浙江师范大学离散数学期末试卷A
离散数学期末试题
![离散数学期末试题](https://img.taocdn.com/s3/m/aa63db515f0e7cd1842536bd.png)
离散数学考试试题(A 卷及答案)一、(10分)求(P ↓Q )→(P ∧⌝(Q ∨⌝R ))的主析取范式解:(P ↓Q )→(P ∧⌝(Q ∨⌝R ))⇔⌝(⌝( P ∨Q ))∨(P ∧⌝Q ∧R ))⇔(P ∨Q )∨(P ∧⌝Q ∧R ))⇔(P ∨Q ∨P )∧(P ∨Q ∨⌝Q )∧(P ∨Q ∨R )⇔(P ∨Q )∧(P ∨Q ∨R )⇔(P ∨Q ∨(R ∧⌝R ))∧(P ∨Q ∨R )⇔(P ∨Q ∨R )∧(P ∨Q ∨⌝R )∧(P ∨Q ∨R )⇔0M ∧1M⇔2m ∨3m ∨4m ∨5m ∨6m ∨7m二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。
乙说:王教授不是上海人,是苏州人。
丙说:王教授既不是上海人,也不是杭州人。
王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。
试判断王教授是哪里人?解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。
则根据题意应有: 甲:⌝P ∧Q乙:⌝Q ∧P丙:⌝Q ∧⌝R王教授只可能是其中一个城市的人或者3个城市都不是。
所以,丙至少说对了一半。
因此,可得甲或乙必有一人全错了。
又因为,若甲全错了,则有⌝Q ∧P ,因此,乙全对。
同理,乙全错则甲全对。
所以丙必是一对一错。
故王教授的话符号化为:((⌝P ∧Q )∧((Q ∧⌝R )∨(⌝Q ∧R )))∨((⌝Q ∧P )∧(⌝Q ∧R ))⇔(⌝P ∧Q ∧Q ∧⌝R )∨(⌝P ∧Q ∧⌝Q ∧R )∨(⌝Q ∧P ∧⌝Q ∧R )⇔(⌝P ∧Q ∧⌝R )∨(P ∧⌝Q ∧R )⇔⌝P ∧Q ∧⌝R⇔T因此,王教授是上海人。
三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。
证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。
离散数学期末考试试题及答案
![离散数学期末考试试题及答案](https://img.taocdn.com/s3/m/1b89f8442e60ddccda38376baf1ffc4fff47e211.png)
离散数学期末考试试题及答案一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A∩B是()A. {1, 2, 3, 4, 5}B. {2, 4}C. {1, 3, 5}D. {2, 4, 6, 8}2. 下列关系中,哪个是等价关系?()A. 小于关系B. 大于等于关系C. 模2同余关系D. 整除关系3. 设P(x)是谓词逻辑公式,下列哪个命题与∀xP(x)等价?()A. ∃x¬P(x)B. ¬∀xP(x)C. ¬∃xP(x)D. ∃x¬P(x)4. 一个图的欧拉回路是指()A. 经过每一条边的路径B. 经过每一个顶点的路径C. 经过每一条边的环D. 经过每一个顶点的环5. 设G是一个无向图,下列哪个说法是正确的?()A. G的每个顶点的度数都相等B. G的每个顶点的度数都不相等C. G的任意两个顶点之间都有一条边D. G的任意两个顶点之间都不一定有边6. 下列哪个图是哈密顿图?()A. K3,3B. K5C. K4,4D. K67. 设G是一个具有n个顶点的连通图,则G的最小生成树至少包含()A. n个顶点B. n-1条边C. n+1条边D. 2n条边8. 下列哪个算法可以用来求解最短路径问题?()A. Dijkstra算法B. Kruskal算法C. Prim算法D. Floyd算法9. 设P和Q是两个命题,下列哪个命题与(P→Q)∧(Q→P)等价?()A. P∧QB. P∨QC. P↔QD. ¬P∨¬Q10. 设A是一个有限集合,A的幂集是指()A. A的所有子集B. A的所有真子集C. A的所有非空子集D. A的所有非空真子集二、填空题(每题3分,共30分)11. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A-B=______。
12. 设P(x)是谓词逻辑公式,∃xP(x)表示“存在一个x使得P(x)成立”,那么∀x¬P(x)表示“______”。
离散数学期末试题A答案及评分标准
![离散数学期末试题A答案及评分标准](https://img.taocdn.com/s3/m/e7d89dc17375a417876f8fdf.png)
--北京工商大学离散数学试卷(A)答案及评分标准题号 一 二三 四 五 六 七总分得分一、(30分)设A ={1,2,3,4},给定A 上二元关系R 如下:R ={<1,1>, <1,2>, <2,3>, <3,3>, <4,4>}请回答以下各问题:1.写出R 的关系矩阵. (3分)2.画出R 的关系图. (3分)3.求包含R 的最小的等价关系,并写出由其确定的划分. (6分)4.分别用关系矩阵表示出R 的自反闭包r (R )、对称闭包s (R ). (6分)5.求传递闭包t (R ).(写出计算步骤)(6分)6.求R 2的关系矩阵. (3分)7.集合A 上最多可以确定多少个不同的二元关系?说明理由。
(3分)[解] (1)⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000010001000011R M 。
