积 分 整个高数课本整个高数课本整个高数课本,,我们一共学习了不定积分我们一共学习了不定积分,,定积分,重积分重积分((二重二重,,三重三重),),),曲线积分曲线积分曲线积分((两类两类),),),曲面积分曲面积分曲面积分((两类两类).).).在此在此在此,,我们对积分总结积分总结,,比较比较,,以期同学们对积分有一个整体的认识以期同学们对积分有一个整体的认识. .一、不定积分一、不定积分一、不定积分不定积分是微分的逆运算不定积分是微分的逆运算不定积分是微分的逆运算,,其计算方法、各种技巧是我们后面各种积分计算的基础,希望同学们熟记积分公式,及各种方法方法((两类换元两类换元,,分部积分分部积分,,有理函数积分等有理函数积分等) )二、定积分二、定积分二、定积分1. 1.定义式定义式定义式::()baf x dx ò2. 2.定义域定义域定义域::一维区间一维区间,,例如[,]a b3. 3.性质性质性质::见课本P 229-P 232特殊特殊::若1f =,则()baf x dx b a =-ò,即区间长度即区间长度.. 4. 4.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性. .注意注意注意::定积分中积分变量可以任意替换即()()bbaaf x dx f y dy =òò,而不定积分不具有这种性质而不定积分不具有这种性质.. 5. 5.积分方法积分方法积分方法::与不定积分的方法相同与不定积分的方法相同. . 6. 6.几何应用几何应用几何应用: : 定积分的几何意义定积分的几何意义定积分的几何意义: :()baf x dx ò表示以()f x 为顶与x 轴所夹区域面积的代数和轴所夹区域面积的代数和((注意如()0f x <,则面积为负则面积为负); ); 其他应用其他应用其他应用::如()f x 表示截面积表示截面积,,则积分为体积则积分为体积;;平面弧长2()1[()]b af x y x dx ¢+ò等.三、二重积分三、二重积分三、二重积分 1. 1.定义式定义式定义式: :(,)xyD f x y d s òò2. 2.定义域定义域定义域::二维平面区域二维平面区域3. 3.性质性质性质::见下册课本P 77 特殊特殊: : : 若若1f =,则(,)xyD f x y dxdy S =òò,即S 为x y D 的面积的面积. .4.4.坐标系坐标系坐标系: :①直角坐标系①直角坐标系::X 型区域型区域,,Y 型区域型区域 ②极坐标系②极坐标系::适用范围为圆域或扇形区域,注意坐标转换后不要漏掉r ,积分时一般先确定q 的范围的范围,,再确定r 的范围的范围. . 5.5.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性((见后见后),),),质心质心质心; ; 6.6.几何应用几何应用几何应用: : 二重积分的几何意义二重积分的几何意义::若(,)0f x y ³,则(,)xyD f x y dxdy òò表示以(,)f x y 为顶以x y D 为底的曲顶柱体体积为底的曲顶柱体体积; ;其他应用其他应用::求曲面(,)z z x y =的面积221xyx y D z z dxdy ++òò四、三重积分四、三重积分 1.1.定义式定义式(,,)f x y z d v Wòòò2.2.定义域定义域定义域::三维空间区域三维空间区域; ;3.3.性质性质性质::与二重积分类似与二重积分类似; ; 特殊特殊特殊: : : 若若1f =,则(,,)f x y z d v V W=òòò,其中V 表示W 的体积的体积. .4.4.坐标系坐标系坐标系: :①直角坐标系①直角坐标系::投影法投影法,,截面法截面法((一般被积函数有一个自变量,而当该变量固定时所得截面而当该变量固定时所得截面 积易求时采用积易求时采用) ) ②柱坐标系②柱坐标系②柱坐标系::积分区域为柱形区域积分区域为柱形区域,,锥形区域锥形区域,,抛物面所围区域时可采用抛物面所围区域时可采用; ;③球坐标系③球坐标系③球坐标系::积分区域为球域或与球面相关的区域时,确定自变量范围时确定自变量范围时,,先q ,后j ,最后最后r .5. 5.