48V-30A移相全桥ZVS-DC-DC-变换器的设计
第十章-软开关技术2——移相控制ZVS-PWM-DC-DC全桥变换器
loss
TS / 2
而 t25
Lr [ I 2 I Lf (t5 ) / K ] Vin
那么有:Dloss
2Lr [ I 2 I Lf (t5 ) / K ] Vin TS
Dloss 越大;②负载越大, Dloss越大;③ Vin越低,Dloss 越大。 可知:① Lr 越大, Dloss 的产生使DS 减小,为了得到所要求的输出电压,就必须减小原副边的 匝比。而匝比的减小,带来两个问题: ①原边电流增加,开关管电流峰值也要增加,通态损耗加大; ②副边整流桥的耐压值要增加。
6.
Vin i p (t ) (t t4 ) Lr
到 t5 时刻,原边电流达到折算到原 边的负载电流 I Lf (t5 ) / K值,该开 关模态结束。 持续时间为:
t45
Lr I Lf (t5 ) / K Vin
7. 开关模态6 在这段时间里,电源给负载供电 原边电流为:
10.3. 3 两个桥臂实现ZVS的差异
1.实现ZVS的条件 要实现开关管的零电压开通,必须有足够的能量: ①抽走将要开通的开关管的结电容(或外部附加电容)上的电荷; ②给同一桥臂关断的开关管的结电容(或外部附加电容)充电; 考虑到变压器的原边绕组电容,还要有能量用来: ③抽走变压器原边绕组寄生电容CRT 上的电荷。
ip (t ) I p (t0 ) I1
vC1 (t )
I1 (t t0 ) 2Clead I1 vC 3 (t ) Vin (t t0 ) 2Clead
在
C3 电压降到零,D3 自 t1时刻,
然导通。
3.开关模态2
td (lead ) t01
D3导通后,将Q3 的电压箝在零位 此时开通Q3 ,则Q3是零电压开通。 Q3和Q1驱动信号之间的死区时间 ,即
移相全桥DCDC变换器的设计与研究
i
ABSTRACT
With China's rapid economic development, electronic technology and computer technology become more and more widely. It makes the power supply develop in the direction of lighter , smaller, high-frequency and high-efficiency. While increasing the operating frequency, the power switch voltage and current stress increases as well.Soft-switching technology can achieve zero-voltage start or zero current shutdown. It can also improve the efficiency and reduce the electromagnetic interference. In the field of high-power applications,the phase-shifted full-bridge DC/DC converter has a simple circuit structure, a small switching loss, and it is easy to control.So it has been generally applied on many occasions.
第二章 移相全桥 DC/DC 变换器............................................................................................7 2.1 移相全桥 ZVS DC/DC 变换器 ....................................................................................7 2.2 移相全桥 DC/DC 变换器控制方式...........................................................................13 2.2.1 PID 控制............................................................................................................13 2.2.2 电压和电流双闭环控制 .................................................................................. 13 2.2.3 模糊控制 .......................................................................................................... 13 2.3 移相全桥 DC/DC 变换器关键问题的分析 ..............................................................14 2.3.1 两个桥臂实现 ZVS 的差异.............................................................................14 2.3.2 副边占空比的丢失 .......................................................................................... 16 2.3.3 整流二极管的换流 .......................................................................................... 17 2.4 改进型全桥移相 ZVS-PWM DC/DC 变换器电路 ..................................................21 2.5 本章小结 .....................................................................................................................28