……(3分)(2) ……(3分)(3)法一:直接由等价关系与划分之间的一一对应可知,包含R 的最小等价关系为: {<1, 2>, <1, 3>, <2, 1>,<2, 3>, <3, 1> <3, 2>}∪I A , ……(3分) 对应的划分为{{1, 2, 3},{4}}. ……(6分) 法二:包含R 的最小的等价关系就是tsr (R ), 计算过程如下:⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=100001000110001110000100001000011000010001000011)(E M M R R r,100001100111001110000110001100011000010001100011][)()()(⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+=T R r R r R sr M M M ,3,10001110111011110000110011100111000011001110011)]([)()()]([2≥=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯=k M M M M k R sr R sr R sr R sr 从而,10000111011101111000011101110111100001110111011110000111011101111000011001110011432)]([)]([)]([)()(⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+++=R sr R sr R sr R sr R tsr M M M M M即}2,3,1,3,3,2,1,2,3,1,2,1{)(><><><><><><⋃=A I R tsr =包含R 的最小的等价关系, ……(3分) 故其对应的划分为{{1, 2, 3},{4}}. ……(6分) 法三:由于4=A ,包含R 的最小的等价关系就是4131211)()()()()()(----⋃⋃⋃⋃⋃⋃⋃⋃==R R R R R R R R I R rts R tsr A ,计算过程如下:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=-⋃100001100101001110000110000100011000010001000011][1TR R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=-⋃10000111011101111000011001010011)][(22)(21T R R R R M M M412131)()(33)(10000111011101111000011001010011)][(---⋃⋃⋃==⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=R R R R T R R R R M M M M M 考试纪律承诺本人自愿遵守学校考试纪律,保证以诚信认真的态度作答试卷。
离散数学期末试卷A卷及答案
![离散数学期末试卷A卷及答案](https://img.taocdn.com/s3/m/265e43040c22590103029d23.png)
《离散数学》试卷(A 卷)一、 选择题(共5 小题,每题 3 分,共15 分)1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕⋃)(为(C )。
A 、{1,2}B 、{2,3}C 、{1,4,5}D 、{1,2,3}2、下列语句中哪个是真命题 ( A )A 、如果1+2=3,则4+5=9;B 、1+2=3当且仅当4+5≠9。
C 、如果1+2=3,则4+5≠9;D 、1+2=3仅当4+5≠9。
3、个体域为整数集合时,下列公式( C )不是命题。
A 、)*(y y x y x =∀∀B 、)4*(=∃∀y x y xC 、)*(x y x x =∃D 、)2*(=∃∃y x y x4、全域关系A E 不具有下列哪个性质( B )。
A 、自反性B 、反自反性C 、对称性D 、传递性5、函数612)(,:+-=→x x f R R f 是( D )。
A 、单射函数B 、满射函数C 、既不单射也不满射D 、双射函数二、填充题(共 5 小题,每题 3 分,共15 分)1、设|A|=4,|P(B)|=32,|P(A ⋃B)|=128,则|A ⋂B|=ˍˍ2ˍˍˍ.2、公式)(Q P Q ⌝∨∧的主合取式为 。
3、对于公式))()((x Q x P x ∨∃,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为ˍˍˍ1ˍˍˍ。
4、设A ={1,2,3,4},则A 上共有ˍˍˍ15ˍˍˍˍ个等价关系。
5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。
三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分)1、“这个语句是真的”是真命题。
( F )2、“刚和小强是同桌。
”是复合命题。
( F )3、))(()(r q q p p ∧⌝∧→⌝∨是矛盾式。
( T )4、)(T S R T R S R ⋂⋅⊆⋅⋃⋅。
离散数学期末考试试卷(A卷)
![离散数学期末考试试卷(A卷)](https://img.taocdn.com/s3/m/54558ea1aa00b52acec7ca05.png)