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性,,变量对称性变量对称性((见后见后),),),质心等质心等质心等. .6. 6.应用应用应用: : (,,)f x y z 表示密度表示密度,,则(,,)f x y z d v Wòòò为物体质量为物体质量.(.(.(不考虑几何意义不考虑几何意义不考虑几何意义) )五、第一类曲线积分五、第一类曲线积分1.1.定义式定义式定义式::(,)Lf x y ds ò(二维二维) ) |(,,)Lf x y z ds ò(三维三维) )2.2.定义域定义域定义域::平面曲线弧平面曲线弧 | 空间曲线弧空间曲线弧空间曲线弧3.3.性质性质性质::见课本P 128 特殊特殊特殊: : 1f =则Lfds s =ò,s 表示曲线弧长表示曲线弧长. .4.4.计算公式计算公式计算公式((二维为例二维为例): ):22(,)((),())1()()bLaf x y dsf t t t t dt j y j y ¢¢=++òò:(),(),[,]L x t y t t a b j y ==Î类似可推出:(),[,]L y y x x a b =Î的公式的公式..注意化为定积分时下限小于上限.5.5.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性,,变量对称性变量对称性,,质心质心; ;6.6.几何应用几何应用几何应用::见上3. 六、第二类曲线积分六、第二类曲线积分 1.1.定义式定义式定义式: :(,)(,)LP x y dx Q x y dy +ò(二维二维) )(,,)(,,)(,,)LP x y z dx Q x y z dy R x y z dy ++ò(三维三维) )2.2.定义域定义域定义域::有向平面曲线弧有向平面曲线弧((二维二维))或有向空间曲线弧或有向空间曲线弧((三维三维) )3.3.性质性质性质::见课本P 1354.4.计算公式计算公式计算公式: :(,)(,)[((),())()((),())()][(,())(,())()]bLadcP x y dx Q x y dy P t t t Q t t t dt P x f x Q x f x f x dxj y j j y y ¢¢+=+¢ =+òòò注意注意::曲线积分化为定积分时曲线积分化为定积分时,,下限为起始点下限为起始点,,上限为终点上限为终点. . 5.5.积分技巧积分技巧积分技巧::二维曲线积分可以应用格林公式(注意使用条件注意使用条件).).).积分与路径无关积分与路径无关积分与路径无关. . 不能使用奇偶对称性不能使用奇偶对称性. . 6.6.应用应用应用::力做功力做功. .七、第一类曲面积分七、第一类曲面积分 1.1.定义式定义式定义式: :(,,)f x y z dS Sòò2.2.定义域定义域定义域::空间曲面空间曲面 注意注意注意::空间曲面与坐标面重合或平行时,即为二重积分即为二重积分,,故二重积分时第一类曲面积分的特例故二重积分时第一类曲面积分的特例. .3.3.性质性质性质::见课本见课本::与第一类曲线积分类似与第一类曲线积分类似 特殊特殊特殊: : 1f =则(,,)f x y z dS S S=òò,S 表示曲线面积表示曲线面积. .4.4.计算公式计算公式计算公式::22(,,)(,,(,))1xyx y D f x y z dS f x y z x y z z dxdy S=++òòòò类似可得在另两个曲面上的投影公式类似可得在另两个曲面上的投影公式.. 注意对于特殊的曲面如柱面考虑使用柱坐标注意对于特殊的曲面如柱面考虑使用柱坐标,曲面考虑使用球坐标曲面考虑使用球坐标. . 5.5.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性,,变量对称性变量对称性,,质心质心. .6.6.几何应用几何应用几何应用::见上3. 八、第二类曲面积分八、第二类曲面积分 1.1.定义式定义式Pdydz Q dzdx Rdxdy S ++òò2.2.定义域定义域定义域::有向空间曲面有向空间曲面3.3.性质性质性质::见课本P 1624.4.计算公式计算公式计算公式: :(,,)(,,(,))xyD R x y z dxdy R x y z x y dxdy S =±òòòò,类似可得另两个类似可得另两个. .5.5.