最新广东省中山市七年级下册期末考试数学试卷含解析

合集下载

中山市七年级下册数学期末试卷

中山市七年级下册数学期末试卷
请根据阅读材料解决下列问题:
(1)比照上面的例子,写出 三种不同形式的配方;
(2)已知 ,求 的值;
(3)已知 ,求 的值.
28.南通某校为了了解家长和学生参与南通安全教育平台“ 防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下 类情形:
A.仅学生自己参与;
B.家长和学生一起参与;
C.根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C进行判断
D.根据同底数幂除法运算法则对D进行判断
【详解】
A.2a3•3a=6a4,故A正确,不符合题意
B.(﹣2y3)2=4y6,故B正确,不符合题意
C.3a2+a,不能合并同类项,无法计算,故C错误,符合题意
D.a5÷a3=a2(a≠0),故D正确,不符合题意
中山市七年级下册数学期末试卷
一、选择题
1.若一个多边形的每个内角都为108°,则它的边数为( )
A.5B.8C.6D.10
2.下列计算错误的是()
A.2a3•3a=a=3a3D.a5÷a3=a2(a≠0)
3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
故选:C
【点睛】
本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.
3.B
解析:B
【解析】
试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.
12.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.
13.已知a+b=5,ab=3,求:

中山市名校2022届初一下期末统考数学试题含解析

中山市名校2022届初一下期末统考数学试题含解析
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:①调查某批汽车抗撞击能力,适合抽样调查;;
②调查某池塘中现有鱼的数量,适合抽样调查;;
③调查春节联欢晚会的收视率,适合抽样调查;;
④某校运动队中选出短跑最快的学生参加全市比赛,适合普查;
故选C.
【点睛】
本题考查频率、频数的关系:频率= .注意:各组的频率和是2.
9.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有()
(1)AD平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD⊥BC.
A.1个B.2个C.3个D.4个
【答案】D
【解析】
A. B.0C.2D.3
【答案】B
【解析】
【分析】
求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,即可求出整数解.
【详解】解:不等式组Fra bibliotek得:-2<x<2,
则整数解为-1,0,1,
故选:B.
【点睛】
此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.
7.在下列实数中,无理数是( )
二、填空题
11.某物体运动路程s(厘米)与运动的时间(秒)之间的关系如图所示,则该物体运动20秒经过的路程为_________厘米,
【答案】50
【解析】
【分析】
解:∵△ABC是等腰三角形,AD是角平分线,
∴BD=CD,且AD⊥BC,
又BE=CF,
∴△EBD≌△FCD,且△ADE≌△ADF,

中山市七年级下册数学全册单元期末试卷及答案-百度文库

中山市七年级下册数学全册单元期末试卷及答案-百度文库

中山市七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CDB .AD ∥BC C .∠B =∠D D .∠1=∠2 2.下列计算中正确的是( ) A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a = 3.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( ) A .8 B .-8 C .0D .8或-8 4.以下列各组线段为边,能组成三角形的是( ) A .1cm ,2cm ,4cm B .2cm ,3cm ,5cmC .5cm ,6cm ,12cmD .4cm ,6cm ,8cm 5.下列四个等式从左到右的变形是因式分解的是 ( ) A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x +=+ 6.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .2567.下列各式从左到右的变形,是因式分解的是( )A .a 2-5=(a+2)(a-2)-1B .(x+2)(x-2)=x 2-4C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-4 8.下列计算不正确的是( )A .527a a a =B .623a a a ÷=C .2222a a a +=D .(a 2)4=a 8 9.已知x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( ) A .4±B .4C .2D .2± 10.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b>的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->- 二、填空题11.分解因式:m 2﹣9=_____.12.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为______.13.如图,把△ABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B =50°,则∠BDF =_______°.14.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.15.二元一次方程7x+y =15的正整数解为_____.16.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm .17.计算:23()a =____________.18.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种.19.计算:x (x ﹣2)=_____20.若2a +b =﹣3,2a ﹣b =2,则4a 2﹣b 2=_____.三、解答题21.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?22.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S =1+2+22+23+24+…+22009则2S =2+22+23+24+…+22009+22010因此2S ﹣S =(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S =22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.23.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )24.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解?25.已和,如图,BE 平分∠ABC ,∠1=∠2,请说明∠AED =∠C .根据提示填空.∵BE 平分∠ABC (已知)∴∠1=∠3,( )又∵∠1=∠2,(已知) ∴ =∠2,( )∴ ∥ ,( ) ∴∠AED = .( )26.如图,点D 、E 、F 分别是△ABC 三边上的点,DF ∥AC ,∠BFD=∠CED ,请写出∠B 与∠CDE 之间的数量关系,并说明理由.27.解不等式-3+3+121-3-18-xxx x⎧≥⎪⎨⎪<⎩()28.在平面直角坐标系中,点A、B的坐标分别为(),0a,()0,b,其中a,b满足218|273|0a b a b+-+--=.将点B向右平移15个单位长度得到点C,如图所示.(1)求点A,B,C的坐标;(2)动点M从点C出发,沿着线段CB、线段BO以1.5个单位长度/秒的速度运动,同时点N从点O出发沿着线段OA以1个单位长度秒的速度运动,设运动时间为t秒()012t<<.当BM AN<时,求t的取值范围;是否存在一段时间,使得OACM OCNS S≤四边形三角形?若存在,求出t的取值范围;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据内错角相等,两直线平行即可得出结论.【详解】∵∠1=∠2,∴AB∥DC(内错角相等,两直线平行).故选A.考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.2.C解析:C【分析】根据同底数幂的加法和乘法法则进行计算判断即可.【详解】解:A 、23a a +无法合并,故A 选项错误;B 、23a a +无法合并,故B 选项错误;C 、235a a a =,故C 选项正确;D 、235a a a =,故D 选项错误.故选:C【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.3.B解析:B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8. 4.D解析:D【分析】根据三角形任意两边之和大于第三边进行分析即可.【详解】解:A 、1+2<4,不能组成三角形;B 、2+3=5,不能组成三角形;C 、5+6<12,不能组成三角形;D 、4+6>8,能组成三角形.故选:D .【点睛】本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.5.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.6.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 7.C解析:C【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、是因式分解,故本选项符合题意;D 、不是因式分解,故本选项不符合题意;故选:C .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.8.B解析:B【分析】根据同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 逐项判定即可 .【详解】解:∵527a a a =,∴选项A 计算正确,不符合题意;∵624a a a ÷=,∴选项B 计算不正确,符合题意;2222a a a ,∴选项C 计算正确,不符合题意;428()a a =,∴选项D 计算正确,不符合题意;故选:B .【点睛】此题主要考查了同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 要熟练掌握 .9.B解析:B【分析】把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案;【详解】解:24213x y x y -=⎧⎨+=⎩①② 把①式×5得:248x y -= ③,用②式-③式得:55y = ,解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = ,又x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解, 所以61a b =⎧⎨=⎩, 故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== ,故答案为:4;【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;10.C解析:C根据不等式的性质逐项判断即可.【详解】解:A. ac bc >,由于不知道c 的符号,故无法得到a b >,故该选项不合题意;B. ma mb -<-,由于不知道-m 的符号,故无法得到a b >,故该选项不合题意;C. 22ac bc >,∵20c ≠,∴2c >0,∴a b >,故该选项符合题意;D. 22ac bc ->-,∵20c ≠,∴20c -<,∴a b <,故该选项不合题意.故选:C【点睛】本题考查了不等式的性质,熟知不等式的性质是解题关键.二、填空题11.(m+3)(m ﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b )(a ﹣b ).【详解】解:m2﹣9=m2﹣32=(m+3)(m ﹣3).故答案为解析:(m +3)(m ﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a 2﹣b 2=(a +b )(a ﹣b ).【详解】解:m 2﹣9=m 2﹣32=(m +3)(m ﹣3).故答案为:(m +3)(m ﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.12.7【分析】连接OC ,OB ,OA ,OD ,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,从而有S 四边形AEOH+S 四边形CGOF=S 四边形DHO【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,从而有S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,由此即可求得答案.【详解】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,∴S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得:S四边形DHOG=7,故答案为:7.【点睛】本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.13.80°【解析】∵BC∥DE,∴∠ADE=∠B=50°,∵∠EDF=∠ADE=50°,∴∠BDF=180°-50°-50°=80°.故答案为80°.解析:80°【解析】∵BC∥DE,∴∠ADE=∠B=50°,∵∠EDF=∠ADE=50°,∴∠BDF=180°-50°-50°=80°.故答案为80°.14.2【分析】设圆珠笔x支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x的值即可.【详解】设圆珠笔x支,则练习簿本,圆珠笔和练习簿数量都是整数,则x=2时,,故答案为2.【点睛解析:2【分析】设圆珠笔x 支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x 的值即可.【详解】设圆珠笔x 支,则练习簿1434x -本,圆珠笔和练习簿数量都是整数,则x=2时,14324x -=, 故答案为2.【点睛】明确圆珠笔和练习簿数量都是整数是本题的关键,难度较小.15.或【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】解:方程7x+y =15,解得:y =﹣7x+15,x =1,y =8;x =2,y =1,则方程的正整数解为或.故答案为:或.【点解析:18x y =⎧⎨=⎩或21x y =⎧⎨=⎩【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】解:方程7x+y =15,解得:y =﹣7x+15,x =1,y =8;x =2,y =1,则方程的正整数解为18x y =⎧⎨=⎩或21x y =⎧⎨=⎩. 故答案为:18x y =⎧⎨=⎩或21x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.16.【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽解析:2375mm【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩∴小长方形的面积为:22515375xy mm【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程. 17..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.解析:6a -.【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236()=(1)()a a a .故答案为:6a -.【点睛】 此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.18.4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴,,,.a 的值可能有4种,故答案为:4.【点睛】本题运解析:4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴14ab=⎧⎨=⎩,33ab=⎧⎨=⎩,52ab=⎧⎨=⎩,71ab=⎧⎨=⎩.a 的值可能有4种,故答案为:4.【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.19.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.20.-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a ﹣b =2,∴4a2﹣b2=(2a+b )(2a ﹣b )=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】解析:-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a +b =﹣3,2a ﹣b =2,∴4a 2﹣b 2=(2a +b )(2a ﹣b )=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】此题考查的是根据平方差公式求值,掌握利用平方差公式因式分解是解决此题的关键.三、解答题21.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==, 解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.22.2021 514-【分析】根据题目信息,设S=1+5+52+53+…+52020,求出5S,然后相减计算即可得解.【详解】解:设S=1+5+52+53+ (52020)则5S=5+52+53+54 (52021)两式相减得:5S﹣S=4S=52021﹣1,则202151.4S-=∴1+5+52+53+54+…+52020的值为2021514-.【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.23.(1)见解析;(2)见解析;(3)4.【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB,过点C作AB延长线的垂线段;(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.24.(1)24,21x xy y==⎧⎧⎨⎨==⎩⎩(2)-136(3)2.5xy=⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m的值;(3)方程整理后,根据无论m如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21 x xy y==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260 x yx y+=⎧⎨+-=⎩和解得66 xy=-⎧⎨=⎩把66xy=-⎧⎨=⎩代入x-2y+mx+5=0,解得m=13 6 -(3)∵无论实数m取何值,方程x-2y+mx+5=0总有一个固定的解,∴x=0时,m的值与题目无关∴y=2.5∴2.5 xy=⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.25.角平分线的定义,∠3,等量代换,DE,BC,内错角相等,两直线平行,∠C,两直线平行,同位角相等【分析】先根据角平分线的定义,得出∠1=∠3,再根据等量代换,得出∠3=∠2,最后根据平行线的判定与性质得出结论.【详解】证明:∵BE平分∠ABC(已知)∴∠1=∠3 (角平分线的定义)又∵∠1=∠2(已知)∴∠3=∠2 (等量代换)∴DE∥BC(内错角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等)【点睛】本题主要考查了平行线的判定与性质,解题时注意:内错角相等,两直线平行;两直线平行,同位角相等.26.见解析【分析】由DF∥AC,得到∠BFD=∠A,再结合∠BFD=∠CED,有等量代换得到∠A=∠CED,从而可得DE∥AB,则由平行线的性质即可得到∠B=∠CDE.【详解】解:∠B=∠CDE,理由如下:∵ DF∥AC,∴∠BFD=∠A.∵∠BFD=∠CED,∴∠A=∠CED.∴DE∥AB,∴∠B=∠CDE.【点睛】本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.27.﹣2<x≤1.【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可.试题解析:331(1)213(1)8(2) xxx x-⎧++⎪⎨⎪--<-⎩,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.28.(1)(12,0)A (0,3)B (15,3)C(2)610.8t <<;存在,02t <≤或11.612t ≤<【分析】(1)根据题意构造方程组21802730a b a b +-=⎧⎨--=⎩,解方程组,问题得解; (2)①当010t <≤时,15 1.5BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,当1012t <<时, 1.515BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,二者结合,问题得解;②分别表示出BCN S 三角形、 OACB S 四边形,分010t <≤,1012t <<两种情况讨论,问题得解.【详解】解:(1)由题意得21802730a b a b +-=⎧⎨--=⎩, 解得123a b =⎧⎨=⎩, ∴(12,0)A ,(0,3)B ,(15,3)C(2)①当010t <≤时,15 1.5BM t =-,12AN t =-,BM AN <得15 1.512t t -<-,解得6t >则610t <≤;当1012t <<时, 1.515BM t =-,12AN t =-,BM AN <得1.51512t t -<-, 解得10.8t <,则1010.8t <<,综上,610.8t <<; ②1145153222BCN S BC OB =⨯⨯=⨯⨯=三角形 1181()(1215)3222OACB S OA BC OB =⨯+⨯=⨯+⨯=四边形 当010t <≤时, 81145(15 1.5)3222OACM OACB BMO S S S t =-=-⨯-⨯≤四边形四边形三角形 解得2t ≤,则02t <≤; 当1012t <<时, 81145(1.515)15222OACM OACB BMC S S S t =-=-⨯-⨯≤四边形四边形三角形 解得11.6t ≥,则11.612t ≤<,综上02t <≤或11.612t ≤<.【点睛】本题考查了非负数的表达、平面直角坐标系中图形面积表示,不等式,方程组、分类讨论等知识,综合性较强.根据题意,分类讨论是解题关键.。