离散数学期末考试试卷(A卷)一、判断题:(每题2分,共10分)(1)(1)(2)对任意的命题公式, 若, 则(0)(3)设是集合上的等价关系, 是由诱导的上的等价关系,则。
(1)(4)任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等价。
(0)(5)设是上的关系,分别表示的对称和传递闭包,则(0)二、填空题:(每题2分,共10分)(1) 空集的幂集的幂集为()。
(2) 写出的对偶式()。
(3)设是我校本科生全体构成的集合,两位同学等价当且仅当他们在同一个班,则等价类的个数为(),同学小王所在的等价类为()。
(4)设是上的关系,则满足下列性质的哪几条:自反的,对称的,传递的,反自反的,反对称的。
()(5)写出命题公式的两种等价公式( )。
三、用命题公式符号化下列命题(1)(2)(3),用谓词公式符号化下列命题(4)(5)(6)。
(12分)(1)(1)仅当今晚有时间,我去看电影。
(2)(2)假如上午不下雨,我去看电影,否则就在家里读书。
(3)你能通你能通过考试,除非你不复习。
(4)(4)并非发光的都是金子。
(5)(5)有些男同志,既是教练员,又是国家选手。
(6)(6)有一个数比任何数都大。
四、设,给定上的两个关系和分别是(1)(1)写出和的关系矩阵。
(2)求及(12分)五、求的主析取范式和主合取范式。
(10分)六、设是到的关系,是到的关系,证明:(8分)七、设是一个等价关系,设对某一个,有,证明:也是一个等价关系。
(10分)八、(10分)用命题推理理论来论证 下述推证是否有效?甲、乙、丙、丁四人参加比赛,如果甲获胜,则乙失败;如果丙获胜,则乙也获胜,如果甲不获胜,则丁不失败。
所以,如果丙获胜,则丁不失败。
九、(10分) 用谓词推理理论来论证下述推证。
任何人如果他喜欢步行,他就不喜欢乘汽车,每一个人或喜欢乘汽车,或喜欢骑自行车(可能这两种都喜欢)。
有的人不爱骑自行车,因而有的人不爱步行 (论域是人)。
浙江师范大学离散数学期末试卷A
![浙江师范大学离散数学期末试卷A](https://img.taocdn.com/s3/m/b7a858c365ce050877321340.png)
浙江师范大学《离散数学》考试卷(2010—2011学年第 1 学期)考试形式闭卷使用学生软件工程、网络工程09考试时间120分钟出卷时间2010 年12 月26 日说明:考生应将全部答案都写在答题纸上,否则作无效处理。
一.选择题(每题2分,共20分):1. 设P:我平时认真学习,Q:我通过离散数学考试,则如下哪种说法能符号化为P→Q:()A.除非我平时认真学习,否则我不能通过离散数学考试。
B. 若我平时认真学习,则我通过离散数学考试。
C. 因为我平时不认真学习,所以我没有通过离散数学考试。
D. 我通过离散数学考试仅当我平时认真学习。
2.命题公式P→(P∨Q∨R) 为()。
A.重言式B.可满足式C.矛盾式D.等值式3.设集合A={c, {c}},下列命题错误的是()。
A. {c}∈P(A)B. {c}⊆P(A)C. {{c}}∈P(A)D. {{c}}⊆P(A)4. 设f: N N, f(x)=(x) mod 5, 即x除以5的余数,则函数f ().A. 仅单射B. 仅满射C. 双射D. 既不单设也不满射5.下列命题中正确的结论是:()A.集合上A的关系如果不是自反的,就一定是反自反的;B.集合上A的关系如果不是对称的,就一定是反对称的;C.在任意关系R上,若<a, b>、<b, c>∈R,则必有<a, c>∈R;D.非空集合A上的恒等关系既是等价关系又是偏序关系6. 设集合A={a, b, c},A上的关系R={<a, b>, <a, c>},则下列结论错误的是:()A.R-1 = {<b, a>, <c, a>}; B. r(R) = R;C.s(R) = {<a, b>, <a, c>, <b, a>, <c, a>}; D. t(R) = R7.设集合A 和二元运算*,可交换的代数运算是( )。
离散数学期末试卷(3套附答案)
![离散数学期末试卷(3套附答案)](https://img.taocdn.com/s3/m/6e44b16e02768e9951e73862.png)
2 离散数学(A 卷) 王军东(答案写在答题纸上,写在试题纸上无效)一、单项选择题(每小题3分,共30分)1.设A , B 是集合,若A B A =-,则(A) B = ∅ (B) A = ∅ (C) =⋂B A ∅ (D) A B A =⋂2.在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.3.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R4.设p :我们划船,q :我们跑步, 则有命题“我们不能既划船又跑步”符号化为( )(A) ⌝ p ∧⌝ q (B) ⌝ p ∨⌝ q (C) ⌝ (p ↔ q ) (D) ⌝ (⌝ p ∨⌝ q ).5.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( )A .仅是单射B .仅是满射C .是双射D .不是函数6. 设集合A = {1, 2, 3, 4, 5}上的关系R = {(x , y )|x , y ∈ A 且x + y = 6},则R 的性质是( ).(A) 自反的. (B) 对称的. (C) 对称的、传递的. (D) 反自反的、传递的.7. 下列联结词中,不满足交换律的是( ).(A)∧. (B)∨. (C)⊕. (D) →.8..设G 是n 阶简单无向图,则其最大度)(G ∆( ).(A) > n (B) ≤ n . (C) < n . (D) ≥ n .9. 下列所示的哈斯图所对应的偏序集中能构成格的是( )A .B .C .D .课程考试试题学期 学年 拟题人:校对人:拟题学院(系): 适 用 专 业:10. 设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 二、填空题(每空3分,共30分)1.设A={1,2},B={2,3},则A-B=_______, A ⊕B=________,2.设A={2,3 },R ⊆A ×A ,R={(2,3), (2,2)},则R 的自反闭包r(R)=__________,对称闭包s(R)=__________。