积分技巧积分技巧积分技巧::高斯公式高斯公式,,循环对称性循环对称性..不能使用奇偶对称性不能使用奇偶对称性. .注:要熟练掌握使用高斯公式做第二类曲面积分的题目,使用时要注意曲面方向以及是否封 闭. 6.6.应用应用应用::求流量求流量,,磁通量等磁通量等. . 奇偶对称性奇偶对称性: :定积分定积分::若积分区间关于原点对称若积分区间关于原点对称,,例如[,]a a - 若()f x 关于x 为奇函数为奇函数,,则()0aaf x dx -=ò若()f x 关于x 为偶函数为偶函数,,则()2()aaaf x dx f x dx -=òò二重积分二重积分二重积分::若积分区域D 关于y 轴对称轴对称,,记1D 为0x >的部分的部分若(,)f x y 关于x 为奇函数为奇函数,,则()()(,)(,)0x y Dx y f x y dxdy dyf x y dx -==òòòò若(,)f x y 关于x 为偶函数为偶函数,,则1()()()(,)(,)2(,)2(,)x y x y Dx y D f x y dxdy dy f x y dx dyf x y dx f x y dxdy -===òòòòòòòò同样可以得到积分区域D 关于x 轴对称时轴对称时, , (,)f x y 关于y 为奇、偶函数的公式为奇、偶函数的公式. .三重积分三重积分: : : 若积分区域若积分区域W 关于o x oy y 面对称面对称,,记1W 为0z >的部分的部分若(,,)f x y z 关于z 为奇函数为奇函数,,则(,)(,)(,,)(,,)0z x y z x y f x y z dxdydz dxdy f x y z dz W-==òòòòòò若(,,)f x y z 关于z 为偶函数为偶函数,,则1(,)(,)(,)0(,,)(,,)2(,,)2(,,)z x y z x y z x y f x y z dxdydz dxdyf x y z dzdxdy f x y z dz f x y z dxdydzWW -===òòòòòòòòòòòò同样可以得到区域关于另两个曲面对称的情况同样可以得到区域关于另两个曲面对称的情况. . 例题例题:P :P 123#1(1)(2) P 124#2(4)第一类曲线积分第一类曲线积分::若积分曲线L 关于y 轴对称轴对称,,记1L 为0x >的部分的部分 若(,)f x y 关于x 为奇函数为奇函数::(,)0Lf x y ds =ò 若(,)f x y 关于x 为偶函数为偶函数::1(,)2(,)LL f x y d s f x y d s =òò同样可以得到曲线关于x 轴对称的情况轴对称的情况. .第一类曲面积分第一类曲面积分第一类曲面积分::若积分曲面S 关于o x oy y 面对称面对称,,记1S 为0z >的部分的部分, ,若(,,)f x y z 关于z 为奇函数为奇函数::(,,)0f x y z dz S =òò 若(,,)f x y z 关于z 为偶函数为偶函数::1(,,)2(,,)f x y z d z f x y z d z SS =òòòò同样可以得到曲面关于另两个坐标面对称的情况同样可以得到曲面关于另两个坐标面对称的情况. .例题例题::课本P 158#6(3),P 184#2 变量对称性变量对称性::一般在做重积分、曲面积分时使用,使用时要注意曲面或区域必须是关于变量是对称的,即对于曲面方程自变量相互替换后方程不改变,例如2222,1x y z R x y z ++=++=等,此时此时()()()f x dS f y dS f z dS SS S ==òòòòòò例题例题1:2,I x ds G=ò 其中G 为球面2222x y z a ++=被平面0x y z ++=所截的曲线.例题2:2: 22()d ,I x y S å=+òò 其中S 为球面2222().x y z x y z ++=++循循环对称性(适用第二类曲面积分):若积分曲面满足变量对称,而且,,P Q R 中,,x y z 依次替换,即,,x y y z z x ®®®后积分表达式不改变后积分表达式不改变,,则可以使用该对称性则可以使用该对称性,,有3Pdydz Qdzdx Rdxdy Rdxdy S S ++=òòòò 例题例题::课本168页#3(4)质心质心质心::适用重积分适用重积分,,第一类积分第一类积分. . 请同学们思考如何区别各种积分请同学们思考如何区别各种积分?(?(定义域定义域定义域) ) 区别区别区别::以下两个例题应该怎样算以下两个例题应该怎样算? ?222222()d ,()x y z S x y z dxdydz Wå++++òòòòò , 其中22222222:,:x y z R x y z R S W ++=++£。