基于Intersil全桥ZVS控制器的高效率DC-DC变换器设计.
基于Intersil全桥ZVS控制器的高效率DC-DC变换器设计Intersil(英特矽尔)ZVS全桥变换器原理全桥电路的控制方式主要有四种:1)普通双极性控制,这种方式是硬开关控制方式;2)移相控制,如TI、LTC 及瑞萨都有类似的控制器;3)下管调制法,Intersil所采用的方法;4)有限双极性控制,一个桥臂脉宽固定,另一个桥臂脉宽调制,如Delta。
桥式双极性调制指同一桥臂的上管与下管驱动波形反相,只加了必要的死区,因此是180°互补。
最基本的控制方式为对角的驱动波形完全相同,反对角方向和Intersil(英特矽尔)ZVS全桥变换器原理全桥电路的控制方式主要有四种:1)普通双极性控制,这种方式是硬开关控制方式;2)移相控制,如TI、LTC及瑞萨都有类似的控制器;3)下管调制法,Intersil所采用的方法;4)有限双极性控制,一个桥臂脉宽固定,另一个桥臂脉宽调制,如Delta。
桥式双极性调制指同一桥臂的上管与下管驱动波形反相,只加了必要的死区,因此是180°互补。
最基本的控制方式为对角的驱动波形完全相同,反对角方向和对角方向的管子驱动波形互补。
每个周期的工况可分为四部分,分别为正半周功率传输、正半周续流、负半周功率传输以及副半周续流,如图1所示。
正半周功率传输时段特点是对角线的两个管子QA和QD同时导通,漏感L_LK存储能量,功率从电源传到负载;正半周续流时段,QA、QD同时关闭,漏感L_LK 续流。
如果该漏感储能足够大,反对角开关二极管将会正偏。
L1通过两个二极管D1、D2续流,变压器T1所有的绕阻都相当于短路。
负半周的功率传输时段和续流时段分别与正半周对称。
Intersil普通双极性控制器647X系列都是硬开关方式,如电压型ISL6740和ISL6470A、电流型6741、电压电流混合型6742等。
由于上述系列是双端控制器,因此也适用于以下拓扑:半桥式(只能用于电压型)、推挽式(只能用于电流型)以及交错正激。
ZVS移相全桥双向DC/DC变换器
文 章 编 号 :64 7 (0 0 0 - 0  ̄2 17 45 8 2 1 ) 1 0 5 0
应 用 实践
Z S移 相 全 桥 双 向 D / C变换 器 V CD
张 波 ,曹丰文 ,索 迹 ,高金 生
( 苏州市职 业大 学 电子信 息工程 系, 苏 苏州 250 ) 江 114
用软开关技术 , 同样软开关技术还可 以显著减少开关过 程中
激起 的振 荡 , 可大幅地 提高开关 频率 , 更好地 实现 开关 电源
小 型 化 、 效 率 的 优 点 。 因 此 致 力 于 开 发 新 型 软 开 关 双 向 高 D — C变 换 器 的 研 究 很 有 必 要 , 时 软 开 关 双 向 D —C 变 CD 同 CD 换 器 是研 究 的 热 点 内 容 。
换 器 中使 用 最 多 的 一种 软 开 关 控 制 方 式 , 是 谐 振 变 换 技术 它
和P WM技术 的结 合 , 具有 容易 实现 Z S开 关 、 V 响应 速度 快 等优 点 , 自提 出以来获得 了广 泛的研究 。图 1中 D 1~/ 9 4分 别是 s ~s 1 . 4的内部寄生 二极 管 , 1~c C 4分别 是 . s S 1~. 4的 寄生 电容或其 寄生 电容 与外 接小电容的等效 , 中 C :C , 其 1 3
S l
图 1 桥 式 直 流 变 换 器
C 2
一
_J _l
Cn — —_ ▲ J Cb l
=
D2
C 2=C , b 4 C 是隔直 电容 , 是为防止变压器铁心 因不对称 导致
直 流偏 磁饱 和 ,r 变 压器 原边 漏 电感 与外 串 电感之 和。 L是
ZVS移相全桥变换器的原理与设计
ZVS移相全桥变换器的原理与设计摘要:介绍移相全桥ZVS变换器的原理,并用UC3875控制器研制成功3kW移相全桥零电压高频通信开关电源。
关键词:移相全桥零电流开关零电压开关准谐振The Principle and Design of Phase shifted Full bridge Zero voltage ConvertorAbstract: The paper introduces the principle of phase shifted full bridge zerovoltage switching convertor.A 3kw full bridge ZVS convertor was developed us ing UC3875 controller.Keywords: Phase shifted full bridge, ZCS, ZVS, Quasi resonance中图法分类号:TN86文献标识码:A文章编号:02192713(2000)11572031引言传统的全桥PWM变换器适用于输出低电压(例如5V)、大功率(例如1kW)的情况,以及电源电压和负载电流变化大的场合。
其特点是开关频率固定,便于控制。
为了提高变换器的功率密度,减少单位输出功率的体积和重量,需要将开关频率提高到1MHz级水平。
为避免开关过程中的损耗随频率增加而急剧上升,在移相控制技术的基础上,利用功率MOS管的输出电容和输出变压器的漏电感作为谐振元件,使全桥PWM变换器四个开关管依次在零电压下导通,实现恒频软开关,这种技术称为ZVS零电压准谐振技术。
由于减少了开关过程损耗,可保证整个变换器总体效率达90%以上,我们以Unitrode公司UC3875为控制芯片研制了零电压准谐振高频开关电源样机。
本文就研制过程,研制中出现的问题及其改进进行论述。
2准谐振开关电源的组成ZVS准谐振高频开关电源是一个完整的闭环系统,它包括主电路、控制电路及CPU通讯和保护电路,如图1所示。
移相全桥ZVS PWM DC/DC变换器的仿真分析
移相全桥ZVSPWMDC/DC变换器的仿真分析作者:龙泽彪施博文来源:《消费导刊·理论版》2008年第17期[摘要]本文首先在研究硬开关的缺陷上,提出软开关技术。
对移相控制ZVS PWM DC/DC 变换器的工作原理进行分析研究的基础上,使用PSpice9.2计算机仿真软件对变换器的主电路进行仿真和分析,验证该新型DC/DC变换器的拓扑结构设计的正确性和可行性。