2020-2021大学《离散数学》期末课程考试试卷A2(含答案)
![2020-2021大学《离散数学》期末课程考试试卷A2(含答案)](https://img.taocdn.com/s3/m/cb841acf6edb6f1afe001f96.png)
2020-2021《离散数学》期末课程考试试卷A2专业: 考试日期: 所需时间:120分钟 总分:100分 闭卷 一、选择题(每小题3分,总共30分)1、设P :我们划船,Q :我们跑步。
命题“我们不能既划船又跑步”符号化为( )A 、Q P ⌝∧⌝B 、Q P ⌝∨⌝C 、)(Q P ↔⌝D 、)(Q P ⌝↔ 2、下列语句中哪个是真命题?( )A 、我正在说谎。
B 、严禁吸烟C 、如果1+2=3,那么雪是黑的。
D 、如果1+2=5,那么雪是黑的。
3、命题公式Q Q P P →→∧))((是( )A 、矛盾式B 、蕴含式C 、重言式D 、等值式4、谓词公式)())()((x Q y yR x P x →∃∨∀中变元x 是( ) A 、自由变量 B 、约束变量 C 、既不是自由变量也不是约束变量 D 、既是自由变量也是约束变量5、若个体域为整数域,下列公式中哪个值为真?( )A 、)0(=+∃∀y x y xB 、)0(=+∀∃y x x yC 、)0(=+∀∀y x y xD 、)0(=+∃⌝∃y x y x6、设个体域A={a,b},公式)()(x xS x xP ∃∧∀在A 中消去量词应为( ) A 、)()(x S x P ∧ B 、))()(()()(b S a S b P a P ∨∧∧ C 、)()(b S a P ∧ D 、)()()()(b S a S b P a P ∨∧∧8、设A={{1,2,3},{4,5},{6,7,8}},下列正确的是( ) A 、1∈A B 、{1,2,3}⊆A C 、{{4,5}}⊂A D 、Φ∈A 9、幂集P (P (P (Φ)))为( )A 、{{Φ},{Φ,{Φ}}}B 、{Φ,{Φ},{Φ,{Φ}}}C 、{Φ,{Φ},{Φ,{Φ}},{{Φ}}}D 、{Φ,{Φ,{Φ}}}10、任意一个具有多个等幂元的半群,它( )A 、不能构成群B 、不一定能构成群C 、能构成群D 、不能构成交换群 二、填空题(每小题2分,总共16分)1、对于前提:S Q ⌝→,S ∨R ,R ⌝,Q P ↔⌝,其有效结论为2、谓词公式)()()(y yR x xQ x xP ∃∨∀→∀的前束范式为3、设集合A={x|x <3,x ∈Z},B={x|x=2k,k ∈Z} C={1,2,3,4,5},则 A ⊕(C-B )=4、某校有足球队员38人,篮球队员15人,排球队员20人,三队队员总数为58人,其中只有3人同时参加3种球队,则仅仅参加两种球队的队员为 人 。
大学《离散数学》期末考试试卷及答案(1)
![大学《离散数学》期末考试试卷及答案(1)](https://img.taocdn.com/s3/m/7ef269af988fcc22bcd126fff705cc1754275f44.png)
大学《离散数学》期末考试试卷及答案(1)一、选择题1. 离散数学的主要研究对象是()。
A. 连续的数学结构B. 有限的数学结构C. 数学的综合应用D. 数学的哲学思考2. 命题逻辑是离散数学的一个重要组成部分,它主要研究()。
A. 命题之间的真假关系B. 变量之间的关系C. 函数之间的关系D. 集合之间的关系3. 集合的基本运算包括()。
A. 并、交、差、补B. 加、减、乘、除C. 包含、相等、不等、自反D. 大于、小于、等于、不等于二、填空题1. 若集合A={m|2m-1>3},则A中的元素为______。
2. 有一个集合A={1,2,3},则集合A的幂集为______。
3. 若命题p为真,命题q为假,则复合命题“p∧q”的真值为______。
三、解答题1. 请写出离散数学中常用的数学符号及其含义。
2. 请解释命题逻辑中的充分必要条件及其符号表示,并给出一个例子。
3. 请定义集合的笛卡尔积,并给出两个集合进行笛卡尔积运算的例子。
四、问答题1. 离散数学在计算机科学中有着重要的应用,请列举三个与计算机科学相关的离散数学应用领域并简要介绍。
2. 请简要解释归纳法在离散数学中的作用,并给出一个使用归纳法证明的例子。
3. 什么是有向图?请给出一个有向图的例子,并解释该图中的关系。
参考答案:一、选择题1. B2. A3. A二、填空题1. A={m|2m-1>3}2. {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}3. 假三、解答题1. 常用数学符号及含义:- ∪:并,表示集合的合并操作。
- ∩:交,表示集合的交集操作。
- ∖:差,表示减去一个集合中的元素。
- ⊆:包含,表示一个集合包含于另一个集合。
- =:相等,表示两个集合具有相同的元素。