大学微积分知识点归纳总结
大学微积分知识点归纳总结微积分是数学的分支之一,是研究变化率和累积效应的数学工具。
在大学中,微积分通常是理工科学生必修的一门课程,也是后续学习高等数学和其他相关学科的基础。
本文将对大学微积分中的一些重要知识点进行归纳总结,帮助读者复习和回顾相关概念和技巧。
一、导数与微分导数是微积分中最基础的概念之一,表示函数在某一点处的变化率。
导数的计算方法包括用极限和求导法则两种途径。
其中,求导法则主要包括常数法则、幂函数法则、和差法则、乘法法则、除法法则和复合函数法则等。
通过运用这些法则,我们可以计算各种函数的导数。
微分是导数的一种应用形式,表示函数在某一点附近的近似线性变化量。
微分的计算方法是利用导数的概念,通过对变量的微小改变进行线性逼近得到。
微分在物理学、工程学等领域中具有重要的应用价值,例如在运动学中描述物体的速度和加速度。
二、积分与不定积分积分是导数的反运算,表示函数曲线下某一区间上的累积效应。
积分的计算方法包括定积分和不定积分两种形式。
其中,定积分是计算函数在给定区间上的累积值,可以通过黎曼和牛顿-莱布尼茨公式进行求解。
而不定积分是求解函数的原函数,通常表示为一个函数族,通过添加常数项来表示原函数的不确定性。
在应用方面,积分可以用于求解曲线下的面积、物体的质量和流体的体积等问题。
它也是微分方程中的重要工具,用于求解描述变化规律的方程。
三、微分方程与应用微分方程是涉及未知函数及其导数的方程,描述了变量之间的关系。
微分方程在自然科学、经济学和工程学等领域中有广泛的应用。
常见的微分方程类型包括一阶常微分方程、高阶常微分方程、线性微分方程和非线性微分方程等。
求解微分方程的方法主要包括分离变量法、常系数线性微分方程的特征根法、常系数线性微分方程的待定系数法和变化参数法等。
通过运用这些方法,我们可以推导出函数的解析表达式,揭示变量之间的定量关系。
微积分作为数学的一门基础课程,不仅具有理论的重要性,更有实际的应用价值。
微积分大一上知识点总结
微积分大一上知识点总结在大一上学期的微积分课程中,我们学习了一些重要的微积分知识点。
以下是对这些知识点进行总结的部分内容。
1. 函数与极限函数的概念是微积分的基础。
我们学习了如何用图像来表示函数,并了解了函数的性质,例如定义域、值域和奇偶性。
在研究函数的过程中,我们引入了极限的概念。
极限描述的是函数在某一点附近的行为。
我们学习了极限的定义和性质,并通过极限的运算法则来计算函数的极限。
2. 导数与微分导数是描述函数变化率的工具。
我们学习了导数的定义,并掌握了一些基本函数的导数公式,如幂函数、指数函数和对数函数。
通过导数,我们可以研究函数的增减性、极值和凹凸性。
微分则是导数的另一种表述形式,它在近似计算中有着重要的应用,如线性化和牛顿法。
3. 积分与定积分积分是导数的逆运算。
我们学习了不定积分的概念和计算方法,如换元积分法和分部积分法。
定积分则可以看作是曲线下面积的计算。
我们了解了定积分的定义和性质,并熟练应用定积分计算函数的面积、长度、体积等物理量。
4. 微分方程微分方程是描述变化率的方程。
我们学习了一阶和二阶微分方程的求解方法,如分离变量法、齐次方程法和特解法。
通过解微分方程,我们可以研究物理、生物和工程等领域的变化过程。
5. 泰勒级数与幂级数泰勒级数是一种用多项式无限和来表示函数的方法。
我们学习了泰勒级数的定义和计算方法,并通过泰勒级数来研究函数的性质,如收敛域、奇偶性和周期性。
幂级数是泰勒级数的一种特殊情况,我们了解了幂级数的收敛性和求和方法。
以上只是微积分大一上学期的部分知识点总结,微积分是一门广泛应用于科学和工程领域的学科,还有很多其他重要的知识点需要深入学习和掌握。
希望这个知识点总结可以帮助你回顾和巩固微积分的基础知识,为后续的学习打下坚实的基础。
大学怎么学好微积分