中山市七年级下册数学全册单元期末试卷及答案-百度文库

中山市七年级下册数学全册单元期末试卷及答案-百度文库
(3)当点A落在四边形BCED外时(如图3),探索∠C与∠1、∠2之间的大小关系.(直接写出结论)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.
26.解下列二元一次方程组:
(1) ;
(2) .
27.先化简,再求值:(2a+b)2﹣(2a+3b)(2a﹣3b),其中a= ,b=﹣2.
28.如图,一个三角形的纸片ABC,其中∠A=∠C,
(1)把△ABC纸片按(如图1)所示折叠,使点A落在BC边上的点F处,DE是折痕.说明BC∥DF;
(2)把△ABC纸片沿DE折叠,当点A落在四边形BCED内时(如图2),探索∠C与∠1+∠2之间的大小关系,并说明理由;
A.a<b<c<dB.a<d<c<bC.b<a<d<cD.c<a<d<b
4.计算: 的结果是( )
A. B. C. D.2
5.下列代数运算正确的是()
A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4D.(2x)3=2x3
6.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )
中山边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )
A.三角形B.四边形C.六边形D.八边形
2.下列各式从左到右的变形中,是因式分解的是( )
A. B.
C. D.
3.若a=-0.32,b=-3-2,c= ,d= ,则它们的大小关系是()