2. 充分必要条件是指一个命题的成立与另一个命题的成立互为必要条件,若A是B的充分必要条件,那么当A成立时B一定成立,且当A不成立时B也一定不成立。
离散数学期末考试试题及答案
![离散数学期末考试试题及答案](https://img.taocdn.com/s3/m/e9782e73302b3169a45177232f60ddccda38e68b.png)
离散数学期末考试试题及答案离散数学期末考试试题及答案离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。
下面是小编整理的离散数学期末考试试题及答案,欢迎阅读参考!一、【单项选择题】(本大题共15小题,每小题3分,共45分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、在由3个元素组成的集合上,可以有 ( ) 种不同的'关系。
[A] 3 [B] 8 [C]9 [D]272、设A1,2,3,5,8,B1,2,5,7,则AB( )。
[A] 3,8 [B]3 [C]8 [D]3,83、若X是Y的子集,则一定有( )。
[A]X不属于Y [B]X∈Y[C]X真包含于Y [D]X∩Y=X4、下列关系中是等价关系的是( )。
[A]不等关系 [B]空关系[C]全关系 [D]偏序关系5、对于一个从集合A到集合B的映射,下列表述中错误的是( )。
[A]对A的每个元素都要有象 [B] 对A的每个元素都只有一个象[C]对B的每个元素都有原象 [D] 对B的元素可以有不止一个原象6、设p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取得好成绩”的符号化形式为( )。
[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},则A到A的双射共有( )。
[A]3个 [B]6个 [C]8个 [D]9个8、一个连通G具有以下何种条件时,能一笔画出:即从某结点出发,经过中每边仅一次回到该结点( )。
[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点 [D] G没有或有2个奇数度结点9、设〈G,*〉是群,且|G|>1,则下列命题不成立的是( )。
[A] G中有幺元 [B] G中么元是唯一的[C] G中任一元素有逆元 [D] G中除了幺元外无其他幂等元10、令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( )[A] p→┐q [B] p∨┐q[C] p∧q [D] p∧┐q11、设G=的结点集为V={v1,v2,v3},边集为E={,}.则G的割(点)集是( )。
2020-2021大学《离散数学》期末课程考试试卷A(含答案)
![2020-2021大学《离散数学》期末课程考试试卷A(含答案)](https://img.taocdn.com/s3/m/b9be5def31126edb6e1a1096.png)
2020-2021《离散数学》期末课程考试试卷A一、填空题(每空3分,共15分)1.命题公式)(r q p p ∨∨→的类型是 。
2.设p :我将去镇上。
q :我有时间。
则命题“我将去镇上,仅当我有时间。
”的符号化形式为 。
3.化简下面集合表达式:)())((C B A C A B -= 。
4.已知一有向图的D 的度序列为(2,3,2,3),出度序列为(1,2,1,1),则D 的入度序列为 。
5.5个顶点的非同构的无向树共有 棵。
二、选择题(单项选择题,每题3分,共30分)1.设命题公式)(p q p ⌝→∧,记作A ,则使A 的真值指派为1的p ,q 的取值是( )。
A 、00B 、 01C 、10D 、112.设p :你努力。
q :你将失败。
则命题“除非你努力,否则你将失败。
”符号化为( )。
A 、p →q B 、q →p C 、┐p →q D 、┐q →p 3.下列公式中不与)(q p ↔⌝等值的是( )。
A 、)()(q p q p ∨⌝∧⌝∨B 、)()(q p q p ∧⌝∨⌝∧C 、q p ↔⌝D 、q p ⌝↔4.下面公式正确的是( )。
A 、)()())()((x xB x xA x B x A x ∀∨∀⇔∨∀ B 、)()())()((x xB x xA x B x A x ∃∨∃⇔∨∃C 、)())((x xB A x B A x ∃→⇔→∀D 、)()(x A x x xA ⌝∃⇔⌝∃5.下列命题错误的是( )。
A 、}},,{,,,{},{c b a c b a b a ⊆ B 、}},{,,,{},{b a c b a b a ∈ C 、}}},{{,,{},{b a b a b a ⊆D 、}}},{{,,{},{b a b a b a ∈6.设R={<x,y>|x,y ∈R ,x-y+2>0且x-y-2<0},则R 具有的性质是( )。
最新离散数学考试试题A卷及答案
![最新离散数学考试试题A卷及答案](https://img.taocdn.com/s3/m/61ac2b4b8bd63186bcebbcf2.png)
精品文档离散数学考试试题(A卷及答案)一、(10分)判断下列公式的类型(永真式、永假式、可满足式)?1)((P?Q)∧Q)?((Q∨R)∧Q) 2)?((Q?P)∨?P)∧(P∨R)3)((?P∨Q)?R)?((P∧Q)∨R)解:1)永真式;2)永假式;3)可满足式。
二、(8分)个体域为{1,2},求?x?y(x+y=4)的真值。