大学校园里你最怕挂科的科目是什么毫无疑问是高数,下面收集了一些关于大学微积分学习方法,希望对你有帮助大学微积分学习方法1学习微积分的基础就是要学好函数和导数,因此我们在学习时如果遇到函数,导数方面的问题时一定要及时解决。
2弄清积分概念和基本理论,基本初等函数的性质,函数极限的运算等。
并且熟练掌握导数和不定积分的公式。
3归纳老师总结的解题方法,最好自己制作一本自己的错题集。
4在掌握基础的方法能做对基础题型之后,适量的找一些难题来练习,进一步对自己所学内容进行巩固和提升。
5到图书馆借一本或自己买一本对课后习题有详解的书。
书上虽然有课后习题的答案,但却没有过程,拥有一本有习题详解的书无疑能够让自己清楚自己怎么错得错在哪一步。
学好微积分方法1重基础,全面学习。
重基础,就是指我们应该对教材上的基本定义,定理,公式,例题弄明白。
所谓万变不离其宗,我们把这些弄清楚后,我们才有举一反三的本钱。
全面学习,即指我们在学习过程中应多注意前后联系。
数学学习是一个长期过程,我们不能依据个人爱好而对某些部分的内容放弃,相反,做好各章之间的联系才是我们该做的。
2反复训练重点内容,熟练掌握。
数学成绩是练出来的,而且是看出来的,很多东西需要我们自己动手之后才会有收获。
多问,多练,是学习数学的一种重要方法。
3学会总结。
在大量的练习的基础上,我们应该依据个人的情况,定期每周或每月对自己所学进行总结,在总结之后才能举一反三,中练习中汲取到方法。
大学微积分复习方法Ste1:看书。
投入40%精力与时间为宜期中考试之后学习的内容一页一页看,注意基础概念和公式,一定不能混淆。
例题比较基础,但是也要认真过,最好看完例题后合上书回想一下,在纸上简要地回忆解题方法。
Ste2:刷题。
投入30%精力与时间为宜首先,课后的习题不能少,这是检验Ste1效果的最好方法。
刷不下去的题要特殊照顾,因为这期中肯定包涵你没有完全理解的概念。
另外,一本参考书是必要的,在遇到困难时求助资料也是很好的方法。
微积分课“不定积分第一类换元法”分类总结
微积分课“不定积分第一类换元法”分类总结作者:王闪闪来源:《新校园·中旬刊》2014年第04期摘要:本文分类总结了不定积分第一类换元积分法的常见类型,并给出典型的例题讲解。
关键词:不定积分;第一类换元积分法;分类第一类换元积分法是求不定积分重要的、基础的方法,本文将第一类换元积分法(凑微分法)常见的类型进行分类总结。
定理:设(1)■f(u)du=F(u)+C,(2)函数u=?渍(x)可微,则成立第一类换元积分方法:■f[?渍(x)]?渍′(x)dx=■f[?渍(x)]d?渍(x)=■f(u)du■=[F(u)+C]u=?渍(x)=F[?渍(x)]+C类型Ⅰ■f(ax+b)dx=■■f(ax+b)d(ax+b)(a≠0)例1■■=■■(3x-1)■d(3x-1)=■■+C例2①■■②■■分析:①中被积函数分母x2+2x+5的△0,通过对分母因式分解,做变换■■=■■。
解:①■■dx=■■dx=■■d(x+1)=■arctan■+C②■■=■■=ln■+C类型Ⅱ■x?琢-1f(x?琢+b)dx=■■f(x?琢+b)d(x?琢+b)(?琢≠0)例3■x■dx=■■(x2-3)■d(x2-3)=■·■(x2-3)■+C=■(x2-3)■+C例4■■sec2■dx=-■sec2■d(■)=-tan■+C类型Ⅲ■■f(lnx)dx=■f(lnx)d(lnx)或■■f(ln|x|)dx=■f(ln|x|)d(ln|x|)例5■■=■■=■(1+lnx)-2d(1+lnx)=-■+C类型Ⅳ■exf(ex)dx=■f(ex)d(ex)或■f(ex)dx=■■d(ex)例6■■dx=■■dex=■arcan■+C类型Ⅴ关于被积函数中含有sinx和cosx的不定积分ⅰ■cosxf(sinx)dx=■f(sinx)d(sinx)和■sinxf(cosx)dx=-■f(cosc)d(cosx)例7■esinxcosxdx=■esinxd(sinx)=esinx+Cⅱ对于形如■sinmxcosnxdx,■sinmxsinnxdx和■cosmxcosnxdx的积分(m,n∈N),可首先利用积化和差公式对被积函数进行变形。
微积分上重要知识点总结