2022届中山市名校七年级第二学期期末达标测试数学试题含解析

2022届中山市名校七年级第二学期期末达标测试数学试题含解析

2022届中山市名校七年级第二学期期末达标测试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每题只有一个答案正确)1.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)一定在第四象限C.已知点A(1,﹣3)与点B(1,3),则直线AB平行y轴D.已知点A(1,﹣3),AB∥y轴,且AB=4,则B点的坐标为(1,1)【答案】C【解析】【分析】直接利用坐标轴上点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A、若ab=0,则点P(a,b)表示在坐标轴上,故此选项错误;B、点(1,﹣a2)一定在第四象限或x轴上,故此选项错误;C、已知点A(1,﹣3)与点B(1,3),则直线AB平行y轴,正确;D、已知点A(1,﹣3),AB∥y轴,且AB=4,则B点的坐标为(1,1)或(1,﹣7),故此选项错误.故选:C.【点睛】本题考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键2.若三角形的三边长分别为4、x、7,则x的值可以是()A.2 B.3 C.8 D.11【答案】C【解析】【分析】根据三角形的三边关系列出不等式即可求出x的取值范围,然后确定可能值即可.【详解】解:∵三角形的三边长分别为4,7,x,∴7﹣4<x<7+4,即3<x<1.∴8符合题意,故选:C.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.若在去分母解分式方程122x kx x-=++时产生增根,则k=()A.﹣3 B.﹣2 C.﹣1 D.1【答案】A【解析】【分析】先去分母化为整式方程,然后根据方程有增根可知x=-2,代入后即可求出k的值.【详解】去分母得:x﹣1=k,由分式方程有增根,得到x+2=0,即x=﹣2,把x=﹣2代入整式方程得:k=﹣3,故选:A.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.4.下列事件中,属于不可能事件的是()A.明天三明有雨B.a2<0(a为有理数)C.三角形三个内角的和是180°D.射击运动员,射击一次命中靶心【答案】B【解析】【分析】根据事件发生的可能性即可解答.【详解】解:A,明天三明有雨是可能事件,错误.B,a2<0(a为有理数)是不可能事件,正确.C, 三角形三个内角的和是180°是必然事件,错误.D, 射击运动员,射击一次命中靶心是可能事件,错误.故选B.【点睛】本题考查随机事件,掌握可能事件,不可能事件和必然事件的概念是解题关键.5.乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是()A.32°B.28°C.26°D.23°【答案】D【解析】【分析】延长DC交AE于F,依据AB∥CD,∠BAE=92°,可得∠CFE=92°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【详解】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=92°,∴∠CFE=92°,又∵∠DCE=115°,∴∠E=∠DCE-∠CFE=115°-92°=23°,故选D.【点睛】本题考查平行线的性质和三角形外角的性质,解题关键是掌握:两直线平行,同位角相等.6.下列实数是无理数的是()A.-2 B.0 C.13D3【答案】D【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:A、-2是整数,是有理数,选项错误;B、0是整数,是有理数,选项错误;C、13是分数,是有理数,选项错误;D3【点睛】此题考查无理数,解题关键在于掌握其定义7.若x 轴上的点p 到y 轴的距离为5,则点的坐标为( )A .(5,0)B .(5,0)(-5,0)C .(0,5)D .(0,5)或(0,-5) 【答案】B【解析】本题主要考查了平面直角坐标系中坐标轴上点的坐标特点及点到坐标轴的距离. 先根据P 在x 轴上判断出点P 纵坐标为0,再根据点P 到y 轴上的距离的意义可得横坐标的绝对值为5,即可求出点P 的坐标. 解:∵点P 在x 轴上,∴点P 的纵坐标等于0,又∵点P 到y 轴的距离是5,∴点P 的横坐标是±5,故点P 的坐标为(5,0)或(-5,0).故选B .8.若a b >,则下列判断中错误的是( )A .22a b +>+B .22ac bc <C .33a b -<-D .44a b > 【答案】B【解析】【分析】根据不等式性质判断.【详解】A. 应用不等式性质,不等式两边同时加上同一个数,不等式符号方向不变,则A 正确;B.若c 2=0,则B 选项不成立,故选项B 错误;C. 不等号两边同乘以一个负数时不等号方向改变,故选项C 正确;D. 不等式两边同除以一个正数不等号方向不变,故选项D 正确.故选B.【点睛】本题考查了不等式的基本性质,注意不等号两边同乘以一个负数,不等号方向改变.9.若a b <,则下列不等式中不正确...的是( ) A .55a b +<+B .55-<-a bC .55a b -<-D .55a b 【答案】C【解析】根据不等式的性质求解即可.【详解】解:A 、两边都加5,不等号的方向不变,故A 选项正确,不符合题意;B 、两边都减5,不等号的方向不变,故B 选项正确,不符合题意;C 、两边都乘以﹣5,不等号的方向改变,故C 选项错误,符合题意;D 、两边都除以5,不等号的方向不变,故D 选项正确,不符合题意;故选:C .【点睛】本题考查了不等式的性质,利用不等式的性质是解题关键.10.下列说法不正确的是( )A .4是16的算术平方根B .53是259的一个平方根C .2(6)-的平方根6-D .3(3)-的立方根3- 【答案】C【解析】【分析】根据算术平方根,平方根和立方根的意义进行分析即可.【详解】A. 4是16的算术平方根,说法正确;B. 53是259的一个平方根,说法正确; C. 2(6)-的平方根6± ,本选项错误;D. 3(3)-的立方根3-,说法正确.故选:C【点睛】本题考核知识点:数的开方.解题关键点:熟记算术平方根,平方根和立方根的意义.二、填空题11.计算:33()a =_____________.【答案】9a【解析】【分析】根据幂的乘方运算法则,即可解出.根据幂的乘方的运算法则:底数不变,指数相乘,得:33()a =9a故答案为9a【点睛】本题考查整式运算中,幂的乘方的运算,熟练掌握运算法则是解题的关键.12.根据下列各式的规律,在横线处填空:1111122+-=,111134212+-=,111156330+-=,111178456+-=,……, 1120172018+-______=_______. 【答案】11009120172018⨯ 【解析】【分析】观察不难发现,两个连续自然数的倒数的和减去后一个自然数的一半的倒数,等于这两个自然数的乘积的倒数.【详解】 解:∵1111122+-= 111134212+-= 111156320+-= 111178456+-= …… ∴111120172018100920172018+-=⨯ 故答案为:11009;120172018⨯ 【点睛】本题是对数字变化规律的考查,比较简单,仔细观察分母的变化找出规律是解决本题的关键.13.点()5,1P -到x 轴距离为______.【答案】1【解析】【分析】根据到x 轴的距离为纵坐标的绝对值,可由P 点的坐标求得到x 轴的距离为1.【详解】根据到x 轴的距离为纵坐标的绝对值,可由()5,1P -的纵坐标1,得到x 轴的距离为1.故答案为:1【点睛】本题考核知识点:点到坐标轴的距离.解题关键点:由坐标得到点和坐标轴的距离.14.某校对初中在校女生进行身高测量,身高在1.58~1.63m 这一组的频数有300人,占全校女生人数的25%,则该校初中在校女生总共有________人.【答案】1【解析】【分析】用这一组的频数除以所占的百分比,计算即可得解.【详解】解:300÷25%=1(人).故答案为:1.【点睛】本题考查了频数和频率,频率=频数÷数据总和,解题的关键是能够灵活运用公式.15.如图,将ABC ∆纸片沿DE 折叠,使点A 落在点'A 处,且'A B 平分ABC ∠,'A C 平分ACB ∠,若110BA C ∠='︒,则12∠+∠的度数是_________.【答案】80°【解析】【分析】连接AA′.首先求出∠BAC ,再证明∠1+∠2=2∠BAC 即可解决问题.【详解】连接AA′.∵A′B 平分∠ABC,A′C 平分∠ACB,∠BA′C=110°,∴∠A′BC+∠A′CB=70°,∴∠ABC+∠ACB=140°,∴∠BAC=180°−140°=40°,∵∠1=∠DAA′+∠DA′A,∠2=∠EAA′+∠EA′A ,∵∠DAA′=∠DA′A,∠EAA′=∠EA′A ,∴∠1+∠2=2(∠DAA′+∠EAA′)=2∠BAC=80°故答案为80°【点睛】此题考查三角形内角和定理,解题关键在于做辅助线16.如图,已知直线AB 、CD 相交于点O ,OE 平分BOC ∠,如果50BOE ∠=︒,那么AOC ∠=__________度.【答案】1【解析】【分析】先根据角平分线的定义,求出∠BOC 的度数,再根据邻补角的和等于11°求解即可.【详解】解:∵OE 平分BOC ∠,50BOE ∠=︒,∴2250100∠=∠=⨯︒=︒BOC BOE ,∴180********∠=︒-∠=︒-︒=︒AOC BOC ,故答案为:1.【点睛】本题考查了角平分线的定义以及邻补角的性质,属于基础题.17.若一个三角形的两边长为3和5,且周长为偶数,则这个三角形的第三边长为_____.【答案】4或6【解析】【分析】根据三角形的三边关系定理可得第三边的范围是:大于已知的两边的差,而小于两边的和.再根据范围确定a 的值【详解】第三边a 的取值范围为2<a<8,周长为偶数第三边的长为4或6【点睛】此题考查三角形三边关系,难度不大三、解答题18.教科书中这样写道:“我们把多项式222a ab b ++及322a ab b -+叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项使式子中出现完全平方式,再减去这个项,使整个式子的值不变这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求化数式最大值.最小值等. 例如:分解因式()()()()()222()2321414121231x x x x x x x x x +-=++-=+-=+++-=+-;例如求代数式2246x x +-的最小值.()()222246223218x x x x x +-=+-=+-.可知当1x =-时,2246x x +-有最小值,最小值是8-,根据阅读材料用配方法解决下列问题:(1)分解因式:245m m --= _____(2)当,a b 为何值时,多项式22468a b a b +-++有最小值,并求出这个最小值.(3)当,a b 为何值时.多项式22222427a ab b a b -+--+有最小值并求出这个最小值【答案】(1)()()51m m -+;(2)2,3a b ==-时,最小值为-5;(3)4,3a b ==,最小值为17【解析】【分析】(1)根据阅读材料,先将m 2−4m−5变形为m 2−4m +4−9,再根据完全平方公式写成(m−2)2−9,然后利用平方差公式分解即可;(2)利用配方法将多项式22468a b a b +-++转化为()()22235a b ++--,然后利用非负数的性质进行解答;(3)利用配方法将多项式22222427a ab b a b -+--+转化为22(1)(3)17a b b --+-+,然后利用非负数的性质进行解答.【详解】(1)m 2−4m−5=m 2−4m +4−9=(m−2)2−9=(m−2+3)(m−2−3)=(m +1)(m−5).故答案为()()51m m -+;(2)22468a b a b +-++=a 2−4a +b 2+6b +8=a 2−4a +4+b 2+6b +9-5=()()22235a b ++--,当a =2,b =−3时,22468a b a b +-++有最小值,最小值为-5;(3)∵22222427a ab b a b -+--+=2222(1)2227a a b b b b b -++-+-+=2222(1)21626a a b b b b b -+++++-+=2222(1)(1)6917a a b b b b -++++-++=22(1)(3)17a b b --+-+∴当a =4,b =3时,多项式22222427a ab b a b -+--+有最小值1.【点睛】此题考查了因式分解的应用,以及非负数的性质,熟练掌握因式分解的方法是解本题的关键. 19.若(x 2+mx-8) (x 2-3x+n)的展开式中不含x 2和x 3项,求m 和n 的值【答案】317m n =⎧⎨=⎩ 【解析】【分析】首先根据多项式的乘法法则将多项式进行展开,然后进行合并同类项.根据不含哪一项,则哪一项的系数为零列出方程组,从而得出答案.【详解】解:原式=x 4+(m-3)x 3+(n-3m-8)x 2+(mn+24)x-8n ,根据展开式中不含x 2和x 3项得:30380m n m -=⎧⎨--=⎩, 解得:317m n =⎧⎨=⎩. 点睛:本题主要考查多项式的乘法计算法则,属于中等难度的题型.能够进行合并同类项是解决这个问题的关键.20.已知关于x 、y 的二元一次方程组24{52x y m x y -=++=+①② (1)若1m =,求方程组的解;(2)若方程组的解中,x 的值为正数,y 的值为负数,求m 的范围。

中山市七年级下学期期末数学试题及答案

中山市七年级下学期期末数学试题及答案

中山市七年级下学期期末数学试题及答案一、选择题1.12-等于( )A .2-B .12C .1D .12- 2.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .623a a a ÷=3.下列运算正确的是 () A .()23524a a -= B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅= 4.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯5.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )A .①④B .②③C .①③D .①③④ 6.下列计算错误的是( ) A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0) 7.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( )A .1.62米B .2.62米C .3.62米D .4.62米 8.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .6 9.一个多边形的每个内角都等于140°,则这个多边形的边数是( )A .7B .8C .9D .10 10.下列计算不正确的是( )A .527a a a =B .623a a a ÷=C .2222a a a +=D .(a 2)4=a 8二、填空题11.已知等腰三角形的两边长分别为4和8,则它的周长是_______.12.计算:312-⎛⎫ ⎪⎝⎭= . 13.20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ =______.14.计算(﹣2xy )2的结果是_____.15.因式分解:224x x -=_________.16.若(x ﹣2)x =1,则x =___.17.计算:x (x ﹣2)=_____ 18.若2(1)(23)2x x x mx n +-=++,则m n +=________.19.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.20.比较大小:π0_____2﹣1.(填“>”“<”或“=”) 三、解答题21.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ;(3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定;(4)请对你在第(3)小题中所作的判断说明理由.22.已知a +a 1-=3, 求(1)a 2+21a(2)a 4+41a 23.计算(1) (-a 3) 2·(-a 2)3 (2) (2x -3y )2-(y+3x )(3x -y )(3) ()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭24.如果a c = b ,那么我们规定(a ,b )=c ,例如:因为23= 8 ,所以(2,8)=3. (1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,14)= ; (2)若记(3,5)=a ,(3,6)=b ,(3,30)=c ,求证: a + b = c .25.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.26.己知关于x 、y 的二元一次方程组221x y k x y +=⎧⎨+=-⎩的解互为相反数,求k 的值。

广东省中山市七年级下册期末考试数学试卷含解析

广东省中山市七年级下册期末考试数学试卷含解析

广东省中山市七年级下学期期末考试数学试卷一、单项选择题(共10个小题,每小题3分,满分30分)1.在实数﹣2,0,,3中,无理数是()A.﹣2 B.0 C.D.32.点P(﹣5,5)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,直线a,b被直线c所截,且a∥b,若∠1=55°,则∠2的度数为()A.145°B.125°C.55°D.45°4.立方根等于2的数是()A.±8 B.8 C.﹣8 D.5.为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高.在这个问题中,样本容量是()A.2000名学生B.2000 C.200名学生D.2006.下列命题是真命题的是()A.对顶角相等 B.内错角相等C.相等的角是对顶角D.相等的角是内错角7.已知a>b,则下列结论中正确的是()A.a+2<b+2 B.a﹣2<b﹣2 C.﹣2a<﹣2b D.8.某学校需要了解全校学生眼睛近视的情况,下面抽取样本的方式比较合适的是()A.从全校每个班级中随机抽取10名学生作调查B.从九年级随机抽取一个班级的学生作调查C.从全校的女同学中随机抽取50名学生作调查D.在学校篮球场上随机抽取10名学生作调查9.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离为()A.7 B.6 C.4 D.310.已知x,y满足方程程组,则x﹣y的值为()A.0 B.1 C.2 D.8二、填空题(共6个小题,每小题4分,满分24分)11.如图,直线AB,CD相交于点O,OE⊥AB于点O,若∠EOC=60°,则∠BOD度数是.12.如果x2=a,那么x叫做a的平方根.由此可知,4的平方根是.13.若是方程y=2x+b的解,则b的值为.14.不等式2(x+1)<6的解集为.15.在平面直角坐标系中,正方形ABCD的三个顶点坐标分别为A(﹣2,2),B(﹣2,﹣2),C(2,﹣2),则第四个顶点D的坐标为.16.在学校“传统文化”考核中,一个班50名学生中有40人达到优秀,在扇形统计图中,代表优秀人数的扇形的圆心角的度数等于度.三、解答题(一)(共3个小题,每小题6分,满分18分17.(6分)如图,将数轴上标有字母的各点与下列实数对应起来,请在答题卡上填写对应的实数:﹣,π,0,,2,﹣.18.(6分)解方程组:.19.(6分)根据下列语句列不等式并求出解集:x与4的和不小于6与x的差.四、解答题(二)(共3个小题,每小题7分,满分21分20.(7分)如图,平面直角坐标系中有一个四边形ABCD.(1)分别写出点A,B,C,D的坐标;(2)求四边形ABCD的面积;(3)将四边形ABCD先向下平移3个单位长度,再向右平移4个单位长度后得到的四边形A 1B1C1D1,画出四边形A1B1C1D121.(7分)解不等式组:.22.(7分)如图,AB∥CD,AE平分∠BAC,CF平分∠ACD.求证:AE∥CF.五、解答题(三)(共3个小、题,每小题9分,满分27分)23.(9分)体育委员统计了全班学生“1分钟跳绳”的次数,绘制成如下两幅统计图:根据这两幅统计图的信息完成下列问题(1)这个班共有学生多少人?并补全频数分布直方图;(2)如果将“1分钟跳绳”的次数大于或等于180个定为优秀,请你求出这个班“1分钟跳绳”的次数达到优秀的百分率.24.(9分)某校组织七年级全体师生乘旅游客车前往广州开展研学旅行活动.旅游客车有大小两种,2辆大客车与3辆小客车全部坐满可乘载195人,4辆大客车与2辆小客车全部坐满可乘载250人,全体师生刚好坐满12辆大客车与10辆小客车,问该校七年级师生共有多少人?25.(9分)如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.。