解:?x?y(x+y=4)??x((x+1=4)∨(x+2=4))?((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))?(0∨0)∧(0∨1)?1∧1?0三、(8分)已知集合A和B且|A|=n,|B|=m,求A到B的二元关系数是多少?A到B的函数数是多少?解:因为|P(A×B)|=2|A×B|=2|A||B|=2mn,所以A到B的二元关系有2mn个。
因为|BA|=|B||A|=mn,所以A到B的函数mn个。
(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。
四、解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、(10分) 75个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20人这三种东西都乘过,其中55人至少乘坐过其中的两种。
离散数学试题A卷及答案
![离散数学试题A卷及答案](https://img.taocdn.com/s3/m/028276a49fc3d5bbfd0a79563c1ec5da50e2d6bb.png)
离散数学试题A卷及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}中,子集的个数是多少?A. 3B. 7C. 8D. 9答案:C2. 以下哪个命题是真命题?A. ∃x∈R, x^2 = -1B. ∀x∈R, x^2 ≥ 0C. ∀x∈R, x^2 = 1D. ∃x∈R, x^2 = 2答案:B3. 函数f: N → N定义为f(x) = 2x,该函数是:A. 单射B. 满射C. 双射D. 非函数答案:A4. 以下哪个逻辑表达式等价于p∧(q∨¬p)?A. p∧qB. p∨qC. ¬p∨qD. p∧¬p答案:A5. 以下哪个图是二分图?A. 完全图K5B. 完全二分图K3,3C. 环图C5D. 星形图K1,4答案:B二、填空题(每题3分,共15分)1. 若A={1,2,3},B={2,3,4},则A∩B=______。
答案:{2,3}2. 命题“若x>0,则x^2>0”的逆否命题是:若x^2≤0,则______。
答案:x≤03. 在一个有向图中,若存在从顶点u到顶点v的有向路径,则称v可到达u,若图中每个顶点都可到达其他所有顶点,则称该有向图是______。
答案:强连通的4. 一个集合的幂集包含该集合的所有______。
答案:子集5. 在逻辑中,合取(AND)操作符用符号______表示。
答案:∧三、解答题(每题10分,共20分)1. 证明:若A⊆B且B⊆C,则A⊆C。
证明:设x∈A,则由A⊆B,可得x∈B。
又由B⊆C,可得x∈C。
因此,A⊆C。
2. 给定一个图G,包含顶点集V={v1, v2, v3, v4}和边集E={(v1,v2), (v2, v3), (v3, v4), (v4, v1), (v1, v3), (v2, v4)},请判断该图是否是欧拉图,并说明理由。
答案:该图是欧拉图。
因为该图是连通的,且每个顶点的度都是偶数。
结束语:本试题涵盖了离散数学中的基本概念和原理,通过这些题目的练习,可以加深对离散数学知识的理解。
离散数学期末考试试题及答案
![离散数学期末考试试题及答案](https://img.taocdn.com/s3/m/21dd22693069a45177232f60ddccda38376be195.png)
离散数学期末考试试题及答案一、选择题(每题4分,共40分)1.下列哪一个不是集合操作? A. 并 B. 交 C. 补 D. 叉积正确答案:D2.下列哪一个不是真命题? A. 1 + 1 = 2 B. 所有的猫都会飞 C. 所有的数都是整数 D. 狗是哺乳动物正确答案:B3.设A = {1, 2, 3},B = {3, 4, 5},则A ∩ B的结果是:A. {1, 2}B. {3}C. {1, 3}D. {4, 5}正确答案:B4.设A = {1, 2, 3},B = {3, 4, 5},则A × B的结果是:A. {(1, 3), (2, 4), (3, 5)}B. {(1, 1), (2, 2), (3, 3)}C. {(3, 3), (3,4), (3, 5)} D. {(3, 1), (3, 2), (3, 3)}正确答案:A5.若n为正整数,则n是偶数的充要条件是: A. n可以被2整除 B. n除以2的余数为1 C. n大于2 D. n的绝对值是偶数正确答案:A6.若A = {1, 2, 3, 4},B = {3, 4, 5},则A - B的结果是:A. {1, 2}B. {3}C. {1, 3, 4}D. {4, 5}正确答案:A7.已知命题P和命题Q,下列哪个是它们的逻辑等价式?A. P ∧ (P ∨ Q) = P B. P ∧ (P ∨ Q) = Q C. P ∨ (P ∨ Q) = P D. P ∨ (P ∨ Q) = Q正确答案:A8.设n为奇数,则n + n的结果是: A. 2n B. n^2 C.n(n+1) D. n(n-1)正确答案:C9.已知集合A = {1, 2, 3, 4},B = {4, 5, 6},C = {6, 7, 8},则(A ∩ B)∩ C的结果是: A. {1, 2, 3} B. {4} C. {6} D. 空集正确答案:D10.若命题P为真,则下列哪个推理是正确的? A. 如果P为真,则Q为真(反证法) B. P与Q都为真(析取引理)C. P蕴含Q(推理法则) D. P等价于Q(假设法)正确答案:A二、解答题(每题10分,共60分)1.证明:任取集合A和B,有(A ∪ B) - B = A - B解答:运用集合的基本运算性质:对任意元素x,x∈ (A ∪ B) - B,即x ∈ (A ∪ B)且x ∉ B。