[关键词]软开关 DC/DC ZVS 移相控制 PSpice9.2作者简介:龙泽彪(1985-),男,湖北仙桃人,贵州大学电气工程学院在读硕士研究生,研究方向:异步电机控制;施博文(1985-),男,贵州大学电气工程学院在读硕士研究生,研究方向:电力电子与电气传动。
一、引言随着新型电力电子器件以及适用于更高频率的电路拓扑和新型控制技术的不断出现,开关电源朝着小型化、高效化、低成本、低电磁干扰、高可靠性、模块化、智能化的方向发展。
硬开关DC/DC变换器在电流连续工作模式下会遇到严重的问题,这一般都与有源开关器件的体内寄生二极管有关,其关断过程中的反向恢复电流产生的电流尖峰对开关器件有极大的危害。
本文在对DC/DC变换器的基本工作原理进行分析、研究的基础上,对已经出现的软开关DC/DC变换器拓扑结构进行分析研究,提出的一种新型的DC/DC变换器的拓扑结构,并进行深入的研究。
二、移相控制ZVS PWM DC/DC全桥变换器的工作原理移相控制ZVS PWM DC/DC全桥变换器(Phase-Shifted zero-voltage-switching PWMDC/DC Full-Bridge Converter,PS ZVS PWM DC/DC FB Converter),是利用变压器的漏感或原边串联的电感和功率管的寄生电容或外接电容来实现开关管的零电压开关,其主电路拓扑结构及主要波形如图1所示。
其中,D1~D4分别是S1~S4的内部寄生二极管,C1~C4分别是S1~S4的寄生电容或外接电容,Lr是谐振电感,它包含了变压器的漏感。
ZVS移相全桥变换器设计
ZVS移相全桥变换器设计ZVS(Zero Voltage Switching)移相全桥变换器是一种高效的电力转换装置,它能够实现能量的高效传输和转换。
在本文中,我们将详细介绍ZVS移相全桥变换器的设计原理、工作原理和关键技术。
1.设计原理(1)ZVS技术:ZVS技术能够将开关管的开关转换时刻与输入电流或输出电压为零的时刻相匹配,从而避免了开关管的开关损耗和开关管产生的电磁干扰。
(2)全桥变换器:全桥变换器采用四个开关管和两个二极管,能够实现输入电压的极性逆变和输出电流的正向流动。
2.工作原理(1)开关管S1和S2导通,开关管S3和S4关闭,输入电源向电感L1充电;(2)当开关管S1和S2关闭,开关管S3和S4导通时,电感L1释放能量供应给负载;(3)根据负载的需求,通过控制开关管S1、S2、S3和S4的导通和关闭,实现输入电压的极性逆变和输出电流的正向流动;(4)根据输入电压的大小、负载的需求和输出电流的波形来控制开关管的开关时刻,实现ZVS操作。
3.关键技术(1)开关管的选择和驱动:选择低导通电阻、低开关损耗的开关管,并使用高效的驱动电路,确保开关管能够在ZVS模式下正常工作。
(2)电感和电容的选择:选择合适的电感和电容数值,以及合适的磁芯材料,提高转换器的功率密度和效率。
(3)控制策略:根据负载的需求和输入电压的变化,采用合适的控制策略,如频率控制、幅度控制、相位控制等,实现最佳的动态响应和效率。
4.实际应用总结:ZVS移相全桥变换器是一种高效的电力转换装置,其设计原理基于ZVS技术和全桥变换器。
通过合适的开关管选择、驱动设计、电感和电容选择以及控制策略的优化,可以实现高效的能量传输和转换。
在实际应用中,ZVS移相全桥变换器能够带来高效、稳定和低干扰的性能优势。
移相全桥ZVZCSDCDC变换器综述.
移相全桥ZVZCSDC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。
关键词:移相控制;零电压零电流开关;全桥变换器 1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。
ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。
图1 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。
即当原边电流减小到零后,不允许其继续反方向增长。
原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;图2 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。
图3 2 电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考。
图4 1)NhoE.C. 电路如图1所示[1]。
该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。
这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。
变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。
电流模式控制移相全桥零电压软开关(ZVS)DC-DC功率变换器
引言随着计算机与通信技术的飞速发展,作为配套设备的开关电源也获得了长足进步,并随着新器件、新理论、新电磁材料和变换技术以及各种辅助设计分析软件的不断问世,开关电源的性能不断提高。
本文介绍一种新型的高频DC/DC开关变换器,并成功地应用在军用充电机上。
DC/DC变换器主电路改进型移相全桥ZVS DC/DC变换器主电路结构和各点波形对照如图1、图2所示。
由于电路工作状态在一个周期内可以分为两个完全一样的过程,所以以下仅仅分析半个周期的情况,而这半个周期又可分为以下三种开关模态。
● 开关模态1,t0<t<t1,其中t1=DT s/2此时Q1和Q4同时导通,变压器副边电感L1和整流管D S2导通,原边能量向负载端传递。
此模态的等效电路见图3。
其中,a为变压器变比,V in是直流母线电压,I1和I2分别是电感L1和L2电流(L1=L2=LS),此时有等式(1)成立。
(1)(2)I p(t)=aI1(t)(3)当Q4关断时该模态过程结束。
● 开关模态2,t1<t<t2,其中t2≤T s/2在t1时刻关断Q4,此时副边电感L1中储存的能量给Q4电容(或并联电容)充电,同时将Q3两端电容电荷放掉。
为了实现软开关,Q4关断和Q3开通之间至少要存在一死区时间Δt1,使得在Q3开通前D3首先导通,且有下式成立。
I p1Δt1=2C eff V in(4)其中C eff是开关管漏源两端等效电容,I P1为t1时刻变压器原边流过电流。
当D3导通后,变压器副边两个二极管D S1和D S2同时导通,电路工作在续流状态。
此时等效电路如图4所示。
此时有如下电路方程成立。