中山市人教版七年级下册数学期末测试题

中山市人教版七年级下册数学期末测试题

中山市人教版七年级下册数学期末测试题一、选择题1.若2200.3,3,(3)a b c -==-=-,那么a 、b 、c 三数的大小为( ).A .a c b >>B .c a b >>C .a b c >>D .c b a >>2.如图1的8张长为a ,宽为b (a <b )的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .b =5aB .b =4aC .b =3aD .b =a 3.以下列各组数据为边长,可以构成等腰三角形的是( ) A .1cm 、2cm 、3cmB .3cm 、 3cm 、 4cmC .1cm 、3cm 、1cmD .2cm 、 2cm 、 4cm 4.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80°5.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 2 6.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC中AC 边上的高是( )A .CFB .BEC .AD D .CD 7.将下列三条线段首尾相连,能构成三角形的是( ) A .1,2,3B .2,3,6C .3,4,5D .4,5,9 8.下列方程中,是二元一次方程的是( )A .x 2+x =1B .2x ﹣3y =5C .xy =3D .3x ﹣y =2z 9.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣8 10.下列说法中,正确的个数有( )①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,④两个角的两边分别平行,则这两个角相等A .1个B .2个C .3 个D .4个 二、填空题11.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.12.已知:()521x x ++=,则x =______________.13.若分解因式221(3)()x mx x x n +-=++,则m =__________. 14.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,ED '的延长线与BC 相交于点G ,若∠EFG =50°,则∠1=_______.15.已知a+b=5,ab=3,求:(1)a 2b+ab 2; (2)a 2+b 2.16.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:a m ⋅a n =a m +n ;②积的乘方:(ab )n =a n b n ;③幂的乘方:(a m )n =a mn ;④同底数幂的除法:a m ÷a n =a m -n 等运算法则,请问算式()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭中用到以上哪些运算法则_________(填序号).17.()7(y x -+________ 22)49y x =-.18.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______.19.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.20.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______. 三、解答题21.解方程组:41325x y x y +=⎧⎨-=⎩. 22.如图,已知:点A C 、、B 不在同一条直线,AD BE . (1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.23.因式分解:(1)x 4﹣16;(2)2ax 2﹣4axy +2ay 2.24.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-.25.计算:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).26.若关于x,y 的二元一次方程组 38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩有相同的解. (1)求这个相同的解;(2)求m n -的值.27.观察下列等式,并回答有关问题:3322112234+=⨯⨯; 333221123344++=⨯⨯; 33332211234454+++=⨯⨯; … (1)若n 为正整数,猜想3333123n +++⋅⋅⋅+= ;(2)利用上题的结论比较3()()f x g x ==与25055的大小.28.解不等式-3+3+121-3-18-x x x x ⎧≥⎪⎨⎪<⎩()【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.【详解】解:a=0.32=0.09,b= -3-2=19-,c=(-3)0=1, ∴c >a >b ,故选B .【点睛】本题考查有理数的大小比较,解题的关键是熟练掌握乘方运算法则、负整数指数幂及零指数幂. 2.A解析:A【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,12S S S =-225315[()]AD AB a AD a AB a BC AB b BC AB b 225315()BC AB a BC a AB a BC AB b BC AB b22(5)(3)15a b BC b a AB a b . AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50a b ,5b a .故选:A .【点睛】本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.3.B解析:B【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形.【详解】上述选项中,A 、C 、D 不能构成三角形,错误B 中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确故选:B .【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.4.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA ,CD 交于点E .∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA 与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC 为等腰直角三角形∴∠E=45°∴在△EAD 中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD 互为对顶角∴∠2=∠EAD =70°故选:B .【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.5.C解析:C【分析】直接利用图形面积求法得出等式,进而得出答案.【详解】 梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2,故a 2-b 2=(a +b )(a -b ).故选:C .【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.6.B解析:B【解析】试题分析:根据图形,BE 是△ABC 中AC 边上的高.故选B .考点:三角形的角平分线、中线和高.7.C解析:C【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误.【详解】解:A 选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形;B 选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形,故选:C.【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.8.B解析:B【分析】根据二元一次方程的定义对各选项逐一判断即可得.【详解】解:A.x2+x=1中x2的次数为2,不是二元一次方程;B.2x﹣3y=5中含有2个未知数,且含未知数项的最高次数为一次的整式方程,是二元一次方程;C.xy=3中xy的次数为2,不是二元一次方程;D.3x﹣y=2z中含有3个未知数,不是二元一次方程;故选:B.【点睛】本题主要考查了二元一次方程的定义判断,准确理解是解题的关键.9.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n即可.【详解】解:0.00000012=1.2×10﹣7,故选:C.【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.10.A解析:A【分析】根据同位角的定义、三角形垂心的定义及多边形内角和公式、平行线的性质逐一判断可得.【详解】解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误;②只有锐角三角形的三条高在三角形的内部,故此结论错误;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确;④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误.故选A.【点睛】本题主要考查同位角、三角形垂心及多边形内角和、平行线的性质,熟练掌握基本定义和性质是解题的关键.二、填空题11.100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(解析:100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.12.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.13.【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.【详解】解:,∴,解得:,故答案为:.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关 解析:4-【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.【详解】解:2(3)()(3)3x x n x n x n ++=+++,∴3321n m n +=⎧⎨=-⎩, 解得:74n m =-⎧⎨=-⎩, 故答案为:4-.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关键.14.;【解析】分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,即可得到结论.详解:∵DE∥GC,∴∠DEF解析:100︒;【解析】分析:先根据平行线的性质得∠DEF =∠EFG =50°,∠1=∠GED ,再根据折叠的性质得∠DEF =∠GEF =50°,则∠GED =100°,即可得到结论.详解:∵DE ∥GC ,∴∠DEF =∠EFG =50°,∠1=∠GED .∵长方形纸片沿EF 折叠后,点D 、C 分别落在点D ′、C ′的位置,∴∠DEF =∠GEF =50°,即∠GED =100°,∴∠1=∠GED =100°. 故答案为100.点睛:本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.15.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b +ab2=a解析:(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a 2b +ab 2=ab (a +b )=3×5=15(2)a 2+b 2=(a +b )2-2ab =52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.16.②③【分析】在的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】在的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方解析:②③【分析】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).17.【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,解析:7y x--【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,掌握平方差公式的特征是解题的关键.18.【分析】先把二元一次方程组求解出来,用m表示,再根据有整数解求解m的值即可得到答案;【详解】解:,把①②式相加得到:,即:,要二元一次方程组有整数解,即为整数,又∵为正整数,故解析:2【分析】先把二元一次方程组210320mx yx y+=⎧⎨-=⎩求解出来,用m表示,再根据有整数解求解m的值即可得到答案;【详解】解:210320mx y x y +=⎧⎨-=⎩①②, 把①②式相加得到:310+=mx x , 即:103x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解, 即103x m =+为整数, 又∵m 为正整数,故m=2, 此时10223x ==+,3y = , 故,x y 均为整数,故答案为:2;【点睛】 本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键;19.内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:,(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的解析:内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:ABD CDB ∠=∠,//AB CD ∴(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【分析】将,代入方程组,首先求得,进而可以求得.【详解】解:将代入方程组得: ,解得: ,故的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解解析:1-【分析】将x ,y 代入方程组,首先求得m ,进而可以求得n .【详解】解:将11x y =⎧⎨=⎩代入方程组得:31=1m m n -⎧⎨-=⎩, 解得:21m n =⎧⎨=-⎩, 故n 的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解题的关键.三、解答题21.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-,故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.22.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CFAD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒ (2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.23.(1)2(4)(2)(2)x x x ++- (2)22()a x y -【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【详解】解:(1)原式=(x 2+4)(x 2﹣4)=(x 2+4)(x +2)(x ﹣2);(2)原式=2a (x 2﹣2xy +y 2)=2a (x ﹣y )2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24.2243x xy y -++,19【分析】根据整式的乘法运算法则,将多项式乘积展开,再合并同类项,即可化简,再代入x ,y 即可求值.【详解】解:原式2222222=44424243x x xy y xy x y xy x xy y -+---++=-++,将1x =-,2y =-代入,则原代数式的值为:2243=x xy y -++()()()()22141232=1812=19--+⋅-⋅-+⋅--++.【点睛】本题考查整式的乘法,难度一般,是中考的常考点,熟练掌握多项式与多项式相乘的法则,即可顺利解题.25.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.26.(1)这个相同的解为21x y =⎧⎨=⎩;(2)1 【分析】(1)根据两个方程组有相同解可得方程组31x y x y +=⎧⎨-=⎩,解此方程组即可得出答案; (2)将(1)求解出的x 和y 的值代入其余两个式子,解出m 和n 的值,再代入m-n 中即可得出答案.【详解】解:(1)∵关于x,y 的二元一次方程组38x y mx ny +=⎧⎨+=⎩与14x y mx ny -=⎧⎨-=⎩有相同的解, ∴31x y x y +=⎧⎨-=⎩解得21x y =⎧⎨=⎩∴这个相同的解为21x y =⎧⎨=⎩(2)∵关于x,y 的二元一次方程组38x y mx ny +=⎧⎨+=⎩与14x y mx ny -=⎧⎨-=⎩相同的解为21x y =⎧⎨=⎩, ∴2824m n m n +=⎧⎨-=⎩解得32m n =⎧⎨=⎩∴m-n=3-2=1【点睛】本题考查的是二元一次方程组的同解问题:将两组方程组中只含有x 和y 的方程组合到一起,求解即可.27.(1)221(1)4n n + (2)< 【分析】(1)根据所给的数据,找出变化规律,即是14乘以最后一个数的平方,再乘以最后一个数加1的平方,即可得出答案;(2)根据(1)所得出的规律,算出结果,再与50552进行比较,即可得出答案.【详解】解:(1)根据所给的数据可得:13+23+33+…+n 3=14n 2(n+1)2. 故答案为:14n 2(n+1)2. (2)13+23+33+ (1003)2211001014⨯⨯ =21(100101)2⨯⨯=25050<25055 所以13+23+33+…+1003=<25055.【点睛】此题考查规律型:数字的变化类,通过观察、分析、总结得出题中的变化规律是解题的关键.28.﹣2<x≤1.【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可.试题解析:331(1)213(1)8(2) xxx x-⎧++⎪⎨⎪--<-⎩,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.。