离散数学期末考试试题及答案
![离散数学期末考试试题及答案](https://img.taocdn.com/s3/m/d07e0a46ae45b307e87101f69e3143323968f52f.png)
离散数学期末考试试题及答案一、选择题(每题5分,共25分)1. 设A={1,2,3,4,5},B={2,3,5,7,11},则A∩B等于()A. {1,2,3,4,5}B. {2,3,5}C. {1,4}D. {2,3,5,7,11}2. 下面哪一个图是连通图?()A. 无向图B. 有向图C. 平面图D. 连通图3. 若一个图G有n个顶点,e条边,则以下哪个条件是图G 为连通图的必要条件?()A. n ≥ eB. n ≤ eC. n = eD. n + e = 24. 在一个简单图中,若每个顶点的度数都等于n-1,则该图是()A. 无向图B. 有向图C. 完全图D. 平面图5. 以下哪一个命题是正确的?()A. 每个图都有欧拉回路B. 每个连通图都有哈密顿回路C. 每个图都有哈密顿路径D. 每个连通图都有欧拉路径二、填空题(每题5分,共25分)6. 设A={a,b,c},B={1,2,3},则A×B的结果是______。
7. 一个连通图的生成树包含______条边。
8. 在一个n阶完全图中,任意两个不同顶点之间的距离是______。
9. 一个图G的顶点集为V,边集为E,则图G的邻接矩阵表示为______。
10. 在一个简单图中,若每个顶点的度数都等于n-1,则该图的边数是______。
三、判断题(每题5分,共25分)11. 一个图的子图包含原图的所有顶点和边。
()12. 一个连通图的所有顶点都连通。
()13. 在一个简单图中,每个顶点的度数都小于等于n-1。
()14. 每个图都有哈密顿路径。
()15. 一个图G的生成树是原图G的子图。
()四、解答题(共50分)16. (10分)设A={1,2,3,4,5},B={2,3,5,7,11},求A∪B 和A-B。
17. (10分)证明:一个连通图的每个顶点的度数都大于等于2。
18. (10分)给定一个图G,顶点集V={a,b,c,d,e},边集E={ab,bc,cd,de,ac,ad},求图G的所有连通分支。
浙师大离散数学试卷2011
![浙师大离散数学试卷2011](https://img.taocdn.com/s3/m/347cc487cc22bcd126ff0c9b.png)
浙江师范大学《离散数学A 》考试卷(2010----2011 学年第1学期)考试形式 闭卷笔试 使用学生 计本10非师范考试时间 120 分钟 出卷时间 2011 年 12 月 29 日说明:考生应将全部答案都写在答题纸上,否则作无效处理。
一、选择题。
(每题2分,共10分)1、设公式A 为重言式,则公式A ⌝的类型为()A .重言式B .可满足式C .矛盾式D .不能确定2、以下结论不正确的是()A .AB A B →⇔⌝∨ B .R S S R =C .~A B A B -=∧D .1、2、2、4、2、3为某图的度数列3、G 是阶小于6的一个群,则以下结论不正确的是()A .运算满足消去律B .运算满足交换律C .运算满足结合律D .运算满足分配律4、设R 和S 为集合A 上的两个等价关系,则R S ⋂具有等价关系()A .一定有B .不一定有C .一定没有D .可能有5、下列哪一个图不一定是树()A .无回路的连通图B .有n 个顶点,n-1条边的连通图C .每对顶点间都有通路的图D .连通但删去一条边则是不连通图二、填空题。
(每空2分,共16分)1、无向连通图G 有12条边,4个3度顶点,其余顶点的度数小于2,则G 中至少有 个顶点。
2、在有n 个顶点的连通图中,至少需要有 条边。
3、G 为模12的乘法群,即,x y G ∀∈,*(mod12)x y xy r =≡,则元素5的阶为 。
4、以数列1,1,2,4,8,12,25为权的最优二元树的权为 。
5、设123456164523σ⎛⎫= ⎪⎝⎭,则2σ的奇偶性为 。
6、集合A,3A =. 则在A 上可建立个 二元关系。
7、设{}1,2,3,4,A =,将公式(()())x F x G x ∀∨中量词消去后的公式是8、G 是一个群12,,,2x G yxy x x e y -∈=≠=,则x 的阶是 。
三、计算题。
(共6题,每题8分共48分)1、在集合{}1,2,3,4A =上随机产生二个关系1R ,2R ,要求15R =,26R =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江师范大学《离散数学》考试卷
(2010—2011学年第 1 学期)
考试形式闭卷使用学生软件工程、网络工程09
考试时间120分钟出卷时间2010 年12 月26 日
说明:考生应将全部答案都写在答题纸上,否则作无效处理。
一.选择题(每题2分,共20分):
1. 设P:我平时认真学习,Q:我通过离散数学考试,则如下哪种说法能符号化为
P→Q:()
A.除非我平时认真学习,否则我不能通过离散数学考试。
B. 若我平时认真学习,则我通过离散数学考试。
C. 因为我平时不认真学习,所以我没有通过离散数学考试。
D. 我通过离散数学考试仅当我平时认真学习。
2.命题公式P→(P∨Q∨R) 为()。
A.重言式B.可满足式C.矛盾式D.等值式
3.设集合A={c, {c}},下列命题错误的是()。
A. {c}∈P(A)
B. {c}⊆P(A)
C. {{c}}∈P(A)
D. {{c}}⊆P(A)
4. 设f: N N, f(x)=(x) mod 5, 即x除以5的余数,则函数f ().