微积分上重要知识点总结(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、常用无穷小量替换2、关于邻域:邻域的定义、表示(区间表示、数轴表示、简单表示);左右邻域、空心邻域、有界集。
3、初等函数:正割函数sec是余弦函数cos的倒数;余割函数是正弦函数的倒数;反三角函数:定义域、值域4、收敛与发散、常数A为数列的极限的定义、函数极限的定义及表示方法、函数极限的几何意义、左右极限、极限为A的充要条件、极限的证明。
5、无穷小量与无穷大量:无穷小量的定义、运算性质、定理(无穷小量与极限的替换)、比较、高阶无穷小与同阶无穷小的表示、等价无穷小、无穷大量于无穷小量的关系。
6、极限的性质:局部有界性、唯一性、局部保号性、不等式性质(保序性)。
7、极限的四则运算法则。
8、夹逼定理(适当放缩)、单调有界定理(单调有界数列必有极限)。
9、两个重要极限及其变形10、等价无穷小量替换定理11、函数的连续性:定义(增量定义法、极限定义法)、左右连续12、函数的间断点:第一类间断点和第二类间断点,左、右极限都存在的是第一类间断点,第一类间断点有跳跃间断点和可去间断点。
左右极限至少有一个不存在的间断点是第二类间断点。
13、连续函数的四则运算14、反函数、复合函数、初等函数的连续性15、闭区间上连续函数的性质:最值定理、有界性定理、零值定理、介值定理。
16、导数的定义、左右导数、单侧导数、左右导数的表示、可导则连续。
17、求导法则与求导公式:函数线性组合的求导法则、函数积和商的求导法则、反函数的求导法则、复合函数求导法则、对数求导法、基本导数公式18、隐函数的导数。
19、高阶导数的求法及表示。
20、微分的定义及几何意义、可微的充要条件是可导。
21、A微分的基本公式与运算法则dy=f’(x0)Δx.22、微分形式的不变性23、微分近似公式:24、导数在经济问题中的应用(应用题):(1)边际(变化率,即导数)与边际分析:总成本函数与边际成本、总收益函数与边际收益、利润函数与边际利润(2)弹性(书78页)及其分析、弹性函数及应用、需求量与价格之间的变化关系25、中值定理:罗尔定理、拉格朗日中值定理及推论、可喜中值定理、26、洛必达法则求极限(89页)27、函数单调性28、函数的极值、最值、极值点与驻点及其区别,最大利润、最小平均成本、最大收益问题,经济批量问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数、极限、连续注 “★”表示方法常用重要.一、求函数极限的方法★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等.★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。
三、无穷小量阶的比较的方法利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开四、函数的连续与间断点的讨论的方法如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。
如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。
五、求数列极限的方法★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理;4. )()(lim )()(lim ∞=⇒∞=∞→+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞=1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量仍是无穷小量;9.等价量替换等.【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算,2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理3.对数列极限的未定式不能用洛比达法则。