中山市七年级下册末数学试卷及答案

中山市七年级下册末数学试卷及答案

一、解答题1.在平面直角坐标系中,点(,1)A a ,(,3)B b 满足关系式2(1)|2|0++-=a b .(1)求a ,b 的值;(2)若点(3,)P n 满足ABP △的面积等于6,求n 的值;(3)线段AB 与y 轴交于点C ,动点E 从点C 出发,在y 轴上以每秒1个单位长度的速度向下运动,动点F 从点(8,0)-M 出发,以每秒2个单位长度的速度向右运动,问t 为何值时有2ABEABFSS=,请直接写出t 的值.解析:(1)1a =-,2b =;(2)233或13-;(3)2215或2【分析】(1)根据一个数的平方与绝对值均非负,且其和为0,则可得它们都为0,从而可求得a 和b 的值;(2)过点P 作直线l 垂直于x 轴,延长AB 交直线l 于点Q ,设点Q 坐标为(3,)a ,过A 作AH l ⊥交直线l 于点H ,根据面积关系求出Q 点坐标,再求出PQ 的长度,即可求出n 的值;(3)先根据AGOC CONB AGNB S S S +=梯形梯形梯形求出C 点坐标,再根据ADGDNBAGNB S S S+=梯形求出D 点坐标,根据题意可得F 点坐标,由2ABEABFS S=得关于t 的方程,求出t 值即可.【详解】(1)2(1)0a +≥,|2|0-≥b ,且2(1)|2|0++-=a b 2(1)0∴+=a ,|2|0b -=a 1∴=-,b 2=(2)过P 作直线l 垂直于x 轴,延长AB 交直线l 于点Q ,设点Q 坐标为(3,)a , 过A 作AH l ⊥交直线l 于点H ,如图所示∵AHQ ABH BQH S S S =+△△△ ∴1114(1)42(1)1222a a ⨯-=⨯⨯+-⨯ 解得113a =,Q 点坐标为113,3⎫⎛ ⎪⎝⎭∵11341222ABP AQP BPQ S S S PQ PQ PQ =-=⨯-⨯=△△△ ∴313162n -= 解得:233n =或13- (3)当2215t =或2时,有2ABEABFS S=.如图,延长BA 交x 轴于点D ,过A 点作AG ⊥x 轴于点G ,过B 点作BN ⊥x 轴于点N ,∵AGOC CONB AGNB S S S +=梯形梯形梯形∴111(1)1(3)2(13)3222OC OC +⨯++⨯=⨯+⨯ 解得:53OC =∴50,3C ⎛⎫ ⎪⎝⎭∵ADGDNBAGNB S S S+=梯形∴1111(13)3(3)3222DG DG ⨯+⨯+⨯=+⨯ 解得:32DG = ∵(1,0)G -∴5,02D ⎛⎫- ⎪⎝⎭当运动t 秒时,(82,0)F t -+∴51182222DF t t ⎛⎫=-+--=- ⎪⎝⎭∵CE =t ∴13=[2(1)]22ABES CE t ⨯--=,111(31)222ABFBDFDAFS SSDF t =-=⨯-=- ∵2ABEABFS S=∴3112222t t =- 解得:2215t =或2. 【点睛】本题主要考查三角形的面积,含绝对值方程解法,熟练掌握直角坐标系的知识,三角形的面积,梯形的面积等知识是解题的关键,难点在于对图形进行割补转化为易求面积的图形.2.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1= °,∠2= °; (2)现把三角板绕B 点逆时针旋转n °.①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.3.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ -∠QMN=90°,∴∠APM -∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM -∠QMN=90°;综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.4.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;∠BME,进而可求解.(3)根据平行线的性质及角平分线的定义可推知∠FEQ=12【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN =12∠MEN =12(∠BME +∠END ),∠ENP =12∠END , ∵EQ ∥NP , ∴∠NEQ =∠ENP ,∴∠FEQ =∠FEN ﹣∠NEQ =12(∠BME +∠END )﹣12∠END =12∠BME , ∵∠BME =60°, ∴∠FEQ =12×60°=30°. 【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键. 5.综合与探究 (问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动, ①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系.解析:(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠ 【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,∵APB APQ BPQ ∠=∠+∠∴360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;②当点P 在BA 延长线时,如备用图1:∵PE ∥AD ∥BC ,∴∠EPC=β,∠EPD =α,∴CPD βα∠=∠-∠;当P 在BO 之间时,如备用图2:∵PE∥AD∥BC,∴∠EPD=α,∠CPE=β,∴CPDαβ∠=∠-∠.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.6.如图1,已知直线m∥n,AB是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.(1)如图1,若∠OPQ=82°,求∠OPA的度数;(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QP B.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC ∥m ,∵m ∥n ,∴m ∥PC ∥n ,∴∠AOP =∠OPC =43°,∠BQP =∠QPC =49°,∴∠OPQ =∠OPC +∠QPC =43°+49°=92°,∴∠OPA =(180°-∠OPQ )×12=(180°-92°)×1244°,(3)∠OPQ =∠ORQ .理由如下:由(2)可知:∠OPQ =∠AOP +∠BQP ,∠ORQ =∠DOR +∠RQC ,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP =∠DOR ,∠BQP =∠RQC ,∴∠OPQ =∠ORQ .【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.7.已知,//AE BD ,A D ∠=∠.(1)如图1,求证://AB CD ;(2)如图2,作BAE ∠的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG ∠的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM ∠=∠+∠,过点H 作HM FH ⊥交FG 的延长线于点M ,且3518E AFH ∠-∠=︒,求EAF GMH ∠+∠的度数.解析:(1)见解析;(2)72︒【分析】(1)根据平行线的性质得出180A B ∠+∠=︒,再根据等量代换可得180B D ∠+∠=︒,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG ∠=∠=∠,再根据平角的含义得出ECF CFG ∠=∠,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB ∠=∠∠=∠;设,FAB CFH αβ∠=∠=,根据角的和差可得出2AEC AFH ∠=∠,结合已知条件35180AEC AFH ∠-∠=︒可求得18AFH ∠=︒,最后根据垂线的含义及平行线的性质,即可得出答案.【详解】(1)证明://AE BD180A B ∴∠+∠=︒A D ∠=∠180B D ∴∠+∠=︒//AB CD ∴;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB//AB CDQCA CAB ∴∠=∠,BGM DFG ∠=∠,CFH BHF ∠=∠,CFA FAG ∠=ACE BAC BGM ∠=∠+∠ECQ QCA BAC BGM ∴∠+∠=∠+∠ECQ BGM DFG ∴∠=∠=∠180,180ECQ ECD DFG CFG ∠+=︒∠+=︒ECF CFG ∴∠=∠//AB CD//AB EP ∴,PEA EAB PEC ECF ∴∠=∠∠=∠AEC PEC PEA ∠=∠-∠AEC ECF EAB ∴∠=∠-∠ECF AEC EAB ∴∠=∠+∠AF 平分BAE ∠12EAF FAB EAB ∴∠=∠=∠ FH 平分CFG ∠12CFH HFG CFG ∴∠=∠=∠ //CD AB,BHF CFH CFA FAB ∴∠=∠∠=∠设,FAB CFH αβ∠=∠=AFH CFH CFA CFH FAB ∠=∠-∠=∠-∠AFH βα∴∠=-,BHF CFH β∠=∠=222ECF AFH AEC EAB AFH AEC β∴∠+∠=∠+∠+∠=∠+22ECF AFH E BHF ∴∠+∠=∠+∠2AEC AFH ∴∠=∠35180AEC AFH ∠-∠=︒18AFH ∴∠=︒FH HM ⊥90FHM ∴∠=︒90GHM β∴∠=︒-180CFM NMF ∠+∠=︒90HMB HMN β∴∠=∠=︒-EAF FAB ∠=∠18EAF CFA CFH AFH β∴∠=∠=∠-∠=-︒189072EAF GMH ββ∴∠+∠=-︒+︒-=︒72EAF GMH ∴∠+∠=︒.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.8.已知A (0,a )、B (b ,0(b ﹣4)2=0.(1)直接写出点A 、B 的坐标;(2)点C 为x 轴负半轴上一点满足S △ABC =15.①如图1,平移直线AB 经过点C ,交y 轴于点E ,求点E 的坐标;②如图2,若点F (m ,10)满足S △ACF =10,求m .(3)如图3,D 为x 轴上B 点右侧的点,把点A 沿y 轴负半轴方向平移,过点A 作x 轴的平行线l ,在直线l 上取两点G 、H (点H 在点G 右侧),满足HB =8,GD =6.当点A 平移到某一位置时,四边形BDHG 的面积有最大值,直接写出面积的最大值.解析:(1)A (0,5),B (4,0);(2)①E (0,﹣52);②﹣2或6;(3)24. 【分析】(1)根据二次根式和偶次幂的非负性得出a ,b 解答即可;(2)①根据三角形的面积公式得出点C 的坐标,根据平行线的性质解答即可;②延长CA 交直线l 于点H (a ,10),过点H 作HM ⊥x 轴于点M ,根据三角形面积公式解答即可;(3)平移GH 到DM ,连接HM ,根据三角形面积公式解答即可.【详解】解:(1)∵25(4)0a b -+-=,且50a -≥,(b ﹣4)2≥0,∴a ﹣5=0,b ﹣4=0,解得:a =5,b =4,∴A (0,5),B (4,0);(2)①连接BE ,如图1,∵111||515222ABC A S OA BC y BC BC ∆=⨯⨯=⨯⨯=⨯⨯=, ∴BC =6,∴C (﹣2,0),∵AB ∥CE ,∴S △ABC =S △ABE ,∴1141522ABE S AE OB AE ∆=⨯⨯=⨯=, ∴AE =152, ∴OE =52, ∴E (0,﹣52); ②∵F (m ,10),∴点F 在过点G (0,10)且平行于x 轴的直线l 上,延长CA 交直线l 于点H (a ,10),过点H 作HM ⊥x 轴于点M ,则M (a ,0),如图2, ∵S △HCM =S △ACO +S 梯形AOMH ,∴111(2)1025(510)222a a +⨯=⨯⨯+⨯+⋅, 解得:a =2,∴H (2,10),∵S △AFC =S △CFH ﹣S △AFH ,∴1(105)102FH ⋅-=, ∴FH =4,∵H (2,10),∴F (﹣2,10)或(6,10),∴m =﹣2或6;(3)平移GH 到DM ,连接HM ,则GD ∥HM ,GD =HM ,如图3,四边形BDHG 的面积=△BHM 的面积,当BH ⊥HM 时,△BHM 的面积最大,其最大值=1118624222BH HM BH GD ⋅=⋅=⨯⨯=. 