(5)(6)(7)(8)r t=r mosfet+r xfmr (9)其中D为脉冲占空比,f S为电路工作频率,L’ik为主边变压器漏感(或与外接电感的串联值),rt是变压器原边等效电阻,τ是原边等效电流衰减时间常数,Vfp是反并联二极管导通压降。
移相全桥ZVS控制的电动汽车DCDC转换器设计研究
116AUTO TIMEAUTOMOBILE DESIGN | 汽车设计移相全桥ZVS 控制的电动汽车DC/DC 转换器设计研究王迎斌南京长安汽车有限公司 江苏省南京市 211200摘 要: 本文采用移相全桥控制策略,设计了一种应用于电动汽车的DC/DC 变换器并能实现功率开关的零电压导通。
本文对其进行了简要介绍移相全桥ZVS-DC 变换器的拓扑结构。
制造了一个原型进行了一系列的实验。
最终的实验结果与仿真结果相一致,且满足要求设计要求,证明设计方案的可行性。
关键词:移相全桥 电动汽车 拓扑结构 ZVS 控制1 引言伴随着全球能源危机情况的日益严重,节能环保汽车需求不断增加,大力发展电动汽车已成为国家重要战略的目标之一,而作为电动汽车核心部件的DC/DC 转换器,对其进行更深入的研究和改进也变得愈发迫切。
开关电源由于效率高、可靠性好等优点近年来逐渐受到设计人员的关注,其高频状态下的功率器件具有非线性特性,寄生电路参数在高频工况下效应明显,可以通过平稳的系统操作达到高效传输的目的。
在此设计中,相移全桥ZVS DC/DC 设计了电动汽车用变频器。
相移全桥ZVS DC/DC 转换器适用于中功率和大功率场合。
它可以充分利用功率器件的寄生参数来实现零电压开关并提高开关的开关频率[1]。
2 移相全桥ZVS DC / DC 转换器的结构和特征DC/DC 转换器可以将不可调节的直流电压转换成可调节的直流电压。
随着电动汽车的发展,DC/DC 转换器越来越多地应用于电动汽车中广泛。
由于动力电池的高压电源可以转换为低压电源通过DC/DC 转换器可以替代传统车辆中的小型发电机车辆的布局和结构可以优化。
相移全桥ZVS DC/DC 转换器的拓扑如图1所示。
全桥逆变器电路用于变压器的一次电路。
Q 1,Q 2,Q 3和Q 4是功率器件,例如IGBT 或MOSFET。
D 1,D 2,D 3和D 4是Q i 的寄生二极管分别。
C i 是寄生电容。
移相全桥DCDC变换器设计-开题报告
燕山大学里仁学院毕业设计(论文)开题报告课题名称:移相全桥DC-DC变换器设计学院(系):年级专业:学生姓名:指导教师:完成日期:一、说明选题的依据和意义通信网络技术的快速发展和通信业务的全面展开,各种数据业务、多媒体业务应用日益普及,产品的集成度将会越来越高。
在通信网络的建设和升级过程中,各种室内外设备及各种不同的应用场景,如城市中心区域、各大高校宿舍、铁路沿线,尤其是在偏远地区这种情况下,设备对其运行环境也提出了更加严格的要求,对电源质量的要求也更加苛刻。
直流远供电源系统是通信领域中的重要设备,广泛应用于远程及数据通讯、计算机、军事、航天等领域,涉及到国民经济的各行各业。
DC-DC变换器在通信设备用直流远供电源系统当中发挥着重要的作用。
目前基站存在大量的低效率电源,在网电源即便是比较新的,普遍效率一般也低于90%,在低负载输出时效率则更低。
在网运行超过一定年限又不具备模块休眠功能的老旧电源,其真正的效率只有80%左右。
有些基站建设在城乡或山区,电网环境恶劣,轻则造成系统失效,重则造成系统崩溃、设备损坏。
无论是失效还是崩溃都直接影响了通信信号的稳定和服务质量。
因此,基站供电效率和可靠性问题,成为目前运营商亟待解决的问题。
直流远供电源的优势在于:远程供电方案适于为通信网络中各种低功耗设备、室外型设备和特殊应用场景的设备提供电力,如网络末梢位置分散的小型通信设备等。
远供电源在通讯设备中的应用,不仅能够进一步保障通信设备得正常运行,而且还能更好地解决各种不同的特殊应用场景的供电问题(如小型的UPS供电,电池寿命很难得到保证,并且损坏率较高,蓄电池被盗以及当地接电不便或供电不稳定等),优化电源设备,提高运行效率,降低建设与维护成本,保障各类通信设备安全、可靠、稳定、经济、绿色的电源供应。
二、本课题国内外研究动态综述在目前现有的DC-DC变换技术当中,可供选择的电路拓扑结构形式有很多种,如:Buck、Boost、Buck-Boost、Fly-back、Forward和Full-Bridge、Half-Bridge等电路。
ZVS移相全桥变换器设计
ZVS移相全桥变换器设计ZVS(Zero Voltage Switching,零电压开关)全桥变换器是一个常见的DC-DC转换器拓扑结构,可以实现高效率和高电源密度。
在设计ZVS全桥变换器时,需要考虑一系列的参数和约束条件。
在本文中,将详细介绍如何设计ZVS全桥变换器,并讨论其性能和优缺点。
首先,我们需要确定输入和输出电压的范围。
这些值将决定变换器的设定参数,如变压器的变比和磁性元件的尺寸。
同时,我们还需要确定输出功率的要求,以便选取合适的开关器件和电感电容元件。
接下来,我们需要选择合适的开关器件。
对于ZVS全桥变换器,常用的开关器件有MOSFET和IGBT。
MOSFET具有低导通压降和高开关速度的特点,适合在高频率下工作。
而IGBT则具有低导通压降和高断开速度的特点,适合在高压应用下工作。
根据具体的应用需求,可以选择适合的开关器件。
在变换器的设计过程中,需要考虑开关频率和谐振电容电感网络的设计。
开关频率决定了变压器的尺寸和磁性元件的损耗。
一般来说,较高的开关频率可以实现更小的尺寸和更高的效率,但也会增加开关器件的损耗。
谐振电容电感网络的设计是为了实现ZVS开关操作,减少开关过程中的损耗和开关噪声。
可以通过选择合适的电感和电容元件来实现ZVS操作,减少开关器件的压降和功率损耗。
一般来说,ZVS全桥变换器需要设计控制电路来实现准确的输出电压调节和保护功能。
常用的控制技术包括PWM(脉宽调制)控制和反馈控制。
通过PWM控制器,可以实现对开关器件的控制,调节输出电压。
反馈控制则通过比较输出电压与参考电压的差异,并根据差异值来调节开关器件的控制信号。
通过合理的控制策略,可以实现稳定的输出电压和良好的动态响应。
除了上述设计考虑因素,还需要关注保护机制和EMI(电磁干扰)滤波设计。
保护机制是为了确保变换器的安全运行,防止过电流、过温度和过压等故障事件。
常见的保护技术包括电流限制、温度监测和电压保护等。
EMI滤波设计则是为了减少变换器对周围环境的电磁干扰。
ZVS移相全桥
什么是软开关技术?