因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则.4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞→∞→与是特殊与一般的关系,由归结原则知★5. 有lim 1011()()n n i i f f x dx n n →∞==⎰∑或1lim 1001()()n n i i f f x dx n n -→∞==⎰∑ 第二章 一元函数微分学★一、求一点导数或给处在一点可导推导某个结论的方法:利用导数定义,经常用第三种形式二、研究导函数的连续性的方法:1.求出()f x ',对于分段函数的分界点要用左右导数定义或导数定义求.2.'()f x 讨论的连续性,★三、求初等函数的导数的方法:在求导之前尽可能的化简,把函数的乘除尽量化成加减,利用对数微分法转化为方程确定隐函数的求导等等,从而简化求导过程. 要熟练记住基本初等函数的导数公式、导数的四则运算,理解并掌握复合函数的求导法则.四、求分段函数的导数的方法:求分段函数导数不在分界点可直接利用求导公式。
在分界点(1)若在分界点两侧的表达式不同,求分界点的导数有下述两种方法: (i )利用左右导数的定义。
(ii )利用两侧导函数的极限。
(2)若在分界点两侧的表达式相同,求分界点的导数有下述两种方法: (i )利用导数定义。
(ii )利用导函数的极限。
★五、求参数式函数的导数的方法若()()()()()0'',',,≠⎩⎨⎧==t t t t y t x ϕψϕψϕ存在且,则 ()()t t dtdx dt dy dx dy ''ϕψ== 22()'()()"()t dy d y dy t dt y dx dx dx t dtψϕϕ''''====' ★六、求方程确定隐函数的导数的方法:解题策略 求方程()()y x g y x f ,,=确定的隐函数()x y y =的导数时,由y 是x的函数,此时方程两边是关于x 表达式的恒等式,两边同时对x 求导,会出现含有y'的等式,然后把y'看成未知数解出即可。
★七、求变上下限函数的导数的方法:解题策略 利用变上下限函数求导定理,注意化成变上下限函数的成标准形式八、求函数的高阶导数的方法:求导之前,对函数进行化简,尽量化成加减,再用高阶导数的运算法则九、方程根的存在性把要证明的方程转化为f(x)=0的形式。
对方程f(x)=0用下述方法:★ 1.根的存在定理 若函数f(x)在闭区间],[b a 上连续,且,0)()(<⋅b f a f 则至少存在一点()b a ,∈ξ,使.0)(=ξf★2.若函数f(x)的原函数)(x F 在],[b a 上满足罗尔定理的条件,则f(x)在(a,b )内至少有一个零值点.3.用泰勒公式证明方程根的存在性.4.实常系数的一元n 次方程)0(001110≠=++++--a a x a x a x a n n n n ,当n 为奇数时,至少有一个实根。
证 设)111()(11101110n n n n n n n n n xa x a x a a x a x a x a x a x f ++++=++++=---- 由,00≠a 不妨设a 0>0。
由于,0,1,)(0lim>∃=+∞=+∞→N M x f x 取当x>N 0时,都有f(x)>1>0。
取b>N 0,有f(b)>0,0,1,)(1lim>∃=-∞=-∞→N M x f x 取,当x<-N 1时,都有f(x)<-1<0。
取a<-N 1<b, f(a)<0。
由f(x)在[a,b]连续,f(`a)f(b)<0,由根的存在定理知至少存在一点.0)(),,(=∈ξξf b a 使5.实系数的一元n 次方程在复数范围内有n 个复数根,至多有n 个不同的实数根。
★ 6.若f(x)在区间I 上连续且严格单调,则f(x)=0在I 内至多有一个根。
若函数在两端点的函数(或极限)值同号,则f(x)=0无根,若函数在两端点的函数(或极限)值异号,则f(x)=0有一个根。
★7.求具体连续函数f(x)=0在其定义域内零值点的个数:首先求出f(x)的严格单调区间的个数,若有m 个严格单调区间,则至多有m 个不同的根。
至于具体有几个根,按照6研究每个严格单调区间是否有一个根。
8.若函数f(x)的原函数F(x)在某点x 0处取极值,在x 0处导数也存在,由费马定理知F'(x 0)=0,即f(x 0)=0。
(用的较少)★9.方程中含有字母常数,讨论字母常数取何值时,方程根有几个根地方法:(1)把要证明的方程转化为()g x k =的形式,求出()g x 的单调区间、极值,求出每个严格单调区间两端函数(极限)值,画草图,讨论曲线与y k =轴相交的情况,确定方程根的个数.;(2)把要证明的方程转化为f(x)=0的形式。