【点睛】本题主要考查图形与坐标及平移的性质,熟练掌握图形与坐标及平移的性质是解题的关键.9.如图,平面直角坐标系中,点B 的坐标是()6,0-,点A 在y 轴的正半轴上,AOB 的面积等于18.(1)求点A 的坐标;(2)如图,点P 从点O 出发,沿y 轴正方向运动,点P 运动至点A 停止,同时点Q 从B 点出发,沿x 轴正方向运动,点Q 运动至点O 停止,点P 、点Q 的速度都为每秒1个单位,设运动时间为t 秒,QBP △的面积为S ,求用含t 的式子表示S ,并直接写出t 的取值范围; (3)在(2)的条件下,过A 点作//AD BO ,连接BP 并延长BP 交AD 于E ,连接EQ 交PO 于点F ,若3AE =,求t 值及点F 的坐标.解析:(1)()0,6A ;(2)212S t =(06t <≤);(3)t 的值为4,点F 的坐标是120,5⎛⎫ ⎪⎝⎭. 【分析】(1)根据△AOB 的面积可求得OA 的长,即可求得点A 的坐标;(2)由题意可分别得PO BQ t ==,由三角形面积公式即可得结果,由点Q 只在线段OB 上运动,从而可得t 的取值范围;(3)利用割补方法,由ABE APB APE S SS =+△则可求得t 的值;连接OE ,由QO E F EOF OQ S S S =+△可求得OF 的长,从而求得点F 的坐标.【详解】(1)∵B (-6,0),∴OB =6, ∵1182AOB S OA OB ==, ∴16182OA ⨯⨯=, ∴OA =6 ,∴()0,6A .(2)∵PO BQ t ==,6QO AP t ==-,∴21122PBQ PO S BQ t =⋅=△, ∴212S t =(06t <≤) (3)∵PO BQ t ==,6QO AP t ==-,∴()1122ABE APB APE S AE AO S S AE BO AP =⋅=+=+⋅△, ∴()()113636622t ⨯⨯=+⨯-, 解得4t =,则62t -=,∴2AP OQ ==,连接OE ,如图∵12EOQ S QO AO =⋅△,()12QOF EOF EOQ S OQ A S E S OF =+⋅=+△ ∴()11263222OF ⨯⨯=⨯+⋅ ∴125OF =∴F 点坐标为120,5⎛⎫ ⎪⎝⎭综上所述:t 的值为4,点F 的坐标是120,5⎛⎫ ⎪⎝⎭.【点睛】本题考查了代数式,三角形面积,用到了割补方法,也是本题的关键和难点. 10.已知,//AB CD .点M 在AB 上,点N 在CD 上.(1)如图1中,BME ∠、E ∠、END ∠的数量关系为: ;(不需要证明);如图2中,BMF ∠、F ∠、FND ∠的数量关系为: ;(不需要证明)(2)如图 3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=,求FME ∠的度数;(3)如图4中,60BME ∠=,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出么FEQ ∠的度数.解析:(1)∠BME =∠MEN −∠END ;∠BMF =∠MFN +∠FND .(2)120°(3)∠FEQ 的大小没发生变化,∠FEQ =30°.【分析】(1)过E 作EH //AB ,易得EH //AB //CD ,根据平行线的性质可求解;过F 作FH //AB ,易得FH //AB //CD ,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME +∠END )+∠BMF −∠FND =180°,可求解∠BMF =60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ =12∠BME ,进而可求解.【详解】解:(1)过E 作EH //AB ,如图1,∴∠BME =∠MEH ,∵AB //CD ,∴HE //CD ,∴∠END =∠HEN ,∴∠MEN =∠MEH +∠HEN =∠BME +∠END ,即∠BME =∠MEN −∠END .如图2,过F 作FH //AB ,∴∠BMF =∠MFK ,∵AB //CD ,∴FH //CD ,∴∠FND =∠KFN ,∴∠MFN =∠MFK −∠KFN =∠BMF −∠FND ,即:∠BMF =∠MFN +∠FND .故答案为∠BME =∠MEN −∠END ;∠BMF =∠MFN +∠FND .(2)由(1)得∠BME =∠MEN −∠END ;∠BMF =∠MFN +∠FND .∵NE 平分∠FND ,MB 平分∠FME ,∴∠FME =∠BME +∠BMF ,∠FND =∠FNE +∠END ,∵2∠MEN +∠MFN =180°,∴2(∠BME +∠END )+∠BMF −∠FND =180°,∴2∠BME +2∠END +∠BMF −∠FND =180°,即2∠BMF +∠FND +∠BMF −∠FND =180°,解得∠BMF =60°,∴∠FME =2∠BMF =120°;(3)∠FEQ 的大小没发生变化,∠FEQ =30°.由(1)知:∠MEN =∠BME +∠END ,∵EF 平分∠MEN ,NP 平分∠END ,∴∠FEN =12∠MEN =12(∠BME +∠END ),∠ENP =12∠END ,∵EQ //NP ,∴∠NEQ =∠ENP ,∴∠FEQ =∠FEN −∠NEQ =12(∠BME +∠END )−12∠END =12∠BME ,∵∠BME =60°,∴∠FEQ =12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.11.如图,已知()0,A a ,(),0B b ,且满足|4|60a b -+.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.解析:(1)(0,4)A ,0()6,B -; (2)4(0,)D -;(3)()8,8P --【解析】【分析】(1)利用非负数的性质即可解决问题;(2)利用三角形面积求法,由ABO ACO BCO S S S ∆∆∆=+列方程组,求出点C 坐标,进而由△ACD 面积求出D 点坐标.(3)由平行线间距离相等得到20PAB EAB S S ∆∆==,继而求出E 点坐标,同理求出F 点坐标,再由GE=12求出G 点坐标,根据PGE OEF GPFO S S S ∆∆=+梯形求出PG 的长即可求P 点坐标.【详解】解:(1)40a -≥ 60b +, ∴460a b -+=,40a ∴-=60b +,4a ∴=,6b =-,()0,4A ∴,()6,0B -,(2)由BCM DOM S S ∆∆=∴ABO DOM S S ∆∆=,ABO ACD S S ∆∆∴=,1122ABO S AO BO ∆=⨯⨯=,如图1,连CO ,作CE y ⊥轴,CF x ⊥轴,ABO ACO BCO S S S ∆∆∆=+, 即()11641222m m ⨯⨯+⨯⨯-= 53212n m n m -=⎧∴⎨-=⎩, 32m n =-⎧∴⎨=⎩, ()3,2C ∴-,而12ACD S CE AD ∆=⨯⨯, ()134122OD =⨯⨯+=, 4OD ∴=,()0,4D ∴-,(3)如图2:∵EF ∥AB ,∴20PAB EAB S S ∆∆==,∴1202AO BE ⨯=,即()4640OE ⨯+=, 4OE ∴=,()4,0E ∴,12GE =,8GO ∴=,()8,0G ∴-,20ABF PBA S S ∆∆==,()11642022ABF S BO AF OF ∆∴=⨯⨯=⨯⨯+=, 83OF ∴=, 80,3F ⎛⎫∴- ⎪⎝⎭, PGE OEF GPFO S S S ∆∆=+梯形,11818128422323PG PG ⎛⎫∴⨯⨯=⨯+⨯+⨯⨯ ⎪⎝⎭, 8PG ∴=,()8,8P ∴--,【点睛】本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键.12.中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分别为多少元?(2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子?解析:(1)打折前,甲品牌粽子每盒70元,乙品牌粽子每盒80元;(2)最多可购买15盒乙品牌粽子.【分析】(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需要520元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设敬老院可购买m 盒乙品牌粽子.即可得出关于m 的一元一次不等式,解之取其中的最大值整数值即可得出结论.【详解】解:(1)设打折前,每盒甲品牌粽子x 元,每盒乙品牌粽子y 元,根据题意,得:6366080%575%4520x y x y +=⎧⎨⨯+⨯=⎩, 解得7080x y =⎧⎨=⎩, 答:打折前,甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)设敬老院可购买m 盒乙品牌粽子.打折后,甲品牌粽子每盒:7080%56⨯=(元),乙品牌粽子每盒:8075%60⨯=(元),根据题意,得:6056(40)2300m m +⨯-,解得15m .m ∴的最大整数解为15m =.答:最多可购买15盒乙品牌粽子.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.13.先阅读下面材料,再完成任务:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足35x y -=,……①,237x y +=,……②,求4x y -和75x y +的值. 本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=,这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组322233x y x y -=-⎧⎨-=-⎩,则x y -=______,x y +=______; (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=++,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,那么11*=______.解析:(1)-1;1;(2)30元;(3)-11【分析】(1)①+②,可得出x y -的值,①-②,得x y +的值;(2)设购买1支铅笔、1块橡皮、1本日记本分别使用x 元、y 元、z 元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元”列出方程组,再根据方程组的特征求出6x y z ++=,进一步可求出()530x y z ++=; (3)根据新定义,将数值代入新定义里,列方程组求解即可得出答案.【详解】(1)解:322233x y x y -=-⎧⎨-=-⎩①②①+②,得555x y -=-1x y ∴-=-;①-②,得1x y +=;故答案为:-1,1;(2)设购买1支铅笔、1块橡皮、1本日记本分别使用x 元、y 元、z 元,根据题意,得:203232395358x y z x y z ++=⎧⎨++=⎩①② ①×②-②得6x y z ++=∴()530x y z ++=(元)答:5本日记本共需30元.(3)353515474728a b c a b c ⨯=++=⎧⎨⨯=++=⎩①② ①3⨯-②2⨯得11a b c ++=-∴1111a b c ⨯=++=-.【点睛】本题考查了三元一次方程组的应用,熟练读懂题干中的“整体思想”是解题的关键.14.如图,α∠和β∠的度数满足方程组2230320αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,且//CD EF ,AC AE ⊥. (1)用解方程的方法求α∠和β∠的度数;(2)求C ∠的度数.解析:(1)50α∠=︒,130β∠=︒;(2)40C ∠=︒【分析】(1)把α∠和β∠当做未知数,利用加减消元法解二元一次方程组即可;(2)先证明AB ∥EF ,则可以得到CD ∥AB ,∠C +∠CAB =180°,求出∠CAB 的度数即可求解.【详解】解:(1)2230320αβαβ⎧∠+∠=⎨∠-∠=⎩①② 用② +①得:5=250α∠,解得=50α∠,把=50α∠代入① 解得=130β∠;(2)∵=50130=180αβ∠++∠∴AB ∥EF ,∵//CD EF ,∴CD ∥AB ,∴∠C +∠CAB =180°,∵∠CAB =∠EAC +∠BAE ,AC ⊥AE ,∴∠CAE =90°,∴∠CAB =140°∴C ∠=40°.【点睛】本题考查了平行线的判定和性质,解二元一次方程组,解答本题的关键是明确题意,利用数形结合的思想解答.15.