在开关管开通前,使其电压下降到零,这就是零 电压开通。在开关管关断时,限制电压的上升速 率,从而减少电流和电压的重叠区,这就是所谓 的零电压关断。
PWM DC/DC全桥变换器的Байду номын сангаас本工作原理
T1~T4是四支主功率管,D1~D4是主功率 管的反并联二极管,TR是输出变压器,其 原副边绕组匝数比K=N1/N2,VD1和VD2 是输出整流二极管,Lf和Cf是输出滤波电感 和电容,RL是负载,输入电源电压为Vin, 输出直流电压为Vo。
移相控制ZVS PWM DC/DC全桥变换器有十二种开关模 态,由于正负半周从原理上大体对称,我们仅说明正半周 的六个模态。 1)原边电流正半周功率输出过程(0-t0)
超前桥臂谐振模式(t0-t1)
原边电流钳位续流过程(t1-t2)
滞后桥臂谐振模式(t2-t3)
电感储能回馈电源模式(t3-t4)
原边电流下冲过零后负向增大(t4-t5)(原边电流仍不足以
提供负载电流)
原边电流负半周功率输出过程(t5-t6)
移相控制全桥零电压开关PWM变换器的 主要波形
遇到的问题
不熟悉saber仿真软件
下一步工作
1继续学习saber软件。 2进一步学习全桥变换器的主要元件的选择 和参数设置。(输入滤波电容、高频变压 器、输出滤波电感、输出滤波电容) 3 进一步了解UC3875芯片的内部结构及外 围电路参数设置 4 驱动电路的选择和设置
谢 谢
移相全桥ZVS DC/DC变换器设计
全桥变换器的基本电路结构
移相控制全桥零电压开关PWM变换器的 主要波形
移相控制技术
这种控制方式是要求Q1和Q2轮流导通,各 导通180电角度,Q3和Q4也是这样,但Q1 和Q4不同时导通,若Q1先导通,Q4后导 通,两者导通差()电角,其中Q1和Q2分别 先于Q4和Q3导通,故称Q1和Q2组成的桥 臂为超前桥臂,Q3和Q4组成的桥臂为滞后 桥臂。
9种移相全桥ZVZCSDCDC变换器
摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考.关键词:移相控制;零电压零电流开关;全桥变换器1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断.ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响.滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的.即当原边电流减小到零后,不允许其继续反方向增长.原边电流复位目前主要有以下几种方法:1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件;3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件.2电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考.1)NhoE.C.电路如图1所示[1].该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关.这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高.变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大.该电路可以工作在电流临界连续状态,但必须采用频率控制,不利于滤波器的优化设计.2)ChenK.电路如图2所示[2][3].该电路超前桥臂并联有串联的电感和电容.电感L1和L2很小,不影响开关管的ZVS,但有两个好处:一是限制振荡的电流峰值;二是在负载很小,开关管不能实现ZVS时,限制开关管的开通电流尖峰.该拓扑结构利用IGBT的反向击穿特性,解决了滞后桥臂IGBT关断时的电流拖尾问题,可以提高IGBT的开关频率,而且在负载很小时也能实现零电流开关.但是,这个电路也付出了代价,漏感L1k中的能量反向时漏感L1k中的能量全部消耗在反向击穿的IGBT中.3)原边加隔直电容和饱和电感的FB-ZVZCS-PWM变换器如图3[4]所示.它在基本的移相全桥变换器的基础上增加了一个饱和电感Ls,并在主电路上增加了一个阻挡电容Cb,阻挡电容Cb与饱和电感Ls适当配合,能使滞后桥臂上的主开关管实现零电流开关.在原边电压过零阶段,饱和电感工作在线性状态,阻止原边电流ip反向流动,在原边电压为Vin或-Vin时,它工作在饱和状态.尽管它有许多明显的优势,但也有不足之处,如最大占空比范围仍受到很多限制,特别是饱和电感上有很大的损耗,饱和电感磁芯的散热问题是一个必须解决的问题.4)副边采用有源箝位开关的FB-ZVZCS-PWM变换器如图4所示[5].这种电路没有使用耗能元件,在副边增加有源箝位开关S,并通过对有源箝位开关的适当控制,为滞后桥臂创造零电流开关条件.超前桥臂在零电压导通与关断的过程中,输出滤波电感Lf参与了谐振过程,而输出滤波电感通常具有很大的值,超前桥臂开关管可以在很大的负载范围内满足零电压开关条件,开关管的导通与关断的死区时间间隔受原边电压最大占空比的限制.在此种拓扑结构中,可能会出现副边整流输出电压的占空比大于原边电压最大占空比的现象,这种现象称为“占空比增大效应”(dutycycleboosteffect)这种现象是由箝位电容Cc和箝位开关的作用造成的.此电路的主要缺点是控制上稍微复杂一些,以及有源箝位开关采用的是硬开关,但是,有源箝位开关在一个开关周期中仅工作很短一段时间,对变换器整体效率影响很小.5)利用变压器辅助绕组的FB-ZVZCS-PWM变换器电路拓扑如图5所示[6].该电路通过在副边增加一个变压器辅助绕组和一个简单的辅助线路,无须增加耗能元件或有源开关来取得滞后桥臂ZCS.其副边整流电压可由箝位电容箝位,一般可将其限制在120%额定值内,该方案可在大功率场合应用.该电路拓扑的优点是负载范围宽,占空比损失小,器件的电压应力、电流应力小,成本低.