求出f(x)的单调区间,极值,求出每个严格单调区间两端函数(极限)值,画草图,讨论曲线与x 轴相交的情况,确定方程根的个数.【评注】 在证明方程根的存在性的过程中,我们经常要用拉格朗日定理,积分中值定理,有时也用到柯西中值定理来证明满足方程根的存在性所需的条件,然后利用上述的方法来证明方程根的存在性。
十、证明适合某种条件下ξ的等式★ 1. 常用的方法有罗尔定理、泰勒公式、根的存在定理、柯西定理、拉格朗定理;2. 如果证明适合某种条件下,ξζ的等式,要用两次 上面的定理3. 证明存在∈ξ(a , b ),使,0)()()(0)()()(='+'⇔='+'x g x f x f g f f ξξξ有一个根.而⎰⎰+'-='⇔'-='⇔='+'c dx x g dx x f x f x g x f x f x g x f x f ln )()()()()()(0)()()( ⎰-=⇔+-=⇔+-=⇔)()(ln )()(ln ln )()()(1x g Ce x f C x g x f C x g x df x f ,)()(C e x f x g =⇔令)()()(x g e x f x F =, 即0)()()()()(='+'⇔'='x g x f x f C x F故对)(x F 在[]21,x x 上满足罗尔定理条件,至少存在一点)(2,1x x ∈ξ,使,0)(='ξF 即0)()()(='+'ξξξg f f .十一、证明不等式的方法:★1.拉格朗日定理适用于已知函数导数的条件,证明涉及函数(值)的不等式★2.泰勒公式适用于已知函数的高阶导数的条件,证明涉及函数(值)或低阶导函数(值)的不等式.★3.单调性定理.(i )对于证明数的大小比较的不等式,转化为同一个函数在区间两端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明.(ii) 对于证明函数大小比较的不等式,转化为同一个函数在区间内上任意一点函数值与区间端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明.4.利用函数最大值,最小值证明不等式.把待证的不等式转化为区间上任意一点函数值与区间上某点0x 处的函数值大小的比较,然后证明)(0x f 为最大值或最小值,即可证不等式成立。
★5.利用函数取到唯一的极值证明不等式.把待证的不等式转化为区间上任意一点函值与区间内某点0x 处的函数值大小的比较,然后证明)(0x f 为唯一的极值且为极大值或极小值,即)(0x f 为最大值或最小值,即可证不等式成立。
6.用柯西定理证明不等式.7.利用曲线的凹向性证明不等式.第三章 一元函数积分学★1.基本积分表(13个公式,略)★2.要知道下列重要不定积分的推导过程,记住这些不定积分结果. 1. 1ax ax e dx e C a =+⎰;2. 1cos sin axdx ax C a=+⎰; 3. 1sin cos axdx ax C a=-+⎰;4. arcsin x C a =+⎰;5.221dx a x =+⎰1arctan x C a a+; 6.tan ln cos xdx x C =-+⎰;7.cot ln sin xdx x C =+⎰; 8.2211(0)ln 2a x dx a C a x a a x+≠=+--⎰; 9.csc xdx =⎰ln csc cot x x C -+; 10.sec ln sec tan xdx x x C =++⎰; 11.⎰+dx a x 221ln x C =+.(a >0).证 令t a x tan =, 原式⎰⎰=+=dt t a t a t da a t a sec sec tan tan 12222 ⎰⎰++==-∈.tan sec ln sec sec sec )2,2(2c t t tdt dt t t t ππ ,tan a x t =由作出直角三角形,可知,sec 22a x a t +=于是原式ln ln ln x c x c a a=+=++-1ln(x c =+ax图 3-112.⎰+-+=-c a x x dx a x 2222ln 1。