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ;(3)由此请你解决下列问题:若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值. 解析:(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩, 由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.16.对于不为0的一位数m 和一个两位数n ,将数m 放置于两位数之前,或者将数m 放置于两位数的十位数字与个位数字之间就可以得到两个新的三位数,将较大三位数减去较小三位数的差与15的商记为(),F m n .例如:当1m =,68n =时,可以得到168,618.较大三位数减去较小三位数的差为618168450-=,而4501530÷=,所以()1,6830F =.(1)计算:()2,17F .(2)若a 是一位数,b 是两位数,b 的十位数字为x (18x ≤≤,x 为自然数),个位数字为8,当()()11,509,862F a F b +=时,求出所有可能的a ,b 的值. 解析:(1) (2,17)F =6;(2)a=3,b=78或a=7,b=78.【分析】(1) (2,17)F =(217-127)÷15=6;(2)分1≤a <5,a=5,5<a≤9三种情形讨论计算.【详解】(1) 当2m =,17n =时,可以得到217,127.较大三位数减去较小三位数的差为21712790-=,而90156÷=,∴()2,176F =.(2)当m a =,50n =时,可以得a50,5a0.三位数分别为100a+50,500+10a ,当1≤a <5时,(500+10a )-(100a+50)=450-90a ,而(45090)15306a a -÷=-, ∴(),50F a =306a -, ∴()1,506F a =5a -; 当a=5时,(500+10a )-(100a+50)=0,而0150÷=,∴(),50F a =0, ∴()1,506F a =0; 当5<a≤9时,(100a+50)-(500+10a )=90a-450,而(90450)15630a a -÷=-, ∴(),50F a =630a -, ∴()1,506F a =a-5; 当9m =,n b =时,可以得900+10x+8,100x+98.∵18x ≤≤,∴(900+10x+8)-(100x+98)=810-90x ,而(81090)15546x x -÷=-,∴()9,F b =546x -,, ∴()19,2F b =273x -; 当1≤a <5时,5-a+27-3x=8,∴a+3x=24,∴当a=1时,x=233(舍去),当a=2时,x=223(舍去), 当a=3时,x=7,当a=4时,x=203(舍去), ∴a=3,b=78;当a=5时,则27-3x=8,∴x=193(舍去), 当5<a≤9时,则a-5+27-3x=8,∴3x-a=14,∴当a=6时,x=203(舍去),当a=7时,x=7, 当a=8时,x=223(舍去),当a=9时,x=233(舍去), ∴a=7,b=78;综上所述,a=3,b=78或a=7,b=78.【点睛】本题考查了新定义问题和二元一次方程的整数解,准确理解新定义的意义,灵活运用分类思想和枚举法是解题的关键.17.材料1:我们把形如ax by c +=(a 、b 、c 为常数)的方程叫二元一次方程.若a 、b 、c 为整数,则称二元一次方程ax by c +=为整系数方程.若c 是a ,b 的最大公约数的整倍数,则方程有整数解.例如方程342,735,426x y x y x y +=-=+=都有整数解;反过来也成立.方程6310421x y x y +=-=和都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数.材料2:求方程56100x y +=的正整数解. 解:由已知得:1006100520555y y y y x y ---===--……① 设5y k =(k 为整数),则5y k =……② 把②代入①得:206x k =-.所以方程组的解为2065x k y k =-⎧⎨=⎩, 根据题意得:206050k k ->⎧⎨>⎩. 解不等式组得0<k <103.所以k 的整数解是1,2,3. 所以方程56100x y +=的正整数解是:145x y =⎧⎨=⎩,810x y =⎧⎨=⎩,215x y =⎧⎨=⎩. 根据以上材料回答下列问题:(1)下列方程中:① 3911x y +=,② 15570x y -=,③ 63111x y +=,④27999x y -=,⑤ 9126169x -=,⑥ 22121324x y +=.没有整数解的方程是 (填方程前面的编号);(2)仿照上面的方法,求方程3438x y +=的正整数解;(3)若要把一根长30m 的钢丝截成2m 长和3m 长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料?你有几种不同的截法?(直接写出截法,不要求解题过程)解析:(1)①⑥;(2)28x y =⎧⎨=⎩,65x y =⎧⎨=⎩,102x y =⎧⎨=⎩;(3)有四种不同的截法不浪费材料,分别为2m 长的钢丝12根,3m 长的钢丝2根;或2m 长的钢丝9根,3m 长的钢丝4根;或2m 长的钢丝6根,3m 长的钢丝6根;或2m 长的钢丝3根,3m 长的钢丝8根【分析】(1)依据题中给出的判断方法进行判断,先找出最大公约数,然后再看能否整除c ,从而来判断是否有整数解;(2)依据材料2的解题过程,即可求得结果;(3)根据题意,设2m 长的钢丝为x 根,3m 长的钢丝为y 根(,x y 为正整数).则可得关于x ,y 的二元一次方程,利用材料2的求解方法,求得此方程的整数解,即可得出结论.【详解】解:(1)① 3911x y +=,因为3,9的最大公约数是3,而11不是3的整倍数,所以此方程没有整数解;② 15570x y -=,因为15,5的最大公约数是5,而70是5的整倍数,所以此方程有整数解;③ 63111x y +=,因为6,3的最大公约数是3,而111是3的整倍数,所以此方程有整数解;④ 27999x y -=,因为27,9的最大公约数是9,而99是9的整倍数,所以此方程有整数解;⑤ 9126169x -=,因为91,26的最大公约数是13,而169是13的整倍数,所以此方程有整数解;⑥ 22121324x y +=,因为22,121的最大公约数是11,而324不是11的整倍数,所以此方程没有整数解;故答案为:① ⑥.(2)由已知得:38436232-12+333y y y y x y -+--===-. ① 设23y k -=(k 为整数),则23y k =-. ② 把②代入①得:104x k =+.所以方程组的解为10+423x k y k =⎧⎨=-⎩. 根据题意得:10+40230k k >⎧⎨>⎩-, 解不等式组得:25-<k <23. 所以k 的整数解是-2,-1,0.故原方程所有的正整数解为:28x y =⎧⎨=⎩,65x y =⎧⎨=⎩,102x y =⎧⎨=⎩. (3)设2m 长的钢丝为x 根,3m 长的钢丝为y 根(,x y 为正整数).根据题意得:2330x y .所以30330215222y y y y x y ---===--. 设2y k =(k 为整数),则2y k =. ∴1532x k y k =⎧⎨=⎩-. 根据题意得:153020k k ->⎧⎨>⎩,解不等式组得:05k <<. 所以k 的整数解是1,2,3,4.故2330x y 所有的正整数解为:122x y =⎧⎨=⎩ ,94x y =⎧⎨=⎩,66x y =⎧⎨=⎩,38x y =⎧⎨=⎩. 答:有四种不同的截法不浪费材料,分别为2m 长的钢丝12根,3m 长的钢丝2根;或2m 长的钢丝9根,3m 长的钢丝4根;或2m 长的钢丝6根,3m 长的钢丝6根;或2m 长的钢丝3根,3m 长的钢丝8根.【点睛】此题主要考查了求二元一次方程的整数解,理解题意,并掌握利用一元一次不等式组求二元一次方程的整数解的方法及是解题的关键.18.在平面直角坐标系中,点(),1A a ,(),6B b ,(),3C c ,且a ,b ,c 满足231321b c a a c b +=+⎧⎨+=+⎩.(1)请用含a 的式子分别表示B ,C 两点的坐标;(2)当实数a 变化时,判断ABC 的面积是否发生变化?若不变,求其值;若变化,求其变化范围;(3)如图,已知线段AB 与y 轴相交于点E ,直线AC 与直线OB 交于点P ,若2PA PC ≤,求实数a 的取值范围.解析:(1)()3,6B a +,()7,3C a +;(2)不变,值为14.5;(3)27013a -≤≤ 【分析】(1)先解方程组,用含a 的式子表示b 、c 的值,进而可得点A ,B ,C 的坐标. (2)根据S △ABC =S 梯形AFGB +S 梯形BGHC −S 梯形AFHC 代入数据计算即可.(3)先解方程组用含a 的代数式表示出b ,c ,根据线段AB 在与y 轴相交于点E 可得关于a 的不等式组,解即可得a 的一个取值范围,再由2PA ≤PC 可得2S △AOB ≤△S △BOC ,然后用含a 的代数式表示出2S △AOB 与△S △BOC ,进而可得关于a 的不等式,解不等式可得a 的一另个取值范围,从而可得结果.【详解】解:(1)解方程组231321b c a a c b +=+⎧⎨+=+⎩,得37b ac a =+⎧⎨=+⎩, (,1)A a ,()3,6B a +,()7,3C a +(2)ABC 的面积不变,值为14.5如图,过点A ,B ,C 分别作x 轴的垂线,垂足分别为F ,G ,H ,∵(),1A a ,()3,6B a +,()7,3C a +,∴1AF =,6BG =,3CH =,3FG =,4GH =,7FH =,∴ABC AFGB BGHC AFHC S S S S =+-△梯形梯形梯形 ()()()11116336431714.5222=+⨯++⨯-+⨯=; (3)连接AO ,CO ,∵(),1A a ,()3,6B a +,()7,3C a +,又∵线段AB 在与y 轴相交于点E ,∴0a ≤,30a +≥,∴30a -≤≤,∵2PA PC ≤,∴2ABP BPC S S ≤△△,2AOP OCP S S ≤△△,∴2AOB BOC S S ≤△△,如图,过点A ,B ,C 分别作x 轴的垂线,垂足分别为M ,N ,K ,∵AOB AOM BON AMNB S S S S =--梯形△△,()()()()111163136222a a a a =⨯+⨯+---⨯-+⨯ 5322a =-+, BOC BON K BN OC KC S S S S =+-梯形△△△()()()()()11136733673222a a a a =⨯+⨯+-+++⨯-+⨯⎡⎤⎣⎦ 33322a =+, ∴5333322222a a ⎛⎫-+≤+ ⎪⎝⎭,解得2713a ≥-, ∴实数a 的取值范围是27013a -≤≤. 【点睛】 本题属于三角形综合题,考查三角形的面积,解二元一次方程组,坐标与图形的性质,平移的性质等知识,涉及的知识点多,综合性强,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.19.阅读材料:如果x 是一个有理数,我们把不超过x 的最大整数记作[]x .例如,[]3.23=,[]55=,[]2.13-=-,那么,[]x x a =+,其中01a ≤<.例如,[]3.2 3.20.2=+,[]550=+,[]2.1 2.10.9-=-+.请你解决下列问题:(1)[]4.8=__________,[]6.5-=__________;(2)如果[]5x =,那么x 的取值范围是__________;(3)如果[]5231x x -=+,那么x 的值是__________;(4)如果[]x x a =+,其中01a ≤<,且[]41a x =+,求x 的值.解析:(1)4,-7;(2)56x ≤<;(3)53;(4)1x =-或14或112或324 【分析】(1)根据[]x 表示不超过x 的最大整数的定义及例子直接求解即可;(2)根据[]x 表示不超过x 的最大整数的定义及例子直接求解即可;(3)由材料中“[]x x a =+,其中01a ≤<”得出315232x x x +-<+,解不等式,再根据3x +1为整数,即可计算出具体的值;(4)由材料中的条件[]41a x =+可得[]14x a +=,由01a <,可求得[]x 的范围,根据[]x 为整数,分情况讨论即可求得x 的值.【详解】(1)[]4.84=,[]6.57-=-.故答案为:4,-7.(2)如果[]5x =. 那么x 的取值范围是56x <.故答案为:56x <.(3)如果[]5231x x -=+,那么315232x x x +-<+. 解得:322x <。