但是它也有缺点,即副边结构复杂,设计时有些困难.6)副边带能量恢复缓冲电路的FB-VZCS-PWM变换器如图6所示[7].它的副边增加了由3个快恢复二极管和2个小电容构成的能量恢复缓冲电路,此电路在能量传递初始期间,电容Cs1和Cs2与漏感谐振,电容上的电压达到2nVin,超前桥臂开关管一关断,电容上电压就折合到原边,在漏感上产生一反压,使得原边电流下降.而且,通过能量恢复电路的低阻抗路径使副边整流二极管实现了ZVS.该结构稍微复杂些,最大缺点是,由于电容Cs1和Cs2与漏感谐振,使得副边整流电压几乎是正常电压nVin的2倍,增加了整流管的电压应力,并且由于存在大量环流,也增加了导通损耗.7)使用改进的能量恢复缓冲电路的FB-ZVZCS-PWM变换器如图7所示[8].它运用改进的能量恢复缓冲电路来减小循环电流和副边瞬间超压.除了增加二极管Ds4外,其工作原理和线路与6)相同.8)滞后桥臂中串入二极管的FB-ZVZCS-PWM变换器如图8所示[9].它利用串联二极管阻断电容电压可能引起的原边电流的反向流动.可以在任意负载和输入电压变化范围内实现滞后桥臂的零电流开关.9)副边利用简单辅助电路的FB-ZVZCS-PWM变换器如图9所示[10].此电路副边由一个简单辅助电路构成:包括一个小电容和两个小二极管,结构简单,整流电压不恒定,取决于占空比.该方案不含饱和电感,辅助开关,不产生大的环流,没有额外的箝位电路,这是因为,副边整流电压被箝位于箝位电容电压与输出电压之和.所用的元器件均在低电压,低电流下工作,还有负载范围宽,占空比损失小等优点,从而使此变换器具有高效率,低成本,解决了目前常见变换器的许多问题.在高功率场合很有发展前途.3结语综上所述可知,图2和图3电路使用耗能元件来复位原边电流,降低了总效率并阻碍功率超过5kW;图4电路通过副边增加有源箝位开关来复位原边电流,价格较贵并且控制复杂,有源箝位开关采用的是硬开关,开关频率是原边的两倍,开关损耗大;图5电路所有有源和无源元器件都工作在最小电流应力和电压应力下,有较宽的ZVZCS范围,较小的占空比损耗,不存在严重的寄生环流,功率超过5kW,但是辅助电路复杂;图6电路中电容Cs1和Cs2与漏感谐振引起大的循环能量,降低了总效率并使得副边整流电压几乎是正常电压nVs的二倍,增加了副边整流管的电流应力,变压器和开关的导通损耗也增加了;图7电路是对图6电路的改进,它减小了副边瞬间超压和环流,也能使开关损耗传到负载;通过比较图6和图7缓冲电路中Cs放电时间和漏感L1k 复位时间,可以看出吸收电容复位变压器漏感能量的能力和容量,后者比前者加倍,因而使用图7电路能扩展到重载范围.图9电路简化了前几种ZVZCS方案,仅仅增加由一个小电容和两个小二极管组成的简单辅助电路,无须增加耗能元件和有源开关实现ZVZCS,不仅为原边开关提供ZVZCS条件,而且箝位副边整流二极管,效率高而且价格便宜.。
具有ZVS的DC-DC升压变换器分析与设计
摘要随着当今社会主要能源的日益枯竭,太阳能光伏发电越来越受到重视。
其良好的优越性对于经济生态环境和社会稳定发展有着重要意义。
随着电力电子技术高频化的发展趋势,升压DC-DC变换器在两极式光伏发电系统中的应用得到了不断的发展和完善。
对比几种基本的升压变换器发现,正激升压变换器更为可靠。
同时针对传统的正激变换器的典型缺陷,对其进行了拓扑改进,加入“交错并联”和LCD缓冲网络两种特殊结构,并运用新型移相控制技术,提出了具有缓冲电路的ZVS 交错并联双管正激升压变换器。
本文首先对其结构中的LCD无损缓冲网络、新型移相控制技术进行分析,详细研究了十二个理论工作模态,然后设计了以TMS320F2812为控制中心的硬件实验样机平台,完成了主电路参数设计、器件选型、外围电路分析与设计。
最后通过PSpice软件仿真和实验样机硬件调试双重验证了文中改进型升压变换器理论分析的正确性,也证明了具有缓冲电路的ZVS交错并联双管正激升压变换器的可行性与可靠性。
关键词:光伏发电;升压变换器;零电压;LCD缓冲网络;移相控制AbstractIn today's society, solar photovoltaic power generation is receiving more and more attention as the major energy is exhausting. Its advantages make significant contribution to ecological environment and social stability. With high frequency trend of the development of power electronics technology, bipolar boost DC-DC converter in the photovoltaic power generation system has constantly development and improvement.Compared with several basic boost converter, forward boost converter is more reliable. Simultaneously, for the typical defects of the traditional boost converter, its topology is improved. Two special structures of “staggered parallel”and LCD snubber network are added and new phase-shifting control technology is applied. Therefore, a staggered-parallel dual switch of boost converter with snubber circuit for ZVS