A. 仅单射
B. 仅满射
C. 双射
D. 既不单设也不满射
5.下列命题中正确的结论是:()
A.集合上A的关系如果不是自反的,就一定是反自反的;
B.集合上A的关系如果不是对称的,就一定是反对称的;
C.在任意关系R上,若<a, b>、<b, c>∈R,则必有<a, c>∈R;
D.非空集合A上的恒等关系既是等价关系又是偏序关系
6. 设集合A={a, b, c},A上的关系R={<a, b>, <a, c>},则下列结论错误的是:()
A.R-1 = {<b, a>, <c, a>}; B. r(R) = R;
C.s(R) = {<a, b>, <a, c>, <b, a>, <c, a>}; D. t(R) = R
7.设集合A和二元运算*,可交换的代数运算是()。
A.设)
(R
M
A
n
=,运算*是矩阵的乘法
B.设|
|
,
,
},
5
,4,3,2,1
,1{b
b
a
A
b
a
A=
*
∈
∀
-
-
=
C.设b
a
b
a
A
b
a
y
x
P
A
=
*
∈
∀
=,
,
}),
,
({
D.设(),,,23
A Z a b A a b a b
=∀∈*=+
整数集
8.以下命题中不正确的结论是()
A.循环群必为交换群;B.交换群必为循环群;
C.素数阶群必为循环群;D.群的运算满足消去率。
9. 8阶有限群的任何子群一定不是()的。
A. 2阶
B. 3 阶
C. 4 阶
D. 8 阶
10.以下命题中正确的结论是()
A.n = 2k (k ≥1)时,完全图K n必为欧拉图;
B.如果一个连通图的奇度顶点的个数大于2,那么它可能是一个欧拉图;
C.无向图中,顶点连通关系~ 是顶点集V上的等价关系;
D.顶点度数列(5, 4, 3, 2, 2)可简单图化。
二.填空题(每题2分,共20分)
11. 设p: 张三的祖籍是山东,q:张三的祖籍是浙江,则“张三的祖籍是山东或浙
江”可符号化表示为:。
12.设个体域为D={a, b},则公式∃x(F(x) G(x) )的量词消去后的公式为:。
13. 设A、B为集合,|A|=5, |B|=8, |A⋂B|=3, 则|A⋃B| = 。
14.设集合A = {a, b, c, d},A上的二元关系R = {<a,b>, <b,d>, <c,c>, <c,d>},则R2= 。
15.设集合S = {a, b, c} 上的二元关系R的关系矩阵
110
001
001
R
M
⎛⎫
⎪
=
⎪
⎪
⎝⎭
,则R具有的
基本性质为。
16. 设A ={1, 3, 5},A 上的二元运算*为:a *b =max{a , b },则在独异点<A ,*>中,单
位元是 ,零元是 。
17. 设a 是8阶群G 的生成元,则a 3是 阶元,a 4是 阶元。
18.设G 是有限群且|G | = 6,H 是G 的子群且|H | = 2,则H 在G 中的右陪集个数
为 。
19.无向图G 有20条边,4个6度顶点,2个5度顶点,其余均为2度顶点,则G
一共有 个顶点。
20.已知下图,它的点连通度)(G κ为 ,边连通度)(G λ为 。
三.计算题(每小题9分,共45分)
21.用等值演算方法求出如下两个公式的主析取范式,并由此判定它们是否等值:
p →q →r 与p →(q →r )
22.设集合A ={1, 2, 3, 4}, A 上的二元关系R ={ <1,4>, <2,3>, <3,2>, <4,1> } ⋃ I A ,
通过画出关系图来分析说明R 是否为A 上的等价关系;若为等价关系,则列出所有的等价类。
23.设}12,,2,1{ =A ,≤为整除关系,}4,3,2{=B ,
(1)画出偏序集≤><,A 的哈斯图;(2)找出A 的极大元、极小元、最大元、最小元;(3)在≤><
,A 中求B 的上界、下界、最小上界、最大下界。
24.设>=<a G 是18阶循环群,(1)求出G 的所有生成元;(2)求出G 的所有子
群。
25.求如下有向图D 的邻接矩阵()A D ,并求出从顶点v 3到顶点v 4长度分别为1, 2,
3, 4的通路数。
四.证明题(第26题5分,第27题10分,共15分)
26. 设A 、B 、C 为任意集合,证明:A -B -C = A – (B ⋃C )
27. 构造证明:
前提:(U ∨V
∨ R )→(M ∧ N ), U ∨ P , P → (Q ∨ S ) 结论:⌝Q ∧⌝S → N
1v 2v 3v 4
v。