2023-2024学年广东省中山市七年级下学期期末数学试题

2023-2024学年广东省中山市七年级下学期期末数学试题

2023-2024学年广东省中山市七年级下学期期末数学试题1.在下列各组由运动项目的图标组成的图形中,能将其中一个图形只经过平移得到另一个图形的是()A.B.C.D.2.以下调查中,适宜抽样调查的是()A .了解某班学生喜爱的体育运动项目的情况B .你所在学校的男、女同学的人数C .了解某地区饮用水矿物质含量的情况D .了解太空空间站的零部件是否正常3.中国传统数学对无理数的最早记载是在《九章算术》一书中,书中记载:将开方开不尽的数叫做“面”.下面符合“面”的描述的数是()A.B.C.D.4.在平面直角坐标系中,过点和点作直线,则直线AB ()A .平行于x 轴B .平行于y 轴C .与x 轴相交D .经过原点5.若,则下列各式中正确的是()A .B.C .D .6.把方程改写成用含x 的式子表示y 的形式正确的是()A.B.C.D .7.下列各数中,比小的最大整数是()A .4B .3C .2D .l8.如图是光的反射规律示意图.是入射光线,是反射光线,法线,.若,则的度数为()A .B.C.D .9.如图是由截面为同一种长方形的墙砖粘贴的部分墙面,设每块小长方形墙砖的长为,宽为,则下列所列方程组正确的是()A.B.C.D.10.平面直角坐标系中点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限11.利用如图的工具可以测得的大小是_______°.12.在画频数分布直方图时,一个样本容量为100的样本,最小值为110,最大值为172.若确定组距为4,则分成的组数是_______.13.如图是关于x的不等式组的解集在数轴上的表示,则其解集为________.14.在平面直角坐标系中,在第四象限内的点到x轴的距离是2,则_______.15.小颖沿着某公园的环形跑道(周长大于)按逆时针方向跑步,并用跑步软件记录运动轨迹,她从起点出发,每跑,软件会在运动轨迹上标注出相应的里程数.前的里程数数据如图所示,当小颖跑了2圈时,她的运动里程数______(填“>”“=”或“<”).16.计算:.17.解方程组18.如图,在平面直角坐标系中,已知的三个顶点坐标分别为,,.若是由平移后所得,且中的任意一点经过平移后的对应点为.(1)画出;(2)求的面积.19.已知:如图,,.求证:.20.某校积极落实“双减”政策,开设了各类社团供学生参与拓展课程,为了解七年级学生各社团活动的参与人数,该校对参与社团活动的学生进行了抽样调查,制作出如下的统计图.请根据统计图信息,解答下列问题:(1)求此次被调查的学生人数和扇形统计图中书法类所对应的圆心角的大小;(2)请把条形统计图补充完整;(3)已知该校七年级共有1200名学生参加社团活动,请根据样本估算该校七年级学生参加艺术类社团的人数.21.对于两个关于x的不等式,若有且仅有两个整数使得这两个不等式同时成立,则称这两个不等式是“双整”的.例如不等式不等式和不等式只有1和2两个整数使得这两个不等式同时成立,所以不等式和不等式是“双整”的.(1)判断不等式和是否是“双整”的并说明理由;(2)若不等式和是“双整”的,求a的最大值.22.【阅读理解】在平面直角坐标系中,将横、纵坐标均为整数的点称为格点.若一个多边形的顶点都在格点上,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.如图,是格点三角形,其对应的,,.(1)【学以致用】图中格点四边形对应的______,______,______;(2)【拓展研究】已知格点多边形的S,N,L存在的数量关系,其中a,b为常数.①试求出a,b的值;②若某格点多边形对应的面积S为79,内部的格点数N为71,请求出该格点多边形边界上的格点数L的值.23.某校为学生提供早餐和午餐服务.(1)学校提供的午餐有甲、乙两种套餐,两种套餐的组成如下:套餐主食(克)肉类(克)其它(克)甲15085165乙18060160为了膳食平衡,需合理控制主食摄入量.如果在一周里,学生午餐主食摄入总量不宜超过820克,那么学生需要在一周里最多几天选择乙套餐?(说明:一周按5天计算)(2)学校提供的一份早餐包括一份综合食品、一份牛奶和一个鸡蛋.已知一份牛奶比一个鸡蛋重量的2倍少10克,一份牛奶和一份综合食品重量的和是一份鸡蛋重量的4倍.其中鸡蛋的蛋白质含量占15%,综合食品和牛奶每100克含蛋白质的重量如下表所示:种类综合食品牛奶每100克含蛋白质的重量(克)93若早餐的蛋白质总含量为8%,请求一份早餐中综合食品、牛奶和鸡蛋的重量.24.如图1,线段,为线段上一动点(不与点,重合).分别连接,.过点P 作的角平分线,在线段的右侧作.(1)如图2,当与重合时,求证:;(2)当与不重合时,探索,,之间的数量关系并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省中山市七年级下学期期末考试
数学试卷
一、单项选择题(共10个小题,每小题3分,满分30分)
1.在实数﹣2,0,,3中,无理数是()
A.﹣2 B.0 C.D.3
2.点P(﹣5,5)在平面直角坐标系中所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
3.如图,直线a,b被直线c所截,且a∥b,若∠1=55°,则∠2的度数为()
A.145°B.125°C.55°D.45°
4.立方根等于2的数是()
A.±8 B.8 C.﹣8 D.
5.为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高.在这个问题中,样本容量是()
A.2000名学生B.2000 C.200名学生D.200
6.下列命题是真命题的是()
A.对顶角相等 B.内错角相等
C.相等的角是对顶角D.相等的角是内错角
7.已知a>b,则下列结论中正确的是()
A.a+2<b+2 B.a﹣2<b﹣2 C.﹣2a<﹣2b D.
8.某学校需要了解全校学生眼睛近视的情况,下面抽取样本的方式比较合适的是()A.从全校每个班级中随机抽取10名学生作调查
B.从九年级随机抽取一个班级的学生作调查
C.从全校的女同学中随机抽取50名学生作调查
D.在学校篮球场上随机抽取10名学生作调查
9.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离为()
A.7 B.6 C.4 D.3
10.已知x,y满足方程程组,则x﹣y的值为()
A.0 B.1 C.2 D.8
二、填空题(共6个小题,每小题4分,满分24分)
11.如图,直线AB,CD相交于点O,OE⊥AB于点O,若∠EOC=60°,则∠BOD度数是.
12.如果x2=a,那么x叫做a的平方根.由此可知,4的平方根是.
13.若是方程y=2x+b的解,则b的值为.
14.不等式2(x+1)<6的解集为.
15.在平面直角坐标系中,正方形ABCD的三个顶点坐标分别为A(﹣2,2),B(﹣2,﹣2),C(2,﹣2),则第四个顶点D的坐标为.
16.在学校“传统文化”考核中,一个班50名学生中有40人达到优秀,在扇形统计图中,代表优秀人数的扇形的圆心角的度数等于度.
三、解答题(一)(共3个小题,每小题6分,满分18分
17.(6分)如图,将数轴上标有字母的各点与下列实数对应起来,请在答题卡上填写对应的实数:﹣,π,0,,2,﹣.
18.(6分)解方程组:.
19.(6分)根据下列语句列不等式并求出解集:x与4的和不小于6与x的差.
四、解答题(二)(共3个小题,每小题7分,满分21分
20.(7分)如图,平面直角坐标系中有一个四边形ABCD.
(1)分别写出点A,B,C,D的坐标;
(2)求四边形ABCD的面积;
(3)将四边形ABCD先向下平移3个单位长度,再向右平移4个单位长度后得到的四边形
A 1B
1
C
1
D
1
,画出四边形A
1
B
1
C
1
D
1
21.(7分)解不等式组:.
22.(7分)如图,AB∥CD,AE平分∠BAC,CF平分∠ACD.求证:AE∥CF.
五、解答题(三)(共3个小、题,每小题9分,满分27分)
23.(9分)体育委员统计了全班学生“1分钟跳绳”的次数,绘制成如下两幅统计图:
根据这两幅统计图的信息完成下列问题
(1)这个班共有学生多少人?并补全频数分布直方图;
(2)如果将“1分钟跳绳”的次数大于或等于180个定为优秀,请你求出这个班“1分钟跳绳”的次数达到优秀的百分率.
24.(9分)某校组织七年级全体师生乘旅游客车前往广州开展研学旅行活动.旅游客车有大小两种,2辆大客车与3辆小客车全部坐满可乘载195人,4辆大客车与2辆小客车全部坐满可乘载250人,全体师生刚好坐满12辆大客车与10辆小客车,问该校七年级师生共有多少人?
25.(9分)如图1,BC⊥AF于点C,∠A+∠1=90°.
(1)求证:AB∥DE;
(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.。

相关文档
最新文档