is put forward.First this article analyzed the structure of LCD lossless snubber network and new phase-shifting technology. And twelve theoretical operating modals is studied in detail. Then it designed a prototype hardware platform based on TMS320F2812. Parameter design of main circuit, components selection, and peripheral circuit’s analysis and design is accomplished. Finally, Pspice simulation and experiment prototype hardware debugging double verified the correctness of the theoretical analysis of the modified boost converter. The feasibility and reliability of the staggered-parallel dual switch of boost converter with snubber circuit for ZVS are proved.Keywords: photovoltaic power generation, zero-voltage-switch, LCD snubber network, phase-shifting, boost converter目录摘要 (I)Abstract (II)第1章绪论 (1)1.1课题来源及研究的目的和意义 (1)1.2双管正激变换器国内外研究现状 (3)1.3主要研究内容与方案 (5)1.3.1改进型交错并联双管正激升压变换器主拓扑结构的确定 (5)1.3.2具有ZVS升压变换器主电路PSpice仿真验证 (6)1.3.3具有ZVS升压变换器总体结构设计 (6)1.3.4制作实验样机并完成相关功能验证 (7)第2章具有ZVS升压变换器工作原理 (8)2.1主拓扑结构的确定 (8)2.2工作模态分析 (9)2.3本章小结 (22)第3章具有ZVS升压变换器硬件电路的设计 (23)3.1实验样机整体系统设计 (23)3.2辅助电路的设计 (23)3.2.1驱动电路的设计 (23)3.2.2保护电路的设计 (24)3.2.3保护执行回路设计 (25)3.3主电路的设计 (26)3.3.1高频变压器的设计 (26)3.3.2功率开关管及二极管的选择 (28)3.3.3其它元件的选取 (29)3.4控制电路设计 (29)3.5闭环控制设计 (29)3.6本章小结 (30)第4章软件仿真与参数校正 (32)4.1驱动信号模拟 (32)4.2主电路参数选定 (32)4.2.1变压器变比设定 (32)4.2.2功率开关管及二极管参数设定 (32)4.3主电路仿真 (32)4.3.1额定负载下的仿真波形 (33)4.3.2 ZVS的在变换器中的实现 (38)4.4本章小结 (39)第5章硬件制作与调试 (40)5.1实验样机的搭建 (40)5.2 实验波形分析 (41)5.3软开关的实现 (42)5.4变换器性能指标测试 (42)5.4.1电压调整率测试 (42)5.4.2输出电压纹波测试 (42)5.4.3负载调整率测试 (43)5.4.4效率测试 (43)5.5本章小结 (44)结论 (45)参考文献 (47)致谢 (49)第1章绪论1.1课题来源及研究的目的和意义随着人类社会中煤、石油、天然气等主要能源的急剧消耗,人们越来越重视太阳能、风能等绿色能源的开发和利用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.1uH10470uFQ3FQA10N80CQ4 Q1Q2FQA10N80CDSEl2x61-06C330-400V53.7m HDSEl2x61-06CFQA10N80CFQA10N80C控制及驱动电路原理图:PC817VIN RAMP CLK SOFTS FREQSET DSET A-B DSET C-DUC3875VREF CS+VCOUTCOUTBOUTA OUTDCOMPEA- EA+SLOPEPGNDGNDC205C206RT U outCS+R206R202R203R205RsR204R201C201C203C204RTD1RTD2C202CR Css CTD1CTD2CT VINT1T2RgRg Rg RgD202D207D204D208D201D205D206D203VCVCG G S G GS电路各参数计算:一:高频变压器设计:(1).选择铁氧体材料的磁芯,设η=90%,其工作磁场强度取B m =0.12T ,电流密度取J =350 cm A 2/,k=0.4。
视在功率P T (全波结构时): )21(0+=ηP P T 。
kJ B f P APST 0m 4410⨯=代人参数得:AP =5.4 cm 4考虑到磁芯的温升及工作频率,取EE 型磁芯65x32x27(mm),则AP=30.7625(cm 4),Ae=535(mm 2),Aw=575(mm 2)。
具体参数如下表:(2).为了防止共同导通,取占空比D m ax =O.4,初级绕组匝数:N1==A B f D U eS ∆mmax 1=AB f DU eS mmax 12其中:B ∆m 为磁通密度增量,B m 为工作磁通密度,B ∆m 应取一、三象限磁通密度的总增量,故BB 2m m=∆ ;A e 为磁芯有效面积(m2);fS为功率开关的工作频率(Hz)。
带入参数得:N 1=12.8 故取N 1=13匝。
那么初级绕组最大电流:ηUPIminin 0pmax==4.85(A )初级绕组裸线面积:JI A xp pmax==1.39 (cm )(3).次级绕组匝数:AB f U N eSS m24==2.3 故取N S=3匝。
从而带中心抽头的次级绕组的匝数2 N S =6匝,那么变压器的变比为k =13:3。
一般要求输出滤波电感电流的最大脉动量I S是最大输出电流的10%,即在输出满载电流10%条件下,输出电感电流应连续。
因此:I S=30+0.1⨯30=33(A)。
由于次级绕组带中心抽头,故次级绕组电流有效值为:0.707*33=23.3(A)那么次级绕组裸线面积:JIA xs S==6.67(mm)(4).考虑到趋附效应的影响,选用的导线为多股漆包线并绕,f S=100kHZ时趋附深度:∆=0.21(mm),因此绕组应选用线径小于0.42(mm)的铜导线。
原边采用由6股线径为0.32(mm)的漆包线胶合而成的多股线2根并绕13匝,副边采用由6股线径为0.32 (mm)的漆包线胶合而成的多股线10根并绕3匝,原副边采用分层交叉绕法。
漆包线参数如下:SWG铜线(线号)漆包线直径(毫米)铜芯直径(毫米)直流电阻(欧/千米)漆包线重量(公斤/千米)每厘米可绕圈数31 0.32 0.295 265 0.619 30.6(5).核算窗口面积时,取填充系数O.2,则需要磁芯的窗口面积为:()()2.0232.031062232.0132622//⨯⨯⨯⨯+⨯⨯⨯=⨯⨯ππA cw=350(mm2)<A w=575(mm2)符合设计要求。
二.主功率开关管确定初级绕组最大电流为4.85(A)。
电流取2倍的余量时9.7(A)。
功率开关管耐压值不应低于电路中漏源间最高估算电压的2倍。
直流电压在330--400(V)之间,需要选择耐压值为660—800(V)的MOSFET;故选取Fairchild 公司的QA10N80C开关管,其漏电流为10(A),漏源电压为800(V)。
三.谐振电感值的确定:(1).由公式:ICUL r2in2in238≥UVCCinDSOSSin=整理可得:UVICUL rinDS2OSS22in38⨯≥其中:C OSS为MOSFET的输出结电容(pF);V DS为C OSS的端电压(V)。
QA10N80C开关管具体参数如下:考虑在1/3满载以上时能实现零电压开关。
那么在1/3负载时,kI I 3/S2(1/3)==1.79(A )带入数据得:L=49.38(uH )(2).工作磁密既B m =0.12(T ),变压器原边电流I P =4.85(A ),根据变压器的设计方法可先确定磁芯的大小。
kJ B f P APST 0m4410⨯=≈0.2(cm 4)考虑到磁芯的温升及工作频率,取EI40型磁芯65x32x27(mm),则AP=2.3301(cm 4),Ae=148.00(mm 2),Aw=157.44(mm 2)。
具体参数如下表:(3).线性电感L 、饱和电感L S 和饱和电流I Sat 均为恒量 由公式: l B l B I geNN μμ0sesSat +=A lNA lNLege e22eμμ+=式中:N 为电感的绕组匝数;B s 为磁性材料的饱和磁感应强度;l e 为磁性材料的总平均磁路长度(m);l g 为气隙的总平均长度(m);A e 为磁心的有效导磁面积;μ0为气隙的磁导率, μ0=4π⨯107-(H /m):μe为磁性材料磁导率,通常μe=(1000-3000) ⨯μ0。
由于谐振电感的μe>>μ0。
故公式简写为: l B I gNμ0s Sat =A lN Leg2μ=带入可得电感饱和时所需的气隙大小。
34221mos222in sSat CU l B A I L ge≥=μB AC U l eg sin 20mos 238μ≥=8.88⨯106-(m)(4).因此设气隙为lmm ,由: Al L N eg r μ0==16.3取N=17核算谐振电感量为: lA N L g e r20μ==53.7(mH) 谐振电感的饱和电流: lB I gNμ0sSat==16.8(A)由于I Sat >I pmax ,因此不会进入饱和工作区,符合设计要求。
由于谐振电感与变压器的原边串联的,其流过的电流是一样的,那么谐振电感也可以采用由6股线径为0.32mm 的漆包线胶合而成的多股线2根并绕17匝获得。
(5). 核算窗口面积;同样取填充系数=0.2,则需要磁芯的窗口面积为:()2.0232.017262/⨯⨯⨯=⨯πA cw =81.99(mm 2)<A w =157.44(mm 2)符合设计要求。
四.输出整流二极管的选择:输出整流二极管是工作在高频状况下的,因此应选用快恢复二极管。
本文所设计电源,变压器的副边采用全波整流电路,所以整流管的反向电压为二倍的变压器副边电压,即整流管上承受的最大反向电压为:DR=2*400/4.3=186.4V 。
考虑2倍的余量,可以选用2*186.4=372.8V 的整流管。
整流管流过的最大电流为33A ,因此选用IXYS 公司生产的DSEl2x61-06C 快恢复二级管, 其电压和电流定额为600V /60A 。
五.输出滤波回路的设计(1).输出滤波电感值和输出滤波电容值的确定 通过查阅资料,输出滤波电感值和电容值为:[⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---⨯⨯=⨯⨯V V k U U I f U L S f D lf max in min o o min o 1%1022 [⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---=∆⨯⨯V V k U U V f L U C S f D lf maxin mino o min o f 1)2(8opp 2 式中:V lf 为输出滤波电感上的直流压降(假定其为1.5v);V D 为输出整流二极管的通态压降(DSEl2×6l-06C 的压降为1.8v);V opp ∆为输出电压的峰峰值,此处取V opp ∆=100mV 。